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Abstract—We consider a system dynamics model that de-
scribes the effect of human activity on natural resources. The
central stocks are the accumulated profit, the industry structures,
and the water resources. The model can be controlled through
two time-dependent parameters. The goal in this paper is to find a
parameter setting that leads to a maximization of a performance
index, which reflects both environmental and economic aspects.
Thus, the goal is to identify the most sustainable stock of industry
structures within the model’s constraints and assumptions. In
order to find a proven global optimal parameter set, we formulate
the System Dynamics Optimization model as a mixed-integer
nonlinear problem that is accessible for numerical solvers. Due to
the dynamic structure of the model, certain steps of the solution
process must be handled with greater care, compared to standard
non-dynamic problems. We describe our approach of solving the
industry structure model and present computational results. In
addition, we discuss the limitations of the approach and next
steps.

I. INTRODUCTION

System dynamics (SD) is a computer-aided approach to
theory-building, policy analysis, and strategic decision support
which emerges from an endogenous point of view [1], [2], [3].
SD models are formal, structural models based on ordinary
differential equations which incorporate hypotheses about the
causal connections of parameters and variables as functional
units, and the outcomes of their interactions. SD is applied
to organizational, economic, social, and ecological situations
which are characterized by information feedback, time delays
between cause and effect, interdependence between elements,
and nonlinearities [4].

SD models, as described in the previous section, are
simulation models. That is, besides the internal structure of
the model described by ordinary differential equations, the user
specifies parameter values that reflect his or her knowledge on
the initial state of the system at some time t0. The forward
simulation of the model, numerically carried out by a suitable
discretization of the continuous time into a finite number of
time steps, describes the development of each model variable
over time.

We assume that the user is interested in optimizing a certain
goal. This is typically a final state of the system, for example,
a certain variable should be as high or as low as possible at
the final time of the simulation horizon tmax. Another example
would be the maximization (or minimization) of the integral

of some function. Mathematically, this goal is described by
an objective function. The maximization (or minimization) of
such an objective function is subject to the model’s constraints
(the mathematical equations) and a range in which certain
designated parameters are allowed to vary. We distinguish
a continuous control, where each varying parameter is an
unknown, to be determined function over time. In other words,
the function may take a different value at each discrete time.
The second case is that of a constant control, where a single
value is sought that is used for the complete time horizon of
the problem. In the application, we will focus on the first case,
a control varying over time.

An SD model that is extended by an objective function and
a range of potential values for the set of control parameters is
what we call a system dynamics optimization (SDO) problem.

The question arises how to solve an SDO problem. Several
methods are described in the literature to solve optimization
problems. To provide an overview, they can be grouped into
heuristic, local, or global methods. Heuristic methods (such
as genetic algorithms [5], [6], tabu search [7], or simulated
annealing [8], [9]) do not give any quality measure on the
solution quality. That is, they do not describe if the solution
is optimal or not. Local methods end up with a local optimal
solution, i.e, they guarantee that within some neighborhood
around the computed solution, no better solution exists [10],
[11]. Finally, a global method provides a quality certificate
for the computed solution. That is, they either prove that the
solution is globally optimal, or they provide an estimation of
how far the solution is away from optimality. The disadvantage
of global methods, as compared to heuristic or local methods,
usually is that they are slower. Solving SDO problems is
currently carried out by heuristic or local methods [12]. To
the best of our knowledge there are no global approaches for
the solution of SDO problems in the literature. Details of our
approach are described in Section IV.

As a demonstrator, we apply our techniques to an SDO
problem that asks for the optimal setting of some parameters
in order to find the most performant industry structure with
respect to its water consumption. Fresh water is a scarce
resource, in particular, in arid areas of the world, and can-
not be replaced or substituted by other substances for all
living organisms. An efficient use of this natural resource is
of great importance for a sustainable economy. For natural
systems, sustainability can be understood as the capacity to



remain productive over time. Today, sustainability is discussed
especially regarding natural resources such as oil, gas, and
fresh water [13]. In the paper, we use an SD model which
addresses the water consumption of industry structures. It
is obvious that industrial development strives only when a
mix of resources are available in sufficient amount. However,
today the challenge arising from limited availability of water
resources is largely neglected compared to the issues discussed,
e.g., in relation to consumption of oil and gas resources.

II. INDUSTRY STRUCTURE SD MODEL

The industry structure model was developed by Mojta-
hedzadeh and has been analyzed later in several publications
(Ford and Flynn [14], Kampmann and Oliva, [15], and Mo-
jtahedzadeh [16]). The purpose of the model was to study
economic development in arid areas such as Yazd in Iran,
that heavily depend on underground water. In such areas, the
adequate supply of water is a core element for industrial de-
velopment and societal prosperity. The idea of water adequacy
was implemented as the ratio of water consumption and water
demand. The model emphasizes on the role of market signals
in making decisions for developing new industry structures
in a country. Even though the model explicitly accounts for
water resources, the range of applications of the model is
much wider: Water resources can be conceived as a generic
placeholder for any resource which is scarce in a specific
context. As such, the model can be perceived as a theory of
growth under conditions of constrained resources.

The model being analyzed and optimized in this paper
generates an overshoot pattern of behavior. Figure 1 shows a
classic structure that is able to explain how industrial structures
prosper over time until they reach a limit imposed by nature.
The model, even though it can be considered as small, accounts
for four essential processes of reality:

1) Industry Structures (S) grow with new industry struc-
tures (i) through a reinforcing mechanism (R1) and
demolished with demolition rate (d) through a bal-
ancing mechanism (B3).

2) Industry Structures (S) consume Water Resources
(W ) by water consumption (c) which in turn drains
available Water Resources (W ).

3) A shortage in Water Resources (W ) reduces the
growth in new industry structures (i). This is captured
by the effect of water adequacy on new industry
structures (n). Initially, the growth of Industry Struc-
tures (S) increases the water consumption (c) by a
reinforcing mechanism (R2). For low levels of Water
Resources (W ), the water adequacy (a) is controlled
by the balancing mechanism (B1).

4) The availability of water controls the water consump-
tion (c) through a balancing mechanism (B4). This is
captured by the effect of water availability on water
consumption (e).

As has been detailed before, the concept of water adequacy (a)
is central to the model structure and its behavior. The concept
is the ratio of water demand (w) and water consumption
(c). The final objective in the model is formulated as a
performance index which weights the Accumulated Profit (P )
with the weight of accumulated profit and the remaining Water
Resource (W ) with the weight of water resources.

Parameter Value
pprofit 0.01
pwater 0.1
pinit 10000
pind 100
pdemand 10

TABLE I. PARAMETER VALUES USED IN THE OPTIMIZATION.

III. INDUSTRY STRUCTURE AS SDO PROBLEM

We transform the SD model from the previous section into
an SDO problem. The model has three stocks: accumulated
profit P (t), industry structures S(t) and water resources W (t).
The initial values at t = 0 are P (0) = 0, S(0) = 10,W (0) =
pinit. There are five parameters that remain constant through-
out the timeframe: the weight of accumulated profit pprofit

and the weight of remaining water resources pwater in the
performance index, the initial water resources pinit, the profit
from industry per month pind and the water demand per
industry pdemand. The values used for this parameters are
summarized in Table I.

In addition, there are two control parameters, the de-
molition fraction xdemol(t), the normal industry growth rate
xgrow(t). They can assume a different value at each time step,
and define the solution space of the problem.

A performance index q(t) is computed, that is proportional
to the accumulated profit P (t), the weight of accumulated
profit pprofit, the water resources W (t), and the weight of
water resource pwater:

q(t) = P (t) · pprofit ·W (t) · pwater. (1)

The objective is to maximize the performance index q(t)
at the end of the simulated time horizon for t = tmax.
The three stocks have the following dynamical structure: The
accumulated profit is described by

dP

dt
(t) = g(t), (2)

where g(t) denotes the profit per month, the industry structures
is described by

dS

dt
(t) = i(t)− d(t), (3)

where i(t) is the creation rate of new industry structures
and d(t) is the demolition rate, and the water resources are
described by

dW

dt
(t) = −c(t), (4)

where c(t) is the water consumption rate. In the model,
the water consumption actually represents a net flow, i.e., it
accounts both for the water inflow and the water consumption
which is the outflow. Given the contextual circumstances,
the outflow is larger than the inflow. To simplify the model
formulation, a net flow rate has been used.

The profit per month g(t) is proportional to the industry
structures S(t) and the profit from industry per month pind:

g(t) = S(t) · pind. (5)

The creation rate of new industry structures i(t) is proportional
to the normal industry growth rate xgrow, the effect of water
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Fig. 1. The SD model.

adequacy on new industry structures n(t), and the industry
structures S(t):

i(t) = xgrow · n(t) · S(t). (6)

The demolition rate d(t) is proportional to the demolition
fraction xdemol and the industry structures S(t):

d(t) = xdemol · S(t). (7)

The effect of water adequacy on new industry structures
n(t) is a function of the water adequacy a(t) from a linear
interpolation of the data given in Table II. The water adequacy
a(t) the ratio of the water consumption c(t) and the water
demand w(t):

a(t) =
c(t)
w(t)

. (8)

The water demand w(t) is proportional to the industry struc-
tures S(t) and the water demand per industry pdemand:

w(t) = S(t) · pdemand. (9)

The water consumption c(t) is proportional to the effect of
water availability on water consumption e(t) and the water
demand w(t):

c(t) = w(t) · e(t). (10)

The effect of water availability on water consumption e(t) is a
function of the ratio f(t) = W (t)

pinit
of water resource W (t) and

the initial water resource which is set to pinit from a linear
interpolation of the data given in Table II.

a(t) n(t)
f(t) e(t)
0 0
0.122324 0.0570175
0.2 0.14
0.3 0.25
0.4 0.395
0.5 0.535
0.6 0.685
0.7 0.825
0.8 0.92
0.9 0.975
1 1

TABLE II. EFFECT OF WATER ADEQUACY ON NEW INDUSTRY
STRUCTURES n(t) AS A TABULAR FUNCTION OF THE WATER ADEQUACY
a(t). THE SAME DATA IS USED FOR THE EFFECT OF WATER AVAILABILITY

ON WATER CONSUMPTION e(t) AS A FUNCTION OF f(t), THE RATIO OF
WATER RESOURCE W AND THE INITIAL WATER RESOURCE pinit .

The ranges for the decision variables are defined as follows:

0.05 ≤ xgrow(t) ≤ 0.2 (11a)
10−4 ≤ xdemol(t) ≤ 0.1. (11b)

Summing up, we aim to solve the following SDO problem:

max{p(tmax) | (2), (3), (4), (5), (6), (7),
(8), (9), (10), (11), x ∈ R2}. (12)

IV. SOLUTION TECHNIQUES

Our solution method for SDO problems is based on linear
programming embedded in a branch-and-cut search procedure.
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The nonlinear constraints are relaxed by a linear outer ap-
proximation, see [17], [18], [19], [20]. This relaxation can
easily be solved by linear programming methods; we apply
Dantzig’s simplex algorithm [21], [22]. Afterwards the linear
relaxation is improved by adding cutting planes around the
computed optimal solution of the LP relaxation [23], [24].
These either cut off fractional solutions in order to get closer to
integral solutions. This case is not needed in the case study we
present here, because this model does not make use of integer
variables. Or cutting planes improve the linear relaxation of
the nonlinear function, which yields an improved linear outer
approximation. This case is needed here. If cutting planes do
not help (if they cut too little or add too much numerical
difficulties), then one can finally resort to branching, where
two new subproblems are created out of the current problem.
In the case of integer variables present, one can round up and
down the variable in each of these branches, respectively. In the
case of continuous variables involved in nonlinear functions,
one can add further local cuts that improve the linear outer
approximation, but are only valid in the subtree induced by
the branch.

This approach has been successfully applied to the solution
of Mixed Integer Linear Programs as well as MINLPs from
a range of applications (for example, see [25], [26], [27]).
However, solving a control problem derived from a discretized
dynamical system with a standard branch-and-cut solver is in
many cases unsuccessful, since the solver does not take into
account the special structure of the MINLP, that arises from the
discretization, and from the handling of non-smooth functions
via integer variables. Without considering this structure even
finding a single feasible solution can exceed a reasonable time
budget of several hours or even days (In the context of MILP
this was also observed in [28].)

In order to improve the performance of a branch-and-
cut approach to the solution of control problems, we have
implemented two tailored methods for the solution of such
problems. The first one is a primal heuristic which addresses
the primal side of the branch and bound process, and the
second one is a bound propagation presolving method, that
addresses the dual side [29]. We will briefly describe the two
algorithms in the following.

A. Time Discretization

In order to transcribe the continuous model into an MINLP,
we need to discretize the differentials as well as the non smooth

functions. In order to discretize the differentials, we choose
a simple time discretization of 20 steps with a step size of
∆ = 2.5 month. We choose an explicit Euler scheme:

P (t+ 1) = P (t) + ∆Ṗ (t) (13)

and analogously for the remaining states.

B. Piecewise Linear Functions

The model contains two non-smooth functions, i.e. the
linear data interpolations n(a) and e(f). In order to formulate
these functions in our MINLP, we use a set of constraints
and introduce at each time new sets of positive variables λn,k

and λe,k where k ∈ {0, 1, . . . , 10} that are each part of a
special ordered set of type two (SOS2), introduced by Beale
and Forrest [30]. Out of a set of SOS2-Variables, at least two
can be non-zero, and the two need to be adjacent. We define
two vectors lx and ly containing the left and the right column
of Table II, respectively:

lx = (0, 0.122324, 0.2, . . . , 1) (14a)
ly = (0, 0.0570175, 0.14, 0.25, . . . , 1) (14b)

The set of constraints that we need to implement at each point
in time then reads for n(a) :

a =
∑

k

lx,kλn,k (15a)

n =
∑

k

ly,kλn,k (15b)

1 =
∑

k

λn,k (15c)

and analogously with the same vectors lx, ly for e(f).

With these two steps, we have transformed the continuous
problem into an MINLP. Instead of three state variables defined
over our time frame, we now have 60 variables, each reflecting
the values of the states at one given time. The same holds for
the algebraic variables.

C. Primal Heuristic

As mentioned above, finding feasible solutions is a re-
quirement for an efficient branch-and-cut approach. To quickly
produce feasible solutions, we implemented a simple heuristic,
that reduces the control problem to a simulation problem, by
fixing the control variables to their lower (or in a second
run upper) bound. For the industry structure problem, this
will always yield a feasible solution. In the case of another
problem with path constraints, this might lead to an infeasible
solution. The heuristic solution checks for the violation of path
constraints when solving the simulation problem. If a violation
is detected, the heuristic can track back a given number of time
steps and switch the control to the upper (lower) bound.

D. Bound propagation

In a branch-and-cut algorithm, bound propagation describes
the derivation of bounds from one variable to another. This is
done usually along a single constraint.

Our tailored bound propagation is executed only once as
part of presolving. Its goal is to determine, which values of the



state and algebraic variables at each time are reachable with the
given initial conditions and allowed control. In this context, the
bound propagation can be considered a reachability analysis of
the dynamic system.

In order to find the reachable values, we formulate sub-
problems si,h that contain all constraints and variables of the
times t ∈ i− h, i− h+ 1, . . . , i. Within this subproblem we
consider finding the maximal and minimal values for all states
and algebraic variables again as optimization problems.

In more detail, our proposed bound propagation method
iterates the following steps for each discretized time i except
i = T , starting at i = 0:

1) Formulate the subproblem si,h.
2) For each algebraic variable vi at time i:

a) Solve the maximization problem max vi sub-
ject to the constraints of si,h to optimality
and set the upper bound of the variable v̄i to
the solution value.

b) Solve the minimization problem min vi sub-
ject to the constraints of si,h to optimality
and set the lower bound of the variable v̄i to
the solution value.

3) For each differential variable wi+1 at time i+ 1:
a) Solve the maximization problem maxwi+1

subject to the constraints of si,h to optimality
and set the upper bound of the variable w̄i+1

to the solution value.
b) Solve the minimization problem minwi+1

subject to the constraints of si,h to optimality
and set the lower bound of the variable w̄i+1

to the solution value.

The subproblems are solved with a time limit of 120
seconds. If the time limit is reached before the problem is
solved to optimality, the considered bound is set to the best
dual bound.

V. COMPUTATIONAL RESULTS

We implemented our tailored methods as plug-ins to the
branch-and-cut framework and solver SCIP [31], [32]. For the
solution of the subproblems in bound propagation and for the
branch-and-cut process that follows presolving, we will rely
entirely on SCIP using the nonlinear solver IPOPT [33] and
the linear solver SoPlex [34].

We run each of our calculations on one core of an HP ma-
chine, equipped with Intel Xeon E5-2690 2.90GHz processors
and a total of 384 GB of memory.

To demonstrate the improvements resulting from our new
methods, we attempted to solve the MINLP several times. As
a reference run, we first tried to solve the control problem
in SCIP without our plugins. Then, we started several runs,
each using our primal heuristic and conducting the presolving
bound propagation with a lookback parameter between 0 and
2.

The bounds that were derived from the presolving are
depicted in Figure 3 for the state variable Industry Structures.
We can clearly see, how with a higher parameter h, the bounds

TABLE III. COMPARISON OF SOLUTION PERFORMANCE

Standard h = 0 h = 1 h = 2

Time for presolve [m] 0.002 17 177 382

After presolving

Primal Bound [1e5] - 3.2 3.2 3.2
Dual Bound [1e5] - 141.6 68.7 18.9
Gap [1] Inf 42 20 4.8

At timelimit

Primal Bound [1e5] - 3.2 3.2 3.2
Dual Bound [1e5] - 36.4 18.2 11.4
Gap [1] Inf 10.2 4.6 2.5
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Fig. 3. Comparison of bounds calculated using standard bound propagation
with bounds derived from improved presolving with several lookback param-
eters h. Upward pointing triangles mark lower, downward pointing triangles
upper bounds.

become increasingly tighter, thereby providing better limits to
the solution space.

We set a time limit of 1000 minutes for the solution process
including presolving. In Table III, we summarized the state of
the solution process after presolving, and at the time limit.

None of runs solved the problem to optimality in the given
time limit. We can however clearly see, how the solution
process improves when more time is spend in presolving.
Without our plugins, neither a primal solution or a dual bound
can be computed within the time limit. Turning on the primal
heuristic, we immediately find a primal solution. The bound
propagation also yields a dual bound for the problem that
improves with higher lookback parameter.

Starting with a primal and dual bound, the branch-and-cut
process is then again able to improve the lower bound.

As a quality measurement for the current solution, we use
the so called gap g, defined in terms of the calculated bounds
bdual and bprimal:

g =
bdual − bprimal

bprimal
. (16)

With the highest considered lookback level h = 2, we
arrive at the timelimit at a gap of 250%.

VI. CONCLUSIONS

We presented a method to solve SDO problems, which are
SD simulation models, extended by controllable parameters or
functions and an objective function that should be maximized
or minimized. For the solution of such methods we suggested



to apply mixed-integer nonlinear programming, a framework
that could potentially lead to globally optimal solutions.

As a demonstrator example, we applied our techniques
to an industry structure SD model that captures the sustain-
ability of industry with respect to their water demand and
consumption. Our methods were able to identify a solution
and subsequently improve the lower bound to that solution to
finally reach a gap of 250%.

Our current work focuses on an improvement of the solu-
tion speed and on closing the remaining gap. We aim at solving
larger models in shorter time. This means, we need to achieve
an even better understanding of the special structure inherited
in MINLPs coming from SDOs. A further exploitation of this
structure is a key for developing better solution methods that
lead to faster numerical solvers.
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