Histograms

Marie Hoffmann

Institut für Informatik Freie Universität Berlin

March 8, 2013

- Introduction
- 2 Clustering

Clustering

Algorithm

Centralized

Distributed **Evaluation**

Results

Histograms

Histograms

Histograms and Quantiles

Q-digest

Evaluation

4 Lifetime Estimation

Weibull Distribution

Parameter Estimation

Evaluation

Peer-to-Peer networks (P2P) – a special class of distributed systems

- no central infrastructure managing network, routing, resource allocation
- nodes are equals, act as clients and servers with additional privileges
- typically one routing layer on top of the physical one
- nodes might enter or leave at any time
- a lot of traffic for maintenance

A protocol for P2P systems: Scalaris

• Scalaris: a scalable, transactional, distributed key-value store

- Project initiated by members of Zuse Institute (ZIB)
- for building web services (e.g. distributed data storage, database, computing)
- Participating nodes are arranged in a ring-like overlay network

Motivation

A protocol for P2P systems: Scalaris

scalable efficient when applied to large situations

distributed storage or computation distributed over the network

Histograms

replicas e.g. file copied k times, copies (replicas) stored distributed over the network

transactional information processing divided into indivisible operations

key-value store data access via key

We focus on three questions that appear in P2P systems:

- **1) Protocol:** How to identify ideal storage locations in a distributed key-value store?
- **Protocol:** How to reduce the traffic for maintenance messages?
- 3 Statistics: How to compute summaries over distributed data streams?

Communication Patterns in P2P Systems

Solving a problem contiguously

General Thoughts

Properties of P2P systems and possible circumventions for **algorithms** and **protocols** running in P2P systems:

- Unavailability of peers
 - ⇒ do not communicate with a fixed set of neighbors, but introduce randomness

- ⇒ gossip protocol randomized assignment of communicating parties
- Stored data is changing or unavailable
 - ⇒ give up demand of exactness
 - ⇒ opens a variety of new (approximate) approaches for the same problem

Communication between poors via the gossin protoco

- Communication between peers via the gossip protocol
 - inspired by gossiping in social networks
 randomized peer sampling that runs periodically, either
 - by a node itself from its list of known neighbors
 - or a node-independent routine connecting two nodes
 - as soon as connection has been established nodes exchange their local data

Gossiping

Communication between peers via the gossip protocol

- inspired by gossiping in social networks
- randomized peer sampling that runs periodically, either
 - by a node itself from its list of known neighbors
 - or a node-independent routine connecting two nodes
- as soon as connection has been established nodes exchange their local data

Histograms

Advantages:

- Epidemic-like spread of information
- 2 Simplicity: no synchronization, recovery, or storage of neighborhoods
- 3 Robustness for unsteady networks: toleration of lost messages, since local data is communicated to many nodes
- 4 Scalability: no storage of neighborhood sets that scale with the net size, assignment to any node from the whole network

3 types of information exchange: pull (receive), push (send) or push-pull (send and receive)

Figure: Peer (blue) to whom another peer (black) is assigned.

How to assign 2D network coordinates to peers?

⇒ Frank Dabek et al. 2004: Vivaldi: A Decentralized Network

Coordinate System

- assigns synthetic coordinates to peers s.t. their distances correspond to the average round-trip times between them
- works for pure P2P networks
- might be piggy-backed or use the gossip protocol
- Vivaldi computes the solution of a spring-relaxation problem

Network Coordinates

What each node does:

- 1 initially, assigns itself random 2D-coordinates, e.g. $x \in \mathbb{R}^2$ and an error e=1.f
- 2 on input $y \in \mathbb{R}^2$, round-trip time rrt_{xy} , e_y , a node relaxes the difference between rrt_{xy} and $\|x-y\|$ by moving its own coordinates towards or away from y
- 3 repeat for several gossiping rounds

$$(rtt - ||x - y||) \times u(x - y)$$

Network Coordinates

```
proc vivaldi(float rtt, float[] y, float e_y] \equiv
  comment: weight balances local and remote error
  w := e_x/(e_x + e_y)
  comment: relative error of incoming sample
  e_s := \left| \|x - y\| - rtt \right| / rtt
  comment: update wma of local error
  e_x := e_s \times c_e \times w + e_x \times (1 - c_e \times w)
  comment: update local coordinates
  \delta := c_c \times w
  x := x + \delta \times (rtt - ||x - y||) \times u(x - y)
end
```


Task Identification of Storage Locations

- 1 identification of data centers, given that each node knows its spatial coordinates
 - can be seen as clusters of nodes in a P2P network

Figure: nodes in a network and their cluster assignments

Histograms

Task Identification of Storage Locations

- 1 identification of data centers, given that each node knows its spatial coordinates
 - can be seen as clusters of nodes in a P2P network
- 2 storage of k replicas, ideally
 - in k different clusters \Leftarrow correlation of node failures
 - with maximum distances between each other
 - not on singletons, but in dense regions representing 1/kth

- nodes
- nodes storing replicates

Given a data set $X \in \mathbb{R}^{n \times d}$, goal:

- group items according to their reported features
- items with high similarities should end up in same class
- data (not model) driven
- control quality by giving a distance dimension or prescribe final number of clusters

Figure: Matlab's Iris data set

Clustering Taxonomy of clustering approaches

end

Clustering K-means - Global

```
proc KMeans(float[][] X, int k, float \gamma):
   n := |X|
   c_l \stackrel{\$}{\leftarrow} X \quad \forall l \in [k]
   label(i) := \arg\min_{l \in [k]} ||X(i) - c_l|| \quad \forall i \in [n]
   c^{old} := c
   comment: M-step, re-estimate centroids
  c_l := \frac{1}{|\{i|label(i)==l\}|} \sum_{label(i)==l} X_i \quad \forall l \in [k]
   while \max_{j} \{ \|c_{j}^{old} - c_{j}\| \} \ge \gamma
           c^{old} := c
           comment: E-step, compute expected label
           label(i) := \arg\min_{l \in [k]} ||X_i - c_l|| \quad \forall i \in [n]
           comment: M-step, re-estimate centroids
           c_l := \frac{1}{|\{i:label(i)==l\}|} \sum_{label(i)==l} X_i \quad \forall l \in [k]
   end
```

Clustering

0000000000000000

Method: iteratively **improve** centroids' positions s.t. the squared error is minimized

- $\mathbf{0}$ choose k centroids randomly
- 2 E-step: assign each data point to its closest centroid
- M-step: re-estimate centroids
- 4 iterate E-step and M-step as long as centroids change significantly

Figure: from Bishop: Pattern Recognition and Machine Learning

Clustering Agglomerative Clustering – Global

```
proc \theta-AggloClustering(float[][] data, float \theta)
   n := |data|
   C := data
   w_i := 1/|data| \quad \forall i \in [n]
   (i,j) := \arg\min_{\substack{i,j\\i\neq j}} \|c_i - c_j\|
   while ||c_i - c_i|| < \theta
            (C, w) := \mathsf{Merge}(C, w, i, j)
            (i,j) := \arg\min_{\substack{i,j\\i\neq j}} \|c_i - c_j\|
   end
   return (C, w)
end
         proc Merge(float[][] C, float[] w, int i, int j)
           C := C + \left[ \left( c_i \cdot w_i + c_i \cdot w_i \right) / \left( w_i + w_i \right) \right]
           w := w + [w_i + w_i]
           comment: delete original entries
           delete(C, [i, j])
           delete(w, [i, j])
           return(C, w)
```

- 1 start with the whole data, C = data and relative sizes $w = \left(\frac{1}{|C|}\right)_{\{1:|C|\}}$
- 2 as long as there are two centroids being 'close enough', merge them into one centroid

Naive: To receive k cluster for replica storage – stop when $|C| == k_{algo}$

```
proc KAggloClustering(float[][] data, int k)
  n := |data|
  C := data
  w_i := 1/|data| \quad \forall i \in [n]
  (i,j) := \arg\min_{i,j} \|c_i - c_j\|
  while |C| > k
         (C, w) := \mathsf{Merge}(C, w, i, j)
         (i,j) := \arg\min_{i,j} \|c_i - c_j\|
  end
  return (C, w)
end
```

Clustering

Agglomerative clustering – choice of $k_{algo}\,$

Result: for $k_{algo} \neq k_{data}$ we loose ability of cluster detection

Challenges

We can use agglomerative clustering to detect the latent k_{data}

(i) if $k_{data} < k_{algo}$ place centroid into real cluster, e.g. the k_{algo} biggest ones (easy to solve)

Challenges

We can use agglomerative clustering to detect the latent k_{data}

- (i) if $k_{data} < k_{algo}$ place centroid into real cluster, e.g. the k_{algo} biggest ones (easy to solve)
- (ii) if $k_{data}>k_{algo}$ place centroids s.t. they represent equal fractions of the cluster

Challenge #2 Closer look

Observation

 K-agglomerative clustering ends up with many centroids in the outskirts

Clustering

 outlying centroids result from very few merges

Reason

- dense regions: high probability of finding close $neighbors \Rightarrow many merges$
- non-dense regions: low probability of finding neighbors nearby \Rightarrow no further agglomeration

Observation

- K-agglomerative clustering ends up with many centroids in the outskirts
- outlying centroids result from very few merges

Reason

- dense regions: high probability of finding close neighbors ⇒ many merges
- non-dense regions: low probability of finding neighbors nearby ⇒ no further agglomeration

compared to K-means:

Challenge #2 Solution

Boost agglomeration below 1/k by incorporating the **relative sizes** into the selection

old selection criterion

$$(\hat{i}, \hat{j}) = \arg\min_{\substack{i,j\\i < j}} \{ \|c_i - c_j\| \}$$

new selection criterion

$$(\hat{i}, \hat{j}) = \arg\min_{\substack{i,j \ i < j}} \{ \|c_i - c_j\| / D + \delta \cdot \sigma(w_i + w_j - 1/k, z) \}$$

with
$$\sigma(x,z) = \frac{1}{1+e^{-z \cdot x}}$$
.

Challenge #2 Solution

Boost agglomeration below 1/k by incorporating the **relative sizes** into the selection

new selection criterion

$$(\hat{i}, \hat{j}) = \arg\min_{\substack{i,j \\ i < j}} \{ \|c_i - c_j\| / D + \delta \cdot \sigma(w_i + w_j - 1/k, z) \}$$

KAggloPlusClustering

Example $k_{data} < k_{algo}$

(i) K Aggior idseriastering

(j) k-Means

KAggloPlusClustering

Example $k_{data} < k_{algo}$


```
precondition: input C is the result of standard agglomerative
clustering stopped very early (|C| \ge k \cdot m)
```

```
\operatorname{proc} 2\mathsf{SKSub2}(\operatorname{float}[\ ][\ ]\ C, \operatorname{float}[\ ]\ w, \operatorname{int}\ k, \operatorname{float}\ \theta) \equiv
   (C_{latent}, w_{latent}, S) := \mathsf{ThetaAggloClustering}(C, w, \theta)^{\mathsf{T}}
   comment: if k_{data} \ge k return k largest centroids
   do if |C_{latent}| > k
           C := C_{latent}[\mathsf{findKLargest}(w_{latent}, k)]
           w := w_{latent}[\mathsf{findKLargest}(w_{latent}, k)]
           return (C, w, S)
        comment: else agglomerate with new merge criterion
        (C, w, S) := \mathsf{KAggloPlusClustering}(C, w, k)
        \underline{\mathbf{return}} \ (C, w, S)
   end
```

Error

Measuring the quality of clusters

correctness of centroid positions c = real and $\hat{c} = \text{estimated}$ centroids

closest centroids with respect to position and size

equally sized centroids

$$err_{eq} = \frac{1}{k} \sum_{i} (\widehat{w_i} - 1/k)^2$$

deviation from equally sized clusters

well-separation of centroids

$$err_{sep} = \frac{2}{k(k-1)} \sum_{\substack{ij \ i < j}} (1 - ||c_i - c_j||/D)$$

penalty for low distances between centroids

- k_{data} , k_{algo} sampled from [2;8]
- ullet 2D data points sampled from k_{data} normal distributions

- relative cluster sizes sampled from [.2; .7]
- data set size at least 100
- errors averaged over at least 100 rounds

Global Clustering Results

error	K-agglo-	3S K-agglomerative			K-means
	merative	$\delta = .75$	$\delta = 1$	$\delta = 2$	
	(naive)	z = .5	z=4	z = 8	
pos	1.0000	0.1359	0.3953	0.4790	0.8672
eq	1.0000	0.5949	0.2653	0.1887	0.3129
sep	0.4663	0.8220	0.9515	1.0000	0.8878

Histograms

Table: position, equality and separation errors for 1S/3S K-agglomerative clustering with three parameter sets and K-means, rows are divided by their maxima

z sharpness, δ weight of sigmoid part

Goal: each node receives a global view of clusters in the network

• initially each node knows only its local data

```
\begin{array}{ll} \text{proc Initialize} &\equiv \\ & (C,w) := ([self.data], \frac{1}{|self.data|} [1.0]_{|self.data|}) \\ \text{end} \end{array}
```

- initially each node knows only its local data
- periodically a node sends its locally estimated centroids using a gossip protocol

```
\begin{array}{l} \mathsf{proc} \ \mathsf{Timer} \ \equiv \\ peer := \mathsf{SelectRandomPeer}() \\ \underline{\mathbf{sendTo}} \ peer : \mathsf{Shuffle}(C, w) \\ \mathsf{end} \end{array}
```

- initially each node knows only its local data
- periodically a node sends its locally estimated centroids using a gossip protocol
- upon Shuffle message (passive node) update local centroids

- initially each node knows only its local data
- periodically a node sends its locally estimated centroids using a gossip protocol
- upon Shuffle message (passive node) update local centroids
- upon Shuffle message (active node) update local centroids, approximate part: cluster on two sets of estimated centroids!

```
\begin{array}{ll} \operatorname{proc ShuffleResp}(C_{rmt},w_{rmt}) \ \underline{\mathbf{from}} \ p \equiv \\ (C,w) := \operatorname{Update}(C + C_{rmt},w + w_{rmt}) \\ \end{array} end
```

- initially each node knows only its local data
- periodically a node sends its locally estimated centroids using a gossip protocol
- upon Shuffle message (passive node) update local centroids
- upon Shuffle message (active node) update local centroids, approximate part: cluster on two sets of estimated centroids!
- Update mk-agglomerative clustering

```
\begin{array}{l} \mathsf{proc} \; \mathsf{Update} \; \equiv \\ (C,w) := \mathsf{KAggloClustering}(C,w, {\color{red} m \cdot k}) \\ (C,w) := \mathsf{Normalize}(C,w) \\ \mathsf{end} \end{array}
```

Goal: each node receives a global view of clusters in the network

- initially each node knows only its local data
- periodically a node sends its locally estimated centroids using a gossip protocol
- upon Shuffle message (passive node) update local centroids
- upon Shuffle message (active node) update local centroids, approximate part: cluster on two sets of estimated centroids!
- Update mk-agglomerative clustering
- upon Request message reduce set of centroids proc Request from $p \equiv$ $(C_{reg}, w_{reg}, S) := 2\mathsf{SKSub2}(C, w, k, \theta)$ **<u>sendTo</u>** p : RequestResponse(C_{reg}, w_{reg})

end

In 2009 Datta et al. presented an approximate distributed K-means clustering algorithm

 similar to 2SP2P K-agglomerative clustering: exchange local estimates

- two kinds of centroids: V_l (E-step) and C_l (result of M-step)
- partial synchronization: node enters new iteration together with its neighbors

Algorithm

Introduction

• **initially** all nodes start with the same set (C_1, w_1)

Algorithm

Introduction

- **initially** all nodes start with the same set (C_1, w_1)
- **periodically** a node requests $(C_I^{\gamma}, w_I^{\gamma})$ from its neighbors Γ

Algorithm

- **initially** all nodes start with the same set (C_1, w_1)
- **periodically** a node requests $(C_l^{\gamma}, w_l^{\gamma})$ from its neighbors Γ
- ullet upon reply of all neighbors, node N^i computes

$$v_{j,l+1}^i = \frac{\sum_{N_k \in Wait^i} c_{j,l}^k w_{j,l}^k}{\sum_{N_k \in Wait^i} w_{j,l}^k}$$

Algorithm

- **initially** all nodes start with the same set (C_1, w_1)
- **periodically** a node requests $(C_l^{\gamma}, w_l^{\gamma})$ from its neighbors Γ
- ullet upon reply of all neighbors, node N^i computes

$$v_{j,l+1}^i = \frac{\sum_{N_k \in Wait^i} c_{j,l}^k w_{j,l}^k}{\sum_{N_k \in Wait^i} w_{j,l}^k}$$

- enter a new K-means iteration l = l + 1
 - ullet E-step: assignment of local data to its closest centroid $v_{j,l}$
 - ullet M-step: reccompute $C_{j,l}$ with respect to local data set

Algorithm

- **initially** all nodes start with the same set (C_1, w_1)
- **periodically** a node requests (C_l^γ, w_l^γ) from its neighbors Γ
- ullet upon reply of all neighbors, node N^i computes

$$v_{j,l+1}^i = \frac{\sum_{N_k \in Wait^i} c_{j,l}^k w_{j,l}^k}{\sum_{N_k \in Wait^i} w_{j,l}^k}$$

- enter a new K-means iteration l = l + 1
 - \bullet E-step: assignment of local data to its closest centroid $\boldsymbol{v}_{j,l}$
 - ullet M-step: reccompute $C_{j,l}$ with respect to local data set

Disadvantage of synchronization:

- N^i can only process centroids from nodes being in the same iteration \Rightarrow wait until all neighbors completed round l
- nodes might request older centroids \Rightarrow store $C_{j,t} \forall t \in [0;l]$

- position error per node between centroids from global clustering and local centroids
- \bullet convergence of err_{eq}, err_{sep} follows from convergence of err_{pos}

$$err_{pos}^{P2P}(t) = \frac{1}{R} \sum_{r=1}^{R} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{kD} \sum_{l=1}^{k} \arg\min_{j} \{ \|c_{l}^{i}(t) - c_{j}(t)\| \cdot |w_{l}^{i}(t) - w_{j}(t)| \}$$

Introduction

Histograms

Properties	2SP2P K-	LSP2P K-means
1 Toperties	agglomerative	
synchronization of iterations required	no	yes
k must be fixed during computing phase	no	yes
order of centroids and counts must be kept	no	yes
fixed		
robustness for outliers	yes	no
bandwidth costs	O(mkIL)	O(kIL)
computational costs	$\mathcal{O}(Im^2k^2+D^2)$	$\mathcal{O}(IkD)$
memory costs	during exchange	history and poll ta-
	phase: $\Omega(mk)$	ble: $\mathcal{O}(I(k+L))$

I=# number of iterations, L=# of neighbors contacted per round, k=# final centroids, m= scale parameter, D= size of local data set

Part2: How to compute quantiles over distributed data streams?

Histograms

Motivation

Given a set of distributed data streams, e.g.

- servers storing response times
- sensors storing temperature measurements hourly

Naive approach – computing quantiles on single sources (and merge them) does not work!

Better:

- 1 compute a robust summary of local data set an equi-probable histogram
- 2 gossip and merge data summaries

Question: Is randomized merging with no upper bounds on the number of merging operations still robust?

Histogram

equi-width and equi-probable

(n) data distribution

(o) equidistant histogram

(p) equiprobable histogram

Quantile

Given $\phi \in [0,1]$ and a sorted data set X with |X|=n, the ϕ -quantile is the value $x \in X$ at position (int) ϕn .

E.g.

- 0-quantile is $\min(X)$
- 1-quantile is $\max(X)$
- 0.5-quantile is the median of X
- 1. ϕ -quantile is the inverse of the cumulative distribution function (cdf) $P(X \leq x)$
- 2. an equiprobable histogram can be composed by a series of ϕ -quantiles

 X_{corted}

Figure: ϕ -quantile and cdf, $\phi \in [0; 1]$

Q-Digest

- incomplete binary tree, whose structure corresponds to an equiprobable histogram, except that the bins are overlapping
- each node v fulfills the **q-digest property**:

$$v.count \leq \lfloor n/k \rfloor$$
 (1)

$$v.count + v_p.count + v_s.count > \lfloor n/k \rfloor$$
 (2)

- data range $X \in [1; \sigma = 2^m]$
- decompression k

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

- compression function ensures *q-digest property*
- example: $k = 5, n = 15, \sigma = 8$, $X = \{1, 3_4, 4_6, 5, 6, 7, 8\}$
- procedure: compress nodes bottom-up that violate $v.count \leq \lfloor n/k \rfloor$ or $v.count + v_p.count + v_s.count > \lfloor n/k \rfloor$ by accumulating child counts into parent node

- compression function ensures *q-digest property*
- example: $k = 5, n = 15, \sigma = 8, X = \{1, 3_4, 4_6, 5, 6, 7, 8\}$
- procedure: compress nodes bottom-up that violate $v.count \leq \lfloor n/k \rfloor$ or $v.count + v_p.count + v_s.count > \lfloor n/k \rfloor$ by accumulating child counts into parent node

Compression Choice of Decompression Factor k

- q-digest stores at most 3k nodes
- relation of decompression and error:
 - setting: $X_n \sim \mathcal{N}(\mu, \sigma_{\mathcal{N}}), \phi \in [0:.1:1]$
 - error between equiprobable histogram and histogram computed on a single q-digest

Histograms

00000000000

Q-Digest Merging

```
proc Merge (qdigest Q_1, int n_1, qdigest Q_2, int n_2, int k)\equiv Q:=Q_1\cup Q_2
Compress(Q,n_1+n_2,k)
return Q
end
```



```
proc Merge (qdigest Q_1, int n_1, qdigest Q_2, int n_2, int k)\equiv Q:=Q_1\cup Q_2 Compress(Q,n_1+n_2,k) return Q end
```


Quantile and Histogram Computation

```
proc quantile (qdigest Q, float \phi) \equiv
  L := postorder(Q.tree)
  s := 0
  for v \in L do
      s := s + v.count
      if s >= \phi \cdot Q.n
         return rightLeaf(v, \sigma)
      fi
  end
  return rightLeaf(L.end, \sigma)
end
```

```
proc histogramEquiProb (\mathbf{qdigest}\ Q, \dots
   int \sigma, float \tau) \equiv
   \phi := [0:\tau:1]
   comment: determine 1/\tau + 1 quantiles
   q_i := \mathsf{quantile}(Q, \phi_i) \ \forall i \in [1..|\phi|]
   return q
end
```


Clustering

Evaluation Gossiping of Q-digests

```
\begin{array}{l} \operatorname{proc\ Initialize}(data,k,\sigma) \ \equiv \\ leaves := \operatorname{buildtree}(data,\sigma); \\ n := |data| \\ Q := \operatorname{Compress}(leaves,n,k) \\ \operatorname{end} \\ \operatorname{proc\ Timer} \ \equiv \\ peer := \operatorname{SelectRandomPeer}() \\ \underline{\operatorname{sendTo}} \ peer : \operatorname{Shuffle}(Q,n) \\ \operatorname{end} \end{array}
```

```
\begin{array}{l} \operatorname{proc\ Shuffle}(Q_{rmt},n_{rmt})\ \underline{\mathbf{from}}\ p \equiv \\ \underline{\mathbf{sendTo}}\ p: \operatorname{ShuffleResponse}(Q) \\ Q:= \operatorname{Merge}(Q,n,Q_{rmt},n_{rmt}) \\ \operatorname{end} \\ \operatorname{proc\ ShuffleResp}(Q_{rmt},n_{rmt})\ \underline{\mathbf{from}}\ p \equiv \\ (Q,n):= \operatorname{Merge}(Q,n,Q_{rmt},n_{rmt}) \\ \operatorname{end} \\ \end{array}
```

```
\begin{array}{ll} \mathsf{proc} \ \mathsf{Request}(\tau) \ \underline{\mathbf{from}} \ p \ \equiv \\ H := \mathsf{histogramEquiProb}(Q, \sigma, \tau) \\ \underline{\mathbf{sendTo}} \ p : \mathsf{RequestResponse}(H) \\ \mathsf{end} \end{array}
```

Gossiping of Q-digests Error

Error between randomly merged q-digest (gossiped) or deterministic merging along a routing tree (routed)

$$e_{hist}(H_1, H_2) := \frac{1}{\sigma^2 B} \sum (h_{1,i} - h_{2,i})^2$$

(c) Gossiping.

(d) Routing Tree.

Gossiping of Q-digests Error

Error between randomly merged q-digest (gossiped) or deterministic merging along a routing tree (routed)

$$e_{hist}(H_1, H_2) := \frac{1}{\sigma^2 B} \sum (h_{1,i} - h_{2,i})^2$$

Setup:

- $\bullet \ 2^{10} \ {\rm sensors/nodes} \ {\rm storing} \ 2^{10} \ {\rm items} \ {\rm sampled} \ {\rm randomly} \ {\rm either} \ {\rm from}$
 - ① one global normal distribution $\mathcal{N}(\mu, \sigma_{\mathcal{N}})$ with $\mu \in [\sigma/4; 3\sigma/4]$ and $\sigma_{\mathcal{N}}$
 - 2 2^{10} different normal distributions $\mathcal{N}^i(\mu^i, \sigma^i_{\mathcal{N}})$ with $\mu^i \in [\sigma/4; 3\sigma/4]$, $\sigma^i_{\mathcal{N}} \in [1; \sigma/4]$, and $i \in [1; 2^{10}]$
- initially each node computes a q-digest on its local data set
- in each round q-digests are exchanged, merged, and replace the local ones

Gossiping of Q-digests Result 1

Figure: Data distributed according to one common normal distribution.

Gossiping of Q-digests Result 2

Figure: Data distributed according to s different normal distribution.

Conclusions

- generally: error for gossiping converges towards some k-dependent constant
- one global distibution: merging q-digests randomly increases the error negligible
- different distributions for each sensor:
 - same error as finite, deterministic merging along a routing tree

- faster convergence for gossiping
- consequence for streams: one could proceed as follows
 - collect data until buffer is filled
 - 2 compute q-digest on buffer and merge it with local one
 - 3 clear buffer, goto step 1
 - meanwhile gossip and merge local with remote q-digests

Traffic in P2P Networks

Overlays: peers are transient

- nodes join and have to be linked
- nodes leave and have to be deregistered, replaced, etc.
- ⇒ messages for checking presence/abscence of nodes have to be sent permanently

Histograms

 heuristics could help to reduce their frequency, e.g. adjust frequency to average lifetime of nodes

Weibull Distribution

Introduction

- first identified by Maurice Fréchet in 1927, described in detail by Waloddi Weibull
- wide range application: breaking strength of material, size distribution of particles, failure probability of electronic devices
- depending on input parameters k>0 (shape) and $\lambda>0$ (scale) the Weibull distribution may assume the shape of an exponential, normal or Rayleigh distribution

The 3-parameter cdf F with θ (location) for the Weibull function is

$$F(x; k, \lambda, \theta) := \begin{cases} 1 - e^{-(\frac{x-\theta}{\lambda})^k} &, x \ge \theta \\ 0 &, x < \theta \end{cases}$$

Weibull Distribution

pdf and mean

Differentiating F with respect to x results in the *frequency* or *probability density function* f

$$f(x; k, \lambda, \theta) = \frac{dF}{dx} = \begin{cases} \frac{k}{\lambda} \left(\frac{x-\theta}{\lambda}\right)^{k-1} e^{-\left(\frac{x-\theta}{\lambda}\right)^k} &, x \ge \theta \\ 0 &, x < \theta \end{cases}$$

The mean of the Weibull function is

$$\mu = \lambda \Gamma(1 + 1/k)$$

with
$$\Gamma(x) := \int_0^\infty t^{x-1} \exp^{-t} dt$$

Weibull Distribution

The Weibull frequency distribution for $\theta=0$

Linear Regression

Given a set of sampled lifetimes, how to determine the missing parameters?

Let $X \in \mathbb{R}^{n \times m}$, $Y \in \mathbb{R}^{n \times 1}$

- with linear relationship $y_i = \alpha_0 + \alpha_1 x_{i,1} + \alpha_2 x_{i,2} + \dots + \alpha_m x_{i,m}$, $\forall i \in [1..n]$
- \bullet goal: determine coefficient vector α s.t. squared error E between samples and regression line is minimal
- prepend column vector 1_n to X s.t. we can write $X\alpha = Y$

$$E = \frac{1}{2}(Y - X\alpha)^{T}(Y - X\alpha) \longrightarrow \min!$$

Linear Regression

Determine root of E's derivation for α :

$$\frac{\partial E}{\partial \alpha} = 0$$

$$\partial \left[\frac{1}{2} (Y - X\alpha)^T (Y - X\alpha) \right] / \partial \alpha = 0$$

$$\frac{1}{2} (-X)^T (Y - X\alpha) + \frac{1}{2} (Y - X\alpha)^T (-X) = 0$$

$$-X^T (Y - X\alpha) = 0$$

$$-X^T Y + X^T X\alpha = 0$$

$$\alpha = (X^T X)^{-1} (X^T Y)$$

Linear Regression Applied to Weibull Cdf

Introduction

Now linearize the Weibull cumulative distribution function F

$$F(x; k, \lambda) = 1 - \exp^{-(x/\lambda)^k}$$
$$-\ln(1 - F(x; k, \lambda)) = (x/\lambda)^k$$
$$\lim \left(-\ln(1 - F(x; k, \lambda))\right) = \underbrace{k \ln x}_{mx} - \underbrace{k \ln \lambda}_{c}$$

The relationship between the double logarithm of F and the logarithm of x is linear! \Rightarrow apply solution of linear regression

Linear Regression Applied to Weibull Cdf

Given a sample x_i , we have the linear relationship

$$\ln(-\ln(1 - F(x_i))) = (\ln x_i \quad 1) \cdot (k \quad c)^T$$

$$\underbrace{\begin{pmatrix} \ln(-\ln(1 - F(x_1))) \\ \ln(-\ln(1 - F(x_2))) \\ \vdots \\ \ln(-\ln(1 - F(x_n)) \end{pmatrix}}_{\tilde{Y}} = \underbrace{\begin{pmatrix} \ln x_1 & 1 \\ \ln x_2 & 1 \\ \vdots & \vdots \\ \ln x_n & 1 \end{pmatrix}}_{\tilde{X}} \binom{k}{c}$$

Plugged into linear regression formula:

$$\begin{pmatrix} k \\ c \end{pmatrix} = (\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T \tilde{Y}$$

Use solution of k, c to compute λ

$$\lambda = \exp^{-c/k}$$

Mean Lifetime Estimation Put Together

Usage in a P2P system running e.g. the Chord protocol

- \bullet Collect some lifetimes X from unavailable peers
- Ω Compute \tilde{X} . \tilde{Y} from X
- **3** Compute $(k \ c)^T$ from linear regression formula
- **4** Compute mean lifetime $\mu = \lambda \Gamma(1 + 1/k)$ from $k, \lambda = \exp^{-c/k}$

Histograms

5 Use μ for adjusting frequency of maintenance messages of protocol

Evaluation – Linear Regression versus Latent Solution

- scale λ fixed, shape k taken with equal probability from [1; 5]
- $data = \mathtt{wblrnd}(\lambda, k) \text{ with } |data| \in [2; 100]$
- μ was computed from parameter estimation using linear regression (LR), Matlab's (M) built-in wblfit, and exact, but latent parameters

Frequency Reduction in Chord

Chord – structured P2P protocol

• nodes arranged in a ring-like structure with I = [0; N] being the identifier space

Histograms

- for routing each node stores a finger table with pointers to successors
- with high probability the look-up for a node is performed with $\log N$ steps

Evaluation Fix Finger Messages in Chord

Periodically for each entry in the finger table a look-up is performed

- a finger table has $\log N$ fingers
- a look-up has costs of $\log N$ steps
- \Rightarrow to refresh a whole finger table costs $O(\log^2 N)$
 - necessity for a refresh depends on average lifetime of peers
- ⇒ make frequency for a refresh dependent on estimated lifetime

Introduction

Oversim – a simulation framework which contains an implementation of Chord

- added function churnRateEstimator to sample lifetimes (from non-responding nodes) and to compute the mean lifetime like described before
- function handleFixFingersTimerExpired is called periodically if the timer for fix finger messages expired, it does
 - ullet call churnRateEstimator and returns μ
 - computes a new frequency from μ which triggers an internal switch for the sending of fix_finger messages

$$frequency = \log^2 \mu$$

Introduction

Oversim provides an interface for collecting statistics for traffic, among them are counters for

Histograms

- maintenance messages
- fixfinger messages
- ping and pingResponse messages
- packets dropped
- one-way hop count

Setup

- steady-state net size: 1024
- measuring time: 5000s
- mean lifetimes in [200; 800]

Evaluation Chord Simulation Results 1

(a) Number of maintenance messages.

(b) Number of fixfinger messages.

Evaluation Chord Simulation Results 2

(c) Number of ping messages.

(d) Number of ping response messages.

700

600

Evaluation Chord Simulation Results 3

10

300

70 60 packets dropped 20 Chord Adaptive Chord

500 lifetime (e) Packets dropped due to unavailable destination.

400

(f) One-way hop count.

Introduction

Thank you, for your attention!