TakustraBe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

YUJI SHINANO, TOBIAS ACHTERBERG, TIMO BERTHOLD", STEFAN HEINZ*,
THORSTEN KOCH, MICHAEL WINKLER

Solving hard MIPLIB2003 problems with ParaSCIP
on Supercomputers: An update

*Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin

Z1B-Report 13-66 (October 2013)

Herausgegeben vom

Konrad-Zuse-Zentrum fiur Informationstechnik Berlin
Takustrafie 7

D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek®@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Solving hard MIPLIB2003 problems with ParaSCIP
on Supercomputers: An update

Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz,
Thorsten Koch, Michael Winkler

Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
shinano@zib.de, achterberg@de.ibm. com, berthold@zib.de, heinz@zib.de,

koch@zib.de, michael.winkler@zib.de
October 21, 2013

Abstract

Contemporary supercomputers can easily provide years of CPU time per wall-clock
hour. One challenge of today’s software development is how to harness this wast
computing power in order to solve really hard mixed integer programming instances.
In 2010, two out of six open MIPLIB2003 instances could be solved by ParaSCIP in
more than ten consecutive runs, restarting from checkpointing files. The contribution
of this paper is threefold: For the first time, we present computational results of
single runs for those two instances. Secondly, we provide new improved upper and
lower bounds for all of the remaining four open MIPLIB2003 instances. Finally, we
explain which new developments led to these results and discuss the current progress
of ParaSCIP. Experiments were conducted on HLRNII, on HLRN III, and on the
Titan supercomputer, using up to 35,200 cores.

1 Introduction

A mixed integer program can be defined as follows: Given a matrix A € R™*" a right-
hand-side vector b € R™, an objective function vector ¢ € R", a lower and an upper bound
vector [,u € R" := RU {£oc} and a subset I C N = {1,...,n}, the corresponding mized
integer program MIP = (A,b,¢,l,u, 1) is to solve

min 'z
S.t. Az <b
[<z <u

z; €R forall j e N\ I
x; € L for all j € I.

The goal is to find an assignment to the (decision) variables such that all linear constraints
are satisfied and the objective function ¢’z is minimized.

The linear programming relaxation is achieved by removing the integrality conditions.
The solution of the relaxation provides a lower (dual) bound on the optimal solution value,
whereas the objective function value of any feasible solution provides an upper (primal)
bound.

At a first glance, integer programming looks like a perfect candidate for parallelized
algorithms. One main technique to solve MIPs is the branch-and-bound procedure. The idea
of branching is to successively subdivide the given problem instance into smaller subproblems
until the individual subproblems are easy to solve. The best of all solutions found in the
subproblems yields the global optimum. During the course of the algorithm, a branching
tree is generated in which each node represents one of the subproblems (sub-MIPs).

The intention of bounding is to avoid a complete enumeration of all potential solutions
of the initial problem, which usually are exponentially many. For a minimization problem,
the main observation is that if a subproblem’s lower (dual) bound is greater than or equal
to the global upper (primal) bound, the subproblem can be pruned. Lower bounds are
calculated with the help of the linear programming relaxation, which typically is easy to
solve. Upper bounds are obtained by feasible solutions, found, e.g., if the solution of the
relaxation is also feasible for the corresponding subproblem and hence for the original
problem.

Parallelizing branch-and-bound algorithms for MIP has been shown to be difficult [11],
due to the fact that the decisions taken in different subtrees depend on each other, e.g., for
history-based branching rules [3] and significant effort is spent before the tree search starts,
e.g., in presolving and cut generation. Furthermore, basically all algorithmic improvements
presented in the literature aim at reducing the size of the branching tree, thereby making a
parallelization less effective and even more difficult. The latter is due to the observation,
that they typically increase the need for communication and make the algorithm less
predictable. Therefore, a well-designed dynamic load balancing mechanism is an essential
part of parallelizing branch-and-bound algorithms.

The MIPLIB2003 [2], a standard test set for benchmarking MIP solvers, contained more
than thirty unsolved instances when it was originally released. By the mutual effort of the
research community, this number could be reduced to six; stalling at this level from 2007
to 2010, the remaining four instances resisted all attempts of the commercial MIP solver
vendors and academic research groups to solve them to proven optimality. To the best of
our knowledge, there have been only two successful attempts to solve open instances of
MIPLIB2003 by large scale parallelization: GAMS/CPLEX/Condor by Bussieck et al. [5]
who solved three instances of MIPLIB2003 by a grid computing approach and ParaSCIP
[13]. A predecessor work which was competitive to commercial sequential MIP solver was
presented by Bixby et al. [4] in 1999, who solved two previously unsolved real-world MIP
instances by running a branch-and-bound algorithm on eight parallel processors. In [13], we
presented for the first time, optimal solutions for two of the six extremely hard instances of
MIPLIB2003: ds and stp3d. In order to solve these instances, runs needed to be restarted
from a checkpoint more than 10 times. In this paper, we present computational results to

LoadCoordinator(Rank:0)
-
Solver statuses

M N
!: : L : | (GlobalDualBound] | | Original Instance
Solving Nodes .r /] 1

____________ ' Presolved Instance

Incumbent value]

{ Incumbent value]

BestDualBoud

r/PresoIved Instance\v

BestDualBoud

(| Presolved Instance

Node pool |O|OIO| | | | | ||::>{BestDualBoud\ N SCIP env.
/4 { Incumbent value][Incumbent soluDon J
p Solver(R.1) Solver(R.2) Solver(R.n)

N
Incumbent value

BestDualBoud
p—

(| Presolved Instance

=4

&

SCIP env.

SCIP env.
N

Figure 1: Process composition and data arrangement of ParaSCIP.

solve these instances by single runs without restarting from checkpoints and we present
improved bounds for all of the remaining four unsolved instances.

The following sections are organized as follows. First, we briefly explain how ParaSCIP
works (see more details in [13] and [15]). Next, three stages of ParaSCIP development are
presented to clarify what was changed for each stage. Then, the main computational results
of this paper will be presented. After that, the current progress of ParaSCIP and an update
of the bounds for the four unsolved instances of MIPLIB2003 will be presented. We finish
with some concluding remarks.

2 Ubiquity Generator Framework

ParaSCIP has been developed by using a software framework: the Ubiquity Generator(UG)
framework[15]. UG is written in C++-. Generally, parallel tree search based solvers have
three running phases, see also [10] and [16]. The ramp-up phase is the time period from
the beginning until sufficiently many branch-and-bound nodes are available to keep all
processing units busy the first time. The primary phase is the period between the first and
last time all processing units were busy. The ramp-down phase is the time period from the
last time all processing units were busy until problem solving finished. UG provides several
ramp-up mechanisms to shorten the ramp-up phase, a dynamic load balancing mechanism
for all three phases, and a checkpointing and restarting mechanism as generic functionality.
ParaSCIP uses the MPI library for communications. Two types of processes exist running
ParaSCIP on a supercomputer. One is the LOADCOORDINATOR which makes all decisions
about the dynamic load balancing, the other is the SOLVER which solves subproblems.

2.1 Initialization

The LOADCOORDINATOR reads the instance data for a MIP model which we refer to as the
original instance. This instance is presolved directly inside the LOADCOORDINATOR. The
resulting instance will be called the presolved instance. The presolved instance is broadcasted
to all available SOLVER processes, and is embedded into the (local) SCIP environment of
each SOLVER. This is the only time when the complete instance is transferred. Later, only
the differences between a subproblem and the presolved problem will be communicated. At
the end of this initialization, all SOLVERs are instantiated with the presolved instance (see
Figure 1).

2.2 Ramp-up

After the initialization step, the LOADCOORDINATOR creates the root node of the branch-
and-bound tree. Each node transferred through the system, we call such a node PARANODE,
acts as the root of a subtree. The information that has to be sent consists only of bound
changes of variables.

The SOLVER which receives a new branch-and-bound node instantiates the corresponding
subproblem using the presolved instance (which was distributed in the initialization step)
and the received bound changes.

UG has two kinds of ramp-up mechanisms.

Normal ramp-up Active SOLVERs, which are the ones that already received a branch-
and-bound node, are solving this subproblem by alternately solving nodes and transferring
half of the child nodes back to the LOADCOORDINATOR. The LOADCOORDINATOR has
a node pool to keep unassigned nodes, from which it assigns nodes to idle SOLVERs as
long as an idle SOLVER exists. Even if none exists, the LOADCOORDINATOR still keeps
collecting nodes from SOLVERs until it has p “good” (promising to have a large subtree
underneath) unassigned nodes in its node pool. Here, p is a run-time parameter of UG.
When the LOADCOORDINATORS node pool accumulated p “good” nodes, it sends a message
to quit sending nodes to all SOLVERs.

Racing ramp-up In this mechanism, the LOADCOORDINATOR sends the root branch-and-
bound node to all SOLVERs and all SOLVERs start solving the root node of the presolved
instance immediately. In order to generate different search trees, each SOLVER uses a
different variation of parameter settings, branching variable selections, and permutations of
variables and constraints. As shown in [7], the latter can have a considerable impact on
the performance of a solver. Due to these variations, we can expect that many SOLVERs
independently generate different search trees. However, an incumbent solution found by
one of the SOLVERs is broadcasted to all other SOLVERs and is used to prune parts of the
SOLVERs’ search trees. Under certain criteria, involving the duality gap and the number
of open nodes of each SOLVER, a particular SOLVER is chosen as “winner” of the racing
stage. All open nodes of the “winner” are then collected by the LOADCOORDINATOR

and a termination message is sent to all other SOLVERs. Next, the collected nodes are
redistributed to all idle SOLVERs. If the “winner” did not provide enough nodes, UG changes
its strategy to normal ramp-up.

We note, that racing ramp-up has already been considered in [8] and [9]. In order to
use it with state-of-the-art MIP solvers on large scale distributed computing environments,
our extended implementation can switch to the second stage seamlessly without waiting for
all SOLVERs to terminate the first stage and can switch to normal ramp-up adaptively.

2.3 Dynamic load balancing

Periodically, each SOLVER notifies the LOADCOORDINATOR about the number of unexplored
nodes in its SCIP environment and the dual bound of its subtree; we call this information
the solver status. At the same time, the SOLVER is notified about the lowest dual bound
value of all nodes in the node pool of the LOADCOORDINATOR, which we will refer to as
BESTDUALBOUND.

If a SOLVER is idle and the LOADCOORDINATOR has unprocessed nodes available in the
node pool, the LOADCOORDINATOR sends one of these nodes to the idle SOLVER. In order
to keep all SOLVERs busy, the LOADCOORDINATOR should always have a sufficient amount
of unprocessed nodes left in its node pool. In order to keep at least p “good” nodes in the
LOADCOORDINATOR, we employ collecting mode, similar to the one introduced in [14]. We
call a node good, if the dual bound value of its subtree (NODEDUALBOUND) is close to the
dual bound value of the complete search tree (GLOBALDUALBOUND).

If a SOLVER receives the message to switch into collecting mode, it changes the search
strategy to either “best estimate value order” or “best bound order” (see [1]) depending
on the specification of UG run-time parameters. It will then alternately solve nodes and
transfer them to the LOADCOORDINATOR. This is done until the SOLVER receives the

message to stop the collecting mode.
If the LOADCOORDINATOR is not in collecting mode and it detects that less than p
good nodes with

NODEDUALBOUND — GLOBALDUALBOUND
max{|GLoBaLDUALBOUND|, 1.0}

< THRESHOLD (1)

are available in the node pool, the LOADCOORDINATOR switches to collecting mode and

requests selected SOLVERs that have nodes which satisfy (1) to switch also into collecting
mode. The selection is done in ascending order of the minimum lower bound of open nodes in
the SOLVERs. The number of selected SOLVERs increases dynamically depending on the time
that the node pool in the LOADCOORDINATOR has been empty. If the LOADCOORDINATOR
is in collecting mode and the number of nodes in its pool that satisfy (1) is larger than
m,, - p, it requests all collecting mode SOLVERSs to stop the collecting mode. Note that m,,
is a runtime parameter and is set to 1.5 as a default value.

2.4 Termination

The termination phase starts when the LOADCOORDINATOR detects that the node pool is
empty and all SOLVERs are idle. In this phase, the LOADCOORDINATOR collects statistical
information from all SOLVERs and outputs the optimal solution and the statistics.

2.5 Checkpointing and restarting

ParaSCIP saves only primitive nodes, that is, nodes for which no ancestor nodes are in the
LoADCOORDINATOR at each checkpoint. This strategy requires much less effort for the
I/O system, even in large scale parallel computing environments. For restarting, however,
it will take longer to recover the situation from the previous run. To restart, ParaSCIP
reads the nodes saved in the checkpoint file and restores them into the node pool of the
LOADCOORDINATOR. After that, the LOADCOORDINATOR distributes these nodes to the
SOLVERs ordered by their dual bounds.

3 Stages of ParaSCIP development

We had three stages of ParaSCIP development so far, and this paper presents computational
experiments conducted over all three stages. In the first stage, ParaSCIP only had features
of normal ramp-up, checkpointing and restarting mechanism. Already the simple version
of ParaSCIP solved two open instances from MIPLIB2003 by restarting more than ten
times[13]. In the second stage, we tried to solve the two instances with a single execution
without restarting in order to confirm the optimal solutions. In order to achieve this, we
implemented the racing ramp-up. We will present computational results of a large scale
racing ramp-up in the following subsection. Note that we also tried to verify our results by
giving the instances plus the optimal solutions to CPLEX 12.2. However, the run aborted
without proof of optimality after one month execution on a 32 core Sun Galaxy 4600
equipped with eight Quad-Core AMD Opteron 8384 processors at 2.7 GHz and 512 GB
RAM. We conclude that these instance are still very hard to solve on single computer, even
for state-of-the-art commercial solvers with shared-memory parallelization and additional
information (optimal solution given).

The computational results obtained by the first two stage systems motivated us to refine
the communication point. A communication point is a function called in a SOLVER, in
which a series of information exchange between the LOADCOORDINATOR and the SOLVER
is performed by message passing. This includes a sending message operation from the
SOLVER side. Originally, the communication point was limited to the time when a branch-
and-bound node was selected for processing. Therefore, no communication between the
LoADCOORDINATOR and a SOLVER happened during the processing of a branch-and-bound
node. To allow for more frequent communication, we added additional communication
points. These are after every global and local variable bound change, every solve of the LLP
relaxation, every modification of the LP, or after finding of a new incumbent. The third

stage development has been done by using a shared memory parallel extension of SCIP.
See [15] for more details about the modification in the third stage.

This paper mainly presents new computational results for ParaSCIP in the second stage
and in the third stage, computational results for the first stage can be found in [13].

4 Computational results

In this section, we present computational results for large scale computations to solve
the following hard instances from MIPLIB2003: ds and stp3d, which have been solved by
ParaSCIP for the first time in [13], and dano3mip, t1717, 1iu and momentum3, which are
still open.

For the computations, we used the following supercomputers.

HLRN II: ! SGI Altix ICE 8200EX, Xeon QC E5472 3.0 GHz/X5570 2.93 GHz (up to
7,168 cores)

HLRN III: ? Cray XC30, Xeon E5-2670 8C 2.6GHz, Aries interconnect (up to 17,088
cores)

Titan: 3 Cray XK7 , Opteron 6274 16C 2.2GHz, Cray Gemini interconnect, NVIDIA K20x
(up to 35,200 cores)

In this paper, we refer as the second stage product of ParaSCIP and SCIP 1.2.1.2 with
CPLEX 12.1 as underlying linear programming solver to “old version of ParaSCIP’ and
refer as the third stage product of ParaSCIP and SCIP 3.0.1 with CPLEX 12.5 as underlying

linear programming solver to “new version of ParaSCIP”.

4.0.1 Single run computations for ds and stp3d

In this subsection, we present computational results of large scale single job computations
to solve ds and stp3d. For these two instances, we conducted the following computations:

ds Original instance data was used. This instance was solved from scratch on HLRN 11
with 4,096 cores.

stp3d Extended presolved instance data was used (see [13]). This instance was solved from
a given optimal solution. This instance was solved on HLRN II with 4,096 cores using
racing and normal ramp-ups. This instance was also solved on HLRN II with 7,168
cores using racing ramp-up.

Thttp://www.hlrn.de
2http://www.hlrn.de
3http://www.olcf.ornl.gov/titan/

At first, we summarize results of the racing stage computations. After racing termination
we determined a winner, the SOLVER whose dual bound is the largest in all SOLVERs which
have above a certain threshold number of open nodes. The threshold number of open nodes
were 4,000 and 500 for solving ds and stp3d, respectively.

To generate thousands of settings that can be run concurrently, we applied three different
diversification strategies:

Meta parameter settings Presolving, primal heuristics, and cutting plane separation
are crucial components of MIP solving. In SCIP, there are certain meta parameter settings
for each of these components. For each racing parameter setting, one combination of
“aggressive(0)”, “default(1)”, “fast(2)” and “off(3)” meta-parameter settings related to
“Heuristics(h)”, “Presolving(p)” and “Separation(s)” was set. The numbers and characters
within parentheses indicate the settings for a single solver, e.g., “hOp1s2” shows that aggres-
sive settings for heuristics, default settings for presolving and fast settings for separation
have been used.

Branching variables The choice of the branching variables in the top levels of the
branch-and-bound tree heavily influences the performance of a solver. To diversify, we
select the branching variables at the first two levels of the branch-and-bound tree randomly.

Permutations of columns The columns and rows of instance data are permuted to
exploit performance variability, see e.g. [6].

We applied all of these strategies simultaneously. For each parameter setting, the
pictures in Figure 2 show the “root node computing time at racing stage”, the “elapsed
time to terminate racing computation”, the “bound evolution after racing stage” and the
“number of open nodes after racing stage” for computations of ds with 4,096 cores. In all
figures, the results are grouped by identical and similar meta parameter settings. The
order on the x-axis is the same for all figures. We only present the picture of the “elapsed
time to terminate racing computation” for the stp3d instance in Figure 3, because its
characteristics are similar to that for the ds instance.

The top picture of Figure 2 shows how the computing time for the root node varies
depending on parameter settings and shows that the behavior within each class of meta-
parameter settings is quite homogeneous. The results still vary due to the permutation of
columns.

The second picture in Figure 2 shows the number of open nodes that each SOLVER has
at termination time of the racing stage. The third picture in Figure 2 shows the dual bound
value that each SOLVER has at the termination time of the racing stage. The number of
open nodes could be weakly classified depending on meta-parameter settings, but the values
do not have recognizable pattern.

The bottom picture in Figure 2 shows the termination time for each racing stage
SOLVER. Right after the winner is decided, the LOADCOORDINATOR sends a message to
all SOLVERs except the winner to request termination of the racing stage. The picture

shows that most of the SOLVERs terminated immediately, but some of them took a long
time to terminate. An explanation might be that for this version of ParaSCIP the messages
were only checked when the SOLVER starts solving a branching node. If a branching node
computation takes extremely long time, the SOLVER has no chance to communicate with
the LOADCOORDINATOR. This means that these might be SOLVERs which take long to
terminate. Figure 3 shows results for stp3d. stp3d is a very large instance, therefore, the
LPs and hence the node LPs often take a long time to solve. In fact, therefore, more SOLVERs
take long to terminate. These results motivated us to introduce further communication
points.

Note that the winner’s data are missing for all pictures, because the winner keeps
running after racing stage. The winner’s meta-parameter settings were as follows:

e ds(4,096) h3p2s3: no heuristics, fast presolving, no separator.
e stp3d(4,096) h2p3s2: fast heuristics, no presolving, fast separation.
e stp3d(7,168) h2p3s2: fast heuristics, no presolving, fast separation.

Next, we present computational results for the large scale single jobs. All computation
times for the jobs are shown in the top four rows of Table 1. The numbers of nodes solved
and transferred are presented in the top four rows of Table 2. For the racing stage, the
number of nodes counts only the nodes of the winner. Table 2 shows that the number of
transferred nodes between SOLVERs via the LOADCOORDINATOR is very small compared to
the total number of nodes solved in our load balancing mechanism. The transferred nodes
ratio is less than 10% for all computations. Figures from 4 to 6 show how upper and lower
bounds evolve, the solver usage and workloads during computation, and the computation
time and idle time ratios of SOLVERs, for each of the large scale jobs. These figures show
that ds was solved quite well in terms of CPU cores usage. Figure 5 shows all SOLVERs
were busy during most of the computing time. Actually, the maximum idle time ratio in all
SOLVERs was at most 10% from Figure 6.

For stp3d starting with racing ramp-up, ParaSCIP achieved 1.34 times speedups by
1.75 scale ups, see Table 1. Although the ramp-up time in racing ramp-up was quit long,
the computation time of the run with racing ramp-up was 18 hours or more shorter than
that of normal ramp-up in the end. The number of nodes solved is similar for all stp3d
runs. Therefore, the difference between normal and racing ramp-ups with 4,096 cores comes
from idle time of SOLVERs. Though it is not clear whether a good load balancing in the
beginning of computation with racing ramp-up leads to a good situation in the ramp-down
phase or not, the result of 7,168 cores with racing ramp-up has very similar behavior with
that of 4,096 cores.

4.0.2 Restarted runs vs. single run computation for solving ds

We calculated cores*hours for solving ds with 16 times restarted runs (17 jobs) obtained in
[13] and the result in this paper.

1800 ‘ T

1600 [e g
1400 ¢ e ,”; E
1200 g
1000 g
800 [g
600 [g

oL Mugikpmemy
200 & : “ n 8 i

o I O g \ \ \ . \
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Parameter settings

Root node computing time (sec.)

12000 T

10000 R
8000 |-
6000 |-

¥
4000 m

2000 -

Number of nodes

0 L 108
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Parameter settings

Obijective function value

o,

s d%. 3 i i
500 1000 1500 2000 2500 3000 3500 4000 4500
Parameter settings

G 30000 T
& 28000 | ® -
2 26000 B
S 24000 g
% 22000 - B
g 20000 B
= 18000 1
& 16000 - LI 8 b
2 14000 [op m T : s, -
E :gggg -— -‘_!! ‘& B wa adl * T
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Parameter settings
h2p0s3 h2p1s2 h3p2s0 o hOp1s3 @ hipis0 ¢
h2p1s3 = h2p2s0 h3p2s1 e hOp2s0 hiptst ¢
h2p2s3 * h2p2s1 o h3p2s2 = hOp2s1 hipts2 ¢
h2p3s3 © h2p2s2 o h3p3s0 e hOp2s2 = h1p1s3 <&
h3p0s3 h2p3s0 o h3p3s1 ° hOp2s3 = hip2s0 &
h3p1s3 h2p3s1 ° h3p3s2 hOp3s0 = hip2st &
h3p2s3 e h2p3s2 © hOp0s0 hOp3s1 ® h1p2s2
h3p3s3 2 h3p0s0 o hOpO0s1 o hOp3s2 = h1p2s3
h2p0s0 = h3p0s1 ° hOp0s2 = hOp3s3 ¢ h1p3s0 &
h2p0s1t v h3p0s2 hOp0s3 = h1p0s0 ¢ h1p3st ¢
h2p0s2 ~ h3p1s0 hOp1s0 = h1p0s1 hip3s2 &
h2p1s0 o h3p1si o hOp1si o h1p0s2 h1p3s3 o
h2p1st . h3pis2 o hOopis2 ® h1p0s3 &

Figure 2: Results after racing stage for ds. From the top to bottom as follows: Root
node computation time, the number of open nodes, bounds evolution and elapsed time to
terminate.

10

34000
33500 |
33000 -
32500 -
32000 |
31500 -
31000 -

Termination time of racing (sec.)

30500 &

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Parameter settings

h2p0s3 + h2p1s2 h3p2s0 = hOp1s3 = hipis0 <
h2p1s3 h2p2s0 h3p2s1 © hOp2s0 hipist ¢
h2p2s3 * h2p2s1 o h3p2s2 hOp2s1 hipts2 ¢
h2p3s3 o h2p2s2 o h3p3s0 e hOp2s2 = h1p1s3
h3p0s3 h2p3s0 o h3p3s1 . hOp2s3 = hip2s0 &
h3p1s3 h2p3s1 L] h3p3s2 hOp3s0 @& h1p2s1 L3
h3p2s3 e h2p3s2 hOp0s0 hOp3s1 = h1p2s2
h3p3s3 =~ h3p0s0 @ hOp0s1 al hOp3s2 h1p2s3
h2p0s0 = h3p0s1 ° hOp0s2 = hOp3s3 ¢ h1p3s0 &
h2p0s1 v h3p0s2 hOp0s3 =© h1p0s0 ¢ h1p3s1t ¢
h2p0s2 h3p1s0 hOp1sO0 = h1p0s1 h1p3s2 ¢
h2p1s0 o h3p1si o hOp1si h1p0s2 h1p3s3 o
h2pist . h3pis2 = hOopis2 =® h1p0s3 <

Figure 3: Elapsed time to terminate racing computation for stp3d

Table 1: Over all computation time of the large scale single jobs. (Top four rows: old
version, bottom two rows: new version)

Instance Ramp-up # of Comp. Racing Ramp-up Ramp-down

Name Process cores (sec.) (sec.) (sec.) (sec.)
ds Racing 4,096 273,157 11,278 28,318 5,437
stp3d Racing 4,096 158,595 30,580 33,716 5,193
stp3d Normal 4,096 225,577 - 5,486 77,490
stp3d Racing 7,168 118,386 30,075 33,146 6,628
ds Racing 4,096 29,095 3,600 3,847 27,110
ds Normal 4,096 31,798 - 477 28,360

Table 2: Number of nodes solved and transferred of the large scale single jobs. (Top four
rows: old version, bottom two rows: new version)

Instance Ramp-up # of # of nodes # of nodes Transferred

Name Process cores solved transferred nodes (%)
ds Racing 4,096 3,010,465,526 43,334,558 1.4
stp3d Racing 4,096 9,779,864 434,344 4.4
stp3d Normal 4,096 10,573,696 880,850 8.3
stp3d Racing 7,168 10,328,112 549,226 5.3
ds Racing 4,096 466,021,554 825,373 0.2
ds Normal 4,096 954,331,872 926,212 0.2

11

Restarted: 181,248 [cores*hours]
Single: 310,791 [cores*hours]

Note that cores*hours for restarted runs above is bigger than that calculated from the
results presented in [13], because the above number includes the computing time after the
final checkpoint for each run. Despite of this fact, the restarted runs were more efficiently
in solving ds from the computing resource usage point of view (58% of the resources),
although the restarted runs threw away a huge branch-and-bound tree for each run. Single
run needs to keep running until the instance is solved. Therefore, parameter settings of
each SOLVER were conservative in terms of memory usage, that is more frequently the
search strategy was changed to depth-first search, because if a SOLVER had ever reached
the memory limit, ParaSCIP would have been terminated immediately.

4.0.3 0OlId version vs. new version for solving ds

We conducted computational experiments for solving ds every time when a new SCIP
version was released. They brought us always new insights, because run time behavior of
SCIP was changed a lot. New versions of SCIP do much more effort to keep the search tree
small compared to old versions. As a consequence, the parameter settings for ParaSCIP had
to be changed. For example, the threshold number of open nodes to terminate racing stage
had been reduced to 500, since ParaSCIP with SCIP 3.0.1 linked to CPLEX 12.5 could not
terminate racing stage with the value 4,000 over 12 hours. Therefore, we set the threshold
number to 500 for the new version.

Computation times for racing and normal ramp-up for single runs are shown in the
bottom two rows of Table 1. The new version solved 9.4 times faster for racing ramp-up
and 8.6 times faster for normal ramp-up compared to the old version for racing ramp-
up. The number of nodes solved and transferred are presented in the bottom two rows
of Table 2. Table 2 shows that the number of transferred nodes between SOLVERs via
LOADCOORDINATOR is rather small compared to that of the old version. The transferred
nodes ratio is less than 0.2% in both cases. Figures from 7 to 9 show how the upper and
lower bounds evolve, the solver usage and the workloads during computation, and the
computation time and the idle time ratio of SOLVERs, for the large scale job of racing
ramp-up. These figures show that ds was solved quite well in terms of CPU cores usage
with the new version. Average idle time ratio of all solvers for the old version is 4.3% and
that of the new version of racing ramp-up is 6.8% and that of normal ramp-up is 11.1%.
The reason why the ratios are increased is that ds became a relatively easy instance to
solve for the new version of SCIP. As a consequence, a more dynamic load balancing was
needed. Figure 8 shows that ramp-up finished soon after the racing stage finished, which is
the effect of the additional communication points.

12

200

180 IL |
160 P

140 |]
120 |]
100 £ e ———————— .
go | i :
60 " :]
40 | :]
20 -]

Objective Function Value

0 50000 100000 150000 200000 250000 300000
Computing Time (sec.)

Incumbents Racing finished
Optimal === amp-up
Global LBs e Ramp-down « -

Figure 4: Lower and upper bounds evolution of old version: ds

- 1e+08
+
2] 1e+07]
g
g 1e+06 b
o 100000 F b
§ 10000 F b
1+ 1000 b
7] 100 b
[0
8 10 |]
z
+ 1 L L L L | N
0 50000 100000 150000 200000 250000 300000
Computing Time (sec.)
nodes left Ramp-up
active solvers + 1 -+ Ramp-down = et

Racing finished

Figure 5: Active solvers and the number of nodes left of old version: ds

11 T T T T T T T
£+ + o+ + o+ +
L P Fo b ot bt Ry N ++ J
10 T+ $+#¢++ R ++,¢ gt 4] I**Jr‘r** AT #{%
L 3++ﬁ+ﬁ* W g L T RS T B
9 R, 4 A W o e R A B e e T B
+ ottt ¥ e, T
g

Idle times ratio (%)

O =N whH O N ©
T

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Solver ID (MPI Rank)

Total idle time ~ +

Figure 6: Idle time ratio of old version: ds

13

300

g M
; L P
:
5 200 _ B
: :
o) i
LL :
2 100} B 7
8 PRPSTRLS de YL AL Y - z
L g5 p -
O :
0 ‘ | | | -
0 5000 10000 15000 20000 25000 30000

Computing Time (sec.)

Incumbents Racing finished
Optimal ====---= amp-up
Global LBs e Ramp-down =+«

Figure 7: Lower and upper bounds evolution of new version: ds

- 1e+07
+
£ 1e+06 F]
(9]
>
S 100000 F]
(9]
_02’ 10000 F]
< 1000 }]
H*
> 100 E
S
3 10]
z
+ 1 L L L L | N
0 5000 10000 15000 20000 25000 30000
Computing Time (sec.)
nodes left Ramp-up
active solvers + 1 Ramp-down = et

Racing finished

Figure 8: Active solvers and the number of nodes left of new version: ds

20
18 .
16 -
2 14 -
) i
g 12
o 10 i
Q
E 8 .
g s :
4 i
2 K 4
0

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Solver ID (MPI Rank)

Total idle time ~ +

Figure 9: Idle time ratio of new version: ds

14

5 Current progress of ParaSCIP

In the previous subsection 4.0.3, we showed the performance difference between an old
version and a new version of ParaSCIP for solving ds. A main source for the improvement
is the performance improvement of SCIP. However, there have been several enhancements
of ParaSCIP as well. Since SCIP tends to produce small search tree, we need to assume that
after the racing stage the number of open nodes is less than the number of SOLVERs in
large scale runs. This means that the dynamic load balancing becomes more important.

For dynamic load balancing, the biggest improvement is the more frequent calls of
communication points in the SOLVERs. It enables ParaSCIP to realize fast and flexible
control of the dynamic load balancing. The new version of ParaSCIP uses as few SOLVERs as
possible in collecting mode and switches the collecting mode SOLVERs frequently. Actually,
the number of collecting mode SOLVERs is less than 50 in most of the computing time for
solving ds. Figure 9 shows that it was controlled well, because small rank SOLVERs are
assigned a new branch-and-bound node first and we can observe reasonable idle time ratio
of SOLVERs for the assignment order.

ParaSCIP can solve ds with racing and normal ramp-ups without too big difference
in computing time shown in Table 1, because of the improvement of the dynamic load
balancing. (In the old version, ParaSCIP looked no chance to solve ds by using normal
ramp-up.) Racing ramp-up itself seems to be good for load balancing according to our
computational experiments. The reason might be that the run with racing ramp-up collects
all nodes from the winner once and redistributes them to all SOLVERs. At this moment,
it uses the whole branch-and-bound tree for load balancing. Table 1 shows that racing
ramp-up leads to shorter ramp-down times.

We have conducted experiments for the remaining open instances. Currently our
strategy is to generate a checkpointing file which contains good quality sub-MIPs. Here,
we exploited the possibility to generate a first checkpointing file of promising sub-MIPs on
one supercomputer and move it to another supercomputer for the final run. In order to
generate the checkpointing file, we used best dual bound first search, but for the large scale
computation on supercomputers, we have changed the search strategy to default to obtain
a smaller memory footprint for each SOLVER. For the computation on supercomputers, the
best known primal solution of each instance was given. We present two results for solving
dano3mip on HLRN III by using 17,088 cores starting from 33,332 branch-and-bound nodes
in the checkpointing file and on Titan by using 35,200 cores starting from 33,481 nodes. The
primal and the dual bounds have not been improved in either case. Figures 10 and 11 show
the results of SOLVER usage, workloads and how many number of nodes were transferred
for the two runs. From Figure 10, 17,088 cores are not enough to solve dano3mip by using
current ParaSCIP, because LOADCOORDINATOR did not receive any branch-and-bound
node from SOLVER and the checkpointing file size staid the same after the computation.
However, Figure 11 shows that ParaSCIP went into collecting mode and the number of nodes
in the checkpointing file was reduced to 32,023 for the run with 35,200 cores. Although
ParaSCIP only has one LOADCOORDINATOR, it could handle 35,200 cores and it might
solve dano3mip by using such large scale distributed memory computing environments, or

15

Table 3: Improved objective value of all remaining MIPLIB2003 unsolved problems

Instance Old best-known New improved Gain
Name obj. value obj. value (%)
dano3mip 687.733333 665.571428571428 3.2
liu 1,102 1,088 1.3
momentum3 236,426.335 185,509.733224132 21.5
t1717 170,195 161,330 5.2

Table 4: Best-Known Lower and Upper Bounds of all remaining MIPLIB2003 unsolved
problems. Gap is calculated by |1 — (upper bound/lower bound)|

Instance Lower Bound Upper Bound Gap
Name (%)
dano3mip 581.9224* 665.571428571428* 14.4
liu 613 1,088* 77.5
momentum3 95,217.2220* 185,509.733224132* 94.8
t1717 139,790.5882* 161,330%* 154

even a bigger one, in the future.

Finally, we present an update of primal solutions from [12] and summarize the best
known lower bounds of the remaining open instances in Table 3 and Table 4 (‘*’ indicates
our update), respectively?.

6 Concluding remarks

This paper presented an update of MIPLIB2003 and progress of ParaSCIP. It is very hard
to evaluate the performance of a parallel MIP solver to solve hard MIP instances on a large
scale distributed memory computing environment as we have shown in this paper. One way
is to show that it can solve well-known hard instances like ds on a large scale computing
environment. This paper gives a reference result for that purpose. For hard MIP instances,
ParaSCIP could handle more than 35,000 cores. Some questions remain open: Up to which
scale is ParaSCIP capable of reasonably coordinating the load? How many SOLVERs will be
necessary to solve the remaining open instances? And finally, which of these two numbers
is bigger?

4The update of momentum3 was mainly done by ParaCPLEX which is a parallel MIP solver realized by
Ubiquity Generator Framework replacing SCIP to CPLEX.

16

— 1e+08
+

o 1e+07
2 1e+06
& 100000
2 10000
2 1000
* 100
@ 10
e]

o 1
=z

H* 0.1

\ Il Il Il Il Il Il Il
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Computing Time (sec.)

nodes sent/sec
Ramp-up

nodes left
active solvers + 1
nodes recevied/sec -+

Figure 10: Active solvers, the number of nodes left, nodes transferred per seconds on HLRN
IIT (17,088 cores) : dano3mip

— 1e+10
N
S 1e+08
=
3 1e+06
[0)
>
£ 10000
<
® 100
3
° 1
o
zZ
H* 0.01

Figure 11: Active solvers,

(35,200 cores) : dano3mip

5000 10000 15000 20000 25000 30000 35000 40000 45000
Computing Time (sec.)

nodes left # nodes sent/sec
active solvers + 1 -=---=-= Ramp-up
nodes recevied/sec et

the number of nodes left, nodes transferred per seconds on Titan

17

Acknowledgment

We are thankful to the HRLN II and HRLN III supercompter staff, especially Bernd Kallies,
Hinnerk Stiiben and Matthias Lauter who gave us support at any time we needed it. We
would like to thank Michael R. Hilliard and Rebecca J. Hartman-Baker for their help to
access Titan.

References

1]

2]

Achterberg, Tobias. 2007. Constraint integer programming. Ph.D. thesis, Technische
Universitat Berlin.

Achterberg, Tobias, Thorsten Koch, Alexander Martin. 2006. MIPLIB 2003. Operations
Research Letters 34 1-12. doi:10.1016/j.0r1.2005.07.009.

Achterberg, Tobias, Timo Berthold. 2009. Hybrid branching. Willem Jan van Hoeve,
John N. Hooker, eds., Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, 6th International Conference, CPAIOR 2009,
Lecture Notes in Computer Science, vol. 5547. Springer, 309-311.

Bixby, Robert E., William Cook, Alan Cox, Eva K. Lee. 1999. Computational experience
with parallel mixed integer programming in a distributed environment. Annals of
Operations Research 19-43d0i:10.1023/A:1018960631213.

Bussieck, Michael R., Michael C. Ferris, Alexander Meeraus. 2009. Grid-
enabled optimization with GAMS. INFORMS Journal on Computing 21 349-362.
d0i:10.1287/ijoc.1090.0340.

Fischetti, Matteo, Monaci Michele. 2012. Exploiting erraticism in search. Technical
report of University of Padova.

Koch, Thorsten, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold,
Robert E. Bixby, Emilie Danna, Gerald Gamrath, Ambros M. Gleixner, Stefan Heinz,
Andrea Lodi, Hans Mittelmann, Ted K. Ralphs, Domenico Salvagnin, Daniel E. Steffy,
Kati Wolter. 2011. MIPLIB 2010 — Mixed Integer Programming Library version 5.
Mathematical Programming Computation 3 103-163. doi:10.1007/s12532-011-0025-9.

Mitra, Gautam, Ilan Hai, Mozafar T. Hajian. 1997. A distributed processing algorithm
for solving integer programs using a cluster of workstations. Parallel Computing 23
733-753. doi:10.1016/S0167-8191(97)00016-1.

Nwana, Vincent, Ken Darby-Dowman, Gautam Mitra. 2004. A twostage parallel
branch and bound algorithm for mixed integer programs. IMA Journal of Management
Mathematics 15 227-242. doi:10.1093 /imaman/15.3.227.

18

http://dx.doi.org/10.1016/j.orl.2005.07.009
http://dx.doi.org/10.1023/A:1018960631213
http://dx.doi.org/10.1287/ijoc.1090.0340
http://dx.doi.org/10.1007/s12532-011-0025-9
http://dx.doi.org/10.1016/S0167-8191(97)00016-1
http://dx.doi.org/10.1093/imaman/15.3.227

[10] Ralphs, Ted K. 2006. Parallel branch and cut. E. Talbi, ed., Parallel Combinatorial
Optimization. Wiley, New York, 53-101.

[11] Ralphs, Ted K., Laszlo Ladanyi, Matthew J. Saltzman. 2003. Parallel branch, cut,
and price for large-scale discrete optimization. Mathematical Programming Series B 98
253-280. doi:10.1007/s10107-003-0404-8.

[12] Richard, Laundy, Michael Perregaard, Gabriel Tavares, Tipi Horia, Horia, Alkis
Vazacopoulos. 2009. Solving Hard Mixed-Integer Programming Problems with Xpress-
MP: A MIPLIB 2003 Case Study. INFORMS Journal on Computing 21 304-313.
d0i:10.1287/ijoc.1080.0293.

[13] Shinano, Yuji, Tobias Achterberg, Timo Berthold, Stefan Heinz, Thorsten Koch. 2012.
ParaSCIP — a parallel extension of SCIP. Christian Bischof, Heinz-Gerd Hegering,

Wolfgang E. Nagel, Gabriel Wittum, eds., Competence in High Performance Computing
2010. Springer, 135-148. doi:10.1007/978-3-642-24025-6_12.

[14] Shinano, Yuji, Tobias Achterberg, Tetsuya Fujie. 2008. A dynamic load bal-
ancing mechanism for new ParalLEX. Proceedings of ICPADS 2008. 455-462.
d0i:10.1109/ICPADS.2008.75.

[15] Shinano, Yuji, Stefan Heinz, Stefan Vigerske, Michael Winkler. 2013. FiberSCIP — a
shared memory parallelization of SCIP. ZIB-Report 13-55, Zuse Institute Berlin.

[16] Xu, Yan, Ted K. Ralphs, Laszlo Laddnyi, Matthew J. Saltzman. 2009. Computational
experience with a software framework for parallel integer programming. INFORMS
Journal on Computing 21 383-397. doi:10.1287/ijoc.1090.0347.

19

http://dx.doi.org/10.1007/s10107-003-0404-8
http://dx.doi.org/10.1287/ijoc.1080.0293
http://dx.doi.org/10.1007/978-3-642-24025-6_12
http://dx.doi.org/10.1109/ICPADS.2008.75
http://dx.doi.org/10.1287/ijoc.1090.0347

	Introduction
	Ubiquity Generator Framework
	Initialization
	Ramp-up
	Dynamic load balancing
	Termination
	Checkpointing and restarting

	Stages of ParaSCIP development
	Computational results
	Single run computations for ds and stp3d
	Restarted runs vs. single run computation for solving ds
	Old version vs. new version for solving ds

	Current progress of ParaSCIP
	Concluding remarks

