
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

GERALD GAMRATH

Improving strong branching by domain
propagation

ZIB-Report 13-47 (Rev. version December 2013)



Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de


Improving strong branching by domain propagation

Gerald Gamrath∗

Abstract

One of the essential components of a branch-and-bound based mixed-integer linear pro-
gramming (MIP) solver is the branching rule. Strong branching is a method used by many
state-of-the-art branching rules to select the variable to branch on. It precomputes the dual
bounds of potential child nodes by solving auxiliary linear programs (LPs) and thereby helps
to take good branching decisions that lead to a small search tree. In this paper, we describe
how these dual bound predictions can be improved by including domain propagation into
strong branching. Domain propagation is a technique MIP solvers usually apply at every
node of the branch-and-bound tree to tighten the local domains of variables. Computa-
tional experiments on standard MIP instances indicate that our improved strong branching
method significantly improves the quality of the predictions and causes almost no additional
effort. For a full strong branching rule, we are able to obtain substantial reductions of the
branch-and-bound tree size as well as the solving time. Moreover, the state-of-the-art hybrid
branching rule can be improved this way as well.

This paper extends previous work by the author published in the proceedings of the
CPAIOR 2013 [18].

Keywords: mixed-integer programming, branch-and-bound, branching rule, variable selec-
tion, strong branching, domain propagation

Mathematics Subject Classification: 90C10, 90C11, 90B40, 9008, 90C57

1 Introduction

Since the invention of the linear programming (LP) based branch-and-bound method for solving
mixed-integer linear programs (MIPs) in the 1960s [24, 14], branching rules have been an im-
portant field of research in that context, being one of the core parts of the method (for surveys,
see [28, 25, 5]). Their task is to split the current problem into two or more disjoint subproblems
if the solution to the LP relaxation of the current problem does not fulfill the integrality restric-
tions. Thereby, it should exclude the LP solution from all subproblems while keeping at least
one optimal solution.

The most common way to split the problem is to branch on trivial inequalities, which split the
domain of a single variable into two parts (called variable branching). Alternatively, branching
can be performed on general linear constraints (see [31, 29, 27, 21, 13]) or can create more than
two subproblems, cf. [12, 26]. In case of variable branching, the variable to actually branch on
is typically chosen with the goal of improving the local dual bound of both created subproblems
(also called child nodes). This helps to tighten the global dual bound and prune nodes early. For
recent research on alternative criteria, see, e.g., [30, 22, 15, 20].

A very popular branching rule called pseudo-cost branching [9] uses history information about
the change of the dual bound caused by previous branchings. More accurate, but also more

∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, gamrath@zib.de

1



Figure 1: Comparison of the dual bounds computed during strong branching and those obtained
later during node processing for instance aflow30a from MIPLIB 2003.

1110

1100.89

1120

1140

1158

branch-and-bound node

o
b

je
ct

iv
e

va
lu

e

node processing dual bound
strong branching dual bound

expensive, is strong branching [19, 7, 25], which explicitly computes dual bounds of potential
child nodes by solving auxiliary LPs with the branching bound change temporarily added. The
full strong branching rule does this at every node for each integer variable with fractional LP
value which empirically leads to very small branch-and-bound trees [1, 5]. Modern branching
rules typically combine these two approaches and use strong branching in case of uninitialized or
unreliable pseudo-cost values (see [5, 3]). Often, they also impose an iteration limit to restrict
the effort for solving the strong branching LPs, see, e.g., [19]. In case this limit is reached, the
current (possibly suboptimal) LP value is used as a prediction for the child node’s dual bound.1

An important example for a modern branching rule is reliability pseudo-cost branching [5], which
considers the history information for a variable unreliable if the number of pseudo-cost updates
for this variable is below a given threshold. What this all amounts to is that strong branching is
an important component of state-of-the-art branching rules, predicting the bounds of potential
children when no other information is available yet.

In practice, however, one can often observe a difference between the dual bound that strong
branching computes for a node and the actual dual bound obtained later when this particular
node is processed. An example is shown in Figure 1, which depicts the differences for instance
aflow30a from MIPLIB 2003. The y-axis ranges from the root node dual bound up to the optimum
objective value which was provided at the beginning. The instance was solved with full strong
branching after 87 nodes, each of which is represented by one bar. All strong branching LPs
were solved to optimality, but still for almost half of the nodes, the bound obtained during node
processing is better than the predicted bound, on average, 10% of the gap between predicted
and primal bound is closed by the node LP. This restrains the effectiveness of strong branching,
since with more accurate predictions, better branching variables could have been selected. There
are various reasons for the difference, most prominently domain propagation and global domain
changes found in the meantime. The task of domain propagation (or node preprocessing) is
to tighten the local domains of variables by inspecting the constraints and current domains of

1Since strong branching LPs are typically solved with the dual simplex method, the LP value often provides a
valid dual bound even if the iteration limit is reached. Note, however, that modern simplex implementations use
pertubation to deal with degeneracy and need to do some final primal simplex pivots to undo this, in which case
the LP value does not necessarily provide a valid dual bound after reaching the limit. Nevertheless, the value is
often close to the optimal LP value so that it can be used as a prediction, anyway.

2



other variables at the local subproblem. It is the essential part of each constraint programming
solver [8] and has also proven to improve MIP solvers significantly by tightening the LP relaxation,
resulting in better dual bounds and detecting infeasibilities earlier [1, 32, 17].

While strong branching cannot do anything about the difference in the dual bounds caused by
global domain changes, it should react upon the continuous improvement in domain propagation
techniques. In this paper, we examine how strong branching can be improved by combining it
with domain propagation in order to compute better dual bound predictions. This means that
we perform the same domain propagation steps that are already performed at each node of the
branch-and-bound tree also during strong branching, prior to solving the strong branching LP of
a potential child node. The general idea and an evaluation of the direct effects on single strong
branching calls are presented in the next section. We implemented the modified strong branching
method within the MIP solver itself instead of using external methods of the LP solver. This
allows us to apply additional tricks to further improve the strong branching performance which
are discussed in Section 3. After that, in Section 4, we provide detailed computational results
on a collection of MIPLIB [11, 6, 23] instances. In a setting which focuses on the branching
performance of a full strong branching rule, we achieve significant reductions of both number of
nodes and solving time, but also with default settings, both the full strong branching rule as well
as a hybrid branching method combining strong branching and pseudo-costs can be improved.

2 Strong branching with domain propagation

In the following, we consider mixed-integer linear programs of the form:

min{cTx | Ax ≥ b, x ≥ 0, xi ∈ Z ∀i ∈ I}. (1)

A basic implementation of strong branching works as follows: Given the current problem P of
form (1) and an integer variable xi, i ∈ I, with fractional LP solution value x̂i, it computes dual
bounds of the two potential child nodes that would be created by branching on xi. Therefore, it
creates two temporary subproblems Pd (the down child) and Pu (the up child) by adding to P
the bound changes xi ≤ bx̂ic and xi ≥ dx̂ie, respectively, and solves their LP relaxations. Strong
branching with domain propagation (SBDP) improves this by applying domain propagation to
tighten the variable domains of Pd and Pu after adding the bound changes. The strong branching
dual bound for each of the children is then either set to +∞, if propagation detected infeasibility,
or obtained by solving the (tightened) LP relaxation of the respective child node. Computing
these two dual bound predictions for a given variable with fractional value will be referred to as
a strong branching call in the following.

Since the additional domain propagation step can only tighten the LP relaxation, the dual
bounds obtained by SBDP are always greater than or equal to the ones computed by standard
strong branching as long as we solve the LPs to optimality. This is the case for the full strong
branching rule we focus on in this section, later, in Section 4, we will also regard a hybrid
branching rule which imposes an iteration limit for the strong branching LPs. The questions we
want to consider in the remainder of this paper are the following:

a) How does the strong branching effort change?

b) By how much can SBDP improve the strong branching predictions?

c) What is the effect of SBDP on the overall performance of a MIP solver?

Question a) addresses the time spent for domain propagation as well as the change in the number
of LP iterations (and therewith the LP solving time). The simplex warmstart normally allows to

3



Table 1: Impact of domain propagation on the strong branching calls.
strong branching strong branching with propagation

category calls inf iters time domchgs inf cl. gap iters time

better bound 376.0 – 44.0 19.5 38.9 – 20.7% 57.2 23.1
same bound 23802.0 – 82.3 39.7 23.7 – – 79.0 40.6
cutoff 3342.6 0.92 56.8 27.3 35.7 1.11 8.5% 46.7 25.6

all 30469.4 0.14 81.0 40.2 26.3 0.17 2.7% 77.5 40.5

solve the strong branching LPs with just a few iterations as there is only one bound tightened,
but additional changes performed by domain propagation might change this. On the other hand,
infeasibility can already be detected by domain propagation so that we do not need to solve
the strong branching LP afterwards. Question b) addresses both the detection of infeasibilities
as well as the computed dual bounds of potential child nodes. While answering the first two
questions will give us an indication concerning the profitability of SBDP, the final question c)
should assess it by taking into account the changes of tree size and solving time caused by SBDP.

For answering these questions, we performed computational experiments using an implemen-
tation of SBDP based on the MIP solver SCIP 3.0 [1, 2] with underlying LP solver SoPlex 1.7 [35].
They were performed on a cluster of Intel Xeon E5420 2.5 GHz computers, with 6 MB cache and
16 GB RAM, running Linux (in 64 bit mode). A time limit of two hours per instance was im-
posed. We use full strong branching to measure the impact of our changes for each candidate
variable at each node and concentrate on the branch-and-bound performance by providing the
optimal objective value as objective cutoff and disabling primal heuristics and cutting plane
separation as well as the components presolver2 of SCIP. We will refer to this setting as the
sandbox setting in the following. As test set, we used the MMM test set consisting of all instances
from MIPLIB 3.0 [11], MIPLIB 2003 [6], and the benchmark set of MIPLIB 2010 [23]. We
excluded all instances for which no significant amount of strong branching was performed—either
because the instance was solved in presolving or at the root node prior to branching or because
the time limit of two hours was hit before strong branching was performed on at least ten vari-
ables. Additionally, we excluded the three infeasible instances from MIPLIB 2010 in order to
be able to compute the additional gap closed by SBDP, which left us with a total number of 147
instances. With respect to the other measures, however, the results on the infeasible instances
were consistent with those presented here.

The experiments were conducted as follows: After each standard strong branching call, we
additionally performed a call of SBDP on the same variable, running the default domain prop-
agation techniques of SCIP (see [1]). We collected statistics about the differences, but did not
use any of the information produced by SBDP within the branch-and-bound search. We chose
this approach instead of running twice, one time with each variant, to isolate the impact of the
new method on each single strong branching call and avoid noise introduced by differences in
the branch-and-bound tree created by different branching choices.

For analyzing the impact of SBDP, we divide the strong branching calls into three categories:
Cutoff if at least one of the two potential child nodes was detected to be infeasible by any of the
methods, better bound if no infeasibility was detected and SBDP computed a better dual bound
for at least one of the potential child nodes, and same bound if both strong branching variants
computed the same (finite) bounds for both potential child nodes.

The results for each of these categories are presented in one line in Table 1, with an additional
line that summarizes these results for all strong branching calls. Besides the number of strong

2The components presolver solves small independent subproblems in advance, excluding them from the main
branch-and-bound search.

4



branching calls (column calls), we show for both strong branching variants the number of potential
subproblems detected to be infeasible (column inf), the number of LP iterations for solving the
LPs of the two subproblems (column iters), and the strong branching time in milliseconds (column
time). Furthermore, we present the number of additional domain changes performed by SBDP
(column domchgs) and the percentage of the gap between primal bound and strong branching
dual bound closed by using SBDP instead of standard strong branching (column cl. gap). Except
for the entries in column cl. gap, each of the numbers listed is computed by taking the arithmetic
mean over all strong branching calls for a single instance and average over the instances by taking
the shifted geometric mean.3 We use a shift of 100 for the number of strong branching calls, 10
for time, iteration number and domain changes, and 1 for the number of child nodes declared
infeasible per call. For the closed gap, having only values between 0 and 100, the average over
the instances is determined by arithmetic mean.

As expected, the better bound case—which happens only rarely—is typically caused by a high
number of domain changes during propagation and leads to an increase in both the average sum
of LP iterations and time per strong branching call, thereby closing the gap by more than 20%
on average. In the most common case, the same bound category, a smaller, but still relevant
number of domains are changed by propagation. But instead of slowing down the simplex warm
start, these bound changes even reduce the average number of LP iterations, e.g., by fixing
variables that would otherwise need to be rendered feasible by some simplex pivots. Last, in
the cutoff case, SBDP detects infeasibility of more potential child nodes—on average 1.11 of the
two children regarded per call are declared infeasible compared to 0.92 otherwise. In about 15%
of the cases, infeasibility is detected already during propagation, leading to a reduction of the
average number of LP iterations and strong branching time. On average over all strong branching
calls, SBDP can declare every twelfth instead of nearly every fourteenth strong branching child
node infeasible and closes the gap by 2.66%. The average number of LP iterations is slightly
decreased, while the time per strong branching call increases marginally. This demonstrates that
the domain propagation time is relatively small compared to the total strong branching time; on
average, it was less than 5%.

We also repeated our motivating example from Section 1 using SBDP and illustrated the
results in Figure 2. The differences between the predicted bounds and the bounds obtained
when processing the nodes are much smaller now: the prediction was inaccurate for only 17%
rather than 47% of the nodes, the average gap closed by the node LP reduces from 10% to 2.6%.
This also leads to solving the instance after 81 instead of 87 branch-and-bound nodes.

Summing up, the increase in the strong branching effort is negligible—which answers ques-
tion a)—while also question b) can be answered positively: The strong branching predictions
are improved both by detecting infeasibilities more often as well as computing more accurate LP
bounds. For the aflow30a instance which served as our motivating example, this helps to reduce
the difference between predicted and LP bound during node processing by 74%. In a branch-
and-bound search, this should lead to more variable fixings and help us taking better branching
decisions. This assumption will be examined further in Section 4, based on computational results
showing the impact of SBDP on the performance of SCIP, thereby also answering the remaining
question c).

3 Additional strong branching improvements

Our enhanced strong branching method uses the domain propagation methods of the MIP solver
which also exploit integrality information. Thus, we implemented it within SCIP itself and do

3See Achterberg [1, Appendix A3] for a definition and discussion of the shifted geometric mean.

5



Figure 2: Comparison of the dual bounds computed by SBDP and those obtained later during
node processing for instance aflow30a from MIPLIB 2003.

1100.89

1120

1140

1158

branch-and-bound node

o
b

je
ct

iv
e

va
lu

e

node processing dual bound
strong branching dual bound

not use the highly optimized strong branching interface methods provided by many LP solvers
such as CPLEX or XPRESS. On the one hand, this might slightly deteriorate the performance
of the LP solver for the strong branching LPs; on the other hand, it allows us to tailor the strong
branching method to our needs even more. In this section, we present three such improvements.
Some of them may be considered common sense, but at least they have not been implemented in
the state-of-the-art non-commercial MIP solver SCIP so far. The first two improvements were
already discussed in the proceedings paper [18] extended by this article while the third one was
newly added.

The first improvement treats the case of an infeasible strong branching subproblem, which
traditionally leads to simply tightening the domain of the candidate variable at the current
node (or cutting off the current node if both subproblems are infeasible). While, e.g., the strong
branching interface method of CPLEX always regards both subproblems,4 we interrupt a strong
branching call when the first potential child is found infeasible, saving the effort we would spend
for the second child node. As usual, the domain change of the second subproblem is then applied
at the current node either directly or after a certain number of domain changes has been collected
this way. This causes a reoptimization of the node LP, after which branching is started again,
if needed. Any information we would get by solving the second strong branching child, e.g., an
improved bound for the current node or a proof for its infeasibility, we get when reoptimizing
the node LP, anyway. A simple trick helps to exploit this even further: In our computational
experiments presented in Section 2, about 69% of the infeasible subproblems were up children.
This is not surprising since problems are often modeled in a way such that changing a variable’s
lower bound—in particular, fixing a binary variable to one—has more impact than changing its
upper bound (fixing a binary variable to zero). Thus, we investigate the potential up child first
in order to profit from infeasible child nodes more often.

Secondly, we can often identify valid local bounds for some variables even if neither of the two
potential child nodes is infeasible. Suppose that during the investigation of the two potential
child nodes for a candidate variable, the domain of another variable xi was tightened to [lbd, ubd]
and [lbu, ubu], respectively. Then, without branching on this candidate variable, the domain of
xi at the current node can be tightened to [min{lbd, lbu},max{ubd, ubu}]. Similar to the bound

4Also with other LP solvers that do not provide a strong branching interface method—in particular SoPlex,
which we use in our computational experiments—the LP interface implemented in SCIP behaves the same way.

6



changes deduced from infeasible strong branching subproblems, these domain changes then cause
a reoptimization of the node LP, followed by another branching call if needed. This means that
we essentially perform probing preprocessing [32] locally as a side product of SBDP with negligible
additional cost. For 94 of the 147 instances considered in Section 2, this technique was able to
identify tighter bounds, identifying on average 3.15 bounds that could have been tightened per
strong branching call with both subproblems feasible.

Finally, we exploit the fact that we get LP solutions during strong branching instead of just
the LP objective value as would be the case when using the external strong branching methods of
CPLEX or XPRESS.5 Because the changed bound of the investigated variable typically forces
this variable to an integer value in the strong branching LP solution, we are optimistic that this
solution is “more integral” than the node LP solution. Therefore, we check this solution for
integrality, hoping to find a new primal feasible solution. Moreover, we even run the fast simple
rounding heuristic [4] implemented in SCIP on the optimal strong branching LP solution. In
the next section, we will answer the question of how often solutions are found this way and how
good they are.

4 Computational results

In this section, we present computational experiments illustrating the effect of SBDP on the
overall performance of SCIP and will finally answer question c) posed in Section 2. The results
significantly extend those presented in [18] and use new features implemented in the meantime,
e.g., the third improvement discussed in Section 3, so that we used a new development ver-
sion of SCIP 3.0.1 [1, 2] (git hash 9e5a0ff) with underlying LP solver SoPlex 1.7.1 [35] (git
hash 82b4e30). The experiments were performed on a cluster of Intel Xeon E5672 3.2 GHz com-
puters, with 12 MB cache and 48 GB RAM, running Linux (in 64 bit mode). As test set, we used
the MMM set as in Section 2, this time without excluding any instances.

In order to increase the reliability of our computational results, we ran each problem in
four variants: the original instance and three random permutations of variables and constraints.
Although this does not change the instance, it often results in a significantly different solving
behavior. One main reason for this is imperfect tie-breaking, leading to different decisions being
taken because of small numerical differences caused by floating-point arithmetics. Moreover,
computationally expensive methods are often stopped early after a certain number of unsuc-
cessful tries, meaning that the order of variables and constraints—in particular which of them
are considered before such a limit is reached—plays a major role. This effect is amplified in
MIP solvers, where one choice made differently at the beginning can lead to a completely dif-
ferent branch-and-bound tree to be investigated. Such changes of performance due to seemingly
performance-neutral changes in the environment or the input format are denoted performance
variability [23] and affect all major MIP solvers. As proposed in [23], we use permutations of
variables and constraints as a good random generator affecting most instances and almost all
components of a MIP solver. For each instance, we take the arithmetic mean of the solving
time and number of branch-and-bound nodes over the four regarded permutations (including
the original one). An instance is counted as solved only if all four permutations were solved to
optimality within the time limit of two hours.

We use a shifted geometric mean with shift 10 and 100 to average over the solving times and
node numbers, respectively. Detailed instance-wise results of the computational experiments
presented in this section are provided in Table 5 in Appendix A.

5Also with other LP solvers like SoPlex, SCIP did not use the strong branching LP solution before.

7



Table 2: Comparison of full strong branching with and without SBDP, focusing on the branching
performance by using the sandbox setting.

full strong branching full strong with SBDP
test set size solved nodes time solved nodes time

all instances 168 98 1832.7 549.2 105 1376.7 479.4
solved by both 98 98 710.1 80.0 98 534.4 71.2
solved with tree 84 84 1046.1 108.9 84 761.7 95.5

For our first experiment, we used the sandbox setting from Section 2 again: We provided
the optimum as cutoff bound and disabled primal heuristics, cutting plane separation, and the
components presolver in order to focus on the branch-and-bound search and to decrease perfor-
mance variability. Moreover, we used full strong branching as a branching rule which completely
relies on strong branching and uses no history information. Within the full strong branching
rule, we exchanged the strong branching calls for SBDP using all improvements discussed in
Section 3. Note that the last improvement has no impact in this experiment because we provide
the optimum right at the beginning and disable primal heuristics; its impact will be assessed
later.

The results are summarized in Table 2. They are promising: With SBDP, SCIP is able to
solve 105 out of the 168 instances of the MMM test set within the time limit of two hours, seven
instances more than with standard strong branching. The shifted geometric mean of the solving
time is reduced by 13%. For the subset of instances that both versions solved to optimality (row
solved by both), the average number of nodes and the solution time are reduced by 25% and 11%,
respectively. Since we are testing a branching rule, we are mainly interested in instances of this
subset for which at least one of the variants built a branch-and-bound tree and did not solve
the instance at the root node already. The results for these instances (row solved with tree), are
slightly better: The number of branch-and-bound nodes and the solving time are reduced by 27%
and 12% in the shifted geometric mean, respectively. The running times are also illustrated by
the performance diagram shown in Figure 3. We see that in this experiment, full strong branching
with domain propagation clearly dominated the version without propagation: For every possible

Figure 3: Performance diagram for full strong branching on the MMM test set. The graph
indicates the number of instances solved within a certain time when using the sandbox setting
to focus on the branching performance.

40

60

80

100

120

1800 3600 5400 7200

timen
u

m
b

er
of

so
lv

ed
in

st
an

ce
s

(o
f

16
8)

w/o propagation
with propagation

8



Table 3: Comparison of full strong branching with default settings, with and without SBDP.
full strong branching full strong with SBDP

test set size solved nodes time solved nodes time

all instances 168 87 1025.5 710.5 95 909.1 673.7
solved by both 87 87 555.3 74.4 87 487.5 70.3
solved with tree 76 76 759.0 100.6 76 658.0 94.4

time limit between 10 seconds and two hours, it solved more instances to optimality within this
time. Finally, let us mention that we also did an experiment with SBDP without the additional
improvements to single out their effects. It turned out that they only have a small impact in
this setting, causing a change of one percent in running time and number of nodes; the main
improvement comes from applying domain propagation.

Our previous experiments give a first answer to question c) posed in Section 2: They indicate
that SBDP is quite beneficial in our sandbox environment focusing on the branching performance.
But does this also hold for default settings and a state-of-the-art branching rule?

In order to answer this question, we performed additional experiments. In the first one,
we still used full strong branching, but—except for the branching rule—the default settings of
SCIP, i.e., we did not disable cutting plane separation, heuristics, or the components presolver,
neither did we provide the optimum objective value as the cutoff bound. Thus, branching is still
based on strong branching only, but we do not focus on proving optimality of a given solution by
branching anymore, as we did before; instead, we also investigate how the branching rule interacts
with cutting plane separation and performs with respect to finding good solutions during the
search. As was to be expected, this results in a smaller impact of SBDP on the overall SCIP
performance as can be seen in Table 3. It helps to solve 95 instances to optimality within the
time limit, compared to only 87 without SBDP, and leads to a reduction of the shifted geometric
mean of the solving time by 5% for the complete MMM testset. For the instances solved to
optimality by both variants (row solved by both), the average numer of nodes and the solution
time are reduced by 12% and 5.5%, respectively. For the set of instances which were solved after
some branching (row solved with tree), the results are slighty better: the number of nodes is
reduced by 13%, the solving time by 6%. The performance diagram shown in Figure 4 shows

Figure 4: Performance diagram for full strong branching with SCIP default settings on the
MMM test set. The graph indicates the number of instances solved within a certain time.

40

60

80

100

120

1800 3600 5400 7200

timen
u

m
b

er
of

so
lv

ed
in

st
an

ce
s

(o
f

16
8)

w/o propagation
with propagation

9



that full strong branching with domain propagation dominates the version without propagation
also with default settings, the number of instances solved after a certain time is never smaller
with SBDP than without. However, as the average numbers already indicated, the difference is
smaller compared to full strong branching with sandbox settings, because more time is spent for
other components like cutting plane separation or primal heuristics which are not improved by
SBDP and the optimal solution needs to be found during the search, which is not necessarily
promoted by a better branching rule focussing on the dual bound improvement. Nevertheless,
we can conclude that also when using full strong branching with default settings, SBDP is able
to improve the performance of SCIP.

Finally, let us take the next step and check how SBDP performs when used within hybrid
branching, the default branching rule of SCIP. Hybrid branching is an extension of reliability
pseudo-cost branching which takes into account not only the predicted dual bounds, but also
other history information, e.g., the number of implied reductions of other variable domains and
the number of (recent) conflicts a variable appears in. For more details on hybrid branching, we
refer to [3].

The main criterion for selecting the branching variable, however, is still the predicted child
node dual bound, which in the beginning of the search is computed by strong branching. Thus,
we expect SBDP to have a positive impact also on hybrid branching. Moreover, also some of the
other regarded history information is automatically initialized when running SBDP on a variable.
On the other hand, hybrid branching uses a reliability mechanism, i.e., strong branching will be
performed only a limited number of times on each variable; later on, only history information is
used. This is why we expect the effect of SBDP to be smaller for this branching rule than for
full strong branching.

Another important difference with respect to our previous experiments is that hybrid branch-
ing imposes a limit on the number of iterations per strong branching LP. Therefore, tightening
the LP relaxation might not pay off if this results in reaching the iteration limit where the
untightened LP would be solved to optimality. Thus, we did an experiment similar to the one
presented in Section 2: Running hybrid branching on each instance of the MMM test set with
a time limit of two hours, we additionally performed SBDP after each normal strong branching
call and compared how often the LP could be solved to optimality (or infeasibility was detected)
by the two variants. It turns out that for most of the instances, the iteration limit was reached
more often by SBDP; only for four instances, SBDP performed slightly better than standard
strong branching. On average over all the instances where branching was performed, standard
strong branching reached the iteration limit for 4.9% of the children while SBDP reached it for
9.8% of them. Although the limit was reached twice as often with SBDP, the majority of strong
branching LPs was still solved to optimality, so that we expect only a minor disadvantage for
SBDP due to the LP iteration limit.6

The overall effects of SBDP on the performance of the hybrid branching rule are the subject

6We also tried to increase the iteration limit for SBDP, hoping that the benefit caused by domain propagation
would outweight the additional LP solving effort, but did not succeed in improving the performance of hybrid
branching with SBDP this way.

Table 4: Comparison of hybrid branching with and without SBDP, default settings.
hybrid branching hybrid branching with SBDP

test set size solved nodes time solved nodes time

all instances 168 121 8626.5 326.1 121 7990.9 313.1
solved by both 118 118 2591.9 83.1 118 2409.5 80.6
solved with tree 107 107 3672.5 103.9 107 3391.6 100.6

10



Figure 5: Performance diagram for hybrid branching with SCIP default settings on the MMM
test set. The graph indicates the number of instances solved within a certain time.

40

60

80

100

120

1800 3600 5400 7200

timen
u

m
b

er
of

so
lv

ed
in

st
an

ce
s

(o
f

16
8
)

w/o propagation
with propagation

of our final computational experiment. Table 4 illustrates the same type of information as
Tables 2 and 3 now for the experiment running hybrid branching with default SCIP settings.
The performance improvement is only slightly smaller than for the full strong branching rule
with default SCIP settings: The shifted geometric mean of the solving time over all instances
is reduced by 4%. This shows that the early branchings, when strong branching is still used
and SBDP can improve the branching decision, are the most important ones. The performance
diagram illustrated in Figure 5 shows that the improvement is consistent for almost every possible
time limit between ten seconds and two hours. The difference in the reduction of the number of
nodes is almost halved compared to our previous experiment: The tree size is reduced by 7% on
average for those instances solved to optimality and slightly more for those not already solved
at the root node. Taking into account that most branching decisions are taken based on history
information after some time—and the therefore less important role of strong branching within
hybrid branching—these results are consistent to our previous results for full strong branching.

Let us come back to our third improvement and evaluate the impact of running the simple
rounding heuristic on the strong branching LP solutions: In our run on the original instances
of the MMM test set, we can improve the incumbent this way for 19 instances at least once
during search; in total, 53 solutions are found. Moreover, the first primal solution is found this
way for eight instances, and five times even the optimum is obtained during strong branching.
Similar observations can be made for the permuted instances. As for the full strong branching
rule, about 1% of the speedup is caused by the three improvements described in Section 3, so our
general idea to include domain propagation into strong branching still has the highest impact.

Finally, we can conclusively answer question c) posed in Section 2: Our experiments indicate
that SBDP is also able to slightly improve the performance of the default hybrid branching rule
when used within the state-of-the-art non-commercial MIP solver SCIP.

5 Conclusions and outlook

This paper examined improvements of strong branching, one of the main components of most
state-of-the-art branching rules for mixed-integer linear programming. The primary improvement
is the incorporation of domain propagation into the strong branching method in order to compute
more accurate dual bound predictions. Our computational experiments on general MIP instances

11



show that this comes with negligible cost and reduces the branch-and-bound tree size as well
as the solving time. In addition, we presented three further enhancements which improve the
strong branching performance.

The effect is most distinctive in a full strong branching rule, where our method might prove
particulary useful when the branch-and-bound tree should be kept small, e.g., under tight mem-
ory restrictions or for massively parallel MIP solvers (see, e.g., [33, 34]), where reducing the tree
size has the added advantage of reducing the message passing overhead. But also in a state-of-
the-art branching rule like hybrid branching, the average tree size was reduced and the average
solving time was decreased. Therefore, the new method will be included in the next SCIP release
and used by default.

For “structured” or more general problem classes like MINLP or CIP [1] for which the LP
typically misses more information that can be exploited by domain propagation, we expect an
even larger improvement by SBDP. A field for future research is the combination with other recent
strong branching improvements such as cloud branching [10] or nonchimerical branching [16].

6 Acknowledgements

The author would like to thank Tobias Achterberg and Michael Winkler for fruitful discussions,
and Ambros Gleixner, Timo Berthold, and the anonymous reviewers for constructive criticism
and helpful suggestions.

References

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität Berlin,
2007.

[2] T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Programming
Computation, 1(1):1–41, 2009.

[3] T. Achterberg and T. Berthold. Hybrid branching. In W. J. van Hoeve and J. N. Hooker,
editors, Integration of AI and OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems, 6th International Conference, CPAIOR 2009, volume 5547 of
Lecture Notes in Computer Science, pages 309–311. Springer, May 2009.

[4] T. Achterberg, T. Berthold, and G. Hendel. Rounding and propagation heuristics for mixed
integer programming. In D. Klatte, H.-J. Lthi, and K. Schmedders, editors, Operations
Research Proceedings 2011, Operations Research Proceedings, pages 71–76. Springer Berlin
Heidelberg, 2012.

[5] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research
Letters, 33:42–54, 2005.

[6] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters,
34(4):1–12, 2006.

[7] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. On the solution of traveling sales-
man problems. Documenta Mathematica Journal der Deutschen Mathematiker-Vereinigung,
pages 645–656, 1998.

[8] K. R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

12



[9] M. Benichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and O. Vincent. Experi-
ments in mixed-integer linear programming. Mathematical Programming, 1:76–94, 1971.

[10] T. Berthold and D. Salvagnin. Cloud branching. In C. Gomes and M. Sellmann, edi-
tors, Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, volume 7874 of Lecture Notes in Computer Science, pages 28–43.
Springer Berlin Heidelberg, 2013.

[11] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh. An updated mixed integer
programming library: MIPLIB 3.0. Optima, (58):12–15, June 1998.

[12] R. Borndörfer, C. E. Ferreira, and A. Martin. Decomposing matrices into blocks. SIAM J.
Optim., 9(1):236 – 269, 1998.

[13] G. Cornuéjols, L. Liberti, and G. Nannicini. Improved strategies for branching on general
disjunctions. Mathematical Programming, 130:225–247, 2011.

[14] R. J. Dakin. A tree-search algorithm for mixed integer programming problems. The Com-
puter Journal, 8(3):250–255, 1965.

[15] M. Fischetti and M. Monaci. Backdoor Branching. In O. Günlück and G. J. Woeginger, ed-
itors, Integer Programming and Combinatorial Optimization, volume 6655 of Lecture Notes
in Computer Science, pages 183–191. Springer Berlin / Heidelberg, 2011.

[16] M. Fischetti and M. Monaci. Branching on nonchimerical fractionalities. OR Letters,
40(3):159–164, 2012.

[17] A. Fügenschuh and A. Martin. Computational integer programming and cutting planes. In
K. Aardal, G. L. Nemhauser, and R. Weismantel, editors, Discrete Optimization, volume 12
of Handbooks in Operations Research and Management Science, chapter 2, pages 69–122.
Elsevier, 2005.

[18] G. Gamrath. Improving strong branching by propagation. In C. Gomes and M. Sellmann,
editors, Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, volume 7874 of Lecture Notes in Computer Science, pages 347–354.
Springer Berlin Heidelberg, 2013.

[19] J.-M. Gauthier and G. Ribière. Experiments in mixed-integer linear programming using
pseudo-costs. Mathematical Programming, 12(1):26–47, 1977.

[20] A. Gilpin and T. Sandholm. Information-theoretic approaches to branching in search. Dis-
crete Optimization, 8(2):147–159, 2011.

[21] M. Karamanov and G. Cornuéjols. Branching on general disjunctions. Mathematical Pro-
gramming, 128:403–436, 2011.

[22] F. Kılınç Karzan, G. L. Nemhauser, and M. W. Savelsbergh. Information-based branching
schemes for binary linear mixed integer problems. Mathematical Programming Computation,
1:249–293, 2009.

[23] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna,
G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin,
D. E. Steffy, and K. Wolter. MIPLIB 2010. Mathematical Programming Computation,
3(2):103–163, 2011.

13



[24] A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems.
Econometrica, 28(3):497–520, 1960.

[25] J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies in
mixed-integer programming. INFORMS Journal on Computing, 11(2):173–187, 1999.

[26] A. Lodi, T. Ralphs, F. Rossi, and S. Smriglio. Interdiction branching. Technical Report
OR/09/10, DEIS, Università di Bologna, 2009.

[27] A. Mahajan and T. K. Ralphs. Experiments with branching using general disjunctions.
In J. W. Chinneck, B. Kristjansson, and M. J. Saltzman, editors, Operations Research and
Cyber-Infrastructure, volume 47 of Operations Research/Computer Science Interfaces Series,
pages 101–118. Springer US, 2009.

[28] G. Mitra. Investigation of some branch and bound strategies for the solution of mixed
integer linear programs. Mathematical Programming, 4:155–170, 1973.

[29] J. H. Owen and S. Mehrotra. Experimental results on using general disjunctions in branch-
and-bound for general-integer linear programs. Computational Optimization and Applica-
tions, 20:159–170, 2001.

[30] J. Patel and J. Chinneck. Active-constraint variable ordering for faster feasibility of mixed
integer linear programs. Mathematical Programming, 110:445–474, 2007.

[31] D. M. Ryan and B. A.Foster. An integer programming approach to scheduling. In
A. Wren, editor, Computer Scheduling of Public Transport Urban Passenger Vehicle and
Crew Scheduling, pages 269–280. North Holland, Amsterdam, 1981.

[32] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer programming
problems. ORSA Journal on Computing, 6:445–454, 1994.

[33] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, and T. Koch. ParaSCIP – a parallel
extension of SCIP. In C. Bischof, H.-G. Hegering, W. E. Nagel, and G. Wittum, editors,
Competence in High Performance Computing 2010, pages 135 – 148, 2012.

[34] Y. Shinano, T. Berthold, S. Heinz, T. Koch, M. Winkler, and T. Achterberg. ParaSCIP –
a parallel extension of SCIP. Technical Report ZR 11-10, Zuse Institute Berlin, 2011.

[35] R. Wunderling. Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Tech-
nische Universität Berlin, 1996.

A Detailed Computational Results

Table 5 lists detailed results for the computational experiments described in Section 4. For
each of the instances of the MMM test set, we present the results for full strong branching
with our sandbox settings focusing on the branching performance (column full strong branching
– sandbox settings), full strong branching with default settings (column full strong branching –
default settings), and hybrid branching with default settings (column hybrid branching – default
settings). For each of the three experiments, we compare strong branching with and without
propagation. We list the average number of processed branch-and-bound nodes for the four
permutations of an instance and the average solving time. If at least one permutation of an

14



instance reached the time limit, we write the average gap in percent, followed by the number of
permutations that reached the time limit (in brackets). According to [23], the gap is defined as

gap =
pb− db

inf{|z|, z ∈ [db, pb]}
,

where pb and db are primal bound and dual bound, respectively. Since the test set contains only
minization problems, pb ≥ db holds for all instances. If the gap is infinite, we print “inf%”. If
the results with and without domain propagation differ by more than five percent, we print the
dominating value in boldface. Large numbers are abbreviated, “k” and “M” stand for a missing
factor of 1 000 and 1 000 000, respectively. At the end of the table, we present the number of
solved instances, where an instance is only counted as solved if all four permutations were solved
to optimality within the time limit. Furthermore, we print the shifted geometric mean of the
number of nodes and the solving time. Additionally, we show these means over two subsets
of the instances: The instances that were solved to optimality both with and without domain
propagation and the part of the former subset where at least one of the two variants did not
solve the problem in the root node already. These subsets are defined individually for each of
the three experiments so that for each of them, the impact of SBDP can be evaluated separately.

15



Table 5. Detailed computational results for the comparision of strong branching with and without propagation, as described and summarized in Section 4.

full strong branching – sandbox settings full strong branching – default settings hybrid branching – default settings
w/o propagation with propagation w/o propagation with propagation w/o propagation with propagation

instance nodes time nodes time nodes time nodes time nodes time nodes time

10teams 2 6.5 2 5.1 283 517.0 96 144.1 332 15.2 402 15.3
30n20b8 164 100.0%(4) 25 1256.8 1 inf%(4) 10 inf%(4) 208 392.3 1.9k 1226.2
a1c1s1 19.0k 195.5%(4) 14.9k 192.1%(4) 2.8k 40.1%(4) 2.6k 38.9%(4) 508.5k 21.9%(4) 532.5k 22.9%(4)
acc-tight5 1 0.5 1 0.5 53 2779.0 75 3235.2 1.6k 239.5 1.5k 224.5
aflow30a 4.2k 71.4 2.3k 48.4 211 19.9 174 22.6 2.3k 10.7 1.4k 10.9
aflow40b 51.4k 5.8%(4) 49.4k 0.5%(1) 9.8k 2.2%(2) 7.7k 1.1%(1) 192.2k 1300.1 184.6k 1312.1
air03 1 0.8 2 0.9 1 1.4 1 1.4 1 1.4 1 1.3
air04 9 40.7 9 38.9 58 2446.8 22 1283.1 182 68.2 157 67.7
air05 9 115.3 9 118.2 116 1192.2 39 628.7 329 41.3 281 41.1
app1-2 39 2472.7 13 1616.7 60 2252.5 16 1603.2 181 1070.2 1.3k 2029.7
arki001 115.6k 0.0%(4) 127.8k 0.0%(4) 33.4k 0.0%(4) 26.8k 0.0%(4) 499.0k 0.0%(4) 634.5k 0.0%(4)
ash608gpia-3col 1 inf%(4) 1 inf%(4) 8 870.4 3 308.1 10 66.0 7 55.5
atlanta-ip 3 9.9%(4) 3 9.9%(4) 5 inf%(4) 5 inf%(4) 10.2k 7.1%(4) 7.2k 10.4%(4)
beasleyC3 27.9k 178.3%(4) 19.8k 128.9%(4) 4.2k 17.8%(4) 4.0k 17.8%(4) 1.3M 14.0%(4) 1.4M 13.6%(4)
bell3a 13.7k 3.2 14.4k 3.0 21.5k 4.9 21.6k 4.8 23.8k 5.2 23.3k 5.2
bell5 954.4k 281.1 18.5k 9.9 1.1k 0.7 980 0.6 1.2k 0.7 1.1k 0.7
bab5 215 7.8%(4) 258 7.6%(4) 161 10.4%(4) 141 10.2%(4) 26.4k 1.4%(4) 32.0k 1.8%(4)
biella1 10 409.7 11 402.5 34 8.6%(4) 31 8.6%(4) 5.5k 1368.7 7.0k 1857.6
bienst2 21.3k 947.4 20.9k 839.4 23.1k 1069.0 22.6k 937.2 99.9k 341.5 113.3k 370.9
binkar10 1 432.6k 0.4%(4) 317.7k 0.4%(4) 33.7k 1552.3 26.3k 1543.7 204.3k 265.0 215.8k 291.3
blend2 107 0.5 110 0.5 130 0.8 155 0.9 205 0.7 218 0.8
bley xl1 14 2.5%(1) 1 2.5%(1) 5 2.6%(1) 3 2.6%(1) 6 324.4 5 326.0
bnatt350 1 0.5 1 0.5 531 inf%(4) 294 inf%(4) 11.2k 866.8 5.1k 476.8
cap6000 619 0.8 627 0.9 1.1k 2.4 1.1k 2.7 3.3k 2.5 2.6k 2.4
core2536-691 1 9.4 1 9.4 26 1.3%(4) 23 0.9%(4) 418 422.4 558 562.9
cov1075 5.9k 12.3%(4) 5.8k 12.3%(4) 7.2k 11.8%(4) 6.7k 11.8%(4) 1.6M 7.6%(4) 1.6M 7.6%(4)
csched010 25.8k 10.4%(4) 24.4k 10.6%(4) 6.6k 16.0%(4) 6.2k 13.6%(4) 907.4k 0.6%(1) 1.0M 2.5%(2)
dano3mip 30 19.3%(4) 29 19.3%(4) 9 22.0%(4) 9 22.0%(4) 2.3k 22.0%(4) 2.2k 22.0%(4)
danoint 31.8k 3.3%(4) 33.1k 3.3%(4) 25.0k 3.5%(4) 25.3k 3.6%(4) 867.9k 4226.1 934.5k 4616.6
dcmulti 293 1.0 290 1.2 145 3.3 150 3.4 180 2.0 201 2.3
dfn-gwin-UUM 71.2k 671.2 67.6k 834.1 7.0k 445.2 4.4k 336.1 67.3k 147.0 47.9k 99.9
disctom 1 2.9 1 2.9 1 6.0 1 6.1 1 6.0 1 6.0
ds 1 63.2%(4) 1 63.2%(4) 1 1.8k%(4) 1 1.8k%(4) 545 453.8%(4) 569 491.9%(4)
dsbmip 1 0.5 1 0.5 28 3.0 27 2.9 27 2.4 21 2.2
egout 35 0.5 16 0.5 1 0.5 1 0.5 1 0.5 1 0.5
eil33-2 279 163.4 314 75.1 454 550.0 437 221.7 10.5k 71.9 1.2k 63.0
eilB101 164 974.1 164 681.4 61 4309.6 43 2808.8 19.1k 443.0 12.1k 387.7
enigma 1 0.5 1 0.5 321 0.8 185 0.7 945 0.6 1.6k 0.8
enlight13 947.2k 42.0%(4) 5.2k 73.5 566.6k 98.6%(4) 199.6k 82.1%(4) 17.7M 44.2%(4) 1.2M 477.2
enlight14 909.3k inf%(4) 8.5k 153.3 520.2k inf%(4) 184.6k inf%(4) 17.6M inf%(4) 5.1M 2351.8
ex9 1 0.5 1 0.5 1 34.1 1 34.0 1 34.1 1 34.1
fast0507 26 1912.4 25 2241.1 92 1.4%(3) 59 5045.8 920 358.5 830 252.1
fiber 1.2k 15.4 1.0k 18.5 13 1.3 12 1.4 17 1.4 24 1.3
fixnet6 81 0.9 79 0.9 13 2.3 11 2.6 17 2.5 15 2.5

cont’d next page

16



full strong branching – sandbox settings full strong branching – default settings hybrid branching – default settings
w/o propagation with propagation w/o propagation with propagation w/o propagation with propagation

instance nodes time nodes time nodes time nodes time nodes time nodes time

flugpl 340 0.5 61 0.5 474 0.5 51 0.5 424 0.5 113 0.5
gen 22 0.5 26 0.5 1 0.5 1 0.5 1 0.5 1 0.5
gesa2-o 8.1k 151.5 5.4k 153.4 5 1.4 8 1.4 7 1.4 6 1.3
gesa2 7.8k 100.9 5.0k 102.7 4 1.2 5 1.2 5 1.2 5 1.2
gesa3 58 1.9 36 1.8 7 1.7 7 1.7 8 1.7 9 1.8
gesa3 o 56 2.6 37 2.6 9 1.5 9 1.7 9 1.7 10 1.8
glass4 77.2k 541.6 564 13.2 316.5k 100.0%(4) 168.8k 98.8%(4) 2.7M 65.9%(3) 5.7M 18.2%(1)
gmu-35-40 1.6M 0.0%(1) 1.2M 5703.5 1.3M 0.0%(4) 792.6k 0.0%(4) 12.7M 0.0%(4) 12.4M 0.0%(4)
gt2 2 0.5 2 0.5 1 0.5 1 0.5 1 0.5 1 0.5
harp2 158.1k 693.1 95.1k 568.1 285.5k 1233.5 173.5k 1080.6 15.8M 5739.5 11.6M 3983.5
iis-100-0-cov 2.9k 23.7%(4) 3.2k 25.8%(4) 3.2k 22.6%(4) 3.5k 25.3%(4) 100.2k 1780.9 103.2k 1830.9
iis-bupa-cov 737 22.1%(4) 752 21.6%(4) 832 26.0%(4) 842 22.2%(4) 184.9k 4.4%(3) 185.6k 6.7%(4)
iis-pima-cov 620 12.2%(4) 610 11.8%(4) 785 12.0%(4) 759 13.3%(4) 14.0k 1069.0 11.2k 949.4
khb05250 421 2.0 413 2.8 4 0.5 4 0.5 5 0.5 5 0.5
lectsched-4-obj 1 0.5 1 0.5 48 2.2k%(4) 42 2.5k%(4) 62.2k 743.0 82.9k 1268.1
liu 18.4k 102.1%(4) 12.7k 102.1%(4) 6.3k 272.9%(4) 5.2k 260.2%(4) 1.6M 141.0%(4) 1.8M 128.6%(4)
l152lav 16 1.4 16 1.4 51 5.1 27 3.4 43 2.7 29 2.7
lseu 765 0.7 475 0.8 145 0.6 94 0.6 659 0.6 400 0.5
m100n500k4r1 1 0.5 1 0.5 42.3k 4.2%(4) 41.2k 4.2%(4) 8.0M 4.2%(4) 7.7M 4.2%(4)
macrophage 2.7k 378.7%(4) 2.3k 390.5%(4) 1.3k 48.6%(4) 1.1k 48.2%(4) 746.9k 29.0%(4) 1.0M 29.2%(4)
manna81 3.8k 1.0%(4) 3.0k 1.0%(4) 1 0.8 1 0.8 1 0.9 1 0.8
map18 148 3318.2 143 3320.4 120 1912.3 119 1894.2 408 446.7 362 502.0
map20 148 2711.4 136 2703.5 179 1963.9 169 1976.7 421 413.4 382 381.0
markshare1 14.0M inf%(4) 8.6M inf%(4) 12.3M inf%(4) 8.6M inf%(4) 84.6M inf%(4) 84.5M inf%(4)
markshare2 10.6M inf%(4) 6.6M inf%(4) 10.6M inf%(4) 7.0M inf%(4) 72.0M inf%(4) 69.5M inf%(4)
mas74 544.8k 996.1 523.4k 1304.4 647.2k 1515.1 658.6k 2064.4 3.5M 633.1 3.3M 583.6
mas76 75.6k 91.4 72.3k 124.2 85.5k 124.1 81.9k 166.3 464.9k 67.2 422.7k 60.6
mcsched 357 7.4%(4) 453 7.0%(4) 329 7.6%(4) 551 7.1%(4) 20.8k 275.7 12.7k 176.0
mik-250-1-100-1 1.8M 3.3%(4) 1.2M 4.1%(4) 285.9k 1957.3 276.2k 3077.8 1.6M 407.8 1.6M 417.6
mine-166-5 251 16.7 171 16.1 1.4k 114.5 1.3k 125.4 2.5k 39.2 3.1k 41.2
mine-90-10 56.9k 1335.6 21.0k 1040.3 237.9k 0.2%(4) 112.7k 4709.5 135.8k 513.0 168.0k 797.4
misc03 103 1.0 104 1.1 109 1.4 99 1.5 208 1.2 106 1.2
misc06 12 0.5 12 0.5 6 0.7 6 0.7 6 0.8 6 0.7
misc07 2.1k 45.7 2.1k 46.8 2.8k 62.2 2.7k 62.1 26.0k 16.1 23.9k 15.7
mitre 1 5.5 1 5.7 1 5.9 1 5.8 1 5.8 1 5.8
mkc 295.3k 1.4%(4) 164.9k 1.4%(4) 17.7k 3.0%(4) 16.2k 2.0%(4) 3.0M 1.5%(4) 2.2M 1.6%(4)
mod008 363 0.5 347 0.6 84 0.9 86 0.8 336 0.9 269 0.9
mod010 5 0.5 5 0.5 2 0.8 1 0.6 2 0.8 1 0.6
mod011 2.9k 585.0 2.7k 535.6 179 731.2 179 716.1 979 153.6 882 138.6
modglob 1.1M 3894.8 1.1M 5302.6 138 1.9 139 2.3 602 1.2 577 1.2
momentum1 339 16.6%(4) 315 18.6%(4) 315 137.1%(4) 309 98.4%(4) 51.4k 13.3%(4) 28.0k 87.5%(4)
momentum2 190 13.9%(4) 144 4985.0 98 inf%(4) 84 inf%(4) 90.5k 0.4%(2) 62.5k 6.4%(1)
momentum3 1 150.8%(4) 1 150.8%(4) 1 258.3%(4) 1 258.3%(4) 118 258.2%(4) 152 258.3%(4)
msc98-ip 55 0.7%(4) 48 0.7%(4) 11 inf%(4) 10 inf%(4) 3.3k 37.8%(4) 4.1k 25.4%(4)
mspp16 29 3204.0 27 2952.3 37 4967.5 33 4495.8 62 3977.4 52 3116.2
mzzv11 38 4952.0 36 4348.2 62 11.0%(4) 159 13.2%(4) 3.3k 277.7 2.3k 263.0

cont’d next page

17



full strong branching – sandbox settings full strong branching – default settings hybrid branching – default settings
w/o propagation with propagation w/o propagation with propagation w/o propagation with propagation

instance nodes time nodes time nodes time nodes time nodes time nodes time

mzzv42z 5 1904.2 3 1726.3 128 13.4%(4) 95 14.1%(4) 1.3k 253.1 1.1k 233.8
n3div36 2.8k 13.6%(4) 2.2k 13.8%(4) 5.2k 17.0%(4) 4.1k 16.0%(4) 282.0k 9.5%(4) 263.0k 10.0%(4)
n3seq24 40 0.4%(4) 16 0.4%(4) 1 61.9%(4) 1 61.9%(4) 1.2k 3.6%(4) 1.9k 8.4%(4)
n4-3 54.6k 40.9%(4) 41.1k 43.1%(4) 5.0k 5861.9 4.8k 6155.9 48.3k 772.6 45.1k 734.5
neos-1109824 7.4k 1160.2 6.9k 1284.1 808 317.4 803 340.9 19.8k 154.2 19.1k 159.2
neos-1337307 9.8k 0.5%(4) 2.3k 0.5%(4) 74 inf%(4) 42 inf%(4) 339.8k 0.0%(4) 369.6k 0.0%(4)
neos-1396125 2.7k 3145.2 1.3k 1584.9 6.4k 6.6%(2) 3.8k 4197.1 71.7k 1912.8 77.7k 2668.5
neos13 6 478.2 6 571.7 48 62.0%(4) 81 55.9%(4) 24.3k 33.1%(4) 24.8k 8.6%(2)
neos-1601936 1 651.1 1 565.9 17 inf%(4) 19 inf%(4) 9.8k 8.3%(1) 21.4k 25.0%(2)
neos18 14.2k 1872.4 2.0k 561.9 24.0k 1.6%(1) 12.4k 2408.5 8.1k 41.2 6.2k 33.6
neos-476283 22 97.5 20 110.5 321 671.0 406 976.3 483 285.5 686 330.7
neos-686190 268 148.4 242 147.8 2.2k 834.8 1.6k 643.2 8.7k 106.8 8.2k 101.5
neos-849702 1 0.5 1 0.5 547 inf%(3) 507 inf%(2) 91.3k 1627.1 27.1k 471.0
neos-916792 81.7k 11.7%(4) 57.3k 11.9%(4) 75.8k 12.8%(4) 53.8k 13.0%(4) 110.5k 441.2 95.9k 368.1
neos-934278 2 0.2%(4) 1 0.2%(4) 2 328.2%(4) 2 328.2%(4) 6.5k 1.6%(4) 5.1k 3.3%(4)
net12 57 109.0%(4) 44 136.0%(4) 71 inf%(4) 34 inf%(4) 6.7k 4006.8 7.3k 7.7%(1)
netdiversion 1 4.9%(4) 1 4.9%(4) 1 2.1M%(4) 1 2.1M%(4) 115 1.0M%(3) 145 1.6M%(4)
newdano 173.4k 14.1%(4) 181.3k 12.7%(4) 118.7k 22.5%(4) 127.8k 20.7%(4) 2.7M 1.0%(1) 2.7M 1.2%(1)
noswot 431.2k 918.8 99.3k 478.5 560.5k 1927.4 257.7k 1720.3 1.4M 296.4 1.2M 237.8
ns1208400 1 233.1 1 208.0 117 inf%(4) 138 inf%(4) 11.5k 1592.1 3.4k 564.0
ns1688347 183 98.6 76 43.8 131 23.7%(3) 253 3808.2 5.6k 499.5 3.7k 381.9
ns1758913 1 2.2%(4) 1 1.1%(2) 1 514.3%(4) 1 516.3%(4) 44 374.8%(4) 78 381.6%(4)
ns1766074 248.3k 364.9 218.3k 910.3 242.2k 455.2 219.1k 953.9 930.5k 733.3 941.8k 691.8
ns1830653 1.7k 3956.8 1.3k 2506.3 3.0k 22.4%(3) 2.8k 5059.8 46.8k 612.9 56.3k 639.4
nsrand-ipx 39.1k 1.5%(4) 27.4k 1.5%(4) 24.2k 5.3%(4) 17.9k 5.2%(4) 1.6M 3.8%(4) 1.7M 3.7%(4)
nw04 12 12.5 12 12.3 5 35.2 5 32.4 5 28.9 5 26.0
opm2-z7-s2 62 1104.7 58 1039.8 2 232.8%(4) 2 232.8%(4) 4.8k 1025.4 3.8k 890.7
opt1217 1.5M 18.8%(4) 938.6k 18.8%(4) 1 0.7 1 0.6 1 0.7 1 0.7
p0033 31 0.5 7 0.5 1 0.5 1 0.5 1 0.5 1 0.5
p0201 61 1.3 57 1.7 50 2.0 44 2.1 59 1.5 44 1.5
p0282 14 0.5 10 0.5 3 0.5 3 0.5 3 0.6 3 0.5
p0548 138 0.5 18 0.5 5 0.5 10 0.5 5 0.5 5 0.5
p2756 592 5.1 436 5.8 79 1.2 32 1.3 81 1.3 34 1.3
pg5 34 56.9k 12.2%(4) 53.4k 12.3%(4) 39.5k 2222.9 39.2k 2091.3 317.5k 1401.6 210.6k 1077.7
pigeon-10 1.9M 11.1%(4) 1.2M 11.1%(4) 2.0M 11.1%(4) 1.8M 11.1%(4) 15.5M 11.1%(4) 15.9M 11.1%(4)
pk1 55.8k 162.0 51.6k 193.8 57.9k 196.0 69.6k 282.1 341.4k 70.3 359.4k 75.3
pp08a 2.1M 24.5%(4) 1.3M 27.5%(4) 199 3.1 192 3.6 541 1.7 525 1.6
pp08aCUTS 249.2k 1709.6 238.1k 2030.8 169 2.9 136 2.8 367 1.6 326 1.6
protfold 10 34.2%(4) 12 34.2%(4) 14 inf%(4) 22 inf%(4) 12.4k inf%(4) 5.4k 62.1%(4)
pw-myciel4 2.3k 150.0%(4) 2.3k 88.8%(4) 1.8k 150.0%(4) 1.6k 135.3%(4) 626.5k 4596.9 1.1M 21.2%(2)
qiu 13.7k 1536.5 11.9k 1379.7 7.8k 1245.2 7.7k 1251.2 10.7k 67.0 11.2k 72.5
qnet1 7 1.1 7 1.2 25 7.4 27 8.6 33 4.9 32 4.9
qnet1 o 23 0.9 23 0.9 13 4.9 13 6.4 13 3.0 19 3.9
rail507 26 1886.4 24 2274.0 85 1.1%(4) 63 5322.9 806 277.0 1.0k 303.6
ran16x16 1.1M 5.6%(4) 900.4k 5.2%(4) 24.6k 966.6 19.6k 885.1 414.3k 351.9 405.5k 342.5
reblock67 20.9k 767.6 8.0k 465.2 27.8k 1597.7 12.4k 1044.4 130.8k 301.7 94.1k 217.7

cont’d next page

18



full strong branching – sandbox settings full strong branching – default settings hybrid branching – default settings
w/o propagation with propagation w/o propagation with propagation w/o propagation with propagation

instance nodes time nodes time nodes time nodes time nodes time nodes time

rd-rplusc-21 107 165.3k%(4) 151 165.3k%(4) 920 165.3k%(4) 1.1k 166.5k%(4) 55.6k inf%(4) 41.2k inf%(4)
rentacar 2 1.3 2 1.4 4 2.6 4 2.6 2 2.4 2 2.4
rgn 249 0.7 252 0.8 5 0.5 1 0.5 5 0.5 1 0.5
rmatr100-p10 93 680.5 87 695.8 244 1553.4 174 1593.2 907 143.6 870 152.2
rmatr100-p5 33 1328.0 33 1371.4 33 1453.3 33 1507.5 381 298.3 421 312.5
rmine6 38.7k 1884.5 37.6k 2006.8 74.9k 4572.9 64.3k 4290.5 951.6k 3240.6 1.5M 0.0%(2)
rocII-4-11 2.6k 24.3%(4) 483 1735.4 2.1k 50.8%(4) 1.1k 3348.5 27.2k 347.2 20.0k 320.5
rococoC10-001000 9.5k 7.2%(4) 11.0k 6.2%(4) 10.6k 6.5%(4) 8.5k 5.3%(4) 739.0k 4163.0 662.7k 3723.7
roll3000 10.2k 8.8%(4) 8.9k 8.9%(4) 9.3k 1.9%(4) 9.9k 1.4%(4) 1.9M 0.3%(2) 1.8M 0.3%(1)
rout 3.0k 113.9 1.7k 79.8 5.1k 223.8 2.5k 131.9 32.4k 41.5 31.3k 40.3
satellites1-25 2 300.0%(4) 38 5536.2 1 inf%(4) 1 inf%(4) 26.0k 119.9%(2) 6.9k 1704.5
set1ch 178.5k 33.8%(4) 129.4k 32.2%(4) 11 0.9 11 1.0 13 1.0 13 1.1
seymour 197 4.0%(4) 209 4.3%(4) 192 6.8%(4) 196 6.9%(4) 129.5k 2.3%(4) 120.8k 2.3%(4)
sp97ar 5.2k 1.2%(4) 5.4k 1.2%(4) 1.4k 9.0%(4) 3.2k 9.3%(4) 10.0k 7.1%(4) 5.4k 8.5%(4)
sp98ic 2.3k 0.1%(1) 2.8k 0.1%(1) 3.8k 3.1%(4) 2.7k 2.5%(4) 179.2k 2.0%(4) 151.0k 1.9%(4)
sp98ir 110 75.8 97 77.3 689 429.3 418 327.5 6.2k 94.9 9.1k 130.5
stein27 872 1.6 871 2.2 811 2.0 803 2.6 4.3k 1.1 4.0k 1.1
stein45 7.8k 63.2 7.8k 75.4 8.0k 77.4 7.9k 90.0 52.7k 14.9 51.3k 14.5
stp3d 1 2.5%(4) 1 2.5%(4) 1 inf%(4) 1 inf%(4) 1 inf%(4) 1 inf%(4)
swath 44.9k 34.5%(4) 43.9k 34.1%(4) 41.5k 22.5%(4) 39.6k 22.0%(4) 1.2M 19.4%(4) 1.0M 18.5%(4)
t1717 7 25.3%(4) 8 25.3%(4) 6 180.5%(4) 6 180.5%(4) 2.7k 41.3%(4) 2.7k 41.5%(4)
tanglegram1 2 77.5%(4) 2 77.5%(4) 2 167.8%(4) 2 167.8%(4) 31 1033.2 29 1032.0
tanglegram2 1 2.0 1 2.0 2 35.1 2 35.4 3 8.8 3 8.7
timtab1 744.1k 37.9%(4) 470.3k 35.1%(4) 267.3k 6.3%(2) 141.4k 5.6%(2) 1.1M 445.6 1.0M 441.5
timtab2 163.0k 122.5%(4) 121.1k 111.8%(4) 49.5k 121.1%(4) 63.5k 93.1%(4) 10.0M 49.9%(4) 10.1M 47.9%(4)
tr12-30 45.1k 333.3%(4) 31.4k 332.6%(4) 81.0k 0.0%(1) 73.0k 0.0%(2) 1.3M 1684.9 1.3M 1700.9
triptim1 1 87.9 1 87.6 1 inf%(4) 1 inf%(4) 65 1706.5 32 1316.5
unitcal 7 360 0.6%(4) 279 0.4%(4) 329 0.9%(4) 272 0.6%(4) 36.4k 2344.9 25.5k 1711.9
vpm1 10.9k 11.8 4.1k 8.0 1 0.5 1 0.5 1 0.5 1 0.5
vpm2 7.6k 15.4 4.4k 15.0 222 2.3 167 2.1 449 1.2 400 1.2
vpphard 8 inf%(4) 10 inf%(4) 6 inf%(4) 7 inf%(4) 18.9k inf%(4) 19.5k inf%(4)
zib54-UUE 32.2k 39.2%(4) 38.1k 31.0%(4) 10.3k 18.3%(4) 10.6k 15.0%(4) 384.3k 3113.9 413.8k 3317.6

solved (of 168) 98 105 87 95 121 121
sh. geom. mean 1832.7 549.2 1376.7 479.4 1025.5 710.5 909.1 673.7 8626.5 326.1 7990.9 313.1

solved by both 98 98 87 87 118 118
sh. geom. mean 710.1 80.0 534.4 71.2 555.3 74.4 487.5 70.3 2591.9 83.1 2409.5 80.6

solved with tree 84 84 76 76 107 107
sh. geom. mean 1046.1 108.9 761.7 95.5 759.0 100.6 658.0 94.4 3672.5 103.9 3391.6 100.6

19


	Introduction
	Strong branching with domain propagation
	Additional strong branching improvements
	Computational results
	Conclusions and outlook
	Acknowledgements
	Detailed Computational Results

