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Abstract

A deterministic model of tuberculosis in sub-Saharan Africa in general and

Cameroon in particular including lack of access to the treatment and weak diag-

nose capacity is designed and analyzed with respect to its transmission dynam-

ics. The model includes both frequency- and density-dependent transmissions.

It is shown that the model is mathematically well-posed and epidemiologically

reasonable. Solutions are non-negative and bounded whenever the initial values

are non-negative. A sensitivity analysis of model parameters is performed and

most sensitive parameters of the model are identified using a state-of-the-art

Gauss-Newton Method. In particular, parameters representing the proportion

of individuals having access to medical facilities have a large impact on the dy-

namics of the disease. It has been shown that an increase of these parameter

values over the time can significantly reduce the disease burden in the population

within the next 15 years.

1 Introduction

Tuberculosis (TB) is a preventable and curable disease caused by Mycobacterium
tuberculosis (Mtb) that most often affects the lungs. To date, TB claims the sec-
ond largest number of victims due to a single infectious agent right after Human
Immunodeficiency Virus and Acquired Immune Deficiency Syndrome (HIV/AIDS)
[WHO12a]. Mostly, young adults are affected by tuberculosis, in their most produc-
tive years. In 2010, 8.8 million people worldwide were infected. Over 95% of TB
deaths occur in 22 low- and middle-income countries mostly located in Sub-Saharan
Africa and in South-East-Asia [WHO12a]. Sub-Saharan Africa carries the greatest
proportion of new cases per population with over 260 cases per 100 000 population in
2011 [WHO12a]. Tuberculosis is an ancient and complex infectious disease on which
a large number of theoretical studies have been carried out. Mtb’s infection can re-
main latent, become active, or it can progress from latent TB to active TB either
by endogenous re-activation and/or exogenous re-infection. Active TB is most of the
time acquired through co-infection of Mtb with other diseases (diabetes, HIV/AIDS)
or some substance abuse such as alcohol and tobacco. The mathematical analysis of
biomedical and disease transmission models can significantly contribute to the under-
standing of the mechanisms of those processes and to the design of potential therapies
[AM91, Thi03].

Diseases (including heart disease and cancer) cause orders of magnitude more
deaths in the world than anything else, even wars and famines [Mur02, RH04]. The
earliest mathematical models describing the TB dynamics have been built in the 1960s
by the statistician H. T. Waaler, chief of the Norwegian TB control services [WGA62].
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The models focused on the prediction and control strategies using simulation ap-
proaches. Later on, Waaler [Waa68], Revelle and coworkers [RLF67] and Ferebee
[Fer67] developed many other mathematical models with the same aim, Waaler con-
sidered an exponential population dynamics in the absence of TB [WGA62]. Waaler’s
first linear model did not describe the mechanics of TB transmission. He introduced
a new model of 160 linear equations in [Waa68], keeping the same structure, but in-
cluding BCG vaccinated and different recovered classes for 20 different age classes.
Using the model of Brogger and Waaler as a template, Revelle firstly introduced
nonlinear systems of ordinary differential equations (ODEs) that model TB dynam-
ics [RLF67]. Revelle developed an optimization model and studied the minimal cost
strategy against TB.

Blower and colleagues [BSH96, VF97, BD02] discussed the persistence condition
of tuberculosis inside the population and determined the basic reproduction ratio R0

(the average number of new infectious cases caused by a single infectious case in a
fully susceptible population over the course of the entire infectious period). A sensi-
tivity analysis of R0 has been performed by several authors [BSH96]. However, the
sensitivity analysis of parameters on R0 does not really illustrate the impact of these
parameters on the global trajectory of the system, especially in the presence of back-
ward bifurcation. Blower and colleagues found in their model that 1 < R0 < 9, and
the most important parameters are the infection rate, the probability of fast progres-
sion, the re-activation rate, and the TB related death rate. Chavez and colleagues
[CCF97] developed a mathematical analysis of a TB model without fast progression.
Thereafter, most publications include sophisticated mathematical theories to study
the dynamics of tuberculosis, such as center manifold theory and Lyapunov functions
[FCCC00, MSK03, MBE11, TDB09].

The challenge of TB control in developing countries is due to the increase of TB in-
cidence by a high level of undiagnosed infectious population and lost sight population
with respect to diagnosed infectious cases. Undiagnosed infectious population means
people who have not yet been to a hospital for diagnosis or have not been detected,
but have a pulmonary TB [BTT+11, RKL+07] when lost sight population are people
who have been diagnosed as having active TB, begun their treatment and quitted
before the end. Compared to existing results [CCF97, BGMZ08, MSK03, BOP+08,
ACCC02, CM99, MBE11, OK07, FCCC00] and references therein, our work differs
from these studies in that our model, in addition to undiagnosed infectious and lost
sight population, also considers the aspects of exogenous re-infections, disease relapse
as well as primary active TB cases, natural recovery and traditional medicine or self-
medication (practiced in Sub-Saharan Africa). Also, it is recognized that undiagnosed
population, lost sight population and exogenous re-infections are important compo-
nents of TB transmission in Sub-Saharan Africa. A new mathematical model will be
designed and qualitatively analyze to gain insights into the transmission dynamics and
control of TB in a population in developing countries. The infective class is devised
into three subgroups with different properties: i) diagnosed infectious population, ii)
undiagnosed infectious population and iii) lost sight population. According to the
National Committee of Fight against TB of Cameroon (NCFT) [oFAT01], about 8%
of diagnosed infectious that begin their therapy treatment never return to the hospi-
tal for the rest of sputum examinations and treatment, and then become lost sight.
This class of TB epidemiological models can be extended to many classes of infective
individuals and data for many other African countries.

The quite high rate (5 to 17 %) of lost sight individuals among the Cameroonian
population raises a number of concerns. Indeed, what is happening with the undiag-
nosed cases of active TB and lost sight? How do these people affect the dynamics of
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TB in Sub-Saharan Africa? What are the conditions for the diagnosed rate, i.e. the
proportion of the diagnosed cases treated under a DOTS (Directly Observed Treat-
ment Strategy) program, that can ensure the eradication of TB, or at least minimize
its incidence? Are the undiagnosed cases undermining the efforts of the DOTS strat-
egy with respect to reducing the incidence of TB in Sub-Saharan Africa and effecting
proper and efficient treatment policies for patients with active TB? These are the
questions to be answered in this paper.

2 Suggested epidemiological model

Data availability and the study objectives generally determine the modelling approach
to be used. A finite total population at time t denoted by N(t) is considered and
sub-divided into the following mutually exclusive sub-populations:

S susceptible: healthy people not yet exposed to TB

E latently infected: exposed to TB but not infectious

I diagnosed infectious: have active TB confirmed after a sputum examination in
a hospital

J undiagnosed infectious: have not yet been to a hospital for diagnosis but are
active for confirmation by a sputum examination

L lost sight: people who have been diagnosed as having active TB, begun their
treatment and quitted before the end

R recovered: people cured after treatment in the hospital

In Africa, reliable TB tests [KAFM07] are often missing or too expensive. Hence,
TB diagnosis based on a single sputum examination can often only be classified as
“probable” or “presumed”, and cannot detect cases of less infectious forms of TB
[WHO12b]. Therefore, the model is based on the following assumptions, established
from behaviours of people in different epidemiological classes.

1. Mtb transmission from diagnosed infectious to susceptible population, due to
education on the infection is limited. it is therefore modeled using a standard
mass action or frequency-dependent force of infection.

2. Mtb transmission from undiagnosed infectious to susceptible population, due to
their level of education on the disease is modeled by a density-dependent force
of infection.

These arguments abide on the fact that diagnosed infectious people are in most
cases hospitalized for at least 2 months or are advised to lessen their infectiousness in
their residing neighbourhood. Their distribution in the population is not necessarily
homogeneous. Since undiagnosed infectious remain inside the population, there is
an unlimited possibility of contacts with the susceptible population [BTT+11]. We
therefore assume a density dependent force of infection for hospital inmates [BBB+02].

All recruitment is into the susceptible class and occurs at an average scale Λ.
The fixed survey for non-disease related death is µ, thus 1/µ is the average lifetime.
Diagnosed infectious, undiagnosed infectious and lost sight population have additional
constant death rates due to the disease, defined by d1, d2 and d3, respectively. It is
Transmission of Mtb occurs due to adequate contacts among susceptible and an active
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TB case. Thus, susceptible individuals acquire Mtb infection from individuals with
active TB and lost sight at a rate ν(I, J, L) given by

ν(I, J, L) = β1
I

N
+ β2

L

N
+ β3J, (1)

where βi, i = 1, 2, 3, are the effective contact rates with diagnosed, lost sight and un-
diagnosed infectious population sufficient to transmit infection to susceptible people.
The effective contact rates βi in a given population for tuberculosis are measured in
effective contacts per unit time. This may be expressed as the product of the total
contact rate per unit time (ηi) by the risk of infection (φi) given contact between an
infectious and a susceptible individual,

βi = ηiφi.

This risk is called the transmission risk.
A proportion p of the latently-infected individuals develop fast active TB and the

remainder (1 − p) develop latent TB and enter the latent class E. Among latently-
infected individuals developing active TB, a fraction f is assumed to undergo a fast
progression directly to the diagnosed infectious class I, while the remainder (1 − f)
enters the undiagnosed infectious class J . We set

p1 = pf and p2 = p(1− f).

Once latently infected with Mtb, an individual will remain so for life unless reactiva-
tion occurs. Latently infected individuals are assumed to acquire some immunity as
a result of infection, which reduces the risk of subsequent infection but does not fully
prevent it.

Due to endogenous reactivation, a fraction 1 − r1 of latently infected individuals
who did not receive effective chemoprophylaxis become infectious with a constant rate
k, and reinfect after effective contact with individuals in the active TB classes or lost
sight at a rate

λe = σ1ν(I, J, L),

where σ1 is the factor reducing the risk of infection as a result of acquiring immunity
for latently infected individuals. Among latently infected individuals who become
infectious, the fraction h is diagnosed and treated under the ”Stop TB” program,
while the remaining 1−h is not diagnosed and becomes undiagnosed infectious J . We
assume that after some time suffering from TB, some undiagnosed infectious decide
to go to hospital with a rate θ. Also, we assume that among diagnosed infectious
who had begun their treatment therapy, a fraction r2 of I has taken all the dose and
has made all the sputum examinations and will be declared cured from the disease.
Some diagnosed infectious who have not finished their dose of drugs and sputum
examinations or whose treatment was unsuccessful, will not return to the hospital for
the rest of sputum examinations and check-up. They will enter the class of lost sight
L at a constant rate α. Lost sight can return to the hospital at a constant rate δ.

As suggested by Murray et al. [MSR90], recovered individuals can only have
partial immunity. Hence, they can undergo a TB reactivation or relapse with a
constant rate γ. The remainder can be reinfected (exogenously) after an effective
contact with individuals in the active TB classes and lost sight at a rate

λr = σ2ν(I, J, L),

where σ2 is the factor reducing the risk of infection as a result of acquiring partial
immunity for recovered individuals. Due to their own immunity, traditional medicine,
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natural recovery and drugs bought in the street (practised in sub-Saharan Africa), a
fraction of lost sight and undiagnosed infectious can spontaneously recover at con-
stant rates ρ and ω, respectively and enter the latent class E and recovery class R
respectively. A description of the parameters is summarized in Table 2. The whole
model flow diagram is shown in Fig 1. The flow diagram Figure 1 yields the following

I R

L

J

S E

p2ν(I, J, L)

µ

µ

p2ν(I, J, L)

p1ν(I, J, L)

ρ

µ + d2

µ + d3

γ
(1 − p1 − p2)ν

µ

Λ

µ

ω

δ

α

r2
θ

(1 − h)(k + σ1ν)(1 − r1)

h(1 − r1)(k + σ1ν)

Figure 1: Transfer diagram for a transmission dynamics of tuberculosis.

differential equations,
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









































Ṡ = Λ− ν(I, J, L)S − µS,

Ė = (1 − p1 − p2)ν(I, J, L)S + ρJ + σ2ν(I, J, L)R
−σ1(1− r1)ν(I, J, L)E −A1E,

İ = p1ν(I, J, L)S + δL+ θJ + γR+ h(1− r1)(k + σ1ν(I, J, L))E
−A2I,

J̇ = p2ν(I, J, L)S + (1 − h)(1− r1)(k + σ1ν(I, J, L))E −A3J,

L̇ = αI −A4L,

Ṙ = r2I + ωL− σ2ν(I, J, L)R−A5R,

(2)

where

A1 = µ+ k(1− r1), A2 = µ+ d1 + r2 + α,
A3 = µ+ d2 + θ + ρ, A4 = µ+ d3 + δ + ω and A5 = γ + µ.

3 Basic properties of the model

Since model (2) monitors a human population, all its associated parameters and state
variables should be non-negative and bounded for all t ≥ 0. It is shown in this section
that the model is mathematically well-posed and epidemiologically reasonable [Het00].

Positivity of the solution

The following result shows that state variables are non-negative and dissipative.

Lemma 3.1 Let the initial values be S(0) > 0, E(0) ≥ 0, I(0) ≥ 0, J(0) ≥ 0,
L(0) ≥ 0 and R(0) ≥ 0. Then, solutions (S,E, I, J, L,R) of model system (2) are
non-negative for all t > 0. Furthermore,

lim sup
t−→∞

N(t) ≤
Λ

µ
,

with N(t) = S(t) + E(t) + I(t) + J(t) + L(t) +R(t).
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The proof of this Lemma follows from an obvious adjustment of the result in [MBE12,
MMNB11]

Invariant Region

The following steps establish the positive invariance of the set

Ωρ =

{

(S,E, I, J, L,R) ∈ R
6
+, N(t) ≤

Λ

µ
+ ρ

}

, ρ > 0, (3)

i.e. solutions remain in Ωρ for all t ≥ 0. This implies that the trajectories of model
system (2) are bounded. On the other hand, integrating the differential inequality
Ṅ ≤ Λ− µN yields

N(t) ≤ N(0)e−µt +
Λ

µ
(1− e−µt).

In particular N(t) ≤
Λ

µ
if N(0) ≤

Λ

µ
. On the other hand, if N(0) ≥

Λ

µ
, then

Λ− µN(0) ≤ 0, and
Ṅ(0) ≤ Λ − µN(0) ≤ 0,

i.e. the total population N(t) will decrease until

N(t) ≤
Λ

µ
.

Thus, the simplex Ωρ is a compact forward invariant set for model system (2), and
for ρ > 0 this set is absorbing. So, we limit our study to this simplex for ρ > 0. The
prevalent existence, uniqueness and continuation results hold for model system (2) in
Ωρ.

4 Basic reproduction number

The global behavior of the TB model crucially depends on the basic reproduction
number, i.e., the average number of secondary cases produced by a single infective
individual, who is introduced into an entirely susceptible population. Model system
(2) has an evident equilibrium Q0 = (x0, 0) with x0 = Λ/µ when I = 0. This
equilibrium point is the disease-free equilibrium (DFE). We now calculate the basic
reproduction number R0, using the next generation method developed in [vdDW02].
For that purpose, let us write system (2) in the form







ẋ = ϕ(x)− ν(I, J, L)x,

ẏ = F(x, y) + V(x, y),
(4)

where

F(x, y) = ν(I, J, L)B1x, V(x, y) = ν(I, J, L)[B2〈e1 | y〉+B3〈e5 | y〉] +Ay, (5)

x = S ∈ R+ is a state representing the compartment of non transmitting individuals
(susceptible), y = (E, I, J, L,R)T ∈ R

5
+ is the vector representing the state compart-

ment of different infected individuals,

ϕ(x) = Λ− µx
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is a function that depends of x,

ν(I, J, L) =
〈e1 | y〉

N
+ 〈e2 | y〉, N = x+ y1 + y2 + y3 + y4 + y5

is the force of infection. Furthermore, we set

e1 = (0, β1, β2, 0, 0) ∈ R
5, e2 = (0, 0, 0, β3, 0) ∈ R

5,

e3 = (1, 0, 0, 0, 0) ∈ R
5, e4 = (0, 0, 0, 0, 1) ∈ R

5,

B1 = (1− p1 − p2, p1, p2, 0, 0)
T ∈ R

5,

B2 = (−σ1(1 − r1), hσ1(1− r1), σ1(1− h)(1 − r1), 0, 0)
T ∈ R

5,

B3 = (−σ2(1− γ), 0, 0, 0, σ2(1− γ))T ∈ R
5.

〈. | .〉 is the usual scalar product and A is the constant matrix

A =













−A1 0 ρ 0 0
kh(1− r1) −A2 θ δ γ

k(1− h)(1 − r1) 0 −A3 0 0
0 α 0 −A4 0
0 r2 0 ω −A5













,

with A1, A2, A3, A4 and A5 defined as above in equation (2).
We define the Jacobian matrices at the DFE as

F =
∂F

∂y
(Q0) and V =

∂V

∂y
(Q0).

Using the same notations as in [vdDW02], the basic reproduction number is given
by the spectral radius of FV −1,

R0 = ρ(FV −1). (6)

For model (4), one has

F = B1

(

e1 +
Λ

µ
e2

)

and V = −A.

Then, according to [KS08, IMST07], the basic reproduction ratio is given by

R0 =

〈

e1 +
Λ

µ
e2 | (−A−1)B1

〉

. (7)

The following result is established from [vdDW02]:

Lemma 4.1 : The disease-free equilibrium Q0 of model system (2) is locally asymp-
totically stable whenever R0 < 1, and unstable, if R0 > 1.

From a biological point of view, Lemma 4.1 implies that TB can be eliminated from
the community (when R0 ≤ 1) if the initial size of the population is in the basin of
attraction of Q0. But if R0 > 1 the infection will be able to spread in a population.
Generally, the larger the value of R0, the harder it is to control the epidemic.
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5 Parameter sensitivity and identification

In order to effectively enable the assessment of targeted public health education strate-
gies and chemoprophylaxis against TB spread in a population, we test the suitability
of the model by fitting it to data from Cameroon [WHO12b].

5.1 Background

We will briefly describe the mathematical techniques that we use for parameter iden-
tification. Formally, the system of differential equation (2) can be written as











d

dt
y(t,p) = f(t, y,p), t ≥ 0,

y(0,p) = y0,

(8)

where p is the vector of parameters, and the right-hand side f depends on both the
states, y ∈ R

n, and the parameter vector, p ∈ R
q. The initial condition vector, y0,

has the same dimension as the state vector y. The TB model equation(2) can be
written in the form of equation (8), where

y(t,p) = (S(t,p), E(t,p), I(t,p), J(t,p), L(t,p), R(t,p)) ∈ R
6

and
p = (Λ, β, · · · , µ) ∈ R

22.

Assume there are given m experimental measurement time-point τ1, · · · , τm, and cor-
responding data values zj ∈ R

n, j = 1, · · · ,m associated with corresponding toler-
ances δzj ∈ R

n. Parameter identification consist of solving the least-squares mini-
mization problem

g(p) =
1

m

m
∑

j=1

‖ D−1
j · (y(τj ,p)− zj) ‖

2
2−→ min

p

(9)

with diagonal weighting

Dj := diag((δzj)1, . . . , (δzj)n) ∈ Mn(R), j = 1, · · · ,m. (10)

That means we want to minimize the relative deviation of model and data at the
measurement time points τj . The minimization problem (9) can be written as an
equivalent minimization problem defined by

g(p) := F (p)T · F (p) → min
p

, (11)

where F (p) = (F1(p), . . . , Fm(p)) is a vector of length N = m ·n with entries defined
by

F (p) =







D−1
1 · (y(τ1,p)− z1)

...
D−1

m · (y(τm,p)− zm)






. (12)

F : Rq −→ R
N is a non-linear mapping and structured as a stacked vector. If not

all components of a measurement zj are given, the number N is accordingly made
smaller, N < nm. The above problem, which is highly nonlinear in p, can be solved
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by affine covariant Gauss-Newton iteration, see [Deu04], where each iteration step i
requires the solution of a linear least-squares problem,

‖J(pk) ·∆pk + F (pk)‖2 → min
pk

, (13)

pk+1 = pk +∆pk

where J(pk) = F ′(pk).

5.2 Sensitivity analysis

The sensitivities

sij(t) =
∂yi(t)

∂pj

(14)

are computed at all data time-points and stacked into one large sensitivity matrix. In
equation (13), J(p) = (sij) represents the sensitivity of the solution y with respect
to the parameters p at the time points of measurements. An analysis of the matrix
J(p) gives some hints whether the current combination of model and data will allow
an identification of a given parameter.

Figure 2(a) shows the column norm (‖DF (:, j)‖) of this sensitivity matrix. Obvi-
ously, parameters with the largest column norm are γ, p2 and ρ, respectively. They
have the largest influence on the solution trajectory at the measurement time-points.

5.3 Parameter identification

Parameters with very small sensitivity have nearly no influence on the solution and
can therefore not be estimated. In this case the entries of the corresponding column in
J(p) (and thus the weighted l2 column norm) are almost zero. Furthermore, some of
the parameters might be linearly dependent, which leads to nearly identical columns
in J(p). In both cases the matrix J(p) will be singular or, from a numerical point of
view, nearly singular.

The linear least squares problem (13) is solved by QR factorization with column
pivoting [DH03]. By a suitable permutation of the matrix columns of J(p), the
diagonal elements of the upper triangular matrix R can be ordered in the form r11 ≥
r22 ≥ · · · ≥ rqq . The sub-condition of parameter pj is defined by

scj =
r11
rjj

. (15)

Thus, the permutation of matrix columns corresponds to a new ordering of pa-
rameters according to increasing sub-condition. The sub-condition indicates whether
a parameter can be estimated from the given data or not. Only parameters for which

scj ≤ 1/ε, (16)

where ε is the relative precision of the Jacobian J(p) can be estimated [DS80].
In the global case it comes that

pi+1 = pi + λi∆pi; 0 < λi ≤ 1.

The step length 0 < λi < 1 is computed successively in each iteration by a trust-region
method [Deu04].
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Figure 2: Subcondition numbers from equation (15) of identifiable parameters for
ε = 10−4 and sensitivity norms of parameters

The above described method for solving a non-linear least squares problem is
implemented in the software code NLSCON [Deu04] and part of the software package
BioPARKIN [DWNR11]. Here, a Matlab-based version of this software package,
named POEM 2.0, which is especially adapted to parameter identification in ordinary
differential equation models, has been used throughout the study.

For model (2), some important parameters are well-known have fixed values ac-
cording to the National Institute of Statistic of Cameroon (NIS) [BSH96, BOP+08].
Other parameters were estimated using the software POEM. As data set for parameter
identification, we used figures for diagnosed infectious and total population over the
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period 1994-2010 published by WHO [WHO12a]. The data are illustrated in Figure
3.
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Figure 3: Data from WHO representing the year-by-year trend and variability in
yearly case reports over the period 1994-2010.

In fact, Figure 2(b) shows that γ, p2 and ρ are among the 9 parameters with lowest
subcondition, i.e. they can be identified from the given measurements. Fortunately,
for some of the non-identifiable parameters, values are already specified for Cameroon
or can be derived from other sources, es demonstrated in the following.

5.4 Parameter values of the model

Most demographic parameters are well-known for a given population, others are esti-
mated from the WHO data. In the following, we specify the values for Cameroon.

The natural mortality µ: It is postulated to be equal to the inverse of the life
expectancy at birth, which is now about 54.1 years in Cameroon [AH06, oS10]. We
fix µ = 1/53.6 per year.

The recruitment Λ: According to NIS [oS10], the average recruitment in the
Cameroonian population during the last fifteen year is Λ = 679685 per year (fixed).

TB mortality d1, d2 and d3 of undiagnosed infectious and lost sight: Per capita
TB-induced mortality rate is 0.193 per year in developed countries, but could be
as high as 0.45 per year in some African countries [BPL98]. We fixed the yearly
TB-induced mortality rates d1 = 0.193, d2 = 0.413 and d3 = 0.20 TB active cases.

Transmission rates βi, i = 1, 2, 3: Blower et al. (cf. [BPL98]) estimated the
contact rates βi ∈ [1, 4] in the case of a frequency dependent force of infection. In
this case, fixed values β1 = 1, β2 = 4 according to the data of Blower et al. have been
used, and we estimated β3 = 6.05681 · 10−06 using POEM.

Progression rate parameters p1, p2 and k: For HIV-negative TB people, Bacaer
et al. (cf. [BOP+08, CFD00]) estimated that people in a South Africa township
have 11% annual risk of developing primary TB disease during five years following
the first Mtb infection and a 0.03% annual risk of reactivation after five years. In
Cameroon, the estimated average TB prevalence for all forms in HIV-positive is about
431 per 100,000 per year. Starting with this order of magnitude, we estimated that
p1 = 9.36432 · 10−04, p2 = 2.43736 · 10−02 and k = 3.31390 · 10−04 per year. Due to
the limited access to hospitals, p2 is expectedly larger than p1 and k.

Factors σ1 and σ2: Sutherland et al. [SSR92] estimated that a previous Mtb
infection reduces the risk of disease after reinfection by 63% for HIV negative males
and by 80% for HIV negative females. We estimate that σ1 = 2.38390 · 10−04 and we
use the formula from [BOP+08] to set σ2 = 0.7 ∗ (p1 + p2).
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Detection rate h: According to WHO data, h ∈ [0.5, 0.9] per year. Using POEM,
it has estimated h = 8.28248 · 10−01 per year.

Diagnosed rate θ: WHO estimated θ ∈ [0.3, 0.6] per years. The result obtained
with POEM shows that the model is highly sensitive to θ, which was finally estimated
from the data as θ = 0.495896 per year.

Proportions r1 and r2 of successful treatments: Since the chemoprophylaxis is not
practiced in Cameroon, we took r1 = 0 per year and fixed r2 = 0.758821 per year
according to [NWF+05].

Rate α at which diagnosed infectious population become lost sight: It has been
estimated using POEM as α = 0.216682 per year.

Rate δ at which lost sight return to the hospital: According to the data of TB in
Cameroon, δ = 39% per year. This value is fixed in the model.

Natural recovery rate ρ: In [BOP+08], the authors estimated that the natural
recovery for HIV-negative TB and HIV-positive TB cases are 0.139 and 0.24 per
year, respectively. Herein, we took the average of these values as initial guess for the
Gauss-Newton algorithm and estimated ρ = 0.131140 per year.

Recovery rate ω: We estimated ω = 0.5 per year.
Relapse rate of recovered individuals: The average relapse rate of recovered indi-

viduals is estimated as γ = 0.0851257 per year.
Numerical values of all parameters are summarized in Table 2.

Comparison to measurement data

In order to illustrate the theoretical results of the foregoing analysis, numerical simu-
lations of model system (2) are carried out using a fourth order Runge-Kutta scheme
in the software Matlab, version R2009. The total population of Cameroon in 1994 is
given by N = 13, 240, 337 [oS10]. The initial values of the other variables were set as
in Table 1.

Using the aforementioned data, model (2) gives a very good fit to the Cameroonian
data for the period 1994-2010 [WHO12a], as depicted in Figure 4. The agreement is
not perfect, but there are no evident consistent patterns in the discrepancy. Forward
solutions of the deterministic model follow fairly well the observed TB patterns of
incidence. With the estimated transmission parameters, the deterministic model ap-
pears to capture all the qualitative properties of the observed pattern. Hence, model
(2) can be used to gain realistic insight into tuberculosis transmission dynamics at
least for a limited period.

6 Effects of increased access to treatment

Herein, we investigate the impact of the time variation of some specific parameters on
the dynamics of model (2). For this purpose, some model parameters are considered
as time dependent variables to reflect their possible change within time. However,
the variation is assumed to be slow over time.

Effects of increasing the access to TB treatment as a result of infrastructures
and education are explored by taking into account the following expressions of model
parameters:

θ(t) = θ +
(1− θ)t

θδ + t
, δ(t) = δ +

(1− δ)t

δδ + t
,

p1(t) = p1 +
p2t

pδ + t
, p2(t) = p2 −

p2t

pδ + t
.

(17)
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Figure 4: Evolution of model (2) showing the estimated state trajectories of suscepti-
ble, latently infected, diagnosed infectious, undiagnosed infectious, lost sight, recov-
ered and total population classes. The dot plots represent the year-by-year trend and
variability in yearly case reports over the period 1994-2010. Parameter values are
defined in Table 2 and initial values are presented in Table 1.

These parameters are assumed to be control functions for the dynamics of TB. Thus,
model (2) becomes a non-autonomous controlled system. Herein, θδ, δδ and pδ are
positive constants to be estimated. The increase (or decrease) in these parameters
can be interpreted as the result of change in treatment access, diagnosis campaign or
large scale education via social networks, TV, radio etc.

The goal now is to find two different sets of values for parameters θδ, δδ and pδ
such that the following two scenarios can be achieved:

a) a reduction in the population of undiagnosed infectious (J) and lost sight (L)
by 20% until 2025,

b) a reduction in the population of undiagnosed infectious (J) and lost sight (L)
by 60% until 2025.

To estimate the parameter values, we generated two artificial data sets. Both data
sets contain the values of J and L from the previous simulation (Figure 4) at the
adaptively choosen time-points in the time interval [1994, 2035]. However, the values
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in the time interval [2010, 2035] have been reduced by 20% and 60% to obtain the
first and second data set, respectively. These data sets were then used in the Gauss-
Newton algorithm to obtain the following estimates:

a) reduction by 20%: pδ = 8.56043 · 107, θδ = 81.2807, δδ = 37.2240

b) reduction by 60%: pδ = 85.6660, θδ = 81.3256, δδ = 37.1301

The simulation results are presented in Figures 5 and 6. They show the dynamic of
TB inside the population in the presence and absence of continuous effort to diagnose
the population. In particular, a relatively small increase in the access to TB treat-
ment could generally result in a decrease in the number of susceptible (S), diagnosed
infectious (I), undiagnosed infectious (J), lost sight (L), and recovered (R) individual,
and an increase in the number of latently infected (E) individuals. We also observe
that the number of diagnosed infectious (I) increases at the beginning, but decreases
after a few years prior to the beginning of the control strategies. Thus, TB can be
reduced within 15 years if some efforts are made to increase the treatment access for
rural population, and TB prevention and education for fast and immuno-compromised
people.
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Figure 5: Time series of model (2) showing the impact of a slow change on parameter
values θ, δ, p1 and p2 with respect to time in order to reduce the TB burden by 20%
within 15 years. (plain lines) present the model predictions for TB dynamics using
parameter values of Table 2 and the (dashed lines) present the estimated trajectories
for parameters θ, δ, p1 and p2 set as in equation (17). Parameter identification
with artificial data gave pδ = 8.56043 · 107, θδ = 81.2807, δδ = 37.2240. All other
parameters are defined as in Table 2.

14



2000 2010 2020 2030

5

6

7

8

x 10
6

Time (Year)

P
op

ul
at

io
n 

of
 s

us
ce

pt
ib

le
 in

di
vi

du
al

s

 

 

Without control

With control

(a) S

2000 2010 2020 2030
0.8

1

1.2

1.4

1.6

1.8

x 10
7

Time (Year)P
op

ul
at

io
n 

of
 la

te
nt

ly
 in

fe
ct

ed
 in

di
vi

du
al

s

 

 

Data

Without control

(b) E

2000 2010 2020 2030

0.5

1

1.5

2

2.5

3
x 10

4

Time (Year)

P
op

ul
at

io
n 

of
 d

ia
gn

os
ed

 in
fe

ct
io

us

 

 

Data

Without control

With control

(c) I

2000 2010 2020 2030

0.5

1

1.5

2

2.5

3

x 10
4

Time (Year)

P
op

ul
at

io
n 

of
 u

nd
ia

gn
os

ed
 in

fe
ct

io
us

 

 

Without control

With control

(d) J

2000 2010 2020 2030

1000

2000

3000

4000

5000

Time (Year)

P
op

ul
at

io
n 

of
 lo

st
 s

ig
ht

 

 

Without control

With control

(e) L

2000 2010 2020 2030

0.5

1

1.5

2

x 10
5

Time (Year)

P
op

ul
at

io
n 

of
 r

ec
ov

er
ed

 

 

Without control

With control

(f) R

Figure 6: Impact of a slow change of parameter values θ, δ, p1 and p2 with respect
to time in order to reduce the TB burden by 60% within 15 years. Model predictions
(plain) for TB dynamics using parameter values of Table 2 and the estimated tra-
jectories (dashed) for parameters θ, δ, p1 and p2 set as in equation (17). Parameter
identification with artificial data gave pδ = 85.6660, θδ = 81.3256, δδ = 37.1301.

7 Conclusion

In this paper, a deterministic model for the transmission dynamics of TB in sub-
Saharan Africa has been presented. The objective is to determine the role of TB
diagnosis, treatment, lack of information about the epidemiological status of some
people, and the role of traditional medicine and natural recovery on the dynamics of
TB. In contrast to other TB models in the literature, the model includes three infective
classes emanating from diagnosed infectious, undiagnosed infectious, and lost sight
individuals. The undiagnosed and lost sight subclasses are shown to be of particular
importance in TB modelling in developing countries like sub-Saharan Africa where
public health is under-developed. Model parameters have either been fixed according
to data published in literature, or they have been estimated with a Gauss-Newton
method using data published by WHO and the National Institute of Statistics of
Cameroon (NIS). A sensitivity analysis revealed that parameters representing the
proportion of individuals having access to medical facilities have a large impact on
the dynamics of the disease. We showed that a change in these parameters over
time can significantly reduce the disease burden in the population within the next
15 year. These parameters can be used to measure the success of educational and
diagnosis campaigns that encourage individuals to go for TB screening. In future
work, optimal control strategies could be applied to determine the optimal dynamics
of these parameters in order to achieve the highest possible reduction of TB in shortest
time at low costs. In addition, the model might be extended towards the inclusion of
co-infection between TB and HIV, or the resistance to treatment.
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A Initial values

Symbol Initial value Source Symbol Initial value Source

S 5576135 Estimated E 8357382 Estimated
I 3092 Fixed (WHO) J 1037 Estimated
L 251 Estimated R 2140 Estimated
N 13240337 Fixed [oS10]

Table 1: Initial values of state variables of the TB model.

B Estimated parameter values
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Parameters Symbol Estimate/yr Source

Recruitment rate of susceptible Λ 679685 Fixed, [oS10]
Transmission rate β1, β2 1, 4 Fixed [BSH96]
Transmission rate β3 6.05681 · 10−06 Estimated
Fast route to infectious class p1 9.36432 · 10−04 Estimated
Fast route to undiagnosed p2 2.43736 · 10−02 Estimated
infectious class
Reinfection parameter of latently σ1 2.38390 · 10−04 Estimated
infected individuals
Reinfection parameter σ2 0.7 ∗ (p1 + p2) Fixed, [BOP+08]
of recovered individuals
Slow route to active TB k 3.31390 · 10−04 Estimated
Natural mortality µ 1/53.6 Fixed, [BSH96, oS10]
TB mortality of diagnosed infectious d1 0.139 Fixed,[BSH96]
TB mortality of undiagnosed infectious d2 0.413 Fixed
TB mortality of lost sight d3 0.20 Fixed
Chemoprophylaxis of latently r1 0 Fixed, [NWF+05]
infected individuals
Detection rate of active TB h 0.828248 Estimated
Recovery rate of diagnosed infectious r2 0.758821 Fixed, [NWF+05]
Recovery rate of lost sight ω 0.5 Fixed
Recovery rate of undiagnosed infectious ρ 0.131140 Estimated
Relapse of recovered individuals γ 8.51257 · 10−02 Estimated
Diagnosed infectious route α 0.216682 Estimated
to the lost sight class
Lost sight route δ 0.39 Fixed
to the diagnosed infectious class
Diagnosed rate θ 0.495896 Estimated

Table 2: Estimated numerical values of the TB model parameters
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