
Introduction Clustering Histograms Lifetime Estimation

Approximate Algorithms for Distributed Systems

Marie Hoffmann

Institut für Informatik
Freie Universität Berlin

March 8, 2013



Introduction Clustering Histograms Lifetime Estimation

Content

1 Introduction

2 Clustering
Clustering
Algorithm

Centralized
Distributed

Evaluation
Results

3 Histograms
Histograms and Quantiles
Q-digest
Evaluation

4 Lifetime Estimation
Weibull Distribution
Parameter Estimation
Evaluation



Introduction Clustering Histograms Lifetime Estimation

Motivation

Peer-to-Peer networks (P2P) – a special class of distributed
systems

• no central infrastructure
managing network, routing,
resource allocation

• nodes are equals, act as
clients and servers with
additional privileges

• typically one routing layer
on top of the physical one

• nodes might enter or leave
at any time

- a lot of traffic for
maintenance



Introduction Clustering Histograms Lifetime Estimation

Motivation

A protocol for P2P systems: Scalaris
• Scalaris: a scalable, transactional, distributed key-value store
• Project initiated by members of Zuse Institute (ZIB)
• for building web services (e.g. distributed data storage,

database, computing)
• Participating nodes are arranged in a ring-like overlay network

peer
ne
ig
hb
ou
r



Introduction Clustering Histograms Lifetime Estimation

Motivation

A protocol for P2P systems: Scalaris

scalable efficient when applied to large situations

distributed storage or computation distributed over the network

replicas e.g. file copied k times, copies (replicas) stored
distributed over the network

transactional information processing divided into indivisible
operations

key-value store data access via key

peer-to-peer level

replication level

transaction level



Introduction Clustering Histograms Lifetime Estimation

Motivation
Main Questions

We focus on three questions that appear in P2P systems:

1 Protocol: How to identify ideal storage locations in a
distributed key-value store?

2 Protocol: How to reduce the traffic for maintenance
messages?

3 Statistics: How to compute summaries over distributed data
streams?



Introduction Clustering Histograms Lifetime Estimation

Communication Patterns
in P2P Systems

Solving a problem contiguously

3.1 Quantiles

root node normal peers

(a) Routing tree. Data is summarized by par-
ent nodes along the route.

super-peer normal peers

(b) Super-peer. A single node collects data
summaries from all nodes of the network.

normal peers

(c) Gossiping. Each node communi-
cates with a randomly chosen neigh-
bor.

Figure 3.1: Strategies of communicating information in a network.

32

(c) Routing tree.

3.1 Quantiles

root node normal peers

(a) Routing tree. Data is summarized by par-
ent nodes along the route.

super-peer normal peers

(b) Super-peer. A single node collects data
summaries from all nodes of the network.

normal peers

(c) Gossiping. Each node communi-
cates with a randomly chosen neigh-
bor.

Figure 3.1: Strategies of communicating information in a network.

32

(d) Super-Peer.

3.1 Quantiles

root node normal peers

(a) Routing tree. Data is summarized by par-
ent nodes along the route.

super-peer normal peers

(b) Super-peer. A single node collects data
summaries from all nodes of the network.

normal peers

(c) Gossiping. Each node communi-
cates with a randomly chosen neigh-
bor.

Figure 3.1: Strategies of communicating information in a network.

32

(e) Gossiping.



Introduction Clustering Histograms Lifetime Estimation

General Thoughts

Properties of P2P systems and possible circumventions for
algorithms and protocols running in P2P systems:

• Unavailability of peers
⇒ do not communicate with a fixed set of neighbors, but
introduce randomness
⇒ gossip protocol – randomized assignment of
communicating parties

• Stored data is changing or unavailable
⇒ give up demand of

::::::::
exactness

⇒ opens a variety of new (approximate) approaches for the
same problem



Introduction Clustering Histograms Lifetime Estimation

Gossiping

Communication between peers via the gossip protocol

• inspired by gossiping in social networks
• randomized peer sampling that runs periodically, either

• by a node itself from its list of known neighbors
• or a node-independent routine connecting two nodes

• as soon as connection has been established – nodes exchange
their local data

Advantages:

1 Epidemic-like spread of information

2 Simplicity: no synchronization, recovery, or storage of
neighborhoods

3 Robustness for unsteady networks: toleration of lost messages,
since local data is communicated to many nodes

4 Scalability: no storage of neighborhood sets that scale with
the net size, assignment to any node from the whole network



Introduction Clustering Histograms Lifetime Estimation

Gossiping

Communication between peers via the gossip protocol

• inspired by gossiping in social networks
• randomized peer sampling that runs periodically, either

• by a node itself from its list of known neighbors
• or a node-independent routine connecting two nodes

• as soon as connection has been established – nodes exchange
their local data

Advantages:

1 Epidemic-like spread of information

2 Simplicity: no synchronization, recovery, or storage of
neighborhoods

3 Robustness for unsteady networks: toleration of lost messages,
since local data is communicated to many nodes

4 Scalability: no storage of neighborhood sets that scale with
the net size, assignment to any node from the whole network



Introduction Clustering Histograms Lifetime Estimation

Gossiping

3 types of information exchange: pull (receive), push (send) or
push-pull (send and receive)

pu
sh

pu
ll

Figure: Peer (blue) to whom another peer (black) is assigned.



Introduction Clustering Histograms Lifetime Estimation

Network Coordinates

How to assign 2D network coordinates to peers?
⇒ Frank Dabek et al. 2004: Vivaldi: A Decentralized Network
Coordinate System

• assigns synthetic coordinates to peers s.t. their distances
correspond to the average round-trip times between them

• works for pure P2P networks

• might be piggy-backed or use the gossip protocol

• Vivaldi computes the solution of a spring-relaxation problem

x y

Introduction Clustering Results Quantiles Lifetime Estimation References

Network Coordinates

How to assign 2D network coordinates to peers given round trip
times?

1.2 Vivaldi

node (see Algorithm 1 below).

Algorithm 1 Vivaldi: Assignment of Network Coordinates.

proc vivaldi(float rtt,float[ ] y,float ey) ≡
comment: weight balances local and remote error
w := ex/(ex + ey)
comment: relative error of incoming sample
es :=

���x − y� − rtt
��/rtt

comment: update wma of local error
ex := es × ce × w + ex × (1 − ce × w)
comment: update local coordinates
δ := cc × w
x := x + δ ×

�
rtt − �x − y�

�
× u(x − y)

end

3

Marie Hoffmann Algorithms for P2P Networks



Introduction Clustering Histograms Lifetime Estimation

Network Coordinates

What each node does:

1 initially, assigns itself random 2D-coordinates, e.g. x ∈ R2

and an error e = 1.f

2 on input y ∈ R2, round-trip time rrtxy, ey, a node relaxes the
difference between rrtxy and ‖x− y‖ by moving its own
coordinates towards or away from y

3 repeat for several gossiping rounds

x y

Introduction Clustering Results Quantiles Lifetime Estimation References

Network Coordinates

How to assign 2D network coordinates to peers given round trip
times?

1.2 Vivaldi

node (see Algorithm 1 below).

Algorithm 1 Vivaldi: Assignment of Network Coordinates.

proc vivaldi(float rtt,float[ ] y,float ey) ≡
comment: weight balances local and remote error
w := ex/(ex + ey)
comment: relative error of incoming sample
es :=

���x − y� − rtt
��/rtt

comment: update wma of local error
ex := es × ce × w + ex × (1 − ce × w)
comment: update local coordinates
δ := cc × w
x := x + δ ×

�
rtt − �x − y�

�
× u(x − y)

end

3

Marie Hoffmann Algorithms for P2P Networks



Introduction Clustering Histograms Lifetime Estimation

Network Coordinates

1.2 Vivaldi

node (see Algorithm 1 below).

Algorithm 1 Vivaldi: Assignment of Network Coordinates.

proc vivaldi(float rtt,float[ ] y,float ey) ≡
comment: weight balances local and remote error
w := ex/(ex + ey)
comment: relative error of incoming sample
es :=

���x − y� − rtt
��/rtt

comment: update wma of local error
ex := es × ce × w + ex × (1 − ce × w)
comment: update local coordinates
δ := cc × w
x := x + δ ×

�
rtt − �x − y�

�
× u(x − y)

end

3



Introduction Clustering Histograms Lifetime Estimation

Part 1: How to identify ideal storage
locations in a distributed key-value
store?

1.2 Clustering Approaches

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

(a) kalgo < kdata, centroids are placed in between two clusters in no man’s land

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

(b) kalgo == kdata, centroids from agglomerative clus-
tering perfectly meet latent centroids

−0.5 0 0.5 1 1.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c) kalgo > kdata, one centroid repre-
sents the core of the cluster, the others
represent small fractions of the outskirts

Figure 1.6: data (black dots) and centroids (red circles) estimated by agglomerative clustering
with fixed k

12



Introduction Clustering Histograms Lifetime Estimation

Task
Identification of Storage Locations

1 identification of data centers, given that each node knows its
spatial coordinates

• can be seen as clusters of nodes in a P2P network

2 storage of k replicas, ideally

• in k different clusters ⇐ correlation of node failures
• with maximum distances between each other
• not on singletons, but in dense regions representing 1/kth

Task Techniques Algorithm Results References

Task
Requirements

1 identification of data centers
• can be seen as clusters of nodes in a P2P network

2 storage of k identical items (replica), ideally

• in k different clusters ⇐ correlation of node failures
• with maximum distances between each other
• not on singletons

a) b)

1 11
1

22222 2

3

4 44 444
4444

nodes
num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4]num ∈ [1; 4] nodes with cluster assignment

Marie Hoffmann Distributed Clustering over a P2P Network

Figure: nodes in a network and their cluster assignments



Introduction Clustering Histograms Lifetime Estimation

Task
Identification of Storage Locations

1 identification of data centers, given that each node knows its
spatial coordinates

• can be seen as clusters of nodes in a P2P network
2 storage of k replicas, ideally

• in k different clusters ⇐ correlation of node failures
• with maximum distances between each other
• not on singletons, but in dense regions representing 1/kth

Task Techniques Algorithm Results References

Task
Requirements

1 identification of data centers
• can be seen as clusters of nodes in a P2P network

2 storage of k identical items (replica), ideally
• in k different clusters ⇐ correlation of node failures

• with maximum distances between each other
• not on singletons

a) b)

nodes
nodes storing replicates

Marie Hoffmann Distributed Clustering over a P2P Network
Figure: Distribution of replicas



Introduction Clustering Histograms Lifetime Estimation

Clustering
Data analysis tool

Given a data set X ∈ Rn×d, goal:
• group items according to their reported features
• items with high similarities should end up in same class
• data (not model) driven
• control quality by giving a distance dimension or prescribe

final number of clusters

!!

"

!

!"#$

"

"#$

!!

!"#$

"

"#$

!

%!%&

%
'

!! !"#$ " "#$
!"#(

!"#)

!"#&

"

"#&

"#)

%!

%
&

!! !"#$ " "#$
!!

!"#$

"

"#$

!

%!

%
'

Figure: Matlab’s Iris data set



Introduction Clustering Histograms Lifetime Estimation

Clustering
Taxonomy of clustering approaches

1.2 Clustering Approaches

1.2 Clustering Approaches

Figure 1.2 shows a taxonomy of clustering techniques for non-distributed systems. Partitional
clustering approaches try to optimize the partitioning of a data set without considering former
partitions (if they proceed iteratively). Data can arbitrarily often switch between different
partitions. Hierarchical techniques split or merge consecutively subsets until a desired number
of subsets is reached or any other termination criterion is fulfilled.

Clustering

Hierarchical

Top-Down

Bottom-Up

Agglomerative

Partitional
Square Error

K-means

Graph
Theoretic

DBSCAN

Mixture
Resolving

Expectation
Maximization

Mode Seeking

Figure 1.2: A taxonomy of clustering approaches and examples

1.2.1 K-Means Clustering

One of the most widespread clustering algorithms is K-means. It uses a partitional approach.
In detail, K-means partitions the data into K disjoint, exhaustive groups, where K is a user-
specified parameter. The goal is to find a partition that minimizes the squared error between
centroids and respective data. Initially K centroids are chosen randomly, their positions
are improved iteratively until a termination threshold is met. Each iteration consists of an
expectation (E-step) and a maximization step (M-step). In the E-step data is assigned to
their closest centroids. The subsequent M-step recomputes the centroids. For the assignment
between data and centroids, a vector of labels has to be stored. Centroids from previous
iterations are dropped.

Since K-Means tries to minimize the distances between data and centroids, it will never
happen that we end up with two centroids side by side. There will always be enough data
between two centroids. K-means is a greedy algorithm for a NP-hard problem, we might

6



Introduction Clustering Histograms Lifetime Estimation

Clustering
K-means – Global

1.2 Clustering Approaches

Algorithm 1 K-Means Clustering

proc KMeans(float[ ][ ] X, int k,float γ) :
n := |X|
cl

$←− X ∀l ∈ [k]
label(i) := arg minl∈[k]�X(i) − cl� ∀i ∈ [n]

cold := c
comment: M-step, re-estimate centroids
cl := 1

|{i|label(i)==l}|
�

label(i)==l Xi ∀l ∈ [k]

while maxj{�cold
j − cj�} ≥ γ

cold := c
comment: E-step, compute expected label for each datum
label(i) := arg minl∈[k]�Xi − cl� ∀i ∈ [n]

comment: M-step, re-estimate centroids
cl := 1

|{i:label(i)==l}|
�

label(i)==l Xi ∀l ∈ [k]

end
end

How does K-means behave if the requested number of centroids does not meet the latent
number of clusters? Figure 1.4 shows typical results. If the requested kalgo < kdata, at least
one centroid will be placed between two centroids to minimize the squared error to the data
of both clusters. For kalgo == kdata, K-means is expected to find the latent centroids. If
kalgo > kdata K-means places several centroids into one cluster, such that they represent
almost equally sized fractions of it.

8

Method: iteratively improve
centroids’ positions s.t. the
squared error is minimized

1 choose k centroids randomly

2 E-step: assign each data
point to its closest centroid

3 M-step: re-estimate
centroids

4 iterate E-step and M-step as
long as centroids change
significantly



Introduction Clustering Histograms Lifetime Estimation

Clustering
K-means – Global

Figure: from Bishop: Pattern Recognition and Machine Learning



Introduction Clustering Histograms Lifetime Estimation

Clustering
K-means – choice of kalgo

1.2 Clustering Approaches

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

(a) kalgo < kdata, centroids are placed in be-
tween two clusters with few nodes nearby

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) kalgo == kdata, centroids from agglomerative
clustering perfectly meet latent centroids

−0.5 0 0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(c) kalgo > kdata, several centroid represent
equal partitions of the cluster

Figure 1.4: data (black dots) and centroids (red circles) estimated by K-means clustering

9

(a) kdata > kalgo

1.2 Clustering Approaches

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

(a) kalgo < kdata, centroids are placed in be-
tween two clusters with few nodes nearby

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) kalgo == kdata, centroids from agglomerative
clustering perfectly meet latent centroids

−0.5 0 0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(c) kalgo > kdata, several centroid represent
equal partitions of the cluster

Figure 1.4: data (black dots) and centroids (red circles) estimated by K-means clustering

9

(b) kdata = kalgo

1.2 Clustering Approaches

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

(a) kalgo < kdata, centroids are placed in be-
tween two clusters with few nodes nearby

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) kalgo == kdata, centroids from agglomerative
clustering perfectly meet latent centroids

−0.5 0 0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(c) kalgo > kdata, several centroid represent
equal partitions of the cluster

Figure 1.4: data (black dots) and centroids (red circles) estimated by K-means clustering

9

(c) kdata < kalgo



Introduction Clustering Histograms Lifetime Estimation

Clustering
Agglomerative Clustering – Global

1.2 Clustering Approaches

Algorithm 2 Agglomerative Clustering

proc θ-AggloClustering(float[ ][ ] data,float θ) ≡
n := |data|
C := data
wi := 1/|data| ∀i ∈ [n]
(i, j) := arg min i,j

i �=j
�ci − cj�

while �ci − cj� < θ
(C, w) := Merge(C, w, i, j)
(i, j) := arg min i,j

i �=j
�ci − cj�

end
return (C, w)

end

Algorithm 3 K-Agglomerative Clustering

proc KAggloClustering(float[ ][ ] data, int k) ≡
n := |data|
C := data
wi := 1/|data| ∀i ∈ [n]
(i, j) := arg min i,j

i �=j
�ci − cj�

while |C| > k
(C, w) := Merge(C, w, i, j)
(i, j) := arg min i,j

i �=j
�ci − cj�

end
return (C, w)

end

Algorithm 4 Weighted Merging of two Centroids

proc Merge(float[ ][ ] C,float[ ] w, int i, int j) ≡
C := C ++ [

�
ci · wi + cj · wj

�
/(wi + wj)]

w := w ++ [wi + wj ]
comment: delete original entries
delete(C, [i, j])
delete(w, [i, j])
return (C, w)

end

If k is equivalent to the latent number of centroids, we expect to detect latent centroids (see
Figure 1.6(b)). The result is the same as if we would have applied θ-agglomerative clustering.
If the input k does not meet the latent kdata, the results are rather unusable. If kalgo < kdata,
centroids might be placed between two clusters. They represent an arithmetic mean, although
any nodes are nearby. It would make more sense to discard the smaller cluster and to return
the centroids of the k largest clusters respectively. We can use the standard procedure of
agglomerative clustering to detect latent centroids.

If kalgo > kdata, we can’t avoid to receive some centroids that are placed close to each other
within a single cluster. But they should neither be placed side by side nor represent only two
or three nodes, since location and node failures are correlative. Centroids within one cluster
should represent a significant proportion of it, ideally 1/kalgo.

K-means provides ‘better’ partionings for kalgo > kdata (see Figure 1.4(c) on page 9). To
overcome the disadvantages of K-agglomerative clustering, we’ll turn the standard routine
into a three-step routine which is triggered by the relationship of kalgo and kdata. For the
estimation of the latent kdata, we will use θ-agglomerative clustering and return the kalgo

largest centroids, if kalgo ≤ kdata. The handling of the case kalgo > kdata will be more
complicated. We want to receive several centroids that are placed into a single cluster and
represent 1/k of the whole data set. To prevent the standard agglomerative approach to focus
on dense regions, we will modify the merging criterion. The next section describes a measure

11

1.2 Clustering Approaches

Algorithm 2 Agglomerative Clustering

proc θ-AggloClustering(float[ ][ ] data,float θ) ≡
n := |data|
C := data
wi := 1/|data| ∀i ∈ [n]
(i, j) := arg min i,j

i �=j
�ci − cj�

while �ci − cj� > θ
(C, w) := Merge(C, w, i, j)
(i, j) := arg min i,j

i �=j
�ci − cj�

end
return (C, w)

end

Algorithm 3 K-Agglomerative Clustering

proc KAggloClustering(float[ ][ ] data, int k) ≡
n := |data|
C := data
wi := 1/|data| ∀i ∈ [n]
(i, j) := arg min i,j

i �=j
�ci − cj�

while |C| > k
(C, w) := Merge(C, w, i, j)
(i, j) := arg min i,j

i �=j
�ci − cj�

end
return (C, w)

end

Algorithm 4 Weighted Merging of two Centroids

proc Merge(float[ ][ ] C,float[ ] w, int i, int j)
C := C ++ [

�
ci · wi + cj · wj

�
/(wi + wj)]

w := w ++ [wi + wj ]
comment: delete original entries
delete(C, [i, j])
delete(w, [i, j])
return (C, w)

end

If k is equivalent to the latent number of centroids, we expect to detect latent centroids (see
Figure 1.6(b)). The result is the same as if we would have applied θ-agglomerative clustering.
If the input k does not meet the latent kdata, the results are rather unusable. If kalgo < kdata,
centroids might be placed between two clusters. They represent an arithmetic mean, although
any nodes are nearby. It would make more sense to discard the smaller cluster and to return
the centroids of the k largest clusters respectively. We can use the standard procedure of
agglomerative clustering to detect latent centroids.

If kalgo > kdata, we can’t avoid to receive some centroids that are placed close to each other
within a single cluster. But they should neither be placed side by side nor represent only two
or three nodes, since location and node failures are correlative. Centroids within one cluster
should represent a significant proportion of it, ideally 1/kalgo.

K-means provides ‘better’ partionings for kalgo > kdata (see Figure 1.4(c) on page 9). To
overcome the disadvantages of K-agglomerative clustering, we’ll turn the standard routine
into a three-step routine which is triggered by the relationship of kalgo and kdata. For the
estimation of the latent kdata, we will use θ-agglomerative clustering and return the kalgo

largest centroids, if kalgo ≤ kdata. The handling of the case kalgo > kdata will be more
complicated. We want to receive several centroids that are placed into a single cluster and
represent 1/k of the whole data set. To prevent the standard agglomerative approach to focus
on dense regions, we will modify the merging criterion. The next section describes a measure

11

1 start with the whole data,
C = data and relative sizes
w =

(
1
|C|
)
{1:|C|}

2 as long as there are two
centroids being ‘close
enough’, merge them into
one centroid

1.2 Clustering Approaches

1.2.2 Agglomerative Clustering

Agglomerative clustering is a hierarchical clustering technique that works bottom-up. Initially
each data point represents a cluster – a singleton. Iteratively the closest clusters are merged.
The merging stops as soon as there are no two clusters whose distance is below some given
threshold θ ∈ R (see Algorithm 2 and subroutine 4). The proceeding can be visualized by
dendrograms, see Figure 1.5. Branch points correspond to centroids.

X

d
is

ta
n
ce

x1 x2 x3 x4 x5

Figure 1.5: Proceeding of agglomerative clustering on 1D data.

There are many ways to define distances between two clusters, e.g.:

Single-Link between the closest pair of nodes from different clusters

Complete-Link between the most remote pair of nodes from different clusters

Centroid method distance between the centroids of two clusters

Looking at the results, they differ in sensitivity for noise or the ability to detect concentric
clusters [6]. Note that for the last method which uses only centroids, the algorithm does not
need to keep track of assigned data points. For merging and recomputation of new centroids
it suffices to store the centroids’ coordinates and their relative sizes. This fact is exploited
by the approximate version for P2P systems[2]. The pseudocode is given in Algorithm 2.

Another distinction from K-means is that we do not need to give the number of centroids.
If θ is chosen properly, agglomerative clustering (from now on θ-agglomerative clustering) is
able to detect the natural number of clusters. But what happens if we simply stop after the
amount of centroids has become k, because we want to receive a particular number? This
first approach is shown in Algorithm 3. We only changed the stopping criterion. In the
following, we will examine whether this measure supplies meaningful results with respect to
our application scenarios.

1.2.2.1 Case Distinction

On a typical data set (‘well’ separated and non-concentric clusters), with high probability
θ-agglomerative clustering will find the exact positions. But what happens if they differ, like
in most use cases? Figure 1.6 shows typical results for different settings for kalgo and kdata.

10



Introduction Clustering Histograms Lifetime Estimation

Clustering
Agglomerative Clustering – Global

Naive: To receive k cluster for replica storage – stop when
|C| == kalgo

1.2 Clustering Approaches

Algorithm 2 Agglomerative Clustering

proc θ-AggloClustering(float[ ][ ] data,float θ) ≡
n := |data|
C := data
wi := 1/|data| ∀i ∈ [n]
(i, j) := arg min i,j

i �=j
�ci − cj�

while �ci − cj� > θ
(C, w) := Merge(C, w, i, j)
(i, j) := arg min i,j

i �=j
�ci − cj�

end
return (C, w)

end

Algorithm 3 K-Agglomerative Clustering

proc KAggloClustering(float[ ][ ] data, int k) ≡
n := |data|
C := data
wi := 1/|data| ∀i ∈ [n]
(i, j) := arg min i,j

i �=j
�ci − cj�

while |C| > k
(C, w) := Merge(C, w, i, j)
(i, j) := arg min i,j

i �=j
�ci − cj�

end
return (C, w)

end

Algorithm 4 Weighted Merging of two Centroids

proc Merge(float[ ][ ] C,float[ ] w, int i, int j)
C := C ++ [

�
C(i) · w(i) + C(j) · w(j)

�
/(w(i) + w(j))]

w := w ++ [wi + wj ]
comment: delete original entries
delete(C, [i, j])
delete(w, [i, j])
return (C, w)

end

If k is equivalent to the latent number of centroids, we expect to detect latent centroids (see
Figure 1.6(b)). The result is the same as if we would have applied θ-agglomerative clustering.
If the input k does not meet the latent kdata, the results are rather unusable. If kalgo < kdata,
centroids might be placed between two clusters. They represent an arithmetic mean, although
any nodes are nearby. It would make more sense to discard the smaller cluster and to return
the centroids of the k largest clusters respectively. We can use the standard procedure of
agglomerative clustering to detect latent centroids.

If kalgo > kdata, we can’t avoid to receive some centroids that are placed close to each other
within a single cluster. But they should neither be placed side by side nor represent only two
or three nodes, since location and node failures are correlative. Centroids within one cluster
should represent a significant proportion of it, ideally 1/kalgo.

K-means provides ‘better’ partionings for kalgo > kdata (see Figure 1.4(c) on page 9). To
overcome the disadvantages of K-agglomerative clustering, we’ll turn the standard routine
into a three-step routine which is triggered by the relationship of kalgo and kdata. For the
estimation of the latent kdata, we will use θ-agglomerative clustering and return the kalgo

largest centroids, if kalgo ≤ kdata. The handling of the case kalgo > kdata will be more
complicated. We want to receive several centroids that are placed into a single cluster and
represent 1/k of the whole data set. To prevent the standard agglomerative approach to focus
on dense regions, we will modify the merging criterion. The next section describes a measure

11



Introduction Clustering Histograms Lifetime Estimation

Clustering
Agglomerative clustering – choice of kalgo

Result: for kalgo 6= kdata we loose ability of cluster detection

1.2 Clustering Approaches

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

(a) kalgo < kdata, centroids are placed in between two clusters in no man’s land

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

(b) kalgo == kdata, centroids from agglomerative clus-
tering perfectly meet latent centroids

−0.5 0 0.5 1 1.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c) kalgo > kdata, one centroid repre-
sents the core of the cluster, the others
represent small fractions of the outskirts

Figure 1.6: data (black dots) and centroids (red circles) estimated by agglomerative clustering
with fixed k

12

(f) kdata > kalgo

1.2 Clustering Approaches

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

(a) kalgo < kdata, centroids are placed in between two clusters in no man’s land

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

(b) kalgo == kdata, centroids from agglomerative clus-
tering perfectly meet latent centroids

−0.5 0 0.5 1 1.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c) kalgo > kdata, one centroid repre-
sents the core of the cluster, the others
represent small fractions of the outskirts

Figure 1.6: data (black dots) and centroids (red circles) estimated by agglomerative clustering
with fixed k

12

(g) kdata = kalgo

1.2 Clustering Approaches

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

(a) kalgo < kdata, centroids are placed in between two clusters in no man’s land

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

(b) kalgo == kdata, centroids from agglomerative clus-
tering perfectly meet latent centroids

−0.5 0 0.5 1 1.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c) kalgo > kdata, one centroid repre-
sents the core of the cluster, the others
represent small fractions of the outskirts

Figure 1.6: data (black dots) and centroids (red circles) estimated by agglomerative clustering
with fixed k

12

(h) kdata < kalgo



Introduction Clustering Histograms Lifetime Estimation

Challenges

We can use agglomerative clustering to detect the latent kdata

(i) if kdata < kalgo place centroid into real cluster, e.g.
the kalgo biggest ones (easy to solve)

(ii) if kdata > kalgo place centroids s.t. they represent
equal fractions of the cluster

1.2 Clustering Approaches

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

(a) kalgo < kdata, centroids are placed in between two clusters in no man’s land

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

(b) kalgo == kdata, centroids from agglomerative clus-
tering perfectly meet latent centroids

−0.5 0 0.5 1 1.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c) kalgo > kdata, one centroid repre-
sents the core of the cluster, the others
represent small fractions of the outskirts

Figure 1.6: data (black dots) and centroids (red circles) estimated by agglomerative clustering
with fixed k

12



Introduction Clustering Histograms Lifetime Estimation

Challenges

We can use agglomerative clustering to detect the latent kdata
(i) if kdata < kalgo place centroid into real cluster, e.g.

the kalgo biggest ones (easy to solve)
(ii) if kdata > kalgo place centroids s.t. they represent

equal fractions of the cluster

1.2 Clustering Approaches

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

(a) kalgo < kdata, centroids are placed in between two clusters in no man’s land

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

(b) kalgo == kdata, centroids from agglomerative clus-
tering perfectly meet latent centroids

−0.5 0 0.5 1 1.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c) kalgo > kdata, one centroid repre-
sents the core of the cluster, the others
represent small fractions of the outskirts

Figure 1.6: data (black dots) and centroids (red circles) estimated by agglomerative clustering
with fixed k

12



Introduction Clustering Histograms Lifetime Estimation

Challenge #2
Closer look

Observation

• K-agglomerative clustering
ends up with many centroids
in the outskirts

• outlying centroids result
from very few merges

Reason

• dense regions: high
probability of finding close
neighbors ⇒ many merges

• non-dense regions: low
probability of finding
neighbors nearby ⇒ no
further agglomeration

1.2 Clustering Approaches

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

(a) kalgo < kdata, centroids are placed in between two clusters in no man’s land

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

(b) kalgo == kdata, centroids from agglomerative clus-
tering perfectly meet latent centroids

−0.5 0 0.5 1 1.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c) kalgo > kdata, one centroid repre-
sents the core of the cluster, the others
represent small fractions of the outskirts

Figure 1.6: data (black dots) and centroids (red circles) estimated by agglomerative clustering
with fixed k

12



Introduction Clustering Histograms Lifetime Estimation

Challenge #2
Closer look

Observation

• K-agglomerative clustering
ends up with many centroids
in the outskirts

• outlying centroids result
from very few merges

Reason

• dense regions: high
probability of finding close
neighbors ⇒ many merges

• non-dense regions: low
probability of finding
neighbors nearby ⇒ no
further agglomeration

compared to K-means:

1.2 Clustering Approaches

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

(a) kalgo < kdata, centroids are placed in be-
tween two clusters with few nodes nearby

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) kalgo == kdata, centroids from agglomerative
clustering perfectly meet latent centroids

−0.5 0 0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(c) kalgo > kdata, several centroid represent
equal partitions of the cluster

Figure 1.4: data (black dots) and centroids (red circles) estimated by K-means clustering

9



Introduction Clustering Histograms Lifetime Estimation

Challenge #2
Solution

Boost agglomeration below 1/k by incorporating the relative sizes
into the selection

old selection criterion

(̂i, ĵ) = arg min
i,j
i<j

{‖ci − cj‖}

new selection criterion

(̂i, ĵ) = arg min
i,j
i<j

{
‖ci−cj‖/D+δ ·σ(wi+wj−1/k, z)

}

with σ(x, z) = 1
1+e−z·x .



Introduction Clustering Histograms Lifetime Estimation

Challenge #2
Solution

Boost agglomeration below 1/k by incorporating the relative sizes
into the selection

new selection criterion

(̂i, ĵ) = arg min
i,j
i<j

{
‖ci−cj‖/D+δ ·σ(wi+wj−1/k, z)

}

1.2 Clustering Approaches

against slow agglomeration in the outskirts.

1.2.2.2 Boost Agglomeration below 1/k

To force that centroids within single clusters represent equally sized subsets of it, we modify
our merging criterion by incorporating relative cluster sizes. Merges that result in new clusters
with relative sizes below 1/k are favored by adding a weighted sigmoid function σ : R �→ [0; 1]
with input parameters w, k and ‘sharpness’ z. The sigmoid function is a strictly monotonic
increasing function with an infimum at 0 and a supremum at 1. Its inflection point is at
(0, 1/2). Our input parameter w comes from [0; 1], we therefore shift the input right by 1/k.

x

σ(x − 1
k , z)

1/k 1

1

z = .5
z = 1
z = 2
z = 4
z = 8

Figure 1.7: sigmoid function with varying
sharpness z

The effect is that two candidates for merging
are strongly favored if their summed up sizes
are below 1/k. The significance of cluster
weights (within the new merging criterion) is
controlled by the coefficient δ and the sharp-
ness z. Increasing both will raise the chance
to end up with equally sized centroids at the
expense of higher position errors. The re-
lationship of δ and z, and different kind of
qualities like equally sizing or accuracy, will
be examined in section 1.2.4.2.

If kalgo is greater than kdata, we replace the
merge criterion used in θ-agglomerative clus-
tering

(̂i, ĵ) = arg min
i,j
i<j

{�ci − cj�} (1.2.1)

by a new one that incorporates relative sizes

(̂i, ĵ) = arg min
i,j
i<j

�
�ci − cj�/D + δ · σ(wi + wj − 1/k, z)

�
(1.2.2)

with the sigmoid function being defined as σ(x, z) = 1
1+e−z·x .

13



Introduction Clustering Histograms Lifetime Estimation

KAggloPlusClustering
Example kdata < kalgo

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
(i) k-AggloPlusClustering

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(j) k-Means



Introduction Clustering Histograms Lifetime Estimation

KAggloPlusClustering
Example kdata < kalgo

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
(k) k-AggloPlusClustering

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(l) k-Means



Introduction Clustering Histograms Lifetime Estimation

Put together
Global algorithm

precondition: input C is the result of standard agglomerative
clustering stopped very early (|C| ≥ k ·m)

}
} k > k_data

k ! k_data

Algorithm 1 2S K-agglomerative Clustering

proc 2SKAggloClustering(float[ ][ ] data, int m, int k,float �,float δ,float z,float θ) ≡
(C, w) := 2SKSub1(data, m, k)
(C, w, S) := 2SKSub2(C, w, k, �, δ, z, θ)
return (C, w, S)

end

comment: the 1st subroutine requires access to the data

proc 2SKSub1(float[ ][ ] data, int m, int k) ≡
C := data
w[i] := 1/|C| ∀i ∈ [|data|]
comment: mk-agglomerative clustering with euclidean distance only
(C, w) := KAggloClustering(C, w, m · k)

end

comment: the 2nd subroutine for reduction operates only on the centroids

proc 2SKSub2(float[ ][ ] C,float[ ] w, int k,float θ) ≡
(Clatent, wlatent, S) := ThetaAggloClustering(C, w, θ)
comment: if kdata ≥ k return k largest centroids
do if |Clatent| ≥ k

C := Clatent[findKLargest(wlatent, k)]
w := wlatent[findKLargest(wlatent, k)]
return (C, w, S)

fi
comment: else agglomerate with new merge criterion
(C, w, S) := KAggloPlusClustering(C, w, k)
return (C, w, S)

end

1



Introduction Clustering Histograms Lifetime Estimation

Error
Measuring the quality of clusters

correctness of centroid positions c = real and ĉ = estimated centroids

errpos = 1
kD

∑

i

arg min
j
{‖ĉi − cj‖|ŵi − wj |}

︸ ︷︷ ︸
closest centroids with respect to position and size

equally sized centroids

erreq = 1
k

∑

i

(ŵi − 1/k)2

︸ ︷︷ ︸
deviation from equally sized clusters

well-separation of centroids

errsep = 2
k(k−1)

∑

ij
i<j

(
1− ‖ci − cj‖/D

)

︸ ︷︷ ︸
penalty for low distances between centroids



Introduction Clustering Histograms Lifetime Estimation

Global Clustering
Experimental Setup

• kdata, kalgo sampled from [2; 8]

• 2D data points sampled from kdata normal distributions

• relative cluster sizes sampled from [.2; .7]

• data set size at least 100

• errors averaged over at least 100 rounds



Introduction Clustering Histograms Lifetime Estimation

Global Clustering
Results

error K-agglo- 3S K-agglomerative K-means
merative δ = .75 δ = 1 δ = 2

(naive) z = .5 z = 4 z = 8

pos 1.0000 0.1359 0.3953 0.4790 0.8672
eq 1.0000 0.5949 0.2653 0.1887 0.3129
sep 0.4663 0.8220 0.9515 1.0000 0.8878

Table: position, equality and separation errors for 1S/3S K-agglomerative
clustering with three parameter sets and K-means, rows are divided by
their maxima

z sharpness, δ weight of sigmoid part



Introduction Clustering Histograms Lifetime Estimation

Distributed, Approximate Agglomerative Clustering 2SP2P

Goal: each node receives a global view of clusters in the network

• initially each node knows only its local data

1.3 Adaption to P2P Systems: Approximate Clustering

Figure 1.10: Framework for Approximate Clustering in P2P Systems

Algorithm 11 2SP2P K-agglomerative Clustering

proc Initialize ≡
(C, w) := ([self.data], 1

|self.data| [1.0]|self.data|)
end
proc Timer ≡

peer := SelectRandomPeer()
sendTo peer : Shuffle(C, w)

end
proc Shuffle(Crmt, wrmt) from p ≡

sendTo p : ShuffleResponse(C, w)
(C, w) := Update(C ++ Crmt, w ++ wrmt)

end
proc ShuffleResp(Crmt, wrmt) from p ≡

(C, w) := Update(C ++ Crmt, w ++ wrmt)
end
proc Update ≡

(C, w) := KAggloClustering(C, w, m · k)
(C, w) := Normalize(C, w)

end
proc Request from p ≡

(Creq, wreq, S) := 2SKSub2(C, w, k, �, δ, z, θ)
sendTo p : RequestResponse(Creq, wreq)

end

1.3.2.1 Behaviour in a Dynamic Environment

How should nodes behave if one of the following events happen?

Node failure or topology change. Since the 2SP2P K-agglomerative clustering is designed
to rely on a node independent gossiping routine, a node just needs to wait until a new peer
is assigned in the next time slice.

Node addition. Any newly joined node first calls the initialize procedure. After a few data
exchanges the node will have similar centroids like its peers.

Data change. Local data is only read in the initialization step. Thus we drop the current
centroids and call the Initialize procedure from Algorithm 11 as if the node had just been
added to the network.

To save computational ressources one could introduce an active and a terminated state like
in LSP2P K-means. Since nodes do not store immediate neighbors, a node does not know
whether an assigned peer has just joined the network. Thus nodes would have to store and
send their age in terms of iterations or passed time. If the age falls below a threshold, an
assigned peer determines the new centroids and decides whether to become active (same
behaviour as described in section 1.3.1.1).

25

• periodically a node sends its locally estimated centroids using
a gossip protocol

• upon Shuffle message (passive node) – update local
centroids

• upon Shuffle message (active node) – update local
centroids, approximate part: cluster on two sets of estimated

centroids!

• Update – mk-agglomerative clustering

• upon Request message – reduce set of centroids



Introduction Clustering Histograms Lifetime Estimation

Distributed, Approximate Agglomerative Clustering 2SP2P

Goal: each node receives a global view of clusters in the network
• initially each node knows only its local data
• periodically a node sends its locally estimated centroids using

a gossip protocol

1.3 Adaption to P2P Systems: Approximate Clustering

Figure 1.10: Framework for Approximate Clustering in P2P Systems

Algorithm 11 2SP2P K-agglomerative Clustering

proc Initialize ≡
(C, w) := ([self.data], 1

|self.data| [1.0]|self.data|)
end
proc Timer ≡

peer := SelectRandomPeer()
sendTo peer : Shuffle(C, w)

end
proc Shuffle(Crmt, wrmt) from p ≡

sendTo p : ShuffleResponse(C, w)
(C, w) := Update(C ++ Crmt, w ++ wrmt)

end
proc ShuffleResp(Crmt, wrmt) from p ≡

(C, w) := Update(C ++ Crmt, w ++ wrmt)
end
proc Update ≡

(C, w) := KAggloClustering(C, w, m · k)
(C, w) := Normalize(C, w)

end
proc Request from p ≡

(Creq, wreq, S) := 3SKSub2(C, w, k, �, δ, z, θ)
sendTo p : RequestResponse(Creq, wreq)

end

1.3.2.1 Behaviour in a Dynamic Environment

How should nodes behave if one of the following events happen?

Node failure or topology change. Since the 2SP2P K-agglomerative clustering is designed
to rely on a node independent gossiping routine, a node just needs to wait until a new peer
is assigned in the next time slice.

Node addition. Any newly joined node first calls the initialize procedure. After a few data
exchanges the node will have similar centroids like its peers.

Data change. Local data is only read in the initialization step. Thus we drop the current
centroids and call the Initialize procedure from Algorithm 11 as if the node had just been
added to the network.

To save computational ressources one could introduce an active and a terminated state like
in LSP2P K-means. Since nodes do not store immediate neighbors, a node does not know
whether an assigned peer has just joined the network. Thus nodes would have to store and
send their age in terms of iterations or passed time. If the age falls below a threshold, an
assigned peer determines the new centroids and decides whether to become active (same
behaviour as described in section 1.3.1.1).

25

• upon Shuffle message (passive node) – update local
centroids

• upon Shuffle message (active node) – update local
centroids, approximate part: cluster on two sets of estimated
centroids!

• Update – mk-agglomerative clustering
• upon Request message – reduce set of centroids



Introduction Clustering Histograms Lifetime Estimation

Distributed, Approximate Agglomerative Clustering 2SP2P

Goal: each node receives a global view of clusters in the network
• initially each node knows only its local data
• periodically a node sends its locally estimated centroids using

a gossip protocol
• upon Shuffle message (passive node) – update local

centroids

1.3 Adaption to P2P Systems: Approximate Clustering

Figure 1.10: Framework for Approximate Clustering in P2P Systems

Algorithm 11 2SP2P K-agglomerative Clustering

proc Initialize ≡
(C, w) := ([self.data], 1

|self.data| [1.0]|self.data|)
end
proc Timer ≡

peer := SelectRandomPeer()
sendTo peer : Shuffle(C, w)

end
proc Shuffle(Crmt, wrmt) from p ≡

sendTo p : ShuffleResponse(C, w)
(C, w) := Update(C ++ Crmt, w ++ wrmt)

end
proc ShuffleResp(Crmt, wrmt) from p ≡

(C, w) := Update(C ++ Crmt, w ++ wrmt)
end
proc Update ≡

(C, w) := KAggloClustering(C, w, m · k)
(C, w) := Normalize(C, w)

end
proc Request from p ≡

(Creq, wreq, S) := 2SKSub2(C, w, k, �, δ, z, θ)
sendTo p : RequestResponse(Creq, wreq)

end

1.3.2.1 Behaviour in a Dynamic Environment

How should nodes behave if one of the following events happen?

Node failure or topology change. Since the 2SP2P K-agglomerative clustering is designed
to rely on a node independent gossiping routine, a node just needs to wait until a new peer
is assigned in the next time slice.

Node addition. Any newly joined node first calls the initialize procedure. After a few data
exchanges the node will have similar centroids like its peers.

Data change. Local data is only read in the initialization step. Thus we drop the current
centroids and call the Initialize procedure from Algorithm 11 as if the node had just been
added to the network.

To save computational ressources one could introduce an active and a terminated state like
in LSP2P K-means. Since nodes do not store immediate neighbors, a node does not know
whether an assigned peer has just joined the network. Thus nodes would have to store and
send their age in terms of iterations or passed time. If the age falls below a threshold, an
assigned peer determines the new centroids and decides whether to become active (same
behaviour as described in section 1.3.1.1).

25

• upon Shuffle message (active node) – update local
centroids, approximate part: cluster on two sets of estimated
centroids!

• Update – mk-agglomerative clustering
• upon Request message – reduce set of centroids



Introduction Clustering Histograms Lifetime Estimation

Distributed, Approximate Agglomerative Clustering 2SP2P

Goal: each node receives a global view of clusters in the network

• initially each node knows only its local data

• periodically a node sends its locally estimated centroids using
a gossip protocol

• upon Shuffle message (passive node) – update local
centroids

• upon Shuffle message (active node) – update local
centroids, approximate part: cluster on two sets of estimated
centroids!

1.3 Adaption to P2P Systems: Approximate Clustering

Figure 1.10: Framework for Approximate Clustering in P2P Systems

Algorithm 11 2SP2P K-agglomerative Clustering

proc Initialize ≡
(C, w) := ([self.data], 1

|self.data| [1.0]|self.data|)
end
proc Timer ≡

peer := SelectRandomPeer()
sendTo peer : Shuffle(C, w)

end
proc Shuffle(Crmt, wrmt) from p ≡

sendTo p : ShuffleResponse(C, w)
(C, w) := Update(C ++ Crmt, w ++ wrmt)

end
proc ShuffleResp(Crmt, wrmt) from p ≡

(C, w) := Update(C ++ Crmt, w ++ wrmt)
end
proc Update ≡

(C, w) := KAggloClustering(C, w, m · k)
(C, w) := Normalize(C, w)

end
proc Request from p ≡

(Creq, wreq, S) := 2SKSub2(C, w, k, �, δ, z, θ)
sendTo p : RequestResponse(Creq, wreq)

end

1.3.2.1 Behaviour in a Dynamic Environment

How should nodes behave if one of the following events happen?

Node failure or topology change. Since the 2SP2P K-agglomerative clustering is designed
to rely on a node independent gossiping routine, a node just needs to wait until a new peer
is assigned in the next time slice.

Node addition. Any newly joined node first calls the initialize procedure. After a few data
exchanges the node will have similar centroids like its peers.

Data change. Local data is only read in the initialization step. Thus we drop the current
centroids and call the Initialize procedure from Algorithm 11 as if the node had just been
added to the network.

To save computational ressources one could introduce an active and a terminated state like
in LSP2P K-means. Since nodes do not store immediate neighbors, a node does not know
whether an assigned peer has just joined the network. Thus nodes would have to store and
send their age in terms of iterations or passed time. If the age falls below a threshold, an
assigned peer determines the new centroids and decides whether to become active (same
behaviour as described in section 1.3.1.1).

25

• Update – mk-agglomerative clustering

• upon Request message – reduce set of centroids



Introduction Clustering Histograms Lifetime Estimation

Distributed, Approximate Agglomerative Clustering 2SP2P

Goal: each node receives a global view of clusters in the network

• initially each node knows only its local data
• periodically a node sends its locally estimated centroids using

a gossip protocol
• upon Shuffle message (passive node) – update local

centroids
• upon Shuffle message (active node) – update local

centroids, approximate part: cluster on two sets of estimated
centroids!

• Update – mk-agglomerative clustering

1.3 Adaption to P2P Systems: Approximate Clustering

Figure 1.10: Framework for Approximate Clustering in P2P Systems

Algorithm 11 2SP2P K-agglomerative Clustering

proc Initialize ≡
(C, w) := ([self.data], 1

|self.data| [1.0]|self.data|)
end
proc Timer ≡

peer := SelectRandomPeer()
sendTo peer : Shuffle(C, w)

end
proc Shuffle(Crmt, wrmt) from p ≡

sendTo p : ShuffleResponse(C, w)
(C, w) := Update(C ++ Crmt, w ++ wrmt)

end
proc ShuffleResp(Crmt, wrmt) from p ≡

(C, w) := Update(C ++ Crmt, w ++ wrmt)
end
proc Update ≡

(C, w) := KAggloClustering(C, w, m · k)
(C, w) := Normalize(C, w)

end
proc Request from p ≡

(Creq, wreq, S) := 2SKSub2(C, w, k, �, δ, z, θ)
sendTo p : RequestResponse(Creq, wreq)

end

1.3.2.1 Behaviour in a Dynamic Environment

How should nodes behave if one of the following events happen?

Node failure or topology change. Since the 2SP2P K-agglomerative clustering is designed
to rely on a node independent gossiping routine, a node just needs to wait until a new peer
is assigned in the next time slice.

Node addition. Any newly joined node first calls the initialize procedure. After a few data
exchanges the node will have similar centroids like its peers.

Data change. Local data is only read in the initialization step. Thus we drop the current
centroids and call the Initialize procedure from Algorithm 11 as if the node had just been
added to the network.

To save computational ressources one could introduce an active and a terminated state like
in LSP2P K-means. Since nodes do not store immediate neighbors, a node does not know
whether an assigned peer has just joined the network. Thus nodes would have to store and
send their age in terms of iterations or passed time. If the age falls below a threshold, an
assigned peer determines the new centroids and decides whether to become active (same
behaviour as described in section 1.3.1.1).

25

• upon Request message – reduce set of centroids



Introduction Clustering Histograms Lifetime Estimation

Distributed, Approximate Agglomerative Clustering 2SP2P

Goal: each node receives a global view of clusters in the network

• initially each node knows only its local data

• periodically a node sends its locally estimated centroids using
a gossip protocol

• upon Shuffle message (passive node) – update local
centroids

• upon Shuffle message (active node) – update local
centroids, approximate part: cluster on two sets of estimated
centroids!

• Update – mk-agglomerative clustering

• upon Request message – reduce set of centroids

Algorithm 1 2S K-agglomerative Clustering

proc Request from p ≡
(Creq, wreq, S) := 2SKSub2(C, w, k, θ)
sendTo p : RequestResponse(Creq, wreq)

end

Algorithm 2 2S K-agglomerative Clustering

proc 2SKAggloClustering(float[ ][ ] data, int m, int k,float �,float δ,float z,float θ) ≡
(C, w) := 2SKSub1(data, m, k)
(C, w, S) := 2SKSub2(C, w, k, �, δ, z, θ)
return (C, w, S)

end

comment: the 1st subroutine requires access to the data

proc 2SKSub1(float[ ][ ] data, int m, int k) ≡
C := data
w[i] := 1/|C| ∀i ∈ [|data|]
comment: mk-agglomerative clustering with euclidean distance only
(C, w) := KAggloClustering(C, w, m · k)

end

comment: the 2nd subroutine for reduction operates only on the centroids

proc 2SKSub2(float[ ][ ] C,float[ ] w, int k,float θ) ≡
(Clatent, wlatent, S) := ThetaAggloClustering(C, w, θ)
comment: if kdata ≥ k return k largest centroids
do if |Clatent| ≥ k

C := Clatent[findKLargest(wlatent, k)]
w := wlatent[findKLargest(wlatent, k)]
return (C, w, S)

fi
comment: else agglomerate with new merge criterion
(C, w, S) := KAggloPlusClustering(C, w, k)
return (C, w, S)

end

1



Introduction Clustering Histograms Lifetime Estimation

Distributed, Approximate Agglomerative Clustering 2SP2P

proc Timer
sendTo peer: Shuffle (C,w)

proc ShuffleResponse(C_r,w_r) from p 
(C,w) := Update(C++C_r, w++w_r)

proc Update(C,w)
(C, w) := KAggloClustering(C, w, m · k)
(C, w) := Normalize(C, w)

proc Request from p
(C, w) := 2SKSub2(C, w, k)
sendTo p: RequestResponse(C,w)

proc Shuffle(C_r, w_r) from p
sendTo p: ShuffleResponse(C,w)
(C,w) := Update(C++C_r, w++w_r)

proc Update(C,w)
(C, w) := KAggloClustering(C, w, m · k)
(C, w) := Normalize(C, w)

1
2

Process 1
Process 2

...
sendTo p: Request()
...
proc RequestResponse(C, w) from p
doSomething(C,w)

Process 3

1

2



Introduction Clustering Histograms Lifetime Estimation

Distributed, Approximate K-Means LSP2P

In 2009 Datta et al. presented an approximate distributed
K-means clustering algorithm

• similar to 2SP2P K-agglomerative clustering: exchange local
estimates

• two kinds of centroids: Vl (E-step) and Cl (result of M-step)

• partial synchronization: node enters new iteration together
with its neighbors



Introduction Clustering Histograms Lifetime Estimation

Distributed, Approximate K-Means LSP2P

Algorithm

• initially all nodes start with the same set (C1, w1)

• periodically a node requests (Cγl , w
γ
l ) from its neighbors Γ

• upon reply of all neighbors, node N i computes

vij,l+1 =

∑
Nk∈Waiti c

k
j,lw

k
j,l∑

Nk∈Waiti w
k
j,l

• enter a new K-means iteration l = l + 1
• E-step: assignment of local data to its closest centroid vj,l
• M-step: reccompute Cj,l with respect to local data set

Disadvantage of synchronization:

• N i can only process centroids from nodes being in the same
iteration ⇒ wait until all neighbors completed round l

• nodes might request older centroids ⇒ store Cj,t∀t ∈ [0; l]



Introduction Clustering Histograms Lifetime Estimation

Distributed, Approximate K-Means LSP2P

Algorithm

• initially all nodes start with the same set (C1, w1)

• periodically a node requests (Cγl , w
γ
l ) from its neighbors Γ

• upon reply of all neighbors, node N i computes

vij,l+1 =

∑
Nk∈Waiti c

k
j,lw

k
j,l∑

Nk∈Waiti w
k
j,l

• enter a new K-means iteration l = l + 1
• E-step: assignment of local data to its closest centroid vj,l
• M-step: reccompute Cj,l with respect to local data set

Disadvantage of synchronization:

• N i can only process centroids from nodes being in the same
iteration ⇒ wait until all neighbors completed round l

• nodes might request older centroids ⇒ store Cj,t∀t ∈ [0; l]



Introduction Clustering Histograms Lifetime Estimation

Distributed, Approximate K-Means LSP2P

Algorithm

• initially all nodes start with the same set (C1, w1)

• periodically a node requests (Cγl , w
γ
l ) from its neighbors Γ

• upon reply of all neighbors, node N i computes

vij,l+1 =

∑
Nk∈Waiti c

k
j,lw

k
j,l∑

Nk∈Waiti w
k
j,l

• enter a new K-means iteration l = l + 1
• E-step: assignment of local data to its closest centroid vj,l
• M-step: reccompute Cj,l with respect to local data set

Disadvantage of synchronization:

• N i can only process centroids from nodes being in the same
iteration ⇒ wait until all neighbors completed round l

• nodes might request older centroids ⇒ store Cj,t∀t ∈ [0; l]



Introduction Clustering Histograms Lifetime Estimation

Distributed, Approximate K-Means LSP2P

Algorithm

• initially all nodes start with the same set (C1, w1)

• periodically a node requests (Cγl , w
γ
l ) from its neighbors Γ

• upon reply of all neighbors, node N i computes

vij,l+1 =

∑
Nk∈Waiti c

k
j,lw

k
j,l∑

Nk∈Waiti w
k
j,l

• enter a new K-means iteration l = l + 1
• E-step: assignment of local data to its closest centroid vj,l
• M-step: reccompute Cj,l with respect to local data set

Disadvantage of synchronization:

• N i can only process centroids from nodes being in the same
iteration ⇒ wait until all neighbors completed round l

• nodes might request older centroids ⇒ store Cj,t∀t ∈ [0; l]



Introduction Clustering Histograms Lifetime Estimation

Distributed, Approximate K-Means LSP2P

Algorithm

• initially all nodes start with the same set (C1, w1)

• periodically a node requests (Cγl , w
γ
l ) from its neighbors Γ

• upon reply of all neighbors, node N i computes

vij,l+1 =

∑
Nk∈Waiti c

k
j,lw

k
j,l∑

Nk∈Waiti w
k
j,l

• enter a new K-means iteration l = l + 1
• E-step: assignment of local data to its closest centroid vj,l
• M-step: reccompute Cj,l with respect to local data set

Disadvantage of synchronization:

• N i can only process centroids from nodes being in the same
iteration ⇒ wait until all neighbors completed round l

• nodes might request older centroids ⇒ store Cj,t∀t ∈ [0; l]



Introduction Clustering Histograms Lifetime Estimation

Results

• position error per node between centroids from global
clustering and local centroids

• convergence of erreq, errsep follows from convergence of
errpos

errP2P
pos (t) = 1

R

R∑

r=1

1
N

N∑

i=1

1
kD

k∑

l=1

arg min
j
{‖cil(t)−cj(t)‖·|wil(t)−wj(t)|}

1.4 Discussion

but does not send them. LSP2P clustering has a lower speed of convergence and the error
remains higher.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

.005

.01

.015

0

t

er
r p

o
s

errKAgglo
pos

errKMeans
pos

Figure 1.11: Position errors for 2SP2P K-agglomerative clustering and LSP2P K-means with
|datai| = 8 ∀i ∈ [n].

1.4 Discussion

The results of section 1.3.4.1 show that 2SP2P K-agglomerative clustering quickly converges
toward the global solution in a static network. From this it follows that the approximated
version has the same properties as 3S K-agglomerative clustering, its global counterpart. We
observe too, that LSP2P K-means works as a gossiped version, which does not poll a fixed
neighborhood, but a single random peer from the whole network. Table 1.4 outlines the
features of 2SP2P K-agglomerative clustering and LSP2P K-means. We’ll now discuss them
in more detail.

Simplicity. First, one notices that the framework of 2SP2P K-agglomerative clustering is
much simplier than the one of LSP2P K-means. The centerpiece is the same – the diffusion of
locally estimated centroids. LSP2P K-means immediately averages them, whereas 2SP2P K-
agglomerative clustering concatenates first and merges only if two centroids are close enough.

LSP2P K-means:

vi
j,l+1 =

�
Nk∈Waiti ck

j,ln
k
j,l�

Nk∈Waiti nk
j,l

2SP2P K-agglomerative:

c = c ++ crem

w = w ++ wrem

c = c\{ci, cj} ∪ ciwi + cjwj

wi + wj
if ci, cj being close enough

For the next iteration LSP2P K-means does not forward the weighted average V i, but the
centroids and counts carried out after one iteration. Hence, V i is moved into direction of
the local data. Whereas 2SP2P K-agglomerative clustering simply forwards Ci and averaged
cluster counts wi. Thus averaged centroids are spread with higher speed what can be seen on
the fast convergence of 2SP2P K-agglomerative clustering. After approximately 5 exchanges
the locally estimated centroids are the same as the global ones.

Communicational costs. Let I denotes the maximum number of iterations carried out and
L the maximum number of neighbors to whom a node will send its centroids and counts. In

27



Introduction Clustering Histograms Lifetime Estimation

2SP2P K-Agglomerative Clustering vs LSP2P K-Means

Properties
2SP2P K-
agglomerative

LSP2P K-means

synchronization of iterations required no yes
k must be fixed during computing phase no yes
order of centroids and counts must be kept
fixed

no yes

robustness for outliers yes no
bandwidth costs O(mkIL) O(kIL)
computational costs O(Im2k2 + D2) O(IkD)
memory costs during exchange

phase: Ω(mk)
history and poll ta-
ble: O(I(k + L))

Table 1: comparison of 2SP2P K-agglomerative clustering and LSP2P K-means

Algorithm 1 Distributed, Gossiped Merging of Q-Digests

proc Initialize(data, k, σ) ≡
leaves := buildtree(data, σ);
n := |data|
Q := Compress(leaves, n, k)

end
proc Timer ≡

peer := SelectRandomPeer()
sendTo peer : Shuffle(Q, n)

end
proc Shuffle(Qrmt, nrmt) from p ≡

sendTo p : ShuffleResponse(Q)
Q := Merge(Q, n, Qrmt, nrmt)

end
proc ShuffleResp(Qrmt, nrmt) from p ≡

(Q, n) := Merge(Q, n, Qrmt, nrmt)
end
proc Request(τ) from p ≡

H := histogramEquiProb(Q, σ, τ)
sendTo p : RequestResponse(H)

end

Algorithm 2 Computing an equi-probable histogram

proc histogramEquiProb (qdigest Q, ...
int σ,float τ) ≡
φ := [0 : τ : 1]
comment: determine 1/τ + 1 quantiles
qi := quantile(Q,φi) ∀i ∈ [1..|φ|]
return q

end

1

I = # number of iterations, L = # of neighbors contacted per
round, k = # final centroids, m = scale parameter, D = size of
local data set



Introduction Clustering Histograms Lifetime Estimation

Part2: How to compute quantiles
over distributed data streams?

pu
sh

pu
ll −2 −1 0 1 2 3 4 5 6

0

500

1000

1500

2000

2500

3000

3500

−6 −4 −2 0 2 4 6 8 10 12
0

500

1000

1500

2000

2500

3000

3500

4000

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

50

100

150

200

250

300

350

400

450

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

20

40

60

80

100

120

140

160

180

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4



Introduction Clustering Histograms Lifetime Estimation

Motivation

Given a set of distributed data streams, e.g.

• servers storing response times

• sensors storing temperature measurements hourly

Naive approach – computing quantiles on single sources (and
merge them) does not work!

Better:

1 compute a robust summary of local data set – an
equi-probable histogram

2 gossip and merge data summaries

Question: Is randomized merging with no upper bounds on the
number of merging operations still robust?



Introduction Clustering Histograms Lifetime Estimation

Histogram
equi-width and equi-probable

−2 −1 0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

X

C
ou
nt

−2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

X

Pr
ob
ab
ilit
y

(n) data distribution

−2 −1 0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

X

C
ou
nt

−2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

X

Pr
ob
ab
ilit
y

(o) equidistant histogram
3.3 Evaluation

φ

φ
−

qu
a
n
ti

le

xmax

xmin

0 0.2 0.4 0.6 0.8 1

Figure 3.7: Equi-probable histogram from 7 φ-quantile queries with φ ∈ [0 : .2 : 1].
Quantiles are assigned to the axis of ordinates.

Algorithm 17 Computing an equi-width histogram

proc histogramEquiWidth (qdigest Q, int σ, int bwidth) ≡
b := [1 : bwidth : σ + 1]
comment: determine ranks of all bin edges
invQi := inverseQuantile(Q, bi) ∀i ∈ [1..|b|]
hi := invQi+1 − invQi ∀i ∈ [1..|invQ| − 1]
return h

where
proc inverseQuantile(qdigest Q, int σ, int x) ≡

comment: list of nodes in postorder
L := postorder(Q.tree)
rank := 1
for i = 1 : length(L)

comment: add node count if x is not reached yet
if rightLeaf(L(i, 1), σ) >= x then exit fi
rank := rank + L(i, 2)

end
return rank

end

so far – single quantiles, ranks, equi-width or equi-probable histograms. For the subsequent
experimental evaluation, equi-probable histograms were computed.

3.3 Evaluation

To measure the quality of q-digests, a series of quantile queries for φ ∈ [0 : 0.1 : 1] was
computed and compared to the exact approach1. Let Qj := {q1, q2, ..., qm} be a set of

1By sorting the whole data set and selecting the positions φ · n for all settings of φ.

41

(p) equiprobable histogram



Introduction Clustering Histograms Lifetime Estimation

Quantile

Given φ ∈ [0; 1] and a sorted data set X with |X| = n, the
φ-quantile is the value x ∈ X at position (int)φn.

E.g.

• 0-quantile is min(X)

• 1-quantile is max(X)

• 0.5-quantile is the
median of X

1. φ-quantile is the inverse of
the cumulative distribution
function (cdf) P (X ≤ x)
2. an equiprobable histogram
can be composed by a series
of φ-quantiles

3.1 Quantiles

A straightforward method to compute a φ-quantile is to sort the data in increasing order and
to return the φnth element. This implies the storage of all observations X := {x1, x2, ..., xn}
and to pass the data more than once due to sorting. For determining a given quantile one
can do better.

The rank determination belongs to the group of selection problems. Munro and Patterson [12]
gave lower bounds on the selection and sorting problem with limited storage. They showed
that if an algorithm passes the input data p times, it needs to store at least n1/p items.

Theorem 1. Any p-pass algorithm to solve the selection problem on a stream of n elements
requires Ω(n1/p) space.

Munro and Patterson described an algorithm that almost achieves this lower space bound.
A left and a right filter are maintained between which the candidate elements lie. In every
pass the gap between the filters is tightened until a small group of candidates remain. In a
final pass the φ-quantile is selected.

A consequence of theorem 1 is that if we have space limitations that are typically much
smaller than n, any p-pass algorithm solving the sort and selection problem and storing less
than n1/p items is merely approximate.

3.1.1 Frequency Distributions and Histograms

The cumulative distribution function cdf describes the probability that a random variable X
with a given probability distribution is less or equal than a given x ∈ X.

cdfX(x) = P (X ≤ x)

Quantiles are related to frequency distributions and histograms in the following way. The
cdf is the inverse of the φ-quantile (see Figure 3.2).

Xsorted

P
(X

≤
x
)

φ

1

1/n

x1 xφn xn

Figure 3.2: φ-quantile on a cumulative distribu-
tion function of normally distributed X.

Histograms are a way to summarize data.
They divide the value range into buckets or
bins and store for each bucket a counter –
the number of elements within the bucket.
Depending on the type of bins used, there
are two kinds of histograms: equi-width and
equi-probable (or equi-depth) histograms. For
equi-width histograms the range is subdi-
vided into equally sized bins. The equi-
distant bin edges are queried to compute the
heights.

The key source of inaccuracy in the use of
histograms is that the distribution of data
points within a bucket is not retained. If the
bucket edges are fixed, like for equi-width
histograms, we might lose precision if the bin
width is chosen to big or the data deviation is very small. Otherwise some bins contain no
or very few elements if the bin width is chosen to be too small.

33

Figure: φ-quantile and cdf, φ ∈ [0; 1]



Introduction Clustering Histograms Lifetime Estimation

Q-Digest

• incomplete binary tree, whose structure corresponds to an
equiprobable histogram, except that the bins are overlapping

• each node v fulfills the q-digest property:

v.count ≤ bn/kc (1)

v.count+ vp.count+ vs.count > bn/kc (2)

• data range
X ∈ [1;σ = 2m]

• decompression k

3.2 Quantile Digest

XA : XB :

XC : medC := max(medA, medB) = 9

n n

2n

n/2 n/2 + 1

1 · · · 1 · · · 1

medA

1 · · · 1 9 · · · 9

medB

1 · · · 1 · · · 1 9 · · · 9

medC = 1

Figure 3.3: Combination of Medians. (left) exact: merge, sort and find position �n�
in XA ∪ XB, (right) approximate: maximum of medA and medB, for (right) the error
corresponds to a right shift of the median of about n/2 positions

3.2 Quantile Digest

A way to summarize observations is to compute a quantile digest (q-digest) which can in-
corporate arbitrary many observations. A q-digest is a binary tree whose nodes represent
overlapping and almost equi-probable bins of a histogram with a value range from 1 to σ.
Given the decompression parameter k, at most 3k nodes of the complete binary tree are
stored. The variable count represents the bucket height, the value range is given by the left
and the right most leaves in a complete binary tree.

a:1

j:4 k:6

f:2 g:2

1 2 3 4 5 6 7 8

Figure 3.4: Q-digest: Complete binary tree on range [1..σ = 8]. Only green nodes are
stored. Node a represents a bin covering the whole range with one item, node f covers the
range 5-6 and contains two items.

35



Introduction Clustering Histograms Lifetime Estimation

Q-Digest
Compression

• compression function ensures q-digest property

• example: k = 5, n = 15, σ = 8, X = {1, 34, 46, 5, 6, 7, 8}
• procedure: compress nodes bottom-up that violate
v.count ≤ bn/kc or v.count+ vp.count+ vs.count > bn/kc
by accumulating child counts into parent node

3.2 Quantile Digest

h:1 j:4 k:6 l:1 m:1 n:1 o:1

d:1

j:4 k:6

f:2 g:2

b:1

j:4 k:6

f:2 g:2

a:1

j:4 k:6

f:2 g:2

Figure 3.5: Compression. n = 15, k = 5, σ = 8, parts violating the q-digest property are
marked by a dashed box.

37



Introduction Clustering Histograms Lifetime Estimation

Q-Digest
Compression

• compression function ensures q-digest property

• example: k = 5, n = 15, σ = 8, X = {1, 34, 46, 5, 6, 7, 8}
• procedure: compress nodes bottom-up that violate
v.count ≤ bn/kc or v.count+ vp.count+ vs.count > bn/kc
by accumulating child counts into parent node

3.2 Quantile Digest

h:1 j:4 k:6 l:1 m:1 n:1 o:1

d:1

j:4 k:6

f:2 g:2

b:1

j:4 k:6

f:2 g:2

a:1

j:4 k:6

f:2 g:2

Figure 3.5: Compression. n = 15, k = 5, σ = 8, parts violating the q-digest property are
marked by a dashed box.

37



Introduction Clustering Histograms Lifetime Estimation

Compression
Choice of Decompression Factor k

• q-digest stores at most 3k nodes
• relation of decompression and error:

• setting: Xn ∼ N (µ, σN ), φ ∈ [0 : .1 : 1]
• error between equiprobable histogram and histogram computed

on a single q-digest

3.3 Evaluation

k

e h
is

t(
Q

ex
a
ct
,Q

q
d
ig

es
t)

×10−5

0.04

0.06

0.08

0.1

0.15

5 10 20 30 40 50 60 70 80 90 100

Figure 3.9: Error between exact equi-probable histogram and histogram computed on a
single q-digest. µ ∈ [σ/4, 3/4σ], σN ∈ [1, σ/4], φ ∈ [0 : .1 : 1].

3.3.2 Gossiping versus Routing

For the subsequent tests, a network of 1024 sensors was simulated. Each sensor was equipped
with a buffer to store the last 1024 observations. Given the compression factor k, the buffer
content was converted into a q-digest and cleared. Two different strategies of distributing
q-digests are compared – unsupervised gossiping and deterministic routing.

For gossiping in each round a gossiping partner was chosen randomly from the whole network
for each node and queried for its q-digest (see Algorithm 18). The querying node then merged
its own q-digest with the remote q-digest according to Algorithm 14. The resulting q-digest
replaced the original one. This corresponds to a pull gossiping, which is expected to have a
lower convergence rate than push-pull gossiping.

To simulate routing, a random routing tree was generated as shown in Figure 3.1(a). Q-
digests had been merged bottom-up to a root node. It was assumed that currently updated
nodes send their q-digest to their parents simultaneously. The quantile error for each stage
was computed on currently updated nodes, the root node and all nodes in between. In the last
phase the root node holds a q-digest representing the compressed data of all nodes’ buffers.

For the first test, all local data sets followed a common normal distribution (Figure 3.10(a)).
In the second test, mean and deviation had been drawn individually for each sensor (Figure
3.10(b)).

We observe, that if the distribution of the local data sets follows a common global distribution,
each sensor has a summary that represents the global data set relatively well without any
communication (round = 0). The subsequent exchange and merging of q-digests slightly
worsens the error. Especially for strong compressed q-digests (k = 5). The quantile error
converges late (after 20 rounds) for strong compressed and quickly for low compressed q-
digests.

43

ehist(H1, H2) :=
1

σ2B

�
(h1,i − h2,i)

2

Properties
2SP2P K-
agglomerative

LSP2P K-means

synchronization of iterations required no yes
k must be fixed during computing phase no yes
order of centroids and counts must be kept
fixed

no yes

robustness for outliers yes no
bandwidth costs O(mkIL) O(kIL)
computational costs O(Im2k2 + D2) O(IkD)
memory costs during exchange

phase: Ω(mk)
history and poll ta-
ble: O(I(k + L))

Table 1: comparison of 2SP2P K-agglomerative clustering and LSP2P K-means

Algorithm 1 Distributed, Gossiped Merging of Q-Digests

proc Initialize(data, k, σ) ≡
leaves := buildtree(data, σ);
n := |data|
Q := Compress(leaves, n, k)

end
proc Timer ≡

peer := SelectRandomPeer()
sendTo peer : Shuffle(Q, n)

end
proc Shuffle(Qrmt, nrmt) from p ≡

sendTo p : ShuffleResponse(Q)
Q := Merge(Q, n, Qrmt, nrmt)

end
proc ShuffleResp(Qrmt, nrmt) from p ≡

(Q, n) := Merge(Q, n, Qrmt, nrmt)
end
proc Request(τ) from p ≡

H := histogramEquiProb(Q, σ, τ)
sendTo p : RequestResponse(H)

end

1



Introduction Clustering Histograms Lifetime Estimation

Q-Digest
Merging

3.2 Quantile Digest

Algorithm 14 Combining two q-digests

proc Merge (qdigest Q1, int n1,qdigest Q2, int n2, int k) ≡
Q := Q1 ∪ Q2

Compress(Q, n1 + n2, k)
return Q

end

increase if q-digests are merged. Proof:

error(v) ≤
�

i

error(vi) ≤
� log σ

k
ni (3.2.3)

=
log σ

k

�

i

ni =
log σ

k
n (3.2.4)

Intuitively it should be clear, that if two q-digest are merged and compressed again, the
precision can not be better than the precision of the worst q-digest, since at most 3k nodes
of the q-digest now represent n1 + n2 data items. Moreover, merging several q-digests into a
single one, results in absolute node errors of at most log σ

k

�
i ni (see section 3.4 in [14]).

Concerning space complexity, we have:

Lemma 1. A q-digest constructed with compression parameter k has a size of at most 3k
(nodes).

3.2.3 Quantile Computation

Given a q-digest and φ ∈ [0, 1], the goal is to determine a leaf node whose predecessors
represent at least φn items in a postorder traversal. The source of inaccuracy are inner
nodes, whose counts are distributed arbitrarily between subjacent leaf nodes. The postorder
traversal sorts the nodes according to their right endpoints. Nodes with smaller ranges
appear first. The counts are summed up until the expected position φn is reached. One
of the subjacent leaf nodes of the current node corresponds to the correct φ-quantile. Since
there might be more counts of subsequent postordered nodes than we have summed up so far,
the rightmost leaf is returned (see Algorithm 15). To keep in mind, only leaf nodes represent
single bin values.

3.2.4 Equi-probable Histogram Computation

Histograms are composed of series of quantiles or ranks. For an equi-probable histogram
of step size τ , the φ-quantiles for φ ∈ [0 : τ : 1] are computed. Between two neighboring
quantiles lie τn elements. Figure 3.7 shows an equi-probable histogram with φ assigned to
the x-axis. All bins have the same width and a height corresponding to the quantile value
from the ordered set of observations.

38

3.2 Quantile Digest

n = 10, k = 5, σ = 8

a:1

j:4 k:6

f:2 g:2

+

n = 15, k = 5, σ = 8

a:2

h:4 i:7 k:2

a:3

h:4 i:7 j:4 k:8

f:2 g:2

n = 25, k = 5, σ = 8

a:7

h:4 i:7 j:4 k:8

n = 25, k = 5, σ = 8

Figure 3.6: Merging two q-digests. First the counts are added (bottom right), second the
q-digest property is reconstituted.

39



Introduction Clustering Histograms Lifetime Estimation

Q-Digest
Merging

3.2 Quantile Digest

Algorithm 14 Combining two q-digests

proc Merge (qdigest Q1, int n1,qdigest Q2, int n2, int k) ≡
Q := Q1 ∪ Q2

Compress(Q, n1 + n2, k)
return Q

end

increase if q-digests are merged. Proof:

error(v) ≤
�

i

error(vi) ≤
� log σ

k
ni (3.2.3)

=
log σ

k

�

i

ni =
log σ

k
n (3.2.4)

Intuitively it should be clear, that if two q-digest are merged and compressed again, the
precision can not be better than the precision of the worst q-digest, since at most 3k nodes
of the q-digest now represent n1 + n2 data items. Moreover, merging several q-digests into a
single one, results in absolute node errors of at most log σ

k

�
i ni (see section 3.4 in [14]).

Concerning space complexity, we have:

Lemma 1. A q-digest constructed with compression parameter k has a size of at most 3k
(nodes).

3.2.3 Quantile Computation

Given a q-digest and φ ∈ [0, 1], the goal is to determine a leaf node whose predecessors
represent at least φn items in a postorder traversal. The source of inaccuracy are inner
nodes, whose counts are distributed arbitrarily between subjacent leaf nodes. The postorder
traversal sorts the nodes according to their right endpoints. Nodes with smaller ranges
appear first. The counts are summed up until the expected position φn is reached. One
of the subjacent leaf nodes of the current node corresponds to the correct φ-quantile. Since
there might be more counts of subsequent postordered nodes than we have summed up so far,
the rightmost leaf is returned (see Algorithm 15). To keep in mind, only leaf nodes represent
single bin values.

3.2.4 Equi-probable Histogram Computation

Histograms are composed of series of quantiles or ranks. For an equi-probable histogram
of step size τ , the φ-quantiles for φ ∈ [0 : τ : 1] are computed. Between two neighboring
quantiles lie τn elements. Figure 3.7 shows an equi-probable histogram with φ assigned to
the x-axis. All bins have the same width and a height corresponding to the quantile value
from the ordered set of observations.

38

3.2 Quantile Digest

n = 10, k = 5, σ = 8

a:1

j:4 k:6

f:2 g:2

+

n = 15, k = 5, σ = 8

a:2

h:4 i:7 k:2

a:3

h:4 i:7 j:4 k:8

f:2 g:2

n = 25, k = 5, σ = 8

a:7

h:4 i:7 j:4 k:8

n = 25, k = 5, σ = 8

Figure 3.6: Merging two q-digests. First the counts are added (bottom right), second the
q-digest property is reconstituted.

39



Introduction Clustering Histograms Lifetime Estimation

Q-Digest
Quantile and Histogram Computation

Algorithm 1 Computing an equi-probable histogram

proc histogramEquiProb (qdigest Q, ...
int σ,float τ) ≡
φ := [0 : τ : 1]
comment: determine 1/τ + 1 quantiles
qi := quantile(Q,φi) ∀i ∈ [1..|φ|]
return q

end

Algorithm 2 Quantile computation on a q-digest

proc quantile (qdigest Q,float φ) ≡
L := postorder(Q.tree)
s := 0
for v ∈ L do

s := s + v.count
if s >= φ · Q.n

return rightLeaf(v, σ)
fi

end
return rightLeaf(L.end, σ)

end

Algorithm 3 2S K-agglomerative Clustering

proc Request from p ≡
(Creq, wreq, S) := 2SKSub2(C, w, k, θ)
sendTo p : RequestResponse(Creq, wreq)

end

1

Algorithm 1 Computing an equi-probable histogram

proc histogramEquiProb (qdigest Q, ...
int σ,float τ) ≡
φ := [0 : τ : 1]
comment: determine 1/τ + 1 quantiles
qi := quantile(Q,φi) ∀i ∈ [1..|φ|]
return q

end

Algorithm 2 Quantile computation on a q-digest

proc quantile (qdigest Q, int σ) ≡
L := postorder(Q.tree, σ)
s := 0
for v ∈ L do

s := s + v.count
if s >= p · Q.n

return rightLeaf(v, σ)
fi

end
return rightLeaf(L.end, σ)

end

Algorithm 3 2S K-agglomerative Clustering

proc Request from p ≡
(Creq, wreq, S) := 2SKSub2(C, w, k, θ)
sendTo p : RequestResponse(Creq, wreq)

end

1

3.2 Quantile Digest

XA : XB :

XC : medC := max(medA, medB) = 9

n n

2n

n/2 n/2 + 1

1 · · · 1 · · · 1

medA

1 · · · 1 9 · · · 9

medB

1 · · · 1 · · · 1 9 · · · 9

medC = 1

Figure 3.3: Combination of Medians. (left) exact: merge, sort and find position �n�
in XA ∪ XB, (right) approximate: maximum of medA and medB, for (right) the error
corresponds to a right shift of the median of about n/2 positions

3.2 Quantile Digest

A way to summarize observations is to compute a quantile digest (q-digest) which can in-
corporate arbitrary many observations. A q-digest is a binary tree whose nodes represent
overlapping and almost equi-probable bins of a histogram with a value range from 1 to σ.
Given the decompression parameter k, at most 3k nodes of the complete binary tree are
stored. The variable count represents the bucket height, the value range is given by the left
and the right most leaves in a complete binary tree.

a:1

j:4 k:6

f:2 g:2

1 2 3 4 5 6 7 8

Figure 3.4: Q-digest: Complete binary tree on range [1..σ = 8]. Only green nodes are
stored. Node a represents a bin covering the whole range with one item, node f covers the
range 5-6 and contains two items.

35



Introduction Clustering Histograms Lifetime Estimation

Evaluation
Gossiping of Q-digests

Algorithm 1 Distributed, Gossiped Merging of Q-Digests

proc Initialize(data, k, σ) ≡
leaves := buildtree(data, σ);
n := |data|
Q := Compress(leaves, n, k)

end
proc Timer ≡

peer := SelectRandomPeer()
sendTo peer : Shuffle(Q, n)

end
proc Shuffle(Qrmt, nrmt) from p ≡

sendTo p : ShuffleResponse(Q)
Q := Merge(Q, n, Qrmt, nrmt)

end
proc ShuffleResp(Qrmt, nrmt) from p ≡

(Q, n) := Merge(Q, n, Qrmt, nrmt)
end
proc Request(τ) from p ≡

H := histogramEquiProb(Q, σ, τ)
sendTo p : RequestResponse(H)

end

Algorithm 2 Computing an equi-probable histogram

proc histogramEquiProb (qdigest Q, ...
int σ,float τ) ≡
φ := [0 : τ : 1]
comment: determine 1/τ + 1 quantiles
qi := quantile(Q,φi) ∀i ∈ [1..|φ|]
return q

end

1

Algorithm 1 Distributed, Gossiped Merging of Q-Digests

proc Initialize(data, k, σ) ≡
leaves := buildtree(data, σ);
n := |data|
Q := Compress(leaves, n, k)

end
proc Timer ≡

peer := SelectRandomPeer()
sendTo peer : Shuffle(Q, n)

end
proc Shuffle(Qrmt, nrmt) from p ≡

sendTo p : ShuffleResponse(Q)
Q := Merge(Q, n, Qrmt, nrmt)

end
proc ShuffleResp(Qrmt, nrmt) from p ≡

(Q, n) := Merge(Q, n, Qrmt, nrmt)
end
proc Request(τ) from p ≡

H := histogramEquiProb(Q, σ, τ)
sendTo p : RequestResponse(H)

end

Algorithm 2 Computing an equi-probable histogram

proc histogramEquiProb (qdigest Q, ...
int σ,float τ) ≡
φ := [0 : τ : 1]
comment: determine 1/τ + 1 quantiles
qi := quantile(Q,φi) ∀i ∈ [1..|φ|]
return q

end

1

Algorithm 1 Distributed, Gossiped Merging of Q-Digests

proc Initialize(data, k, σ) ≡
leaves := buildtree(data, σ);
n := |data|
Q := Compress(leaves, n, k)

end
proc Timer ≡

peer := SelectRandomPeer()
sendTo peer : Shuffle(Q, n)

end
proc Shuffle(Qrmt, nrmt) from p ≡

sendTo p : ShuffleResponse(Q)
Q := Merge(Q, n, Qrmt, nrmt)

end
proc ShuffleResp(Qrmt, nrmt) from p ≡

(Q, n) := Merge(Q, n, Qrmt, nrmt)
end
proc Request(τ) from p ≡

H := histogramEquiProb(Q, σ, τ)
sendTo p : RequestResponse(H)

end

Algorithm 2 Computing an equi-probable histogram

proc histogramEquiProb (qdigest Q, ...
int σ,float τ) ≡
φ := [0 : τ : 1]
comment: determine 1/τ + 1 quantiles
qi := quantile(Q,φi) ∀i ∈ [1..|φ|]
return q

end

1



Introduction Clustering Histograms Lifetime Estimation

Gossiping of Q-digests
Error

Error between randomly merged q-digest (gossiped) or
deterministic merging along a routing tree (routed)

ehist(H1, H2) :=
1

σ2B

∑
(h1,i − h2,i)2

3.1 Quantiles

root node normal peers

(a) Routing tree. Data is summarized by par-
ent nodes along the route.

super-peer normal peers

(b) Super-peer. A single node collects data
summaries from all nodes of the network.

normal peers

(c) Gossiping. Each node communi-
cates with a randomly chosen neigh-
bor.

Figure 3.1: Strategies of communicating information in a network.

32

(c) Gossiping.

3.1 Quantiles

root node normal peers

(a) Routing tree. Data is summarized by par-
ent nodes along the route.

super-peer normal peers

(b) Super-peer. A single node collects data
summaries from all nodes of the network.

normal peers

(c) Gossiping. Each node communi-
cates with a randomly chosen neigh-
bor.

Figure 3.1: Strategies of communicating information in a network.

32

(d) Routing Tree.



Introduction Clustering Histograms Lifetime Estimation

Gossiping of Q-digests
Error

Error between randomly merged q-digest (gossiped) or
deterministic merging along a routing tree (routed)

ehist(H1, H2) :=
1

σ2B

∑
(h1,i − h2,i)2

Setup:

• 210 sensors/nodes storing 210 items sampled randomly either
from

1 one global normal distribution N (µ, σN ) with µ ∈ [σ/4; 3σ/4]
and σN

2 210 different normal distributions N i(µi, σi
N ) with

µi ∈ [σ/4; 3σ/4], σi
N ∈ [1;σ/4], and i ∈ [1; 210]

• initially each node computes a q-digest on its local data set

• in each round q-digests are exchanged, merged, and replace
the local ones



Introduction Clustering Histograms Lifetime Estimation

Gossiping of Q-digests
Result 1

3.3 Evaluation

0.35

0.4

0.5

×10−1

error(routed, exact)

error(gossiped, exact)

k = 20

k = 10

k = 5

gossip round

e h
is

t

1 5 10 15 20 25

(a) One normal distribution for all sensor data.

0.2

0.3

0.4

error(routed, exact)

error(gossiped, exact)

k = 20

k = 10

k = 5

1 5 10 15 20 25

gossip round

e h
is

t

×10−1

(b) Different normal distributions for each sensor.

Figure 3.10: Error between exact quantiles φ = [0 : .1 : 1] and quantiles computed on
q-digests for different compression parameters k = [5, 10, 20]. For comparison the error
between exact quantiles and quantiles computed on q-digests of a routing tree are plotted
also. Number of sensors = 1024, local data set sizes = 1024, σ = 128.

44

Figure: Data distributed according to one common normal distribution.



Introduction Clustering Histograms Lifetime Estimation

Gossiping of Q-digests
Result 2

3.3 Evaluation

0.35

0.4

0.5

×10−1

error(routed, exact)

error(gossiped, exact)

k = 20

k = 10

k = 5

gossip round
e h

is
t

1 5 10 15 20 25

(a) One normal distribution for all sensor data.

0.2

0.3

0.4

error(routed, exact)

error(gossiped, exact)

k = 20

k = 10

k = 5

1 5 10 15 20 25

gossip round

e h
is

t

×10−1

(b) Different normal distributions for each sensor.

Figure 3.10: Error between exact quantiles φ = [0 : .1 : 1] and quantiles computed on
q-digests for different compression parameters k = [5, 10, 20]. For comparison the error
between exact quantiles and quantiles computed on q-digests of a routing tree are plotted
also. Number of sensors = 1024, local data set sizes = 1024, σ = 128.

44

Figure: Data distributed according to s different normal distribution.



Introduction Clustering Histograms Lifetime Estimation

Conclusions

• generally: error for gossiping converges towards some
k-dependent constant

• one global distibution: merging q-digests randomly increases
the error negligible

• different distributions for each sensor:
• same error as finite, deterministic merging along a routing tree
• faster convergence for gossiping

• consequence for streams: one could proceed as follows

1 collect data until buffer is filled
2 compute q-digest on buffer and merge it with local one
3 clear buffer, goto step 1
4 meanwhile gossip and merge local with remote q-digests



Introduction Clustering Histograms Lifetime Estimation

Part 3: How to reduce the traffic for
maintenance messages?

3.5 Discussion

44

46

0 1 2
3

4

8

12

16

32

48

3rd level nodes
2nd level nodes
1st level nodes

Figure 3.11: Contact nodes (orange) in node 0’s routing table with N = 64 = 43, a = 4
and L = 3. The blue path shows routing from node 0 to node 46. The last two look-ups
are performed by the nodes with ids 32 and 44.

48



Introduction Clustering Histograms Lifetime Estimation

Traffic in P2P Networks

Overlays: peers are transient
• nodes join and have to be linked

• nodes leave and have to be deregistered, replaced, etc.

⇒ messages for checking presence/abscence of nodes have to be
sent permanently

• heuristics could help to reduce their frequency, e.g. adjust
frequency to average lifetime of nodes



Introduction Clustering Histograms Lifetime Estimation

Weibull Distribution

• first identified by Maurice Fréchet in 1927, described in detail
by Waloddi Weibull

• wide range application: breaking strength of material, size
distribution of particles, failure probability of electronic devices

• depending on input parameters k > 0 (shape) and λ > 0
(scale) the Weibull distribution may assume the shape of an
exponential, normal or Rayleigh distribution

The 3-parameter cdf F with θ (location) for the Weibull function is

F (x; k, λ, θ) :=

{
1− e−(x−θλ )k , x ≥ θ

0 , x < θ



Introduction Clustering Histograms Lifetime Estimation

Weibull Distribution
pdf and mean

Differentiating F with respect to x results in the frequency or
probability density function f

f(x; k, λ, θ) =
dF

dx
=

{
k
λ

(
x−θ
λ

)k−1
e−(

x−θ
λ

)k , x ≥ θ
0 , x < θ

The mean of the Weibull function is

µ = λΓ(1 + 1/k)

with Γ(x) :=
∫∞
0 tx−1 exp−t dt



Introduction Clustering Histograms Lifetime Estimation

Weibull Distribution
Pdf

The Weibull frequency distribution for θ = 0

4.2 Parameter Estimation

at random an individual X ∈ X being less or equal to any x ∈ X.

P (X ≤ x) = F (x)

Any distribution function can be expressed as

F (x) = 1 − e−φ(α)

The cumulative distribution function for one-dimensional Weibull distributed data is defined
as

F (x; k, λ, θ) :=

�
1 − e−(x−θ

λ
)k

, x ≥ θ
0 , x < θ

where k > 0 is the shape parameter, λ > 0 the scale parameter and θ the location. Differen-
tiating F with respect to x results in the frequency or probability density function f

f(x; k, λ, θ) =
dF

dx
=

�
k
λ

�
x−θ
λ

�k−1
e−(x−θ

λ
)k

, x ≥ θ
0 , x < θ

(4.1.1)

Figure 4.1 shows the probability density function with different settings of the shape. For k =
5, the shape of the probability density function becomes similar to the normal distribution.

x

k λ

� x λ

� k
−

1
ex

p
−

(x
/
λ
)k

k = 5, λ = 1

k = 1, λ = 1

k = 0.5, λ = 1

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Figure 4.1: Probability density function for Weibull distributed data with varying shape
parameters.

4.2 Parameter Estimation

Given a set of sampled lifetimes X ∈ Rn×1, the goal is to determine the parameters k and
λ from linear regression, such that the data fits the Weibull distribution function best. The
first moment µ can be derived from the estimated shape kest and the scale parameter λest:

µ = λestΓ(1 + 1/kest) (4.2.1)

50



Introduction Clustering Histograms Lifetime Estimation

Linear Regression

Given a set of sampled lifetimes, how to determine
the missing parameters?

Let X ∈ Rn×m, Y ∈ Rn×1

• with linear relationship
yi = α0 + α1xi,1 + α2xi,2 + · · ·+ αmxi,m, ∀i ∈ [1..n]

• goal: determine coefficient vector α s.t. squared error E
between samples and regression line is minimal

• prepend column vector 1n to X s.t. we can write Xα = Y

E =
1

2
(Y −Xα)T (Y −Xα) → min!



Introduction Clustering Histograms Lifetime Estimation

Linear Regression

Determine root of E’s derivation for α:

∂E

∂α
= 0

∂
[1

2
(Y −Xα)T (Y −Xα)

]
/∂α = 0

1

2
(−X)T (Y −Xα) +

1

2
(Y −Xα)T (−X) = 0

−XT (Y −Xα) = 0

−XTY +XTXα = 0

α = (XTX)−1(XTY )



Introduction Clustering Histograms Lifetime Estimation

Linear Regression
Applied to Weibull Cdf

Now linearize the Weibull cumulative distribution function F

F (x; k, λ) = 1− exp−(x/λ)
k

− ln(1− F (x; k, λ)) = (x/λ)k

ln
(
− ln(1− F (x; k, λ))

)
︸ ︷︷ ︸

y

= k lnx︸ ︷︷ ︸
mx

− k lnλ︸ ︷︷ ︸
c

The relationship between the double logarithm of F and the
logarithm of x is linear! ⇒ apply solution of linear regression



Introduction Clustering Histograms Lifetime Estimation

Linear Regression
Applied to Weibull Cdf

Given a sample xi, we have the linear relationship
ln(− ln(1− F (xi))) = (lnxi 1) · (k c)T




ln(− ln(1− F (x1))
ln(− ln(1− F (x2))

...
ln(− ln(1− F (xn))




︸ ︷︷ ︸
Ỹ

=




lnx1 1
lnx2 1

...
...

lnxn 1




︸ ︷︷ ︸
X̃

(
k
c

)

Plugged into linear regression formula:
(
k
c

)
= (X̃T X̃)−1X̃T Ỹ

Use solution of k, c to compute λ

λ = exp−c/k



Introduction Clustering Histograms Lifetime Estimation

Mean Lifetime Estimation
Put Together

Usage in a P2P system running e.g. the Chord protocol

1 Collect some lifetimes X from unavailable peers

2 Compute X̃, Ỹ from X

3 Compute (k c)T from linear regression formula

4 Compute mean lifetime µ = λΓ(1 + 1/k) from k, λ = exp−c/k

5 Use µ for adjusting frequency of maintenance messages of
protocol



Introduction Clustering Histograms Lifetime Estimation

Evaluation – Linear Regression versus Latent Solution

• scale λ fixed, shape k taken with equal probability from [1; 5]

• data = wblrnd(λ, k) with |data| ∈ [2; 100]

• µ was computed from parameter estimation using linear regression
(LR), Matlab’s (M) built-in wblfit, and exact, but latent
parameters

4.3 Evaluation

2 5 10 20 30 40 50 60 70 80 90 100

0.01

0.05

0.1

0.15

data set size

er
ro

r

�µLR−µ
µ

�2

�µM−µ
µ

�2

Figure 4.2: Comparison between Matlab’s built-in wblfit and parameter estimation with
linear regression.

4.3.2 Message Reduction in Chord

We now show how to use the lifetime estimator in an overlay network using the simulation
framework Oversim1. Oversim is an open-source framework for simulating P2P networks
and different layer types. Among the overlay protocols there is an implementation of Chord.
Nodes in an overlay network using the Chord protocol are arranged in a ring-like structure
(see Figure 3.11 in the previous chapter). For ring maintenance there are essential messages
which are send if an internal timer has expired or as a response:

fix_finger Called periodically to refresh finger table entries.
If enlisted nodes have become unavailable, new
successors have to be determined.

stabilize Called to check whether the predecessor of a
node’s successor is the same.

notify Sent by node who might be the predecessor of
the receiver.

ping, pingResponse Helper routine to check for aliveness.

For our purpose we added a new version of the Chord protocol which contains the following
modifications:

1. We added the function churnRateEstimator in ChordFingerTable.cc which proceeds
like described in section 4.2.2 to estimate the mean lifetime. The function receives a

1http://www.oversim.org/

53



Introduction Clustering Histograms Lifetime Estimation

Evaluation
Frequency Reduction in Chord

Chord – structured P2P protocol
• nodes arranged in a ring-like structure with I = [0;N ] being

the identifier space
• for routing each node stores a finger table with pointers to

successors
• with high probability the look-up for a node is performed with

logN steps



Introduction Clustering Histograms Lifetime Estimation

Evaluation
Fix Finger Messages in Chord

Periodically for each entry in the finger table a look-up is
performed

• a finger table has logN fingers

• a look-up has costs of logN steps

⇒ to refresh a whole finger table costs O(log2N)

• necessity for a refresh depends on average lifetime of peers

⇒ make frequency for a refresh dependent on estimated lifetime



Introduction Clustering Histograms Lifetime Estimation

Evaluation
Chord Simulation

Oversim – a simulation framework which contains an
implementation of Chord

• added function churnRateEstimator to sample lifetimes
(from non-responding nodes) and to compute the mean
lifetime like described before

• function handleFixFingersTimerExpired is called
periodically if the timer for fix finger messages expired, it does

• call churnRateEstimator and returns µ
• computes a new frequency from µ which triggers an internal

switch for the sending of fix_finger messages

frequency = log2 µ



Introduction Clustering Histograms Lifetime Estimation

Evaluation
Chord Simulation

Oversim provides an interface for collecting statistics for traffic,
among them are counters for

• maintenance messages

• fixfinger messages

• ping and pingResponse messages

• packets dropped

• one-way hop count

Setup

• steady-state net size: 1024

• measuring time: 5000s

• mean lifetimes in [200; 800]



Introduction Clustering Histograms Lifetime Estimation

Evaluation
Chord Simulation Results 1

4.4 Discussion

(a) Number of maintenance messages. (b) Number of fixfinger messages.

(c) Number of ping messages. (d) Number of ping response messages.

(e) Packets dropped due to unavailable destination. (f) One-way hop count.

Figure 4.3: Strategy: frequency = log2 µ, steady-state net size: 1024, measuring time:
5000s, number of repetitions: 100.

56



Introduction Clustering Histograms Lifetime Estimation

Evaluation
Chord Simulation Results 2

4.4 Discussion

(a) Number of maintenance messages. (b) Number of fixfinger messages.

(c) Number of ping messages. (d) Number of ping response messages.

(e) Packets dropped due to unavailable destination. (f) One-way hop count.

Figure 4.3: Strategy: frequency = log2 µ, steady-state net size: 1024, measuring time:
5000s, number of repetitions: 100.

56



Introduction Clustering Histograms Lifetime Estimation

Evaluation
Chord Simulation Results 3

4.4 Discussion

(a) Number of maintenance messages. (b) Number of fixfinger messages.

(c) Number of ping messages. (d) Number of ping response messages.

(e) Packets dropped due to unavailable destination. (f) One-way hop count.

Figure 4.3: Strategy: frequency = log2 µ, steady-state net size: 1024, measuring time:
5000s, number of repetitions: 100.

56



Introduction Clustering Histograms Lifetime Estimation

Thank you, for your attention!


