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Introduction

Motivation

Peer-to-Peer networks (P2P) — a special class of distributed
systems

e no central infrastructure
managing network, routing,
resource allocation
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e nodes are equals, act as
clients and servers with
additional privileges

e typically one routing layer
on top of the physical one Eé'\
e nodes might enter or leave B
at any time 1
- a lot of traffic for
maintenance



Introduction

Motivation

A protocol for P2P systems: Scalaris
e Scalaris: a scalable, transactional, distributed key-value store
e Project initiated by members of Zuse Institute (ZIB)
for building web services (e.g. distributed data storage,
database, computing)
Participating nodes are arranged in a ring-like overlay network
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Introduction

Motivation

A protocol for P2P systems: Scalaris
scalable efficient when applied to large situations
distributed storage or computation distributed over the network
replicas e.g. file copied k times, copies (replicas) stored
distributed over the network
transactional information processing divided into indivisible
operations
key-value store data access via key

peer-to-peer level




Introduction

Motivation

Main Questions

We focus on three questions that appear in P2P systems:

©® Protocol: How to identify ideal storage locations in a
distributed key-value store?

® Protocol: How to reduce the traffic for maintenance
messages?

© Statistics: How to compute summaries over distributed data
streams?



Introduction

Communication Patterns
in P2P Systems

Solving a problem contiguously
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root node @ normal peers super-peer @ normal peers @ normal peers
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(c) Routing tree. (d) Super-Peer. (e) Gossiping.




Introduction

General Thoughts

Properties of P2P systems and possible circumventions for
algorithms and protocols running in P2P systems:
e Unavailability of peers
=- do not communicate with a fixed set of neighbors, but
introduce randomness
= gossip protocol — randomized assignment of
communicating parties
e Stored data is changing or unavailable
= give up demand of exactness
= opens a variety of new (approximate) approaches for the
same problem



Introduction

Gossiping

Communication between peers via the gossip protocol
e inspired by gossiping in social networks
e randomized peer sampling that runs periodically, either
e by a node itself from its list of known neighbors
e or a node-independent routine connecting two nodes
e as soon as connection has been established — nodes exchange
their local data



Introduction

Gossiping

Communication between peers via the gossip protocol
e inspired by gossiping in social networks
e randomized peer sampling that runs periodically, either
e by a node itself from its list of known neighbors
e or a node-independent routine connecting two nodes
e as soon as connection has been established — nodes exchange
their local data
Advantages:
@ Epidemic-like spread of information
® Simplicity: no synchronization, recovery, or storage of
neighborhoods
© Robustness for unsteady networks: toleration of lost messages,
since local data is communicated to many nodes
O Scalability: no storage of neighborhood sets that scale with
the net size, assignment to any node from the whole network



Introduction

Gossiping

3 types of information exchange: pull (receive), push (send) or

push-pull (send and receive)

Figure: Peer (blue) to whom another peer (black) is assigned.




Introduction

Network Coordinates

How to assign 2D network coordinates to peers?
= Frank Dabek et al. 2004: Vivaldi: A Decentralized Network
Coordinate System

e assigns synthetic coordinates to peers s.t. their distances

correspond to the average round-trip times between them

e works for pure P2P networks

e might be piggy-backed or use the gossip protocol

e Vivaldi computes the solution of a spring-relaxation problem



Introduction

Network Coordinates

What each node does:

© initially, assigns itself random 2D-coordinates, e.g. = € R?
and an error e = 1. f

@® on input y € R?, round-trip time TTtzy, €y, @ node relaxes the
difference between r7t,, and ||z — y|| by moving its own
coordinates towards or away from y

© repeat for several gossiping rounds

(rtt — |z — yll) x u(z —y)

@ www. @



Introduction

Network Coordinates

proc vivaldi(float rtt,float[] y, float e,) =
comment: weight balances local and remote error
w = ey /(ex + €y)
comment: relative error of incoming sample
es = |llz — yll — rtt|/rtt
comment: update wma of local error
€y = €5 X Ce X W+ €5 X (1 — e X W)
comment: update local coordinates

d:=cCeXw
zi=x+0x (rtt — ||z — y||) x u(z —y)
end



Clustering

Part 1: How to identify ideal storage
locations in a distributed key-value
store?
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Clustering

Task

Identification of Storage Locations

@ identification of data centers, given that each node knows its
spatial coordinates
e can be seen as clusters of nodes in a P2P network

a) :ﬁo ..o.' b) ?22 16'4444
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Figure: nodes in a network and their cluster assignments



Clustering

Task

Identification of Storage Locations

@ identification of data centers, given that each node knows its
spatial coordinates
e can be seen as clusters of nodes in a P2P network
@ storage of k replicas, ideally
e in k different clusters < correlation of node failures
e with maximum distances between each other
e not on singletons, but in dense regions representing 1/kth

a ) %. :.o. ¢ b) :bo ..o.'
[ L 'o
...o ...o
[ °
® nodes

@ nodes storing replicates



Clustering

[ Jele]e]

Clustering

Data analysis tool

Given a data set X € R™*? goal:
e group items according to their reported features
e items with high similarities should end up in same class
data (not model) driven
e control quality by giving a distance dimension or prescribe
final number of clusters
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Figure: Matlab’s Iris data set
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Clustering

Taxonomy of clustering approaches

Expectation
Maximization

Mode Seeking

Mixture
Resolving DBSCAN
Graph
Theoretic
/
Partitional
Square Error
K-means
Clustering
Hierarchical
Bottom-Up
Agglomerative

Top-Down
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Clustering

K-means — Global

Method: iteratively improve

centroids’ positions s.t. the
proc KMeans(float[ ][] X, int k,float v) :

n = |X| squared error is minimized
$ .
o< X Vielk] @ choose k centroids randomly
label (i) := arg minep | X (4) — ¢ Vi € [n] .
o= ¢ @ E-step: assign each data
comment: I\;I-step, re-estimate centroids point to its closest centroid
U= TabeG==T] 2otabel(i)==t Xi VI € [K] ]
while max; {[[c?4 — ¢; ]|} > v © M-step: re-estimate
1 ._ .

=c centroids

comment: E-step, compute expected label

label (i) := arg mine (| X; — cil| Vi € [n] O iterate E-step and M-step as

comment: l\f—step, re-estimate centroids Iong as centroids change
= TTabetG==T] 2otabel(i)==t Xi VI € [K]

end significantly
end
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Clustering

K-means — Global
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Figure: from Bishop: Pattern Recognition and Machine Learning
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Clustering

K-means — choice of kqi40

(C) kdata < kalgo
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Clustering

Agglomerative Clustering — Global

@ start with the whole data,

proc 0-AggloClustering(float| ][ ] data,float ) C = data and relative sizes

= |data| ( ) )
C = data w= (= )
w; = 1/|data| Vi € [n] Icr/{L|cl}
(i,7) == argmin i [|c; — | @ as long as there are two
while |lc; — ¢ 20 centroids being ‘close
(C,w) := Merge(C, w, i, 5) enough’, merge them into

i,7) :=argmin; ; ||¢; — ¢; .
&.9) 8 f;ﬁ;-” ol one centroid

end
return (C,w)

end
proc Merge(float[ ][] C,float[] w,int 7,int j) z
C = C + [(c; - wi + ¢ - w;) / (wi +wy)]
w = w H [w; + w;]

comment: delete original entries (

delete(C, [i, 1)) (=) =) D—E)—

delete(w, [¢, j])

return (C,w)
end

distance
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Clustering

Agglomerative Clustering — Global

Naive: To receive k cluster for replica storage — stop when

‘C’ - kalgo
proc KAggloClustering(float[ ][ | data,int k)
n := |datal|
C :=data

w; := 1/|data| Vi € [n]
(4,7) == argmin ; [le; — ;|

while [C] > &
(C,w) := Merge(C,w, 1, j)
(4,7) = argmin ; [|¢; — ¢;|
i#]
end

return (C,w)
end
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Clustering

Agglomerative clustering — choice of kaig0

Result: for kg1g0 # kdata We loose ability of cluster detection
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(h) kdata < kalgo
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Challenges

We can use agglomerative clustering to detect the latent kgqs0

(i) if kgata < kaigo place centroid into real cluster, e.g.
the k14, biggest ones (easy to solve)

. o".o:“ . '.. . .
e .0.°.' o %o . .
© o e . . 2% v .3
o. ::m.\.. .r * * ‘0 .?.‘_O ‘. .“. o.
LI . .0 .. ! “®. .



Clustering
©0000000000

Challenges

We can use agglomerative clustering to detect the latent kguiq
(i) if kgata < Kalgo place centroid into real cluster, e.g.
the k440 biggest ones (easy to solve)
(i) if kEdgata > kaigo place centroids s.t. they represent
equal fractions of the cluster
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Challenge #2

Closer look

Observation
o K-agglomerative clusterin
endfgup with many centrogids
in the outskirts
e outlying centroids result
from very few merges
Reason
e dense regions: high

probability of finding close
neighbors = many merges

e non-dense regions: low
probability of finding
neighbors nearby = no
further agglomeration
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Challenge #2
Closer look
Observation compared to K-means:
o K-agglomerative clustering .
ends up with many centroids R
in the outskirts . ‘.. " ) . .
e outlying centroids result "0 Lk .
from very few merges .o ':- . '“... .
Reason .. ""'......" .?'.
e dense regions: high s
probability of finding close A
neighbors = many merges Re .

e non-dense regions: low
probability of finding
neighbors nearby = no
further agglomeration
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Challenge #2

Solution

Boost agglomeration below 1/k by incorporating the relative sizes
into the selection

old selection criterion

(i.5) = argmin{le; = ¢, |}

1<J
new selection criterion
(i,5) = argrgijn{ch'—CjH/D+5-0(wi+wj—1/k,2)}
i<j

1
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Challenge #2

Solution

Boost agglomeration below 1/k by incorporating the relative sizes
into the selection
new selection criterion

(i,7) = argmin {|c;—c;||/D+5-0(wi+w; —1/k, 2) }
i

1<J
o(x—1,2)
1
— z=38
|
/ a:
1/ 1
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KAggloPlusClustering

Example kgata < Kalgo
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KAggloPlusClustering

Example kgata < Kalgo

0.6
0.4

0.2 .

04 L
-0.8 -0.6 -0.4

0.6
0.4

0.2 .

-04 .

L
-0.8 -0.6 -0.4 0.6
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Put together
Global algorithm

precondition: input C' is the result of standard agglomerative
clustering stopped very early (|C| > k- m)

proc 2SKSub2(float[ ][] C,float[] w,int k,float §) =
(Clatents Wiatent, S) := ThetaAggloClustering(C, w, )
comment: if kgqq > k return k largest centroids
do if [Clatent| > k k< k_data
C := Clatent|findKLargest(wiatent, k)]
W := Wiggent|findKLargest(wigtent, k)]
return (C,w, S)
fi
comment: else agglomerate with new merge criterion
(C,w,S) := KAggloPlusClustering(C, w, k)
return (C,w, S) } k> k_data
end
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Error
Measuring the quality of clusters

correctness of centroid positions ¢ = real and ¢ = estimated centroids

€T Tpos = %Z aI'ngjiIl{Hé;—CﬂH@\i—’lUjH
%

closest centroids with respect to position and size

equally sized centroids

erreg = § (Wi —1/k)?

deviation from equally sized clusters
well-separation of centroids
— 2 Lo
ETsep =TT E (1= |le; = ¢l|/D)

ij
i<j

~
penalty for low distances between centroids
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Global Clustering

Experimental Setup

kdata: Kaigo sampled from [2; 8]

2D data points sampled from kg, normal distributions

relative cluster sizes sampled from [.2;.7]

data set size at least 100

e errors averaged over at least 100 rounds
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Global Clustering

Results

error || K-agglo- 3S K-agglomerative K-means
merative || 0 = .75 | 0 =1 =2
(naive) z=.5 | z2=4 | 2=8
pos 1.0000 0.1359 | 0.3953 | 0.4790 0.8672
eq 1.0000 0.5949 | 0.2653 | 0.1887 0.3129
sep 0.4663 0.8220 | 0.9515 | 1.0000 0.8878

Table: position, equality and separation errors for 1S/3S K-agglomerative
clustering with three parameter sets and K-means, rows are divided by

their maxima

z sharpness, § weight of sigmoid part
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Distributed, Approximate Agglomerative Clustering 25P2P

Goal: each node receives a global view of clusters in the network
e initially each node knows only its local data

proc Initialize =
(C,w) := ([sel f.datal, m[LOhselﬁdattﬂ)
end
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Distributed, Approximate Agglomerative Clustering 25P2P

Goal: each node receives a global view of clusters in the network
e initially each node knows only its local data
e periodically a node sends its locally estimated centroids using
a gossip protocol

proc Timer =
peer := SelectRandomPeer()
sendTo peer : Shuffle(C, w)
end
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Distributed, Approximate Agglomerative Clustering 25P2P

Goal: each node receives a global view of clusters in the network
e initially each node knows only its local data
e periodically a node sends its locally estimated centroids using
a gossip protocol
e upon Shuffle message (passive node) — update local
centroids

proc Shuffle(Crynt, Wrme) from p =
sendTo p : ShuffleResponse(C, w)
(C,w) := Update(C H# Crmt, w H Wrmt)
end
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Distributed, Approximate Agglomerative Clustering 25P2P

Goal: each node receives a global view of clusters in the network

e initially each node knows only its local data

e periodically a node sends its locally estimated centroids using
a gossip protocol

e upon Shuffle message (passive node) — update local
centroids

e upon Shuffle message (active node) — update local
centroids, approximate part: cluster on two sets of estimated
centroids!

proc ShuffleResp(Cirmt, Wyme) from p =
(C,w) := Update(C +# Crmt, W H Wrpnt)
end
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Distributed, Approximate Agglomerative Clustering 25P2P

Goal: each node receives a global view of clusters in the network

initially each node knows only its local data

periodically a node sends its locally estimated centroids using
a gossip protocol

upon Shuffle message (passive node) — update local
centroids

upon Shuffle message (active node) — update local
centroids, approximate part: cluster on two sets of estimated
centroids!

Update — mk-agglomerative clustering

proc Update =
(C,w) := KAggloClustering(C,w, m - k)
(C,w) := Normalize(C, w)

end
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Distributed, Approximate Agglomerative Clustering 25P2P

Goal: each node receives a global view of clusters in the network

e initially each node knows only its local data

e periodically a node sends its locally estimated centroids using
a gossip protocol

e upon Shuffle message (passive node) — update local
centroids

e upon Shuffle message (active node) — update local
centroids, approximate part: cluster on two sets of estimated
centroids!

e Update — mk-agglomerative clustering

e upon Request message — reduce set of centroids
proc Request from p =

(Creqs Wreq, S) = 2SKSub2(C, w, k, 6)
sendTo p : RequestResponse(Cleq, Wreq)
end
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Distributed, Approximate Agglomerative Clustering 25P2P

Process 1
Process 2

proc Timer |
sendTo peer: Shuffle (C,w)— = === = — 1-7------ » proc Shuffle(C_r, w_r) from p
— = sendTo p: ShuffleResponse(C,w)

proc ShuffleResponse(C_r,w_r) from p <& ~~ 2 Cw) = Upda‘e(c”c—;w

(C,w) := Update(C++C_r, w++w_r)
proc Update(C,w)
proc Update(C,w) (C, w) := KAggloClustering(C, w, m - k)

(C, w) := KAggloClustering(C, w, m - k) (C, w) := Normalize(C, w)
(C, w) := Normalize(C, w)

T .s-éndTo p: Request()
proc Request fromp & ---""
(C, w) = 25KSub2(C, w, k) roc RequestResponse(C, w) from
sendTo p: RequestResponse(Cw)— - —= 2 —~~ > goSometh?ng(C,w) P C.w) P

Process 3
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Distributed, Approximate K-Means LSP2P

In 2009 Datta et al. presented an approximate distributed
K-means clustering algorithm

e similar to 2SP2P K-agglomerative clustering: exchange local
estimates
e two kinds of centroids: V; (E-step) and Cj (result of M-step)

e partial synchronization: node enters new iteration together
with its neighbors
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Distributed, Approximate K-Means LSP2P

Algorithm
e initially all nodes start with the same set (Cy,w1)
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Distributed, Approximate K-Means LSP2P

Algorithm
e initially all nodes start with the same set (Cy,w1)
e periodically a node requests (C}',w]) from its neighbors T’
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Distributed, Approximate K-Means LSP2P

Algorithm
e initially all nodes start with the same set (Cy,w1)
e periodically a node requests (C}',w]) from its neighbors T’
e upon reply of all neighbors, node N? computes

k., k
ZNk eWaitt 51W;1

i
V.. =
Jil+1 k
ZNkeWaiti W
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Distributed, Approximate K-Means LSP2P

Algorithm

initially all nodes start with the same set (C, w)

periodically a node requests (C},w;') from its neighbors T
upon reply of all neighbors, node N* computes

k., k
ZNk eWaitt 51W;1

i
V.. =
Jil+1 k
ZNkeWaiti W

enter a new K-means iteration [ =1+ 1

o E-step: assighment of local data to its closest centroid v;;
e M-step: reccompute C;; with respect to local data set
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Distributed, Approximate K-Means LSP2P

Algorithm

initially all nodes start with the same set (C, w)

periodically a node requests (C},w;') from its neighbors T
upon reply of all neighbors, node N* computes

k., k
ZNk eWaitt 51W;1

i
V.. =
Jil+1 k
ZNkeWaiti W

enter a new K-means iteration [ =1+ 1

o E-step: assighment of local data to its closest centroid v;;
o M-step: reccompute C;; with respect to local data set

Disadvantage of synchronization:

e N’ can only process centroids from nodes being in the same
iteration = wait until all neighbors completed round !

¢ nodes might request older centroids = store C;;Vt € [0;]]
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Results

e position error per node between centroids from global

clustering and local centroids
e convergence of errey, errgep, follows from convergence of

€T pos

R k
e ()= %) & Z%Zargmm{llcl( )= (8)]|- 1wy (£)—w; (£)]}

pos
r=1 =1 =1

.015 +
«
g
§ .01 ~
& KMeans
T - errpog o
K Agglo
005 1 - errpos
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2SP2P K-Agglomerative Clustering vs LSP2P K-Means

. 2SP2P K- | LSP2P K-means

Properties .
agglomerative

synchronization of iterations required no yes
k must be fixed during computing phase no yes
order of centroids and counts must be kept | no yes
fixed
robustness for outliers yes no
bandwidth costs O(mkIL) O(kIL)
computational costs O(Im2k? + D?) O(IkD)

memory costs

during  exchange
phase: Q(mk)

history and poll ta-
ble: O(I(k+ L))

I = # number of iterations, I = # of neighbors contacted per
round, k = # final centroids, m = scale parameter, D = size of

local data set



Part2: How to compute quantiles
over distributed data streams?




Histograms

Motivation

Given a set of distributed data streams, e.g.
e servers storing response times
e sensors storing temperature measurements hourly

Naive approach — computing quantiles on single sources (and
merge them) does not work!

Better:

@ compute a robust summary of local data set — an
equi-probable histogram

@ gossip and merge data summaries

Question: Is randomized merging with no upper bounds on the
number of merging operations still robust?



Histograms
[ 1]

Histogram
equi-width and equi-probable
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X X
(n) data distribution (o) equidistant histogram

¢ — quantile
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(p) equiprobable histogram
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Quantile

Given ¢ € [0;1] and a sorted data set X with | X| = n, the
¢-quantile is the value x € X at position (int)¢n.

Eg A
e 0-quantile is min(X) 11
e 1l-quantile is max(X) 3\'
. 0.5—guant||e is the ST}
median of X X
1. ¢-quantile is the inverse of
the cumulative distribution Ln 1 N

function (cdf) P(X < x)
2. an equiprobable histogram
can be composed by a series

of ¢-quantiles Figure: ¢-quantile and cdf, ¢ € [0;1]

Xsorted
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e incomplete binary tree, whose structure corresponds to an
equiprobable histogram, except that the bins are overlapping
e each node v fulfills the g-digest property:

v.count < |[n/k| (1)

v.count + vy.count + vs.count > |n/k] (2)

e data range
X el;o0=2"]

e decompression k

12 ]s|af5][6]7]s]
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Q-Digest

Compression

e compression function ensures g-digest property
e example: k =5,n=150 =8, X ={1,34,4¢,5,6,7,8}
e procedure: compress nodes bottom-up that violate

v.count < |n/k| or v.count + vy.count + vs.count > [n/k]
by accumulating child counts into parent node
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Q-Digest

Compression

e compression function ensures g-digest property
e example: k =5,n=150 =8, X ={1,34,44,5,6,7,8}
e procedure: compress nodes bottom-up that violate

v.count < |n/k| or v.count + vy.count 4+ vs.count > |n/k|
by accumulating child counts into parent node
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Compression

Choice of Decompression Factor k

e g-digest stores at most 3k nodes
e relation of decompression and error:

o setting: X, ~ N (p,on), 0 €[0:.1:1]

e error between equiprobable histogram and histogram computed
on a single g-digest

\
\
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Q-Digest

Merging

proc Merge (qdigest @1, int ni,qdigest Q9,int no,int k) =
Q:=Q1UQ2
Compress(Q, n1 + na, k)
return

end

n=10,k=50=28 n=15k=50=28
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Q-Digest

Merging

proc Merge (qdigest @1, int nj,qdigest Qo,int ng,int k) =
Q:=Q1UQ2
Compress(Q, n1 + na, k)
return @)

end

n=25k=50=38 n=25k=50=38
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Q-Digest

Quantile and Histogram Computation

proc histogramEquiProb (gdigest @, ...
int o,float 7) =

proc quantile (qdigest @, float ¢) = ¢:=[0:7:1]
L := postorder(Q.tree) comment: determine 1/7 + 1 quantiles
s:=0 ¢i := quantile(Q, ¢;) Vi € [1..|¢]]
forve L do return ¢
s 1= s+ v.count end
if s>=¢-Qn
return rightlLeaf(v, o)
fi
end
return rightlLeaf(L.end, o)
end

123 ]afs5]o6][7]s]
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Evaluation
Gossiping of Q-digests

proc Initialize(data, k,0) =

leaves := buildtree(data, 0); proc Shuffle(Qrm¢, nrme) from p =
n = |datal sendTo p : ShuffleResponse(Q)
Q := Compress(leaves,n, k) Q = Merge(Q, 1, Qrmt, Nrmt)

end end

proc Timer = proc ShuffleResp(Qymt, Nrme) from p =
peer := SelectRandomPeer() (Q,n) := Merge(Q,n, Qrmt, ormt)
sendTo peer : Shuffle(Q, n) end

end

proc Request(7) from p =
H := histogramEquiProb(Q, o, 7)
sendTo p : RequestResponse(H)
end
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Gossiping of Q-digests

Error

Error between randomly merged g-digest (gossiped) or
deterministic merging along a routing tree (routed)

1
chist(H1, Ha) = —p > (hii— hay)?

7
ARV e

(c) Gossiping. (d) Routing Tree.
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Gossiping of Q-digests

Error

Error between randomly merged g-digest (gossiped) or
deterministic merging along a routing tree (routed)

1
enist(H1, Ha) := 5 Z(hu — ha)?
Setup:
e 219 sensors/nodes storing 29 items sampled randomly either
from
@ one global normal distribution N (u, oar) with p € [0/4; 30 /4]
and o
@ 2'° different normal distributions N (1, o) with
pt € [0/4;30 /4], o € [1;0/4], and i € [1;219]

e initially each node computes a g-digest on its local data set

e in each round g-digests are exchanged, merged, and replace
the local ones
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Gossiping of Q-digests

Result 1
%1071
e
0.5 1 o
/ — error(gossiped, exact)
E / error(routed, exact) Lo o0
)
/
044/
0.35 T i :
1 5 10 15 20 25

gossip round

Figure: Data distributed according to one common normal distribution.
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Gossiping of Q-digests

Result 2

3 034 |
S \ k=5
\\ — error(gossiped, exact)
0.2 1 \ error(routed, exact) L 20
— -
1 5 10 15 20 25

gossip round

Figure: Data distributed according to s different normal distribution.
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Conclusions

e generally: error for gossiping converges towards some
k-dependent constant

e one global distibution: merging g-digests randomly increases
the error negligible
o different distributions for each sensor:
e same error as finite, deterministic merging along a routing tree
o faster convergence for gossiping
e consequence for streams: one could proceed as follows

@ collect data until buffer is filled

@ compute g-digest on buffer and merge it with local one
© clear buffer, goto step 1

@ meanwhile gossip and merge local with remote g-digests



Part 3: How to reduce_the traffic for
maintenance messages?




Lifetime Estimation

Traffic in P2P Networks

Overlays: peers are transient
e nodes join and have to be linked

e nodes |leave and have to be deregistered, replaced, etc.

= messages for checking presence/abscence of nodes have to be
sent permanently

e heuristics could help to reduce their frequency, e.g. adjust
frequency to average lifetime of nodes
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Weibull Distribution

e first identified by Maurice Fréchet in 1927, described in detail
by Waloddi Weibull

e wide range application: breaking strength of material, size
distribution of particles, failure probability of electronic devices

e depending on input parameters k > 0 (shape) and A > 0
(scale) the Weibull distribution may assume the shape of an
exponential, normal or Rayleigh distribution

The 3-parameter cdf F' with 0 (location) for the Weibull function is

e (XOF
F(x;k,\,0) ::{ 1 60 . ’iiz
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Weibull Distribution

pdf and mean

Differentiating F' with respect to « results in the frequency or
probability density function f

T— k—1 _(z—0\k
Flaik 2,0 = 2L {f( e a0

dz 0 ,r <0
The mean of the Weibull function is
pw=A(1+1/k)

with T'(z) := [;t* Texp™'dt
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Weibull Distribution

Pdf

The Weibull frequency distribution for § = 0

k=05 =1
k=1A=1
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Linear Regression

Given a set of sampled lifetimes, how to determine
the missing parameters?
Let X € R Y ¢ R"*1
e with linear relationship
Yi =00 + a1z + @xiz + -+ @nZim, Vi € [1.1]

e goal: determine coefficient vector « s.t. squared error
between samples and regression line is minimal

e prepend column vector 1,, to X s.t. we can write Xa =Y

1
E:§(Y—Xa)T(Y—Xa) — min!



Linear Regression

Lifetime Estimation
00000

Determine root of E's derivation for a:
or
O«
1
0|5(Y - Xa)'(Y — Xa)|/0a
1

5(—X)T(Y — Xa) + %(Y — Xa)T(-X)

—XT(Y — Xa)
Xy + XTXa

(0%

o o O

XTx) Y (xTy)

—~
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Linear Regression
Applied to Weibull Cdf

Now linearize the Weibull cumulative distribution function F

F(x;k,A) = 1-— exp_(mp‘)]c
—In(1 — F(z;k,\) = (z/\)*
In(—In(l—F(z;k, ) = klnz—kln)
L

-~

Y

mx C

The relationship between the double logarithm of F' and the
logarithm of x is linear! = apply solution of linear regression
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Linear Regression
Applied to Weibull Cdf

Given a sample x;, we have the linear relationship
In(—In(1 — F(z;))) = (Inx; 1) - (k )T

In(—In(1 — F(z1)) Inz; 1
In(—In(1 — F(x2)) B Inze 1 (k)
In(— ln(l:— F(zy)) ln:a;n 1

Y X

Plugged into linear regression formula:
<’f> _(RTR)LRTY
Use solution of k, ¢ to compute A

A =exp “k
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Mean Lifetime Estimation
Put Together

Usage in a P2P system running e.g. the Chord protocol
@ Collect some lifetimes X from unavailable peers
® Compute X, Y from X
® Compute (k ¢)T from linear regression formula
© Compute mean lifetime = AT'(1 4 1/k) from k, A = exp~“/*

® Use u for adjusting frequency of maintenance messages of
protocol
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Evaluation — Linear Regression versus Latent Solution

e scale ) fixed, shape k taken with equal probability from [1; 5]
e data = wblrnd(\, k) with |data| € [2;100]

e ;1 was computed from parameter estimation using linear regression

(LR), Matlab’s (M) built-in wblfit, and exact, but latent
parameters

0.01 T

data set size
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Evaluation
Frequency Reduction in Chord

Chord — structured P2P protocol

e nodes arranged in a ring-like structure with I = [0; N| being

the identifier space
e for routing each node stores a finger table with pointers to

successors
e with high probability the look-up for a node is performed with

log N steps
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Evaluation
Fix Finger Messages in Chord

Periodically for each entry in the finger table a look-up is
performed

e a finger table has log N fingers
e a look-up has costs of log N steps
= to refresh a whole finger table costs O(log® N)
e necessity for a refresh depends on average lifetime of peers

= make frequency for a refresh dependent on estimated lifetime
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Evaluation
Chord Simulation

Oversim — a simulation framework which contains an
implementation of Chord

e added function churnRateEstimator to sample lifetimes
(from non-responding nodes) and to compute the mean
lifetime like described before

e function handleFixFingersTimerExpired is called
periodically if the timer for fix finger messages expired, it does

e call churnRateEstimator and returns p
e computes a new frequency from p which triggers an internal
switch for the sending of fix_finger messages

frequency = log? i
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Evaluation
Chord Simulation

Oversim provides an interface for collecting statistics for traffic,
among them are counters for

e maintenance messages
e fixfinger messages

e ping and pingResponse messages

packets dropped
e one-way hop count
Setup
e steady-state net size: 1024
e measuring time: 5000s
e mean lifetimes in [200; 800]
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Evaluation
Chord Simulation Results 1
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(a) Number of maintenance messages. (b) Number of fixfinger messages.
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Evaluation
Chord Simulation Results 2
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(¢) Number of ping messages. (d) Number of ping response messages.
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Evaluation
Chord Simulation Results 3

70 68
6.6
60 /\\"\q\
6.4 \
€62
H] 50 5 \\.\‘
5 260
S 40 £
g §s8
% =
S 3 D S SR
&30 . 5oe (i
54
20
52 /-
oo 300 700 500 500 700 00 5900 300 700 500 600 700 800

lifetime lifetime

(e) Packets dropped due to unavailable destination. (f) One-way hop count.




Thank you, for your attention!



