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Abstract

An intuitive and sparse representation of the void space of porous materials
supports the efficient analysis and visualization of interesting qualitative and quan-
titative parameters of such materials. We introduce definitions of the elements of
this void space, here called pore space, based on its distance function, and present
methods to extract these elements using the extremal structures of the distance
function. The presented methods are implemented by an image processing pipeline
that determines pore centers, pore paths and pore constrictions. These pore space
elements build a graph that represents the topology of the pore space in a com-
pact way. The representations we derive from uCT image data of realistic soil
specimens enable the computation of many statistical parameters and, thus, pro-
vide a basis for further visual analysis and application-specific developments. We
introduced parts of our pipeline in previous work. In this chapter, we present ad-
ditional details and compare our results with the analytic computation of the pore
space elements for a sphere packing in order to show the correctness of our graph
computation.

1 Introduction

Soil materials of different particle size distributions form pore structures exhibit-
ing different properties that impact the transport processes of particles through the
pore space. Kinds of internal erosion like suffusion comprise such transport pro-
cesses and may weaken the particle structure of the soil and, thus, its stability. To
investigate the risk of suffusion, it is important to know which parts of the pore
space can be reached by particles of what size. The size as well as the portions of
such mobile particles provide information on the stability of the soil.

For the assessment of soil properties, an understanding of the three-dimensional
formations and arrangements of its particles and its pore structure may be of great
benefit. To gain insight into soil structures, CT scans of realistic and undisturbed
soil material can be acquired and analyzed.

An analysis of the pore space and possible transport pathways needs informa-
tion on pore space elements like pores, constrictions, and paths. While the pores
and their connecting paths determine where particles can move, the constrictions
define the size of the particles that can move from one pore to another. Thus,
a complete representation that preserves the arrangement and the connectivity of
these pore space elements enables an efficient analysis of transport paths, blocking
constrictions and sizes of potentially mobile particles.

We previously described [10] the pore space elements based on the extremal
structures of the distance map of the pore space and presented methods to extract
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Figure 1: CT scan of soil material: (a) volumetric image data, (b) particles and pore
space, (c) separated particles colored according to their identifier.

these structures. The proposed methods start from a segmentation of the soil struc-
ture [11] and generate a graph that is a geometric embedding into the pore space
and compactly represents the topology of the pore space. This approach avoids
anabranches that are caused by irregular particles. A hierarchical merge process
enables a clustering of pores by the significance of their connecting constrictions.

In this chapter, we present a validation of the extracted pore structures. For
this purpose, we first recall parts of our approach with additional details and then
present a comparison with the result of an exact Voronoi graph algorithm applied
to a sphere packing to measure the quality of our results.

2 Related Work

Existing methods analyze the pore space at different levels of detail. Statistical ap-
proaches use simple methods for phase segmentation and to compute parameters
and distributions on the pore-solid relations [3, 9, 16, 20]. In these methods, mea-
surements of the captured pore space as a whole are proposed, but a localization
and differentiation of pores is not considered.

Other approaches differentiate the pore space elements and investigate the net-
works they build. One possibility is to use the maximal inscribed spheres map,
which is equal to the distance map [12] of the pore space. Sweeney et al. [23]
and Silin et al. [22] accomplish the differentiation of pores and constrictions by
evaluating and classifying the neighboring spheres. Both works compute a stick-
and-ball diagram representing the pore bodies and their connectivity. However,
computing the pore volumes based on spheres leads to an underestimation of the
pore size.

Skeleton-based methods [6, 14, 15] determine the medial axes of the pore
space and use morphological tools to classify the skeleton voxels as belonging
to a path or a constriction. Their representations enable the construction of a ge-
ometrically embedded graph and the determination of parameters like numbers
and sizes of constrictions. These approaches, however, need removal processes to
avoid surface-like structures or anabranches caused by isolated particles or irregu-
lar particle surfaces.

Some approaches make use of concepts from Morse theory. For example,
Ushizima et al. [25] use Reeb graphs to analyze the permeability and maximum
flow of gas through porous networks. In contrast to the method we describe, their
method depends on the orientation of the data set, that is, on height information in
the data set. Gyulassy et al. [8] compute and simplify the Morse-Smale complex
of the distance map to extract filament structures in porous solids, which results in



a medial axes-related representation. The result depends on the degree of simplifi-
cation and may produce a superset of the structures we aim to extract.

Another way to analyze pores and constrictions is based on Delaunay/Voronoi
partitions. While Reboul [19] uses Delaunay tetrahedrons and their faces to specify
the pore bodies and constrictions for sphere packings, Lindow et al. [13] compute
the paths from the Voronoi cells of a sphere packing. Glantz [7] proposes an ex-
tension to irregular shaped particles in voxel data, where the corners of the pore
space boundary are tessellated. This results in time-consuming computations and
produces many anabranches. Thompson [24] generates a Delaunay tessellation
of the particle centers obtained from distance extrema within the particle regions.
However, this is not applicable to the realistic soil material of our samples, because
the particles have irregular shapes and, thus, multiple distance extrema.

Some authors address the problem of fragmented pores and propose pairwise
merge criteria that are based on overlapping spheres [1, 19, 22, 24] or on relations
of radii and distances of pores [15]. Such relations allow one to cluster fragmented
pores, but elongated pores may stay separated. Also, these pairwise considerations
may cluster pores even if there is a significant constriction in the middle. This
is, for example, the case when several neighboring pores gradually increase and
decrease in size with minor constrictions in between.

3 Determination of the Pore Structure

The methods we present here have been developed to process CT scans of speci-
mens produced from soil aggregates. These scans are acquired at a resolution of
39 um [2]. Figure 1(a) shows a volumetric visualization of the dual soil structures
of such a CT scan, that is, the particles and pore structure (Figure 1(b)). To assess
the complex pore space, we follow the intuition of particle transport, where a path-
way locally runs with maximal distance to the surrounding soil structure and the
bottlenecks determine the maximal size of particles that can move along the path.
We start with the three-dimensional image domain / C R3, which can be separated
into foreground (particle structure) F C I and background (pore space) B=1\F.
For the computation of the pore space elements, we need a particle segmentation
(Figure 1(c)) where all particles are well separated and each particle has its own
identifier [11].

3.1 Defining the Elements of the Pore Structure

Most of the approaches in the literature use methods that encode the distance re-
lations within the pore space. We follow this idea and describe the features of the
pore space by the three-dimensional signed distance map [12] d : I — R according
to the boundaries between the segmented foreground F and background B, where
each image point is assigned the distance as follows:

min||p—gql|, ifp €B
qeF

d(p) = )

—min|p—q|,ifpeF
qelBllp ql, ifp

To describe the pore structures, we use the extremal structures of the distance
map (Figure 2). These are the critical points ¢ where the gradient of the distance
function vanishes, that is Vd(c) = 0, as well as the integral lines ¥ of the gradient
that allow a grouping into stable and unstable manifolds [4]. The critical points
of a 3D function are the maxima ¢4y, the minima c;,;,, and the two types of
saddle points (index-1 cg;, index-2 cg»). The integral lines are defined as y: R —
R3 whose tangential vectors are parallel to the gradients of d, 7 = Vd(y(t)) for
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Figure 2: Tllustration of the pore space elements (b) between particles (a): Pore centers
(blue), paths (white), constrictions (red), pore bodies (red region). The figures are
two-dimensional for clarity of the illustration. (c) Link between pore structures and
extremal structures of the distance map.

each ¢ € R, and connect two critical points where orig(y) = lim;_, o, ¥(t) is called
the origin and dest(y) = lim; . () the destination. Each regular point r, where
Vd(r) # 0, is part of an image of 'y and can be assigned to the critical points that
are connected by 7. These assignments describe the manifolds, where the direction
or opposite direction distinguishes between stable or unstable manifolds:

stable manifolds: S(c)={c} U {red|reimy, dest(y) =c} (2
unstable manifolds: U(c)={c} U {red|reimy, orig(y) =c} (3)

Because the distance values of d are positive within the pore space B, the max-
ima c¢qy mark those points where the distance is maximal to the surrounding par-
ticles. We define these points to be the pore centers. The index-2-saddle points cg»
of the 3d distance map and their unstable manifolds U (cs;) connect two maxima.
They depict the paths from one pore center to another along the maximal distance
to the surrounding particles. An index-2-saddle point is the point along a path be-
tween two connected maxima having the smallest distance and it corresponds, in
terms of pore structure elements, to the pore constriction, which determines the
maximal size of particles that can move from one pore to another. Finally, a pore
body consists of all points in the pore space B that end in the same maximum
when following the steepest ascent. The table in Figure 2(c) summarizes these
correspondences.

3.2 Voxel-based Determination of the Pore Space Skele-
ton

The defined pore space elements, that is, pore centers, paths, and constrictions,
form a network representing the pore space topology. We previously proposed the
following voxel-based processing pipeline to extract these elements [10]. Starting
point is the segmentation result, where the foreground F' covers the whole particle
structure and decomposes it into separated particles F;, which are labeled by their
identifier i.

In the processing pipeline illustrated in Figure 3, we use the correspondence
between our distance-based definitions and a Voronoi decomposition. In case of
a set of points, a Voronoi cell of a Voronoi point consists of all points whose dis-
tance is not greater than their distance to any other Voronoi point. The distances on
the facets, edges, and vertices of the Voronoi cells are maximal to the closest two,
three, or four Voronoi points, respectively. Looking at the distance function ac-
cording to the Voronoi points, the Voronoi vertices are located at the maxima, and
the Voronoi edges are located at the index-2-saddles and their unstable manifolds.
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Figure 3: Pore graph computation: (a) slice of labeled particles and distance informa-
tion, (b) propagated particle regions, (c) pore graph constructed from the boundaries of
the propagated regions. The colors of the graph elements correspond to Figure 2.

The processing pipeline detects these locations between the particles according
to the boundary voxels of the segmented particles instead of according to single
Voronoi points.

Decomposition. The three-dimensional signed distance map with regard to the
boundaries between foreground and background is computed according to equa-
tion 1. Distance values within the foreground F are negative while distances within
the background B are positive. The labeled particles are used as seeds for a wa-
tershed transformation [21] that propagates the particles according to increasing
distance. As a result, each voxel of the pore space is assigned the identifier of its
nearest particle, such that the image volume / is completely partitioned into the
propagated particle regions V;, which meet at points having equal distances to the
particles:

V= e} U {pesimnlpdl <mplp-slvizi} @

Skeleton. Next, the boundaries of the particle regions are evaluated in order
to determine the pore space skeleton. We identify voxel neighborhoods of size 2 x
2 x 2 that contain labels of three or more particle regions V;, because these are the
neighborhoods that contain points having equal distance to at least three particles.
For each such neighborhood, we mark a representative voxel (the bottom, left,
front voxel) in the resulting volume. All other voxels of the result are marked as
background. With this approach, we remove paths that are only surrounded by two
or less particles. These paths can occur in case of neighboring concave particles
and build isolated and/or small anabranches. Particles that can move there do not
change the soil structure and its stability. Therefore, these paths are negligible.

Pore graph. The identified skeleton may have segments with a thickness of
more than one voxel. In order to remove these, we apply thinning [18]. Finally,
we construct a graph structure by converting this skeleton into vertices, edges and
edge points [17]. The resulting graph represents the pore centers by its vertices
and the paths by its edges. The edges additionally have edge points and contain
radius information at each point. This allows one to mark the point with the small-
est radius on each edge as constriction and provides information about the spatial
course of the paths and the distances.

3.3 Merging Unstable Pores

Due to the irregular shape and arrangement of particles, multiple local maxima
resp. pore centers may appear, as denoted in Figure 4. The yellow, orange, and



Figure 4: Hierarchical merge of (a) pores (colored vertices and black circles) sepa-
rated by their constrictions (white points and dotted circles): (b) the green and orange
pores merge; the green pore and the common constriction are assigned the orange
representative; the constriction between green and purple is now between the orange
representative and the purple one. (c) Merge of the non-overlapping yellow and orange
pores.

green pore centers seem to belong to a single pore. This may lead to an under- or
overestimation of parameters like pore size and constriction number. Therefore,
we merge such pore centers in the following post-processing step.

The method is inspired by topological persistence and simplification [5]. Topo-
logical persistence assesses the features of a function by their significance. We use
the radius differences of a constriction and their connected pore centers as persis-
tence measure. If the difference is high, the pores are significantly separated by
their connecting pore constriction and stay separated. In turn, pore centers that are
connected by a constriction having almost the same radius as the pore centers will
be merged. The degree of the merge depends on a user-defined threshold.

The algorithm hierarchically merges and updates neighboring pairs of pore
centers and their radius differences (Algorithm 1). Each edge, its adjacent vertices
and a difference value will be represented by an edge tuple, where the difference
value is given by the minimum radius difference of the two vertices to the con-
striction on this edge. The pore center having the larger radius is set to be the
representative vertex of the edge tuple. When an edge and a vertex are merged to
their representative, the incident edges of the merged vertex will be updated: The
edges and the representatives of their vertices build new edge tuples.

Finally, adjacent vertices having the same representative and their connecting
edges will be labeled as belonging to the same pore. As a result, merged pore
centers, paths and constrictions can be specifically included or excluded from the
quantification tasks. The maximal diameter of a pore is then given by the distance
information of the representative vertex of the merged pore.

4 Comparison

The voxel-based pipeline described in Section 3 enables us to analyze the pore
space of realistic data containing particles of irregular shape. However, the voxel-
based methods suffer from inaccuracies due to the discrete nature of the data. The
inaccuracies may even accumulate during processing a pipeline of voxel-based
methods. Because we generally apply our pipeline to realistic data, there is no
possibility to measure the quality of our pipeline on these data sets, because we do
not have any ground truth for the realistic data.

As mentioned above, our pipeline generates a decomposition of the voxel data
set such that each voxel is assigned to its nearest segmented particle. This de-



Algorithm 1 Hierarchical Merge

: input: Graph G(V,E), threshold ¢
: UnionFindSet UFS < {v,:v, €V,n=1,...,N} > With radius as rank
: Heap H + { (v1,va,e,diff) : vi,vy € V,e € E,radius(v;) < radius(v;),
diff = radius(v; ) —radius(e) } > Edge tuples sorted by diff
. currTuple + H .extractMin()
: while currTuple.diff <t do
UFS.union(currTuple.vy,currTuple.v;)
for all incTuple < incidentTo(currTuple.vy,G) and incTuple # currTuple do
v < UFS.find(incTuple.vy)
vy <= UF S find(incTuple.vy)
e <« incTuple.e
if radius(v; ) > radius(v,) then swap(vy,v;)
newDiff « (radius(v; ) — radius(e))
newTuple < (vi,va,e, newDIiff)
H .remove(incTuple)
H insert(newTuple)
17: end for
18: if H.empty() then break
19: currTuple < H .extractMin()
20: end while
21: relabel(G,UFS) > Labels vertices & connecting edges according to the UF'S components
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composition is related to a Voronoi decomposition. Hence, we call the extraction
pipeline Voronoi-like pore space computation.

In order to evaluate the results of our method, we have therefore chosen a
sphere packing as comparison basis for two reasons. First, sphere packings are
commonly used to simulate porous materials in the area of geotechnics. Second,
for sphere packings, it is possible to compute an analytic description of the topol-
ogy of the distance transform of the spheres by applying an algorithm that com-
putes the Voronoi diagram of spheres (see, for example, Lindow et al. [13]). By
considering the result of the analytic algorithm as ground truth, we are able to
evaluate the results of our voxel-based Voronoi-like pore graph computation.

4.1 Comparison Data

The input to the analytic Voronoi diagram algorithm is a set of weighted points
given by the sphere centers of the sphere packing, where the weights are the radii of
the spheres. The output of the algorithm is an analytic description of the edge graph
of the Voronoi diagram (Fig. 5(c)). This is given by the Voronoi vertices, that is, the
vertices, where four Voronoi regions meet, and the Voronoi edges between these
vertices. To compare the Voronoi graph with the pore graph resulting from the
voxel-based pore space computation, we sample the edges of the Voronoi graph,
such that neighboring points on the edges have a maximum distance smaller than
a given threshold Dy. For each of these sample points, which we call edge points,
as well as for the Voronoi vertices, we also store the minimal distance to any of the
neighboring spheres. This distance corresponds to the radius of the maximal ball
located at these points without intersecting the spheres.

To compute the pore graph of the sphere packing, we first have to compute a
voxel representation of the sphere packing (Fig. 5(b)). The result is a labeled voxel
data set, where each voxel is assigned the label of the sphere it belongs or O if it
belongs to the pore space. The pipeline then computes the pore graph (Fig. 5(d))
of the sphere packing, consisting of the pore centers, which correspond to the
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Figure 5: Comparison data: sphere packing (a) and voxelized spheres (b), Voronoi
graph (c) and pore graph (d) with radius information.

Voronoi vertices, and the pore paths, which correspond to the Voronoi edges. We
did not sample the pore paths, because they already have edge points on them with
a distance corresponding to the voxel size.

4.2 Graph Matching

Now we have two graphs G| = (V,E|,P) and G, = (Va, E,, P») representing the
Voronoi graph and the pore graph, respectively. Here, V| and V, are the sets of
vertices corresponding to the local maxima of the distance transformation, both in
the analytical and the discrete case. £ and E; are the sets of edges, which are not
directly considered in the comparison but only via the sets P; and P,, which rep-
resent the edge points. We further define the radius functions d; : V; U P, — R that
assign to each vertex or edge point the minimal distance to any of the neighboring
particles or spheres.

To measure the difference of G; to G, we are interested in two things. (I)
How much differ the two graphs geometrically? The geometric distance can be
calculated by determining the shortest distance of each vertex in V| to any vertex
in V5. Similarly, we need to determine the shortest distance of each point in Py
to any point in Py. (II) How much differs the radius information on the graphs?
The radius gives the size of the constrictions, which are of particular interest to
us. For this, we need matchings my 5 : V| — V5 with my 15(v) = argmin,, |[v — w|]|
and mpyp : P| — Py with mpy(p) = argmin, llp —ql|, where v e Vi, w € Va,p €
Py,q € P, and || - || denotes the Euclidean length. Note that the matchings my |,
and mp1, are, in general, not bijections. This is not a problem, because the match-
ings are only a means to compute the geometric differences between the graphs.
Given the matchings, we can then compute the differences between the radius
information of the matched vertices and edge points as |d;(v) —d;(m2(v))| and
|di(p) —di(m2(p))|, respectively, where | - | denotes the absolute value. We use an
octree to efficiently compute my 1, and mpy;.

5 Results and Discussion

In this section, we compare our voxel-based pipeline to the Voronoi graph compu-
tation on the basis of a sphere packing. We will not discuss results of the pipeline
applied to realistic data. Such results are available in our previous work [10].

The comparison was carried out using a sphere packing of 1250 spheres of
varying radii (1.5 to 5.2mm), which were placed in a box of 50mm x 50mmx 50mm.
For the voxel-based pipeline, we scan-converted the sphere packing into a voxel
data set. We chose a sampling rate of 50 voxels per minimal sphere diameter. This
resulted in a voxel size of 40umx40umx40um corresponding to the resolution
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Figure 6: Differences between pore graph and Voronoi graph. (a) Color-coded dis-
tances between the matched points and vertices. (b) Close-up of the bottom left corner
in (a): pore graph (red) and Voronoi graph (blue). (c) Distances color-coded on the
same close-up. (d) The graphs are trimmed by Smm from each side. (e) and (f) Close-
ups with many pore centers and Voronoi vertices.

of our CT scans. The resulting data set had a size of 1250 x 1250 x 1250 voxels.
The computation of the Voronoi graph took less than two seconds while the voxel-
based pipeline took 52 minutes. The edges of the Voronoi graph were sampled
with a maximal distance Dy = 0.05mm.

We applied the matching procedure described in Section 4. Figure 6 depicts
images showing the vertex and edge point distances between the two graphs. If
we consider the complete graphs (Figure 6(a)), we can observe that the main dif-
ferences lie at the border in regions where there is a large empty space (also see
Figure 5(a)). The reason for this large empty space is that no spheres were placed
in this region due to restrictions caused by the border. As a result, we get long pore
paths ending at the border (see, for example, the left bottom corner in Figure 6(a)
which has been zoomed in to in Figures 6(b) and (c)). The further away the pore
path is from the nearest spheres, the smaller is the difference in the distances when
looking orthogonally around the pore path. Hence, small differences in the dis-
tances to the nearest spheres correspond to large differences in the position of the
pore path. Thus, small errors in the computation of the distances can result in large
errors of the pore path position. For the statistics we want to carry out later, trim-
ming the graph gives us much more realistic data. The graphs in Figure 6(d) were
trimmed by Smm from each side. The major differences that remain between the
graphs after trimming appear in regions where many pore centers/Voronoi vertices
occur (see, for example, the close-ups in Figures 6(e) and (f)). Here, small errors
in the distances to the nearest spheres might result in either pores being merged or
split. Hence, too many pore centers or Voronoi vertices, respectively, as well as
pore paths or Voronoi edges occur, which results in the observed differences. The
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Figure 7: Differences between matched edge points of the pore graph and the Voronoi
graph. Only the bins summing up to 99 percent of each of the distribution are plotted.

distances between the pore centers and the Voronoi vertices are largest, because
they can only get matched to one another.

Figure 7 shows the histogram of the comparison measures for the complete
pore graph in red and the pore graph with trimmed boundary region in blue. The
distances are plotted in dark and the radius differences in light red and light blue.
As mentioned above, we trimmed the pore graph by Smm from each side to elim-
inate boundary effects. This is important for the final analysis of the pore space,
because the constrictions on edges near the boundaries exhibit unrealistic radius
values due to the restricted growth of the distance map towards the boundary. This,
in turn, would lead to biased statistics on the pore constrictions.

It is obvious that the accuracy of the voxel-based computation depends on the
resolution of the data set. Taking into account the voxel size, we binned the data
points with a bin size of 0.02mm. This corresponds to half the voxel length. Re-
garding the distances between the edge points (dark colored bars), this means, that
the matched edge points of the first group can be assumed to lie within the same
voxel and the points of the second and third group within the direct neighborhood.
Furthermore, we assume the radius differences (bright colored bars) within the
three first groups to lie on the same or on the very next distance iso-value, whether
they share the same position or not.

Accumulating the first three bins shows that 94.9 percent of the edge points of
the untrimmed and 98.6 percent of the trimmed graph match the edge points of the
Voronoi graph at least within the direct neighborhood. According to this, the edge
points of the first three bins exhibit a radius difference to the Voronoi edge points of
less than 0.06mm. This concerns 97.8 percent of the edge points of the untrimmed
graph and 99.5 percent of the trimmed graph. It is worth noting that regarding the
aim of analyzing the transport pathways for particles of certain sizes, the radius
information along a path is even more important than the exact position of points
along the path way. The maximal error is 0.79mm and 0.34mm in point distance
and radius difference of the trimmed pore graph. Such discrepancies mainly occur
at the boundary (Figure 6(c)) and only make up a very small fraction of the whole
set of edge points. Above all, the presented matching procedure is only able to
provide an upper bound of the error. Because it matches each edge point from one
graph to the other even if there is no direct correspondence, large differences in
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Figure 8: Pore graph (a) with and (b) without the particle structure computed from a
CT scan of soil.

the distance and the radius comparison measure may be acquired in these cases. In
Figure 7 we can see that the error of 99 percent of our edge points is below 0.12mm
which is less than a tenth of the radius of the smallest sphere in the packing. We
can assume that the errors of the remaining one percent of edge points do not
invalidate conclusions that can be drawn from derived statistics of the extracted
pore structures.

6 Conclusion

We have described a method to extract the topology of the pore space in a porous
material and validated the results of our method based on an analytic example.
Regarding the given details, the presented description of the method goes beyond
what is available in our previous work. Thus, it allows for a straight forward imple-
mentation of the pipeline. Comparing our pore graph to the Voronoi graph of the
analytic sphere packing example allowed us to analyze the accuracy and validity
of our approach. The analysis has shown that differences between the graphs are
mostly in the scale of one voxel and, thus, the accuracy is very high. Together with
a simultaneous visual inspection of the two graphs, the high accuracy allowed us
to illustrate the validity of our approach. Since the computation of the pore space
elements for a sphere packing does not differ from that for a realistic data set, we
conclude that our method works also correct for realistic data.
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