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Abstract

Our focus is on Maxwell’s equations in the low frequency range; two specific ap-
plications we aim at are time-stepping schemes for eddy current computations and
the stationary double-curl equation for time-harmonic fields. We assume that the
computational domain is discretized by triangles or tetrahedrons; for the finite el-
ement approximation we choose Nédélec’s H(curl)-conforming edge elements of
the lowest order.

For the solution of the arising linear equation systems we devise an algebraic multi-
grid preconditioner based on a spatial component splitting of the field. Mesh coars-
ening takes place in an auxiliary subspace, which is constructed with the aid of a
nodal vector basis. Within this subspace coarse grids are created by exploiting the
matrix graphs. Additionally, we have to cope with the kernel of the curl-operator,
which comprises a considerable part of the spectral modes on the grid. Fortunately,
the kernel modes are accessible via a discrete Helmholtz decomposition of the
fields; they are smoothed by additional algebraic multigrid cycles.

Numerical experiments are included in order to assess the efficacy of the proposed
algorithms.
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1 Introduction

Meanwhile edge elements, sometimes also called Whitney-1-forms or Nédélec’s H(curl)-
conforming elements of the lowest order, have gained widespread popularity in numerical
electromagnetic field computations by finite element methods [2, 7, 14, 21]. There are two
specific virtues speaking in favor of these elements: their capabilities in suppressing non-
physical modes and in modeling fields consistently at re-entrant corners [6, 8].

Though all macroscopic electromagnetic phenomena are governed by Maxwell’s equations
and some additional material laws, there is a wide range of electromagnetic problem types
which are tackled by specific theoretical and numerical approaches (see, eg., [4, 19, 20]).

In this paper we confine ourselves to fields varying on a slow time scale. By this we mean
that the wavelengths of the fields are not substantially smaller than the diameter of the
computational domain; a typical example is the calculation of eddy currents. In general we
have to distinguish between transient and time-harmonic field computations; in the latter
case a stationary boundary value problem for one fixed frequency has to be solved. If we
tackle the transient case by an implicit time-stepping method – which is advisable in order
to avoid small time steps dictated by the CFL-restriction – we arrive at a boundary value
problem in each time step.

Thus for both types of field simulations the fast and robust solution of linear equation sys-
tems may become an important task. For very large systems usually iterative solvers are the
method of choice. Their convergence behaviour may be substantially enhanced by multi-
grid techniques if a suitable sequence of nested triangulations and finite element spaces is
available; we speak of geometric multigrid in this case [16, 27].

However, the prerequisites of this technique are often not met in practice. If, for example,
we have to run our simulation on a large irregular mesh provided by some grid generation
tool, it is desirable to construct coarser finite element spaces in a recursive manner. Such
procedures usually work with the matrix of the equation system and have therefore been
summarized under the name algebraic multigrid (in the sequel abbreviated by AMG).

The first research efforts in this field started more than ten years ago [11, 12, 24] and mean-
while a variety of numerical problems has been tackled. The resulting algorithms are often
sophisticated and based on different techniques like matrix-weighted interpolation meth-
ods, incomplete LU-factorization, or aggregation [1, 9, 13, 15, 23, 25, 29]. For an overview
the reader is referred to [26].

When dealing with edge elements in electrodynamical problems, the situation is rather del-
icate. The matrices generated here are not diagonally dominant and lacking the M-matrix-
property required in some established AMG-algorithms. Furthermore, a naive application
of aggregation techniques does not make sense: If fine grid basis functions are aggregated
on a certain area, the resulting coarse grid function represents a vector field with fixed di-
rection on this part of the domain and thus need not allow an adequate approximation of the
solution. To circumvent this problem appears to be a tricky task without taking into account
a substantial amount of geometric information.

An additional difficulty is posed by the nullspace of the curl-operator, which typically gov-
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erns dynamical electromagnetic phenomena. This nullspace comprises a considerable part
of all spectral modes on the finite element grids and impedes smoothing iterations like
Gauss-Seidel relaxation, which play an essential role in multigrid algorithms, but cannot
cope with small eigenvalues.

In this paper we present an algebraic multigrid scheme which may be used as a precondi-
tioner for a suitable Krylov-subspace solver like conjugate gradients or residuals. It is based
on separate V-cycles in the nullspace of curl and in the Nédélec space by exploiting discrete
potentials via a Helmholtz-decomposition. Similar strategies for geometric multigrid have
been proposed in [4, 5, 17]. The space of potentials is a subspace of the Nédélec space and
spanned by linear Lagrange-type basis functions. Within this subspace a Poisson-problem
has to be solved, thus an efficient application of algebraic mesh coarsening is not difficult
here. As for the Nédélec space, coarsening will be carried out with the help of an auxiliary
basis, whose construction is induced by linear Lagrange-type vector-elements. In both cases
we apply an algebraic multigrid algorithm, which utilizes merely the graphs defined by the
system matrices. It is vertex-based and selects coarse grid vertices by an advancing-front
method.

The organization of the paper is as follows: In section 2 we are going to give a brief descrip-
tion of the problem types in question, the finite element spaces and their decomposition
will be addressed in section 3. The following two sections are devoted to algebraic coars-
ening and the resulting multigrid preconditioner. In section 6 some numerical examples are
included.

2 Variational Formulations

In this section we are going to state the problem types suitable for our algebraic multigrid
procedures. We shall omit all non-relevant details, for a more comprehensive description
the reader is referred to [4]. We confine ourselves to electromagnetic phenomena in linear
materials where no free charges are present. Here Maxwell’s equations

curlH = j + ε ∂tE , (1)

curlE = −μ ∂tH (2)

are linking the electric field E = E(x, t), the magnetic field H = H(x, t) and the electric
current density j = j(x, t) on a computational domain Ω, Ω ⊂ �

2 or Ω ⊂ �
3 . Both the

permittivity ε and the permeability μ are bounded, possibly discontinuous functions with
ε > 0 and μ > 0. Additionally we introduce the conductivity σ and assume that Ohm’s law
j = σE holds in conducting regions.

As boundary conditions will not be of any interest for our algorithms, we shall always
assume that “appropriate boundary conditions” are stated in a problem definition. Hence all
the respective boundary integrals will be omitted in the arising variational formulations.

The appropriate function space for the fields E and H naturally is provided by

H(curl; Ω) := {v ∈ L2(Ω) ; curlv ∈ L2(Ω)} .
In the sequel we shall write (· , ·) for the usual L2(Ω) inner product.
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2.1 Eddy current computations

If we are dealing with transient processes on a slow time scale featuring substantial dissipa-
tion, the current density j becomes the dominant term on the right hand side in (1) and we
may neglect the displacement current ε ∂tE. After taking the derivative of (1) with respect
to time and inserting ∂tH from eq. (2) we get

curl(
1

μ
curlE) = σ ∂tE .

Thus a parabolic problem emerges, where implicit schemes are the methods of choice for
time-stepping. If, for example, we apply the backward Euler method, switch to the weak
form and use Green’s formula, we obtain the following variational problem for the n-th
time step:

Seek En ∈ H(curl; Ω) such that for all v ∈ H(curl; Ω)

(σEn, v) + Δtn (
1

μ
curlEn, curlv) = Δtn (σEn−1, v) . (3)

Here Δtn denotes the length of the time step; for the sake of simplicity we have dropped the
boundary integral arising in the partial integration formula.

It is obvious that on insulating regions (σ = 0) eq. (3) does not have a unique solution. In
this case additional means must be taken into account in order to enforce the uniqueness
of En, eg. by imposing the continuity of flux normals on element faces by a penalty term.
Thus a (weighted) zero-divergence constraint for the flux density εEn is applied and we get
a symmetric, positive definite system matrix on discretization.

2.2 Time-harmonic problems

Here we consider fields varying sinusoidally in time with a fixed angular frequency ω:

E(x, t) = Re
{
Ê(x)eiωt

}
, H(x, t) = Re

{
Ĥ(x)eiωt

}
, j(x, t) = Re

{
ĵ(x)eiωt

}
,

where Ê, Ĥ , and ĵ denote complex amplitudes. From (1) and (2) we can derive the so-
called double-curl equation for the electric field Ê:

curl(
1

μ
curlÊ) − ω2 ε̂ Ê = 0 . (4)

Observe that ĵ has been dropped by taking into account Ohm’s law ĵ = σÊ and introducing
the complex coefficient ε̂ = ε− iσ/ω. Neglecting boundary integrals again, eq. (4) may be
cast into the following weak problem:

Seek Ê ∈ H(curl; Ω) such that for all v̂ ∈ H(curl; Ω)

(
1

μ
curlÊ, curlv̂) − ω2(ε̂ Ê, v̂) = 0 . (5)

In the sequel we shall mainly deal with the time-harmonic case (5). In contrast to (3) it will
give rise to complex indefinite problems.
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3 Helmholtz Decomposition of Finite Element Spaces

It is well-known that edge elements yield a conforming discretization of the space
H(curl; Ω). We shall employ them on triangular or tetrahedral grids Th. In the following
the symbol Nh will – as an abbreviation of the term “Nédélec space” – denote the finite
element space associated with Th.

After discretizing our domain Ω with edge elements, the variational formulation (5) yields
a sparse linear equation system with a complex symmetric (but not hermitian) matrix AN .
The kernel of the curl-operator comprises a considerable number of the eigenmodes of AN ,
which are shifted to eigenvalues with negative real part by the second term in (5). This
also holds for modes of the kernel’s orthogonal complement; the number of these modes
increases with ω.

The consequences become apparent on considering iterative and especially multigrid solvers
for such linear systems: Eigenmodes belonging to small or even negative eigenvalues are
impervious to standard smoothers like the Gauss-Seidel iteration. But effective smoothing
iterations are a vital ingredient in multigrid cycles.

A (partial) remedy is offered via the discrete Helmholtz-decomposition of a vector field
Eh ∈ Nh; its exploitation by “hybrid smoothing” was originally suggested in [17]. We
know that in the continuous space irrotational fields can be represented as the gradients of
potentials. It is a specific feature of edge elements that they do reflect this property in a neat
manner: the irrotational part Ep,h of Eh is the gradient of a discrete potential φh, with φh

lying in the space of piecewise linear continuous finite element functions Sh on Th (see,
eg., [18]). Thus for any Eh ∈ Nh we obtain a decomposition

Eh = Ep,h +Es,h , Ep,h = grad φh with φh ∈ Sh . (6)

Here Es,h denotes the solenoidal part of Eh, lying in the orthogonal complement of the
kernel (for a more comprehensive description we refer to [4, 5, 17]). However, we need a
numerically efficient mechanism for transfers between potential representations in Sh and
fields in the Nédélec space Nh.

A suitable transfer operator can be found by considering the definition of global degrees of
freedoms in Nh. For a vector field E the degree of freedom Ej associated with the edge ej
of a triangulation Th is given by the path integral

Ej =

∫
ej

E · tj ds (7)

along the edge ej with (oriented) tangent vector tj [21]. Thus, if we use (6) for expressing
the irrotational part Ep,h of Eh as the gradient of a potential φh, its representation in Nh can
be obtained easily by utilizing (7):

Ej =

∫ x2

x1

grad φh · tj ds = φh(x2)− φh(x1) . (8)

Here x1 and x2 denote the coordinates of the vertices connected by ej . By (8) we have
obtained a transfer or prolongation operator PSh

: Sh → Nh, which may be evaluated by
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simple local computations. In the sequel P T
Sh

will denote the adjoint operator, defining the
canonical restriction.

We are now able to construct a symmetric preconditioner based on the described decompo-
sition of Nh. As we are working with nested spaces, the system matrix Aφ of the potential
space Sh will be computed by the Galerkin product Aφ = P T

Sh
AN PSh

. The preconditioner
is intended to embedded into a Krylov-subspace iteration like conjugate gradients or conju-
gate residuals. In the subsequent algorithms coefficient vectors and matrices will be tagged
with N if belonging to Nh; φ will be used to tag those of Sh. For brevity we shall use “GS”
as an abbreviation of “Gauss-Seidel” in the sequel.

Algorithm 1: Single-level decomposition for an approximate solution of ANxN = rN :
(1) xN ← 0, xφ ← 0
(2) One forward GS-sweep on Aφxφ = P T

Sh
rN

(3) xN ← xN + PSh
xφ

(4) One symmetric GS-sweep on ANxN = rN
(5) xφ ← 0
(6) One backward GS-sweep on Aφxφ = P T

Sh
(rN −ANxN)

(7) xN ← xN + PSh
xφ

We point out that the additional smoothing operations in Sh can improve the convergence
rate of a solver substantially. In the follwing sections we are going to devise algebraic multi-
grid procedures in order to replace the steps (2), (4), and (6).

4 Algebraic Coarsening of Potential Spaces

The goal of this section is to construct an algebraic multigrid procedure for an approximate
solution of the equation system Aφxφ = rφ appearing in steps (2) and (6) of algorithm 1. In
effect we are solving a Poisson problem in the space of linear Lagrange-type finite elements;
to see this, simply replace H(curl; Ω) with gradSh in (3) and (5) (see also [5]).

Algebraic coarsening is fairly standard for such potential problems. In [3] an algorithm is
devised, which utilizes only the matrix graph for coarsening. This technique is attractive
in our problem context, as the coarse grids created for Aφ may also be used for the space
of edge elements Nh (cf. section 5). We shall only present the essentials of the algebraic
coarsening scheme; further details can be found in [3].

In the context of linear Lagrange-type finite elements it is obvious that the graph defined by
the system matrix Aφ reflects the geometric structure of the respective triangulation Th. The
diagonal entries of Aφ are associated with the vertices (nodes) of the mesh; off-diagonal
matrix entries contribute the edges.

The basic idea for coarsening is to select a favorably distributed subset of the grid (or matrix
graph) nodes in order to define the nodes of the coarse grid. We shall construct a simple,
quasi-linear interpolation for the grid transfer. Thus for any matrix the nodes will be divided
into two disjoint sets: the master nodes, which are to become the nodes of the coarse grid,
and the slave nodes, which will be dropped. There are three rules for the selection of master
nodes and the definition of the coarse-to-fine transfer operator P :
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(1) No master node may be directly connected to another master node (two nodes i and j
are connected, if there exists a matrix entry aij �= 0).

(2) There should be as many master nodes as possible.
(3) The values of all master nodes are transferred with weight 1. The value for a slave

node s is interpolated from the ns master nodes it is connected to; each master node
is assigned the weight 1

ns
.

All nodes not declared to be masters will be slave nodes. An exception appears on the finest
grid, where nodes on Dirichlet boundaries are not taken into consideration. By the rules (1)
and (2) the master nodes are dispersed in a quasi-uniform manner on the grid, thus trying to
imitate geometric coarsening (at least on regular triangulations). Each slave node is coupled
to at least one master node, which is essential for effective smoothing. Rule (3) guarantees
that on regions with constant solution the transfer is exact; thus the kernel of the gradient is
preserved.

We do not aim at an algorithm that satisfies rule (2) exactly, this might become a too costly
procedure. Instead, we shall be content with a scheme that achieves a nearly optimal distri-
bution of the master nodes. So we present an “advancing front” algorithm, which proceeds
by examining the immediate neighbours of the nodes at a temporary “front”.

Algorithm 2: Selection of master and slave nodes for coarsening:

Let N denote the set of all (unconstrained) nodes of the matrix graph, M the set of master
nodes, and S the set of slave nodes. Nodes neither in M nor in S form the set of remaining
nodes R.

(1) Pick one node i of the grid, preferably on the boundary, which will become the first
master node: M = { i }. Set S = { } and R = N \ { i }.

(2) Pick all those nodes of R which are coupled to a node in M or S. These nodes form
a temporary set F , the active front: F = {f1, . . . , fn}, R← R \F .

(3) Determine the status for the nodes fi ∈ F one by one:

– If fi is connected to any node in M , move it to the set of slave nodes:
S ← S ∪ {fi} , F ← F \ {fi} .

– Otherwise fi is to become a master node: M ←M ∪ {fi} , F ← F \ {fi} .

(4) Repeat steps (2) and (3) until R is empty.

An example for a two-dimensional mesh is shown in figure 1.

A recursive application of algorithm 2 endows us with the desired sequence of “grids”. We
stop coarsening if the number of unknowns is below 500, then a direct factorization can be
obtained cheaply. Naturally, all coarse grid matrices are computed by a Galerkin product.

With algorithm 3 we present a recursive algebraic multigrid V-cycle. It is constructed in
a symmetric manner, using varying numbers of smoothing steps on the different levels. In-
creasing the number of smoothing steps nl on coarser levels l may improve the performance.
On the fine grid we smooth just once and increase nl by one on every subsequent coarser
grid, i.e. if L denotes the number of levels, nl is given by nl = L − l + 1 (we assign l = 1
to the coarsest level).
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Figure 1: Distribution of master and slave nodes on a two-dimensional grid and the resulting prolon-
gation matrix P . For practical reasons, the lowest numbers have been assigned to the master nodes,
which will be retained on the coarse grid.

Algorithm 3: AMG(Al, xl, rl) (V-cycle for an approximate solution of Alxl = rl)

(1) nl forward GS-sweeps on Alxl = rl

(2) rl−1 ←
(
P l

)
T (rl −Alxl)

(3) If l − 1 = 1: solve A1x1 = r1 by forward-backward substitution

else : xl−1 ← 0, call AMG(Al−1, xl−1, rl−1)

(4) xl ← xl + P l xl−1

(5) nl backward GS-sweeps on Alxl = rl

5 Algebraic Coarsening of Nédélec spaces

In the introduction we addressed some obstacles impeding the algebraic coarsening of ma-
trices created via edge element discretizations. On the other hand, in the previous section
we have constructed a comparatively simple coarsening scheme for potential problems dis-
cretized by linear Lagrange-type basis functions.

So let us take another point of view for our electrodynamical problems (3) and (5): Could
we do better if not working with edge elements, but with Lagrange-type basis functions,
where each spatial field component is approximated separately? The answer is a restricted
“yes”. Considering, for example, the double-curl equation (4) in a homogeneous medium,
we may re-formulate the differential operator in order to obtain

−1

μ
ΔÊ +

1

μ
grad(divÊ) − ω2 ε̂ Ê = 0 . (9)

As divÊ = 0 holds in a homogeneous medium, we have a scalar Helmholtz equation for
each of the decoupled components of Ê. Discretizing the domain with linear Lagrange-
type bases for each of the components, algebraic multigrid boils down to coarsen three
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nodal finite element spaces Sh separately (in the sequel the terms “nodal” and “vertex-
based” will be used synonymously). Neglecting for the moment the mass term in (9), it
becomes obvious that the coarsening algorithm constructed for the potential problem in
section 4 should now be applicable to each spatial field component. Moreover, as only the
mesh topology is exploited for coarsening, we get the same coarse grid structures both for
the potential φ and for the individual components of the discretized electric field Ê.

However, it is well-known that the proposed nodal basis for Ê (henceforth symbolized
by Sd

h, with d denoting the space dimension) does not provide a discrete representation
which complies with the required continuity relations of the field at re-entrant corners. Sim-
ilar difficulties are encountered in inhomogeneous media.

In fact, we shall use the nodal vector basis Sd
h only as a framework for creating a subspace

of the Nédélec space Nh, and it will be this subspace where algebraic coarsening is carried
out. Loosely speaking, we are going to construct a component-wise splitting of the basis
functions in Nh, accompanied by a weighted aggregation at the grid vertices.

�
�

�
�Continuous space

�

�

�

�
Sd
h

Nodal vector fields
(non-conforming space)

�
�

�
�

Nh

Nédélec space

�
�

�
�

Ñh ⊂ Nh

Quasi-nodal subspace

�
�
�
�
�
�
���

Id

�
�
�
�
�
�
���

Πh

�

P = Πh ◦ Id

�

R = PT

Figure 2: Construction of the subspace Ñh.

A schematic for this approach is depicted in figure 2. Recall from (7) how a vector field of
the continuous space is projected onto the degrees of freedom of the Nédélec space Nh. As
well we can project any field ES ∈ Sd

h :

P = Πh ◦ Id : Sd
h → Nh .

The identity operator Id has been introduced merely for illustrative purposes, allowing the
depicted “detour” in figure 2. Adopting the terminology of multigrid, we call P a prolonga-
tion operator.

On any mesh P can be evaluated easily. A vector field ES ∈ Sd
h has a component-wise

splitting ES(x) =
∑

i E
S
i (x) ei, where ei denotes an axis of the global Cartesian coordi-

nate frame. Each component ES
i (x) is expanded with linear Lagrange-type basis functions

associated with the vertices of the mesh. Thus, after switching to matrix-vector notation, a
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matrix entry Pjk of the prolongation operator is given by

Pjk =

∫
ej

λm(x) ei · tj ds =
1

2
ei · tj lj . (10)

Here ej is the edge with tangent vector tj and length lj , λm(x) is the Lagrange-type basis
function of vertex m, and ei is one of the global coordinate axes (see figure 3). The matrix
index k has to be defined by an appropriate mapping of m and i. Note that a one-point
quadrature rule is sufficient for calculating the path integral in (10), yielding the factor 1

2

with respect to λm.

m

j

e2

e1

Figure 3: Triangulation with
global Cartesian coordinate axes
e1 and e2 at vertex m.

Now we are able to construct our subspace Ñh with the
aid of the prolongation operator P . It is well-known from
the multilevel theory of nested finite element spaces that
the adjoint of a prolongation operator (the canonical re-
striction R = PT ) defines the coarse grid bases as linear
combinations of fine grid basis functions. Although the
term “coarse grid” is (yet) somewhat misleading in our
present context, we define the functions of Ñh in the very
same manner. Using the symbol ϕ for basis functions of
Nh and ϕ̃ for functions in Ñh, we have ϕ̃k =

∑
jRkj ϕj .

We thus obtain the quasi-nodal, i.e. vertex-based sub-
space Ñh, where d basis functions are located at each
mesh vertex (recall that d denotes the space dimension,
d = 2, 3). Of course, this arrangement is structurally
equivalent to that of Sd

h.

In order to coarsen Ñh in practice, we group its functions into d disjoint subsets, each subset
being associated with an axis of the global Cartesian coordinate frame. As already suggested
above, each subset is coarsened by utilizing the prolongation operators P l of algorithm 2
constructed for the potential space Sh. Thus, if we have a coefficient vector xl

�N
∈ Ñ l

h

on some level l, its components xl
�N,i associated with the global axis ei are transferred by

xl+1
�N,i = P lxl

�N,i to the higher level. Whatever coarsening scheme is chosen in practice, we
consider it an essential point not to mix up any spatial components.

Postponing some details for the moment, we now can formulate the algebraic multigrid
version of algorithm 1. Single-level smoothing steps are extended to AMG-V-cycles due to
algorithm 3.

Algorithm 4: AMG-preconditioner for an approximate solution of ANxN = rN :
(1) xN ← 0, xφ ← 0
(2) One AMG-V-cycle on Aφxφ = P T

Sh
rN

(3) xN ← xN + PSh
xφ

(4) One forward GS-sweep on ANxN = rN
(5) x

�N ← 0
(6) One AMG-V-cycle on A

�Nx �N = PT (rN −ANxN)
(7) xN ← xN + Px

�N

(8) One backward GS-sweep on ANxN = rN
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(9) xφ ← 0
(10) One AMG-V-cycle on Aφxφ = P T

Sh
(rN −ANxN)

(11) xN ← xN + PSh
xφ

Vectors and matrices belonging to Ñh have been tagged with the symbol Ñ . Naturally, the
matrix A �N is obtained by the Galerkin product A �N = PTANP (for time-harmonic fields a
modification of AN is required, which will be discussed below). Observe that the symmetric
Gauss-Seidel sweep (4) in algorithm 1 has not been simply replaced. We rather embed the
AMG-cycle for Ñh between one pre- and one post-smoothing step within Nh.

Remark: For efficiency reasons, a slight modification is advisable for the AMG-cycle in
step (6). As Nh and Ñh belong to the very same grid and thus reflect the same mesh spacing,
pre- and post-smoothing should be skipped on the finest level L of the AMG-algorithm. In
a certain sense these operations would be redundant to the smoothing steps within Nh.

In order to elucidate the above remark, let us have a brief look at the matrix sizes of the
different spaces. The dimension of Nh is given by the number of (non-constrained) edges of
the triangulation Th; the number of vertices and the space dimension determine that of Ñh.
The respective ratios are shown in the third column of table 1 for the case of uniform grids
with infinite extension. Also the ratios of the numbers of matrix entries are reported.

space dimension d ne

nv

ne

nv·d
n(AN )

n(A
�N )

2 3 1.5 0.5
3 6 2 0.7

Table 1: Typical ratios of quantities relevant for the spaces Nh and Ñh on a regular triangulation of
infinite extension (ne: number of edges, nv: number of vertices, n: number of matrix entries).

As table 1 reveals, the matrices of Ñh are larger than the corresponding ones of Nh. Al-
though being of smaller dimension, they contain more entries in each row. This is typical
for vertex-based stencils compared to those of edge elements; furthermore we encounter
coupling terms related to the different spatial field components. Thus it is advisable not to
employ A �N for smoothing on the top level of the AMG-cycle in question. A �N only plays a
temporary role in the setup phase when the coarse grid matrices are computed.

A vexing question remains with regard to boundaries equipped with Dirichlet conditions.
Here the tangential components of the field are constrained, a situation, which can be han-
dled easily with edge elements. To handle the nodal components properly in Ñh, those
parallel to the boundary should be constrained likewise. In general, this may cause severe
difficulties, as unique normal vectors need not exist at the vertices of an arbitrary polygonal
domain (see fig. 4).

We tested two different approaches for handling Dirichlet-type boundaries in Ñh. Our first
strategy was to introduce a rotated coordinate system at each boundary vertex instead of
using the global Cartesian coordinate frame. The only degree of freedom attached to such
a vertex is a field component aligned with the normal vector of the boundary; field compo-
nents in the tangential direction are constrained to zero. If the vertex is located at a corner
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like in figure 4, the normal was defined by averaging the normals of the adjacent element
faces. Without going into detail, we want to mention that this technique in general did not
perform substantially better than the following one.

n

Figure 4: Polygonal domain
with non-unique outer nor-
mals at grid vertices.

In our second approach we use a very simple alternative: Here
all components of any vertex on a Dirichlet boundary are con-
strained. Although this invariably aggravates the coarse grid
approximation, the drawback should not be too serious, as
only one layer of elements along the border of the domain is
affected. For the numerical experiments in section 6 we shall
always utilize this strategy.

Let us now return to our variational equation (5), which is
solved in time-harmonic problems. To cope with the result-
ing indefinite systems in multigrid methods, it is necessary
to resolve modes with negative eigenvalues on the coarsest
grid [5, 10]. This condition can hardly be fulfilled in algebraic
multigrid, so we restrict ourselves to tackling the positive part of the spectrum of AN . An
approach like this was suggested in [28], where the use of a modified matrix is advocated for
multigrid preconditioning. In our case this would lead to dropping the mass term in eq. (5),
leaving us with a positive semidefinite system matrix. Of course, the coarse grid matrix now
may not be factorized, which is no substantial drawback, if we apply coarsening down to
very few degrees of freedom and stick to smoothing. However, this remedy did not yield
very satisfactory results in numerical experiments; we presume that the large dimension of
the nullspace of the curl-operator is responsible for this effect.

So we propose to shift the negative eigenvalues into the positive range, i.e. we do not drop
the mass term, but change its sign in (5):

(
1

μ
curlÊ, curlv̂) + ω2(ε̂ Ê, v̂) .

This modification yields a positive definite matrix AN
+, which, instead of AN , is used in the

Galerkin product for generating A �N . This measure can be expected to distort only modes
with small eigenvalues. With regard to the kernel modes of curl, these are smoothed cor-
rectly in the separate AMG-cycles for the potential space Sh. What we have to expect is a
deterioration of the convergence rates with increasing angular frequency ω, when more and
more modes of the kernel’s orthogonal complement are shifted into the negative range. An
example for this impact will be presented in the numerical experiments.

Of course, the problem of negative eigenvalues does not arise in time-stepping methods for
eddy current computations due to equation (3). So we confine the numerical experiments of
the following section to the less favorable case of time-harmonic fields.

6 Numerical Experiments

In all our numerical experiments we use conjugate gradients as a basic solver for the lin-
ear systems. In order to assess both the effects of single-level subspace corrections in the
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potential space Sh (algorithm 1) and the convergence behaviour of algebraic multigrid (al-
gorithm 4), we employ three different preconditioners:

SGS: One symmetric Gauss-Seidel sweep in Nh is carried out; smoothing in Sh

is omitted.
SGS-P: Preconditioning by algorithm 1.
AMG: Preconditioning by algorithm 4.

The initial guess for the solution is always zero. The iterations are terminated when the
Euclidean norm of the residual r(n)N in step n has dropped by ten orders of magnitudes
compared to the initial one: |r(n)N | < 10−10|r(0)N |. In the subsequent tables we report the
iteration counts and the processor (CPU) times for the different grids with respect to the
dimension of the space Nh (i.e. the number of unconstrained edges of the triangulations). In
the last columns of the tables the CPU times required for constructing the coarse grid data
structures in AMG are given. Results for grids with low dimension are omitted as being of
no practical relevance with regard to CPU-times, furthermore we do not report results if the
iteration counts are excessively high.

Test runs with alternative solvers, like conjugate residuals or symmetric QMR, in general
did not yield substantially different convergence rates compared to the conjugate gradient
algorithm.

Our first experiment is carried out on the unit square Ω =]0, 1[2. We assume a homogeneous
material with ε̂ = μ = 1. On the left hand side of the domain, i.e. along the line between the
points (0, 0) and (0, 1), we apply a Dirichlet boundary condition for the tangential compo-
nent of the electric field Ê : Êy = sin(πy). On the remaining boundaries a natural boundary
condition holds (by choosing this setting we have no specific application in mind). We start
with an angular frequency ω = 1.5π and raise it in two steps to 6π in order to demonstrate
its influence onto the convergence rates

We start with a regular grid and refine it uniformly in several steps. Pictures of the grid
structure and electric fields are shown in figure 5. As the the results in table 2 reveal, the
single-level SGS-preconditioners deteriorate with increasing node numbers, whereas AMG
remains stable with respect to the iteration counts. As to be expected, all convergence rates
decay with increasing frequency, when more and more negative eigenvalues appear in the
system matrices; the modes in question cannot be smoothed by any of the preconditioners.
For all values of ω the additional smoothing in the potential space on single level (SGS-P)
does not pay off compared to plain SGS-preconditioning. The fact that we have a smooth
solenoidal field may explain this observation.

For our second experiment we distort the domain of the previous one in order to obtain con-
cave corners where the field is singular. The boundary conditions are like in experiment 1.
Furthermore we set the coefficient μ to 104 on a part of the region, simulating some kind of
ferromagnetic material. The situation is depicted in figure 6.

The frequency is set to ω = 0.05π. For creating the finite element grids we employ both
uniform and adaptive mesh refinement. As figure 6 shows, we produce grids comprising
unfavorably shaped elements with obtuse angles.
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Figure 5: Grid structure and electric field for ω = 1.5π (left hand side), field for ω = 3π (center),
and field for ω = 6π in experiment 1.

dimNh #Iter CPU [sec]

SGS SGS-P AMG SGS SGS-P AMG Setup AMG

ω = 1.5π

6176 400 219 19 10 13 2 0.5
24640 816 424 19 94 111 11 1.5
98432 1592 839 19 764 935 49 6

ω = 3π

6176 500 353 42 13 21 5 0.5
24640 1028 679 41 120 178 24 1.5
98432 2069 1392 42 987 1512 107 6

ω = 6π

6176 847 1114 171 21 66 21 0.5
24640 1680 2586 174 195 678 102 1.5
98432 3122 4961 166 1494 5390 422 6

Table 2: Iteration counts and CPU-times for experiment 1.
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μ = 104

μ = 1

Figure 6: Values for μ on the domain (left hand side), adaptively refined grid (center), and electric
field in experiment 2.

dimNh #Iter CPU [sec]

SGS SGS-P AMG SGS SGS-P AMG Setup AMG

Uniform mesh refinement

3120 7676 377 28 86 10 2 0.2
12384 > 10 000 778 30 97 8 0.7
49344 1614 27 888 34 2.6

196992 4462 27 9975 141 11

Adaptive mesh refinement

3853 > 10 000 412 29 14 3 0.3
8509 565 43 48 8 0.8

18989 1268 41 264 19 1.2
40195 1959 51 905 56 2.7
83609 > 10 000 57 133 5.2

171338 56 275 13

Table 3: Iteration counts and CPU-times for experiment 2.
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Table 3 monitors the outcome of this experiment. Despite the large jump in μ the algebraic
multigrid preconditioner maintains a stable convergence rate in the case of uniform mesh
refinement, whereas on adaptively created grids some deterioration is encountered. Sim-
ple SGS-preconditioning now renders devastating results already on comparatively coarse
triangulations.

In our third experiment we investigate a three-dimensional structure: A tapered microstrip
line is placed on a dielectric substrate with ε = 10, the remaining area of the domain is filled
with air (ε = 1). Figure 7 shows a sketch of the arrangement.

ε = 10���

Figure 7: Tapered microstrip line on a dielectric substrate with ε = 10 (top left). Electric field on a
cross section (bottom left) and on the central plane along the conductor (experiment 3).

The microstrip line is enclosed in a metallic box except for the front and rear planes. We
assume perfect conductors which are modeled by homogeneous Dirichlet boundary condi-
tions, i.e. the tangential components of Ê are set to zero on the conductor surfaces.

On the front plane we apply an incoming quasi-TEM-wave, which is the dominating mode
guided by striplines. Its field components are nearly perpendicular to the direction of prop-
agation, accounting for the name transverse electromagnetic wave [22]. The wave travels
along the line and leaves the structure at the rear plane. The applied boundary conditions on
these ports are of Silver-Müller type; for a more detailed description the reader is referred
to [5]. The applied frequency is ω = 4π; a plot of the resulting field is shown in figure 7.
Table 4 gives the results both for uniformly and adaptively refined grids.

Also in this experiment the SGS-preconditioner reveals a poor performance. The transverse
components of the fields are of quasi-static type, thus smoothing in the potential space
is very effective. What aggravates the situation for AMG is the large part of the boundary
equipped with Dirichlet conditions, where all components are constrained in the quasi-nodal
space Ñh. However, again the convergence rates for AMG are rather stable.

The setup times for the AMG-preconditioner are comparatively high in the 3D-case. Nearly
all the time is spent in the Galerkin-products for computing the matrices of Ñh. We have
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dimNh #Iter CPU [sec]

SGS SGS-P AMG SGS SGS-P AMG Setup AMG

Uniform mesh refinement

5644 1381 141 67 37 8 7 2
49496 5404 256 56 1762 173 70 8

413104 > 10 000 521 59 3300 730 66
3372896 1060 58 53953 6137 596

Adaptive mesh refinement

16107 4616 209 67 370 39 24 3
64969 > 10 000 316 70 294 117 12

277514 505 68 2188 571 49
1015112 793 71 13120 2284 196

Table 4: Iteration counts and CPU-times for experiment 3.

implemented a rather simple version for this procedure, in particular we do not exploit the
block structure of the matrices. Thus some acceleration should be possible.

7 Conclusions

We have devised a nested symmetric preconditioner, which may significantly enhance the
convergence of linear solvers for edge element discretizations. Algebraic multigrid methods
are developed both for an efficient handling of the kernel modes of curl and for the Nédélec
space. As for the latter one, the basic idea for mesh coarsening is to switch to an auxiliary
quasi-nodal subspace, which is constructed by a spatial component splitting of the original
basis functions.

With AMG a rather stable convergence behaviour may even be observed in situations where
single-level preconditioning fails to render stability. We have not included numerical exam-
ples dealing with eddy current computations. In contrast to the time-harmonic case, there are
no modes with negative eigenvalues, for which AMG cannot provide any error reduction.
So we can expect the typical low-frequency behaviour reported in the experiments.

Up to now we have no thorough theoretical understanding how the grid modes of Nh are
affected by the transfer to the auxiliary subspace Ñh and by the subsequent coarsening steps.
The situation is delicate on irregular meshes and on domains with inhomogeneous materials.
An additional complication arises by the kernel of curl, whose modes mix up with those of
its orthogonal complement by the transfer. Nevertheless, a better insight might yield further
improvements of the proposed algorithms.
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