
Master’s Thesis

Approximate Algorithms for Distributed Systems

Author: Marie Hoffmann
Institute: Institut für Informatik, Freie Universität Berlin

Primary Referee: Prof. Dr. Katinka Wolter
Secondary Referee: Dr. Thorsten Schütt

Date: 4th of February, 2013

Zusammenfassung

Peer-to-Peer-Systeme (P2P) sind eine spezielle Klasse von verteilten Systemen. In
einem typischen P2P-System sind alle Knoten gleichberechtigt und teilen sich die glei-
chen Aufgaben. In der vorliegenden Arbeit wurden drei typische Probleme in P2P-
Systemen behandelt: dem Speichern von Datenkopien, der Quantilberechnung auf verteil-
ten Datenströmen und der Bestimmung der Ausfallrate von Knoten. Das Anfertigen
von Datenkopien ist eine der ältesten Techniken um gespeicherte Daten in einem P2P-
System zu verwalten und Leseanfragen effizient zu bearbeiten. Zum Beispiel verwenden
verteilte Datenbanken diese Technik. Sie gehören einem Overlay-Netzwerk an, welches
von der zugrundeliegenden Netzwerk-Topologie aus Hardwareknoten abstrahiert. Die
Herausforderung besteht darin, eine Menge von Datenkopien so zu verteilen, dass die
Antwortzeiten und Ausfallwahrscheinlichkeiten minimiert werden, ohne dass zuvor die
Netzwerk-Topologie bekannt ist. Wir zeigen wie man mithilfe von agglomerativem Clus-
tering dieses Ziel erreicht. Heute gebräuchliche Methoden zur Zusammenfassung verteilter
Daten oder Datenströme erfordern entweder einen Synchronisationsschritt oder kommu-
nizieren und vereinen Aggregate hierarchisch, welches dem Prinzip der flachen Hierarchie
in P2P-Systemen widerspricht. Wir testen, ob randomisiertes Senden und Verschmelzen
von Aggregaten die gleichen Ergebnisse produziert. Die resultierenden Datenaggregate di-
enen schließlich zur Bestimmung von Quantilen. Um ein P2P-Overlay-Netzwerk zu erzeu-
gen und seine Infrastruktur instand zu halten ist es notwendig regelmäßig Nachrichten
zu senden. Da Bandbreite eine knappe Ressource ist, welche sich das Overlay-Netzwerk
mit Anwendungen anderer Schichten teilt, ist es erstrebenswert, die Zahl von Verwal-
tungsnachrichten so gering wie möglich zu halten. Die untere Schranke für deren Fre-
quenz ist offensichtlich gegeben durch die Abwanderungsrate der Peers. Wir zeigen wie
Netzwerkknoten die mittlere Lebensdauer ihrer Nachbarn schätzen können und mit dieser
die Nachrichtenfrequenz optimieren ohne die Infrastruktur des P2P-Overlays zu destabil-
isieren.

Abstract

Peer-to-peer (P2P) systems form a special class of distributed systems. Typically,
nodes in a P2P system are flat and share the same responsabilities. In this thesis we fo-
cus on three problems that occur in P2P systems: the storage of data replicates, quantile
computation on distributed data streams, and churn rate estimation. Data replication
is one of the oldest techniques to maintain stored data in a P2P system and to reply to
read requests. Applications, which use data replication are distributed databases. They
are part of an abstract overlay network and do not see the underlying network topology.
The question is how to place a set of data replicates in a distributed system such that
response times and failure probabilities become minimal without a priori knowledge of
the topology of the underlying hardware nodes? We show how to utilize an agglomera-
tive clustering procedure to reach this goal. State-of-the-art algorithms for aggregation
of distributed data or data streams require at some point synchronization, or merge data
aggregates hierarchically, which does not accompany the basic principle of P2P systems.
We test whether randomized communication and merging of data aggregates are able to
produce the same results. These data aggregates serve for quantile queries. Constituting
and maintaining a P2P overlay network requires frequent message passing. It is a goal
to minimize the number of maintenance messages since they consume bandwidth which
might be missing for other applications. The lower bound of the frequency for mainte-
nance messages is highly dependent on the churn rate of peers. We show how to estimate
the mean lifetime of peers and to reduce the frequency for maintenance messages without
destabilizing the infrastructure of the constituting overlay.

ii

Acknowledgements

I would like to thank Dr. Thorsten Schütt for supervising me as a tutor
at the ZIB for many years. I would also like to thank Prof. Dr. Katinka
Wolter for agreeing to supervise my thesis on short term, and Prof. Dr.
Artur Andrzejak for inducting me into distributed systems.

iv

Contents

1 Introduction 1
1.1 Gossiping . 2

2 Approximate Distributed Clustering over a P2P Network 3
2.1 Clustering Approaches . 7

2.1.1 K-Means Clustering . 7
2.1.2 Agglomerative Clustering . 11
2.1.3 Error of Global Clustering . 18
2.1.4 Experimental Setup and Results . 19

2.2 Adaption to P2P Systems: Approximate Clustering 23
2.2.1 Approximate K-Means Clustering . 23
2.2.2 Approximate Agglomerative Clustering 25
2.2.3 Error of Distributed Approximate Clustering 27
2.2.4 Experimental Setup and Results . 27

2.3 Discussion . 28

3 Quantiles and Histograms on Distributed Streams 31
3.1 Quantiles . 31

3.1.1 Frequency Distributions and Histograms 33
3.1.2 Data Streams and Loss of Information 34

3.2 Quantile Digest . 35
3.2.1 Construction and Compression . 36
3.2.2 Merging . 36
3.2.3 Quantile Computation . 38
3.2.4 Equi-probable Histogram Computation 38
3.2.5 Equi-width Histogram Computation 40
3.2.6 Distributed Combination of Q-Digests 40

3.3 Evaluation . 41
3.3.1 Compression Error . 42
3.3.2 Gossiping versus Routing . 43

3.4 Experimental Results . 45
3.5 Discussion . 45

3.5.1 Efficient Implementation of Higher Branching Factors 47

4 A Lifetime Estimator for P2P Networks 49
4.1 Weibull Distribution . 49
4.2 Parameter Estimation . 50

4.2.1 Linear Regression . 51

vi

CONTENTS

4.2.2 Application to Weibull Distributed Data 51
4.3 Evaluation . 52

4.3.1 Linear Regression Error . 52
4.3.2 Message Reduction in Chord . 53

4.4 Discussion . 55

5 Summary 57
5.1 Approximate Distributed Clustering over a P2P Network 57
5.2 Quantiles and Histograms on Distributed Streams 57
5.3 A Lifetime Estimator for P2P Networks . 58

Literaturverzeichnis 65

Statement 67

vii

Chapter 1

Introduction

Would you rather plow a field with
two strong oxen or 1024 chicken?

Seymour Cray

As the costs of the computational power of a processing unit do not scale linearly, distributed
systems represent an alternative for applications that are computationally intensive. The
computing units of a distributed system are not located in one place, but might be distributed
across a building, a town or the whole world. The units do not communicate via a common
primary storage, but through sending messages. In the last decades many algorithms, e.g. for
sorting, matrix multiplication, or clustering have been rewritten to run partially in parallel.

Peer-to-peer (P2P) systems form a subset of distributed systems. Clients (or nodes) in a P2P
system are flat – they all run the same routines and may act as clients or as servers. Most
P2P systems have transient peers, which share duties and benefits for a short period of time.
Beside the loss of availability, peers might display a large heterogenity concerning computing
power, storage space and connection speed. It is an inherent property of P2P systems that
peers are a long way away from each other.

Computing data aggregates in a completely decentralized P2P system is much more chal-
lenging, since we can not put the task and responsability to a single node, which collects and
merges aggregates from all nodes of the network. We must give up the demand of exactness,
since P2P networks might increase to arbitrary sizes and clients storing data of interest are
transient. Most parallelized algorithms, which compute exact results, require at some point
synchronization. For example, in the parallel version of K-means a root node has to be de-
termined and the labeling and re-estimation steps have to be performed synchronously [1].
Even the approximate version of K-means for P2P systems requires synchronization in terms
of iteration rounds [4].

Giving up the demand for an exact solution offers the opportunity to try new approaches,
which might be simpler, faster, and at the same time exhibit a high degree of robustness, scal-
ability and distribution. In chapter 2 an approximate algorithm for agglomerative clustering
is developed which is able to answer questions on the topology of a network. By assigning
two-dimensional network coordinates to nodes, we are able to detect locations and sizes of
data centers. Furthermore, the same procedure can be used to find locations for storing

1

1.1 Gossiping

a fixed number of replicated objects, such that lookup times and failure probabilities in a
distributed hash table (DHT) are minimal.

Another challenge in field of distributed systems or sensor networks is how to compute effi-
ciently quantiles or histograms on data or data streams that are distributed over a network.
For example, assume that each node stores the response times for database queries and an ap-
plication or administrator would like to have an overview of their distribution. The question
is how to aggregate distributed data efficiently? We evaluate in chapter 3 a method that com-
putes a histogram-like data summary on each node. These summaries are merged randomly
and queried for quantiles. Histograms represent a robust way to reflect data distributions.

In order to maintain the infrastructure of an overlay network, each peer sends regularly
messages that control or repair entries of its routing table. These messages consume bandwith
which might be lacking for other applications. It is a common goal to minimize their number
with the constraint that the infrastructure is kept alive. In chapter 4 we show how to estimate
the mean lifetime of peers and adapt the frequency for maintenance messages to achieve this
goal.

In general, all methods presented in this thesis can be utilized by higher applications or
by the overlay network itself to manage its maintenance and to reduce the need for human
administration.

1.1 Gossiping

A common goal of algorithms computing quantitive, administrative information in P2P sys-
tems is that each node should end up with the similar amount of information, since in a pure
P2P environment nodes must remain replacable. The methods of the first two chapters use
the gossiping protocol to spread data aggregates. The central idea of gossiping is that for
each client the communication partner is chosen randomly with equal probability from the
set of all clients. The randomized manner circumvents many problems concerning net size,
unreliability of peers, or an inconvenient structure of the underlying network. Gossiping is
the communication principle that accompanies best the idea of P2P systems in terms of equal
rights. A gossip-based protocol which forms an unstructured overlay network is CYCLON
[20].

On top of unstructured overlay networks, we can build structured overlays, like Chord, Pastry,
or CAN, that may query underlying gossiping routines to establish communication between
arbitrary parties with negligible costs.

2

Chapter 2

Approximate Distributed
Clustering over a P2P Network

The technique of clustering is a well-known tool for data analysis. The aim is to group a set
of objects X according to their reported features. Objects that show high similarities among
each other should end up in the same class. The clustering approach is data driven, we learn
clusters only by computations on the data. We control the quality of clusters by prescribing
their number or defining a distance dimension.

In P2P systems X can not be accessed at the whole, but is distributed over a network. Each
node N i holds a subset X(i) ⊆ X in its local memory. The data X might be any feature for
which a distance dimension can be defined. In this chapter we will concentrate on network
coordinates. Thus, we restrict the attribute space of X to Rn×d. The real spatial positions
of nodes in a network are unknown, since overlay networks hide the underlying network
topology. Algorithms, like Vivaldi [6], use the fact that network latencies between nodes
in general correspond to spatial distances. Vivaldi was published by Dabek et al. in 2004.
The gossip-based algorithm iteratively computes a solution to a spring relaxation problem.
Each node sends its own coordinates y ∈ R2 and an error estimate ey ∈ R+ to a randomly
assigned neighbor along with the round trip time (RRT) rtt. The error estimate reflects
the node’s confidence about its own coordinates. Depending on the error estimates of both
nodes and their euclidean distance in relation to the real RRT, the neighbor adjusts its own
two-dimensional network coordinates x. Either in direction to or away from the sending node
(see Algorithm 1 below). Initially, the node’s coordinates are taken randomly from R2 and
ex is set to one.

Based on network coordinates, the primary objective is to detect data centers C ∈ Rk×d
by the use of clustering. But there are many file storing or sharing applications that do
not only require the identification of data centers. Potential storage locations should be
distributed equally in the communication space, such that transmission latencies and failure
probabilities become minimal. Since node failures within a cluster are correlative, replicates
should be stored in different clusters. It is also important to identify and avoid outlying nodes
for replicate storage, since we probably will receive few requests by nearby nodes. Figure 2.1
shows a number of nodes, that store replicates in an unwanted and wanted manner.

Let kalgo refer to the number of replicates to store in a P2P network and kdata the real number

3

Algorithm 1 Vivaldi: Assignment of Network Coordinates.

proc vivaldi(float rtt,float[] y,float ey) ≡
comment: weight balances local and remote error
w := ex/(ex + ey)
comment: relative error of incoming sample
es :=

∣∣‖x− y‖ − rtt∣∣/rtt
comment: update weighted moving average of local error
ex := es × ce × w + ex × (1− ce × w)
comment: update local coordinates
δ := cc × w
x := x+ δ ×

(
rtt− ‖x− y‖

)
× u(x− y)

end

a) b)

nodes
nodes storing replicates

Figure 2.1: Distribution of four replicates in a network. (a) ‘Bad’ distribution: two repli-
cates are stored in the same cluster and a singleton is used for storage. (b) ‘Better’ distri-
bution: one replicate per cluster, the outlier is left out.

4

of clusters, optimal choices for replica placements are summed up in Table 2.1.

kalgo < kdata kalgo == kdata kalgo < kdata

Detect clusters and se-
lect the kalgo largest
clusters. Store repli-
cates on nodes that are
nearby their centroids.

Detect clusters and
store replicates on
nodes nearby their
centroids.

Detect clusters and if
necessary, place repli-
cates into the same clus-
ter such that the storing
nodes represent approx-
imately 1/kalgo-th of all
nodes.

Table 2.1: Optimal strategies for replica storage.

On a typical data set with ‘well’ separated and non-concentric clusters, most clustering al-
gorithms will find the exact positions as long as the input kalgo matches the latent kdata, or
some other threshold is set appropriately. But what happens if they differ, like in most use
cases for replica storage?

We either have to skip centroids or have to determine centroids that subdivide a single cluster.
For the latter case, technically their coordinates do not correspond to centroids any more.
Nevertheless, they should be placed as far as possible from each other for two reasons. First,
location and breakdown of nodes are correlative, and second, uniform distribution minimizes
the overall latency of messages, if we assume to have no prior knowledge about the underlying
network. Another reason is that replicates might be too large to be stored on one node, thus,
they are distributed over a cluster (or fraction). On the one hand, we need to detect real
clusters, on the other hand, we would like to receive positions whose neighborhood represent
equal fractions, which do not necessarily correspond to centroid positions. We will later see
how to optimize these counteractive goals.

If the demand of exactness is given up, we can give approximate versions for agglomerative and
K-means clustering for P2P networks. An approximate version of agglomerative clustering
was given in my Bachelor thesis [2] in 2009. In the same year Datta et al. proposed an
approximate version of K-means (LSP2P K-means) [4]. Both approaches are able to deal
with topology changes and loss of data. When using approximate, agglomerative clustering
via gossiping, nodes in a network receive a view that converges arbitrarily close to a global
one within a few communication steps [3].

For agglomerative clustering the process of data agglomeration is highly unsupervised. There
is no control over k, the final number of centroids, nor their relative sizes, nor their separation.
In a worst case scenario we might end up with a number of centroids with small distances
among each other (but still above a threshold below which we would merge).

For applications that request a fixed number of centroids, K-means had been the first choice,
so far. It offers user control over the final number of centroids. Additionally the centroids
show a high degree of separation, due to minimization of the squared error between data and
centroids over several iterations and disregard of densities.

In this part we extend the approximate, agglomerative clustering algorithm to gain control
over k and the degrees of how equally sized and well separated final clusters become. With
respect to Datta et al., we will call the new algorithm 2SP2P K-agglomerative clustering,

5

since it consists of two stages and is intended for the usage within P2P networks. As we will
later see, 2SP2P K-agglomerative clustering is easier to implement, completely decentralized
and has lower space and communication costs in comparison to LSP2P K-means.

In general both clustering algorithms work for arbitrary data. But since the improvements
of agglomerative clustering aim at cluster localization, we assume that the distributed data
set corresponds to network coordinates which are known to each node, e.g. by running a
coordinates assigning routine like Vivaldi.

One word about exactness, clustering is NP-hard and all state-of-the-art clustering approaches
are greedy. Thus we have no guarantee for a globally optimal solution. Additionally, we will
use an approximate approach to deal with P2P networks.

In the following, k ∈ N+ refers to the number of centroids. If necessary, we differ between
kdata, the latent number of clusters in X, and kalgo, the input variable of a clustering algo-
rithm.

6

2.1 Clustering Approaches

2.1 Clustering Approaches

Figure 2.2 shows a taxonomy of clustering techniques for non-distributed systems. Partitional
clustering approaches try to optimize the partitioning of a data set without considering
former partitions. Data can arbitrarily often switch between different partitions. Hierarchical
techniques split or merge consecutively subsets until a desired number of subsets is reached
or another termination criterion is fulfilled.

Clustering

Hierarchical

Top-Down

Bottom-Up

Agglomerative

Partitional
Square Error

K-means

Graph
Theoretic

DBSCAN

Mixture
Resolving

Expectation
Maximization

Mode Seeking

Figure 2.2: A taxonomy of clustering approaches and examples.

2.1.1 K-Means Clustering

One of the most widespread clustering algorithms is K-means. It uses the partitional ap-
proach. In detail, K-means partitions the data into k disjoint, exhaustive groups, where k
is a user-specified parameter. The goal is to find a partition that minimizes the squared
error between centroids and data. Initially, k centroids are chosen randomly, their positions
are improved iteratively until a termination criterion is met. Each iteration consists of an
expectation (E-step) and a maximization step (M-step). In the E-step data is assigned to
their closest centroids. The subsequent M-step recomputes the centroids. For the assignment
between data and centroids, a vector of labels has to be stored. Centroids from previous
iterations are dropped.

Since K-Means tries to minimize the distances between data and centroids. For most data
sets it will never happen that we end up with two centroids that are close neighbors. Loosely

7

2.1 Clustering Approaches

speaking, there will always be enough data between two centroids. This is an important
criterion for replica storage locations.

K-means is a greedy algorithm for a NP-hard problem, we might miss the global minimum.
By varying the set of initial centroids, we increase the chance of finding centroids that are
globally optimal. In practice, if the number of centroids is unknown, K-means is run with
different settings for k.

K-means has structural similarities to the Expectation Maximization (EM) algorithm. In-
stead of labels, indicating the membership to clusters, the EM algorithm computes posterior
probabilities1. Figure 2.3 shows several iterations of the EM algorithm. The centers of the
ellipses represent the means and the radii the deviations of the clusters. The classification
is illustrated by the coloring. Later on, we will use K-means only for optimizing the center
positions, not their deviations.

Figure 2.3: Iterations of the EM algorithm. (a) Unclassified data (green) and initial cen-
troids given by their means µ and deviations σ. (b) After E-step, (c)-(f) after 1, 2, 5 and
20 iterations. Taken from Bishop [5].

The pseudocode of K-means is given in Algorithm 2. Note that [k] and [n] are shorthand for

[1..k] and [1..n], respectively, and
$←− refers to a randomized assignment. As a termination

criterion the labeling of two subsequent iterations is compared. If no data point changes its
membership to a centroid, the algorithm has converged to a locally optimal solution. Another
common approach is to compare the squared error between cluster centers and respective

1p(X|θ) – probability of the observed data X given model parameters θ

8

2.1 Clustering Approaches

data, and to stop if the difference of two subsequent errors falls below a threshold γ. This is
useful if we have constraints on the number of iterations. Note that one can construct cases
for which data items flip arbitrarily often their labels. Therefore it is not recommended to
formulate a stopping criterion based solely on labels.

Algorithm 2 K-Means Clustering

proc KMeans(float[][] X, int k,float γ) ≡
n := |X|
cl

$←− X ∀l ∈ [k]
labeli := arg minl∈[k]‖X(i)− cl‖ ∀i ∈ [n]

cold := c
comment: M-step, re-estimate centroids
cl := 1

|{i|labeli==l}|
∑

labeli==lXi ∀l ∈ [k]

while maxj{‖coldj − cj‖} ≥ γ
cold := c
comment: E-step, compute expected label for each datum
labeli := arg minl∈[k]‖Xi − cl‖ ∀i ∈ [n]

comment: M-step, re-estimate centroids
cl := 1

|{i:labeli==l}|
∑

labeli==lXi ∀l ∈ [k]

end
end

What is the behavior of K-means if the requested number of centroids does not meet the
latent number of clusters? Figure 2.4 shows typical results. If the input kalgo falls below
kdata, at least one centroid will be placed between two centroids to minimize the squared
error to the data of both clusters. To store a replicate on a nearby node would be a bad
choice. For kalgo == kdata, K-means is expected to find the latent centroids. If kalgo exceeds
kdata, K-means places several centroids into one cluster, such that they represent almost
equally sized fractions of it.

9

2.1 Clustering Approaches

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

(a) kalgo < kdata. One centroid is placed in
between two clusters with few nodes nearby.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) kalgo == kdata. Centroids perfectly meet latent
centroids.

−0.5 0 0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(c) kalgo > kdata. Centroids in right cluster
are distributed uniformly.

Figure 2.4: Data (black) and centroids (red) estimated by K-means clustering.

10

2.1 Clustering Approaches

2.1.2 Agglomerative Clustering

Agglomerative clustering is a hierarchical clustering technique that works bottom-up. Initially
each data point represents a cluster – a singleton. Iteratively the closest clusters are merged.
The merging stops as soon as there are no two clusters whose distance falls below some given
threshold θ ∈ R (see Algorithm 3 and subroutine 5). The proceeding can be visualized by
dendrograms (see Figure 2.5). Branch points correspond to centroids.

X

d
is

ta
n

ce

x1 x2 x3 x4 x5

Figure 2.5: Proceeding of agglomerative clustering on 1D data.

There are many ways to define distances between two clusters, for example:

Single-Link distance between the closest pair of nodes from different clusters

Complete-Link distance between the most remote pair of nodes from different clusters

Centroid method distance between the centroids of two clusters

Looking at the results, they differ in sensitivity for noise or the ability to detect concentric
clusters [7]. Note that for the last method which uses only centroids, the algorithm does
not need to keep track of data points. For merging and recomputation of new centroids it
suffices to store the centroids’ coordinates and their relative sizes. This fact is exploited by
the approximate version for P2P systems [3]. The pseudocode is given in Algorithm 3.

Another distinction from K-means is that we do not need to give the number of centroids.
If θ is chosen properly, agglomerative clustering (from now on θ-agglomerative clustering) is
able to detect the natural number of clusters. But what happens if we simply stop after the
amount of centroids has become k to receive a particular number of centroids? This first
approach is shown in Algorithm 4, the K-agglomerative clustering routine. We only changed
the stopping criterion. In the following, we will examine whether K-agglomerative clustering
produces meaningful results with respect to the optimal choice of replica storage locations
(see Table 2.1).

2.1.2.1 Case Distinction

On a typical data set (‘well’ separated and non-concentric clusters), with high probability
θ-agglomerative clustering will find the exact positions. But what happens, if we force the

11

2.1 Clustering Approaches

Algorithm 3 Agglomerative Clustering

proc θ-AggloClustering(float[][] data,float θ) ≡
n := |data|
C := data
wi := 1/|data| ∀i ∈ [n]
(i, j) := arg min i,j

i 6=j
‖ci − cj‖

while ‖ci − cj‖ < θ
(C,w) := Merge(C,w, i, j)
(i, j) := arg min i,j

i 6=j
‖ci − cj‖

end
return (C,w)

end

Algorithm 4 K-Agglomerative Clustering

proc KAggloClustering(float[][] data, int k) ≡
n := |data|
C := data
wi := 1/|data| ∀i ∈ [n]
(i, j) := arg min i,j

i6=j
‖ci − cj‖

while |C| > k
(C,w) := Merge(C,w, i, j)
(i, j) := arg min i,j

i6=j
‖ci − cj‖

end
return (C,w)

end

Algorithm 5 Weighted Merging of two Centroids

proc Merge(float[][] C,float[] w, int i, int j) ≡
C := C ++ [

(
ci · wi + cj · wj

)
/(wi + wj)]

w := w ++ [wi + wj]
comment: delete original entries
delete(C, [i, j])
delete(w, [i, j])
return (C,w)

end

agglomerative clustering procedure to stop after the number of centroids reaches kalgo? Figure
2.6 shows typical results for different settings for kalgo and kdata.

If k is equivalent to the latent number of centroids, we expect to detect latent centroids (see
Figure 2.6(b)). The result is the same as if we would have applied θ-agglomerative clustering.
If the input k does not meet the latent kdata, the results are rather unusable. For kalgo less
than kdata, centroids might be placed between two clusters. They represent an arithmetic
mean, although any nodes are nearby. It would make more sense to discard the smaller cluster
and to return the centroids of the k largest clusters respectively. We can use the standard
procedure of agglomerative clustering to detect latent centroids.

For kalgo exceeding kdata, we can not avoid to end up with centroids placed close to each
other within a single cluster. But they should neither be placed side by side, nor represent
only two or three nodes, since location and node failures are correlative. Centroids within
one cluster should represent a significant proportion of it, ideally 1/kalgo.

With respect to the optimal criteria to replica placement, K-means provides better partitions
for kalgo larger than kdata (see Figure 2.4(c) on page 10). To overcome the disadvantages of
K-agglomerative clustering, we will turn the standard routine into a three-step routine which
is triggered by the relationship of kalgo and kdata. For the estimation of the latent kdata,
we will use θ-agglomerative clustering and return the kalgo largest centroids, if kalgo less or

12

2.1 Clustering Approaches

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

(a) kalgo < kdata: Centroids are placed in between two clusters in few nodes
nearby.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

(b) kalgo == kdata. Centroids perfectly meet latent cen-
troids.

−0.5 0 0.5 1 1.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c) kalgo > kdata. One centroid repre-
sents the latent centroid of the cluster,
the others represent small fractions of
the outskirts.

Figure 2.6: Data (black) and centroids (red) estimated by K-agglomerative clustering.

13

2.1 Clustering Approaches

equal to kdata. The handling of the case kalgo > kdata will be more challenging. We want
to receive several centroids that are placed into a single cluster and represent 1/k-th of the
whole data set. To prevent the standard agglomerative approach to focus solely on dense
regions, we will modify the merging criterion. The next section describes a measure against
slow agglomeration of nodes in the outskirts.

2.1.2.2 Boost Agglomeration below 1/k

To force that centroids within single clusters represent equally sized subsets of it, we modify
our merging criterion by incorporating relative cluster sizes. Merges that result in new clusters
with relative sizes below 1/k are favored by adding a weighted sigmoid function with input
parameters w, k and ‘sharpness’ z. The sigmoid function σ : R 7→ [0; 1] with σ(x, z) = 1

1+e−z·x

is a strictly monotonic increasing function with an infimum at 0 and a supremum at 1. Its
inflection point is at (0, 1/2). Our input parameter w comes from [0; 1], we therefore shift the
input right by 1/k.

x

σ(x− 1
k , z)

1/k 1

1

z = .5
z = 1
z = 2
z = 4
z = 8

Figure 2.7: Sigmoid function with varying
sharpness z.

The effect is that two candidates for merg-
ing are strongly favored if their summed up
sizes are below 1/k. The significance of clus-
ter weights is controlled by the coefficient δ
and the sharpness z. Increasing both will
raise the chance to end up with equally sized
centroids at the expense of higher position
errors. The relationship of δ and z, and
different kind of qualities, like equally siz-
ing or accuracy, will be examined in section
2.1.4.2.

If kalgo is greater than kdata, we replace the
merge criterion used in θ-agglomerative clus-
tering, namely

(̂i, ĵ) = arg min
i,j
i<j

{‖ci − cj‖} (2.1.1)

by a new one that incorporates relative sizes

(̂i, ĵ) = arg min
i,j
i<j

{
‖ci − cj‖/D + δ · σ(wi + wj − 1/k, z)

}
(2.1.2)

with D being the diameter – the largest euclidean distance between two nodes of the network.

14

2.1 Clustering Approaches

2.1.2.3 Identifying Singletons

According to our motivation of finding representative nodes for cluster centers, it is not
eligible to receive singletons. If outliers are present or k is very large, the agglomerative
clustering approach tends to keep outliers as centroids. Why? Due to their large distances
to other centroids, they will never be chosen for being merged into another centroid. But
singletons can easily be identified by their low relative sizes. Since we do not know how
many outliers are present and will survive the clustering procedure, we apply agglomerative
clustering and stop early enough to keep a larger set of centroids.

Roughly spoken, we apply k′-agglomerative clustering with k′ > k during the distributed
computation step. Only on request we reduce the list of centroids by cleaning the centroids
from singletons and applying k-agglomerative clustering on the cleaned set. Reducing the
list from k′ to k centroids can be done instantaneous and does not require communication in
a distributed version.

A centroid ci is regarded as being a singleton, if for its relative size wi holds wi ≤ ε. For
the evaluation part ε was set to 2/n, since we might have computing errors on wi or the
estimated net size n. The routine of separating singletons from latent cluster centroids
should be executed as late as possible. In early stages current singletons might get absorbed
by larger centroids that are not known yet to a single node. On the other hand, if we start
identifying singletons on a strongly shrunk set, we might obtain less than k valid centroids.

If we have some prior knowledge about the probability p of nodes being singletons, the latest
moment for an outlier removal is when |c| = k + dpne holds. For the sake of completeness
the pseudocode is given in Algorithm 6.

Algorithm 6 Singleton Separation

proc SeparateSingletons(float[][] C,float[] w, int k,float ε) ≡
while |C| > k

i := arg minj∈[|C|]wj
do if wi > ε then return (C,w, S) fi;
S := S ∪ {Ci}
delete(C, [i])
delete(w, [i])
i := arg minj∈|C|]wj

end
w := w/(

∑
w)

return (C,w, S)
end

2.1.2.4 2SP2P K-agglomerative Clustering

Applying both modifications, we end up with a two-step agglomerative clustering routine. In
a first step k′-agglomerative clustering with k′ > k is applied on the data. In a distributed,
approximate version, a node receives this data indirectly by gossiping its currently estimated
centroids (see chapter 2.2.2).

15

2.1 Clustering Approaches

After having received the request to return k ∈ [1; k′] centroids, a node executes again θ-
agglomerative clustering to detect the latent number of clusters kdata. If the requested k does
not exceed kdata, the k largest centroids are returned. The procedure of separating singletons
(see Algorithm 6) is incorporated into θ-agglomerative clustering the same way as below in
procedure 2SKAggloClustering (see Algorithm 8 on page 17), but not explicitly written here.

If k exceeds kdata, we perform k-agglomerative clustering on the k′ centroids and drop the
results from θ-agglomerative clustering. We use the new merge criterion to receive centroids
representing equally sized partitions of clusters. As soon as |c| = k+ dpne holds, we separate
the singletons from the set of centroids. We continue to agglomerate until k′ reaches k and
we are done.

Algorithm 7 2S K-agglomerative Clustering

proc 2SKAggloClustering(float[][] data, int m, int k,float ε,float δ,float z,float θ) ≡
(C,w) := 2SKSub1(data,m, k)
(C,w, S) := 2SKSub2(C,w, k, ε, δ, z, θ)
return (C,w, S)

end

comment: the 1st subroutine requires access to the data

proc 2SKSub1(float[][] data, int m, int k) ≡
C := data
w[i] := 1/|C| ∀i ∈ [|data|]
comment: mk-agglomerative clustering with euclidean distance only
(C,w) := KAggloClustering(C,w,m · k)

end

comment: the 2nd subroutine for reduction operates only on the centroids

proc 2SKSub2(float[][] C,float[] w,float ε,float δ,float z,float θ) ≡
(Clatent, wlatent, S) := ThetaAggloClustering(C,w, θ)
comment: if kdata ≥ k return k largest centroids
do if |Clatent| ≥ k

C := Clatent[findKLargest(wlatent, k)]
w := wlatent[findKLargest(wlatent, k)]
return (C,w, S)

fi
comment: else agglomerate with new merge criterion
(C,w, S) := KAggloPlusClustering(C,w, k, ε, δ, z)
return (C,w, S)

end

16

2.1 Clustering Approaches

Algorithm 8 K-agglomerative Clustering with Singleton Separation

proc KAggloPlusClustering(float[][] C,float[] w, int k,float ε,float δ,float z) ≡
sepF lag := false
S = {}
while |C| > k

do if ¬sepF lag ∧ |C| <= k + dp · ne
S := SeperateSingletons(C,w, k, ε)
sepF lag := true

fi
(i, j) := arg min i,j

i 6=j

{
‖ci − cj‖/D + δ · σ(wi + wj − 1/k, z)

}
(C,w) := Merge(C,w, i, j)

end
return (C,w, S)

end

Be aware that we moved the assignment of the initial centroids and size vector outside all
clustering procedures. For the standard agglomerative clustering (Algorithm 3) with distance
threshold θ we did the same. An example is given below in Algorithm 9. In this way, the
core routine will be utilized for the distributed version.

Algorithm 9 K-Agglomerative Clustering with new Merge Criterion and extracted centroid
assignment

proc MainClustering(float[][] data, int k,float δ,float z) ≡
C := data
wi := 1/|data| ∀i ∈ [data]
(C,w) := KAggloClustering(C,w, k) comment: or any other
output(C,w)

end

comment: clustering without data access
proc KAggloClustering(float[][] C,float[] w, int k,float δ,float z) ≡

(i, j) := arg min i,j
i 6=j
‖ci − cj‖

while |C| > k
(C,w) := Merge(C,w, i, j)

(i, j) := arg min i,j
i<j

{
‖ci − cj‖+ δσ

(
wi + wj − 1 + 1/k, z

)}
end
return (C,w)

end

17

2.1 Clustering Approaches

2.1.3 Error of Global Clustering

Forcing the agglomerative clustering routine to return kalgo 6= kdata centroids obviously coun-
teracts the strength of agglomerative clustering – detection of dense regions. We express this
by separating the error:

1. correctness of centroid positions

2. equally sized centroids

3. well-separation of centroids

According to these qualities we will record three different errors: errpos, erreq, and errsep. ĉ
and ŵ denote the estimated values for c and w. For being able to compare estimated and
latent values, we apply agglomerative clustering on the larger set, if |c| 6= |ĉ| holds.

We define the position error between real c and estimated centroids ĉ as the product of their
euclidean distance and their difference in size. We assume that ĉi approximates cj if the
latter minimizes the expression ‖ĉi − cj‖ · |ŵi −wj |. We normalize the error by the diameter
D of the network and the number of counted centroids.

errpos = 1
kD

∑
i

arg min
j
{‖ĉi − cj‖|ŵi − wj |}︸ ︷︷ ︸

closest centroids with respect to position and size

(2.1.3)

On the other hand, if we are forced to place several centroids into one cluster, we want to
reward equally distributed cluster centers of equal sizes that have rather large distances
between each other. Since both qualities might counteract, we separate their errors. erreq
measures the discrepancy between estimated cluster sizes and an ideal uniform distribution
of nodes over clusters, which is 1/k.

erreq = 1
k

∑
i

(ŵi − 1/k)2︸ ︷︷ ︸
deviation from equally sized clusters

(2.1.4)

For the separation error, we penalize centroids that are close to each other by summing up
(1− ‖ci − cj‖/D) ∈ [0; 1] for all unique pairs of centroids.

errsep = 2
k(k−1)

∑
ij
i<j

(
1− ‖ci − cj‖/D

)
︸ ︷︷ ︸

penalty for low distances between centroids

(2.1.5)

18

2.1 Clustering Approaches

2.1.4 Experimental Setup and Results

2.1.4.1 Data Generation

All of the data is sampled independently from k normal distributions with fixed means cj∈[k] ∈
R2×1 and deviations. The number of centroids k is drawn from the interval [2; 8] with relative
sizes taken from [0.2; 0.7], both distributed uniformly. Since the latent number of centroids
kdata merely meets the number of centroids kalgo requested by an application, both variables
are generated independently. They are equal with a probability of 1 : 7. In these cases the
position errors are expected to be the best. The latent centroids C and sizes wd are stored
to compute the errors.

Algorithm 10 Data Generation

proc DataSetGen(int n,float p) ≡
comment: choose latent and required k independently

kdata
$←− [2; 8]

kalgo
$←− [2; 8]

comment: generate latent centroids plus singletons along a grid
C := meshGrid(kdata + dn · pe);
comment: generate kdata relative cluster sizes

wcj
$←− [.05; .7] ∀j ∈ [kdata]

wc := wc/(
∑
wc);

comment: for each centroid Cj generate n · wcj distributed normally
data← N (µ = Cj , σ

2 = .4) ∀j ∈ [kdata]∀i ∈ [wcj · n]
data := data ++ Ck+1:n comment: append singletons
wdi := 1/n ∀i ∈ [n]
return (C,wc, data, wd,D)

end

2.1.4.2 Results for δ and z in new merge criterion

To find optimal settings for the parameters δ and z in the new merge criterion, combinations
of settings for the sharpness z and the importance δ were tested (see Figure 2.8).

(i, j) := arg min
i,j
i<j

{
‖ci − cj‖+ δσ

(
wi + wj − 1 + 1/k, z

)}
(new merge criterion)

σ(errpos) · 10−3 σ(erreq) · 10−3 σ(errsep) · 10−3

δ 0.0004 0.0385 0.3472
z 0.0005 0.0158 0.1998

Table 2.2: Deviation for δ and z if other parameter is fixed.

The influence of the second term of the merging criterion, that is δσ(wi + wj − 1/k, z),
becomes larger with the increasing of δ and z. Increasing δ and z will worsen the position

19

2.1 Clustering Approaches

0
1

2
3

4

0
2

4
6

8
10

3

4

5

6

7

8

9

10

x 10−3

δ
z

er
r_

po
s

(a) err pos, min : δ = .75, z = .5

0
1

2
3

4 0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

0.025

z
δ

er
r_
eq

(b) err eq, min : δ = 2, z = 8

0
1

2
3

4

0
2

4
6

8
10
0.3

0.32

0.34

0.36

0.38

0.4

0.42

δ
z

er
r_
se
p

(c) err sep, min : δ = 0, z = ∅

Figure 2.8: δ versus z with δ ∈ [0, .5, .75, 1, 1.5, 2, 4] and z ∈ [.5, 1− 6, 8, 10]

20

2.1 Clustering Approaches

and separation errors. On the other hand, we will improve the equality error by more than
four times. Apparently the control parameters δ and z are correlated with respect to the
errors. They always should be increased or decreased together.

Table 2.2 shows the deviations of δ and z2. The influence of δ is slightly larger for the equality
and separation errors. With regard to their correlation, one should consolidate both into a
single formula with one input parameter u ∈ [0; 4] and optimal coefficient vector β derived
from linear regression analysis.

f(u) :=

(
(δmin + u) · β1
(zmin + u) · β2

)
=

(
δ

z

)
(2.1.6)

2.1.4.3 1S versus 3S Agglomerative Clustering

To test the effect of the introduction of the case distinction (relation of kalgo and kdata), these
configurations where tested against each other:

T1 K-agglomerative clustering with old merge criterion

(̂i, ĵ) = arg min
i,j
i<j

‖ci − cj‖

T2 K-agglomerative clustering with new merge criterion and input parameters δ, z

(̂i, ĵ) = arg min
i,j
i<j

{
‖ci − cj‖/D + δ · σ(wi + wj − 1/k, z)

}
T3 3S K-agglomerative clustering with case distinction and input parameters δ, z

T4 K-means clustering

T2 and T3 use the new merging criterion, thus they were run with three parameter settings
for δ and z. Table 2.3 shows the errors.

error K-agglo- K-agglomerative 3S K-agglomerative K-means
merative δ = .75 δ = 1 δ = 2 δ = .75 δ = 1 δ = 2
(old crit.) z = .5 z = 4 z = 8 z = .5 z = 4 z = 8

pos 1.0000 0.8521 0.5706 0.8331 0.1359 0.3953 0.4790 0.8672
eq 1.0000 0.7582 0.5292 0.1151 0.5949 0.2653 0.1887 0.3129
sep 0.4663 0.5201 0.6567 0.9192 0.8220 0.9515 1.0000 0.8878

Table 2.3: Position, equality and separation errors for 1S/3S K-agglomerative clustering
with three parameter sets and K-means, rows are divided by their maxima.

Position error. The position error is the best for 3S K-agglomerative clustering which
returns the real centroids if kalgo ≤ kdata (in 57% of all test cases). In these cases we expect
tiny position errors between estimated and latent centroids. Within 3S K-agglomerative

2more precise: mean of deviations, averaged for all settings of the fixed parameter

21

2.1 Clustering Approaches

clustering the position error decreases if the second term of the merging criterion becomes
less important (low values for δ and z). As we saw, K-agglomerative and K-means produce
large position errors for kalgo < kdata, since they place at least one centroid between two or
more clusters. This increases their overall position error.

Equality error. The deviation of centroid sizes from 1/k is the highest for the standard
K-agglomerative clustering and very low for K-means. This is because K-means minimizes
squared errors between centroids and assigned nodes. The squared error is lower if centroids
subdivide data equally. Whereas K-agglomerative clustering simply concentrates on regions
with high densities. Outskirts are neglected, since they contain fewer nodes that show low
distances. This phenomenon is damped by amplifying the second term in the merge criterion:
δ ·σ(wi+wj−1/k, z). The higher δ and z are set, the more we force merging in sparse regions.
With the incorporation of relative sizes, K-agglomerative clustering even outperforms K-
means.

Separation error. The standard agglomerative clustering algorithm which exclusively con-
siders position errors outperforms all the other approaches. Agglomerative clustering ensures
that no centroids survive that are close to each other. Out of all approaches this seems
to be the best strategy to maximize the overall distances between clusters. Looking at K-
agglomerative and 3S K-agglomerative using the new merge criterion, the separation of cen-
troids is reduced with the gain of δ and z. It is the worst for 3S K-agglomerative clustering.
One reason is that for the case kalgo ≤ kdata it returns the kalgo largest centroids no matter
how big or small their distances between each others are.

22

2.2 Adaption to P2P Systems: Approximate Clustering

2.2 Adaption to P2P Systems: Approximate Clustering

After having built an algorithm for a global instance having access to all data, we now switch
over to P2P systems. Algorithms that strictly follow the P2P paradigm are completely
decentralized. There are no supervising instances. All participating computational units or
nodes are equally privileged. In real live networks, one has to cope with nodes that emerge
or disappear at any moment. If we compute statistics that incorporate data from single
nodes, we must ensure on the one hand that the influence of failing nodes fades away, and
on the other hand, that data of newly emerging nodes will quickly spread over the network.
It’s hard to design exact clustering algorithms for non-static networks, and, most important,
these solutions are not scalable. As soon as data changes or a node joins, all nodes would
have to be updated. Beside, all exact clustering algorithms require to parse several times the
whole data set.

More appropriate are economic algorithms which are robust concerning data and topology
changes and that are fast. The approximate versions of agglomerative clustering and K-
means exchange locally estimated centroids and parse only local data. With every iteration
or communication step estimated centroids get closer to the global ones.

2.2.1 Approximate K-Means Clustering

An approximate version of K-means for P2P systems has been proposed by Datta et al. in
2009 [4]. A node N i stores two kinds of centroids: locally estimated centroids with correspon-
ding cluster counts Ci = {(cij , wij) : 1 ≤ j ≤ k} and centroids V i = {vij : 1 ≤ j ≤ k} that are
a weighted average of local and remote centroids. The E-step (labeling) is always done with
respect to V i. The centroids and counts derived from the subsequent M-step (re-estimation
according to the labeling) are stored in Ci.

Algorithm 11 on page 24 is a simplified version from their paper. Periodically a node sends
poll messages to a fixed set of neighbors Γ. After all polled neighbors have responded with
their centroids and cluster counts, the node will update its centroid set V i.

Polls that can not be answered yet are stored in a poll table. As soon as a new iteration
is passed, namely, new centroids and cluster counts have been computed, the poll table is
processed for requests related to the current iteration. A node can only process centroids from
neighbors that are or have already passed the same iteration. In a P2P network nodes might
be in any iteration state. Thus nodes have to wait for requested data from their neighbors,
and have to store historical data in order to be able to reply requests of nodes that resides
in lower iteration states.

The authors built in a switch, namely, nodes whose centroids don not change significantly
can change from an ‘active’ state to a ‘terminated’ state. Terminated nodes will not send any
polls or update V , but will respond to polls with their latest centroids and cluster counts. If
data changes or a node is added to whom a terminated node is neighboring, the node has to
check for becoming active again. For the sake of simplicity the state handling is left out in
the pseudocode.

During implementation and testing of this approximated version of K-means for P2P systems,
I noticed one problem. If the local data is not sufficiently large or not mixed (local data is

23

2.2 Adaption to P2P Systems: Approximate Clustering

Figure 2.9: Framework for Approximate K-Means Clustering in P2P Systems

Algorithm 11 LSP2P K-Means

proc Initialize(C0
1 , w

0
1) from N0 ≡

(C1, w1) := (C0
1 , w

0
1)

historyTable := [(C1, w1)]
Wait := {}
pollTable := []

end
proc Timer ≡

for N j ∈ Γ do
sendTo N j : Poll(i, l)

od
end

proc Poll(k, l̂) from Nk ≡
if l̂ ≤ l then

sendTo Nk : PollResp(historyTable[l̂])
else

pollTable := pollTable ++ [(k, l̂)]
fi

end
proc PollResp(Ckl , w

k
l) from Nk ≡

Wait := Wait ∪ {(Ckl , wkl)}
if |Wait| == |Γ| then

vj,l+1 :=
∑

Nk∈Wait c
k
j,lw

k
j,l∑

Nk∈Wait
wk

j,l

Wait := {}
if max{‖vj,l − vj,l+1‖ : 1 ≤ j ≤ K} > γ then Iterate
fi

fi
end
proc Iterate ≡
l := l + 1
labels := E-Step(data, V)
(Cl, wl) := M-Step(data, labels)
for (km, l) ∈ pollTable do

sendTo Nkm : PollResp(Cl, wl)
od

end

derived from less than kdata clusters), the carrying out of one iteration with respect to V i

might result in centroids that have a cluster count of zero. Thus the M-step drops the
corresponding centroids if we do not implement a special behavior. The authors of the paper
tested their framework in a simulation of up to 2,000 nodes and 130,000 to 1.3 million 10-
dimensional data points (at least 65 data points per node). They set the number of clusters
k to 8 for all tests. The chance of having no members from a cluster is very low. Thus, this
exception did probably not occur in their setting.

A common critique on K-means is its non-robustness for outliers. The worst scenario is if an

24

2.2 Adaption to P2P Systems: Approximate Clustering

outlier is chosen as one of the initial centroids by chance. Its position will not change, since
no data will be assigned in the E-step. The outlier will survive every iteration. Even if an
outlier has not been chosen as an initial centroid, it attracts its closest centroid and therefore
skews its coordinates. This effect is strengthened if the local data is not sufficiently large.
Therefore it is common to preprocess data and to remove outliers before applying K-means.

2.2.1.1 Behavior in a Dynamic Environment

In a dynamic P2P environment nodes might become unavailable due to node failures or
topology changes. In order to cope with these challenges, the authors Datta et al. propose
this behavior for LSP2P K-means:

Node failure or topology change. Each node N i having a failing node N j as a neighbor
(detected by monitoring Γi), has to stop to wait or send messages from or to N j by removing
it from its Waiti and pollTable lists.

Node addition. The newly joined node N i inherits the centroids and cluster counts of the
neighbor with the lowest iteration number. N i starts iterating as described in Algorithm 11.
Each terminated node having N i as a neighbor, has to test whether it becomes active again.
It sends a poll message, receives centroids and counts of N i, and carries out one iteration of
K-means. If the centroids changed significantly, the neighboring node becomes active again.
Its immediate neighbors now have to do the same test.

Data change. If the node is still active, nothing must be done. If it has entered the
terminated state, the node recomputes (Cil , w

i
l) and polls its immediate neighbors. If after

the update of V i and subsequent recomputation of (Cil+1, w
i
l+1) the centroids have changed

significantly, the node becomes active again. N i sends a data change message to its neighbors.
If they are in the terminated state, they have to determine whether to become active using
the same technique as described in the ‘Node addition’ case.

2.2.2 Approximate Agglomerative Clustering

We now apply the same approach for approximate agglomerative clustering presented in my
Bachelor thesis for 3S K-agglomerative clustering from section 2.1.2.4. Initially (or if the local
data changes), a node assumes its local data to be the centroids with equal relative sizes.
Periodically the Timer function is called and the node becomes active. To a randomly selected
peer from the network it sends its currently estimated centroids and sizes. Upon receipt of
remote centroids and sizes, another node sends its own, but calls ShuffleResp which only
computes the update. Otherwise the message passing would not stop. Subsequently local
and remote centroids and sizes are concatenated and the Update procedure is called which
performs mk-agglomerative clustering. Only if requested, the number of centroids is reduced
further and singletons are separated in the subroutine 3SKAgglo given by Algorithm 7 on
page 16.

25

2.2 Adaption to P2P Systems: Approximate Clustering

Figure 2.10: Framework for Approximate Clustering in P2P Systems

Algorithm 12 2SP2P K-agglomerative Clustering

proc Initialize ≡
(C,w) := ([self.data], 1

|self.data| [1.0]|self.data|)

end
proc Timer ≡
peer := SelectRandomPeer()
sendTo peer : Shuffle(C,w)

end
proc Shuffle(Crmt, wrmt) from p ≡

sendTo p : ShuffleResponse(C,w)
(C,w) := Update(C ++ Crmt, w ++ wrmt)

end
proc ShuffleResp(Crmt, wrmt) from p ≡

(C,w) := Update(C ++ Crmt, w ++ wrmt)
end
proc Update ≡

(C,w) := KAggloClustering(C,w,m · k)
(C,w) := Normalize(C,w)

end
proc Request from p ≡

(Creq, wreq, S) := 2SKSub2(C,w, k, ε, δ, z, θ)
sendTo p : RequestResponse(Creq, wreq)

end

2.2.2.1 Behavior in a Dynamic Environment

We now propose how nodes should behave on typical events in a P2P environment:

Node failure or topology change. Since the 2SP2P K-agglomerative clustering is designed
to rely on a node independent gossiping routine, a node just needs to wait until a new peer
is assigned in the next time slice.

Node addition. Any newly joined node first calls the Initialize procedure. After a few
data exchanges the node will have similar centroids like its peers.

Data change. Local data is only read in the initialization step. Thus we drop the current
centroids and call the Initialize procedure from Algorithm 12 as if the node had just been
added to the network.

To save computational resources one could introduce an active and a terminated state like
in LSP2P K-means. Since nodes do not store immediate neighbors, a node does not know
whether an assigned peer has just joined the network. Thus, nodes would have to store
and send their age in terms of iterations or passed time. If the age falls below a threshold,
an assigned peer determines the new centroids and decides whether to become active (same
behavior as described in section 2.2.1.1).

26

2.2 Adaption to P2P Systems: Approximate Clustering

2.2.3 Error of Distributed Approximate Clustering

In section 2.1.4.3 we examined for the global versions of K-means and 3S K-agglomerative
clustering how the position, equality and separation errors changed. We now have to show
that 2SP2P K-agglomerative clustering converges towards the solution of the global algo-
rithm. For comparison LSP2P K-means clustering has been implemented also.

2.2.4 Experimental Setup and Results

The data for the LSP2P K-means and 2SP2P K-agglomerative clustering was generated the
same way as described in section 2.1.4.1. But to accommodate LSP2P K-means, no outliers
had been interspersed and a node stores not a single data point, but at least max{kdata} = 8
data points. Again the data is assumed to be partitioned disjunctively and exhaustively over
the network. Instead of the weaker assumption that only a couple of neighbors are available
to whom a node sends poll messages, we assume that we can connect to any neighbor from
the whole network. A node independent service provides a gossiping partner chosen randomly
from the whole network. In one time slice each node carries out successfully one data exchange
with one gossiping partner. Therefore, we do not need to handle history or poll tables for
LSP2P K-means. We assume a static environment – no node addition or change of data after
the network has been established.

As a convergence criterion we consider the position error. For each round k and data were
generated newly and distributed over N node structures establishing a network. The network
was duplicated to run LSP2P K-means and 2SP2P K-agglomerative clustering with the same
prerequisites. A node structure stores local data, centroids, counts and other algorithm
specific parameters. After each time slice the position errors between local Ci := {cil : 1 ≤
l ≤ k} and global centroids C := {cj : 1 ≤ j ≤ k} for all nodes were averaged. Global
centroids for LSP2P K-means were received from global K-means, and global centroids for
2SP2P K-means from an application of 3S K-agglomerative clustering. The evaluation was
run 100 times. The position error after the t-th gossiping iteration is:

errP2P
pos (t) = 1

R

R∑
r=1

1
N

N∑
i=1

1
kD

k∑
l=1

arg min
j
{‖cil(t)− cj(t)‖ · |wil(t)− wj(t)|}

2.2.4.1 Results

The results of errP2P
pos and t ∈ [1; 25] are given in Table 2.4 and Figure 2.11.

t 1 2 3 4 5 6 7 8 10 20

errKAgglopos 0096 .0064 .0041 .0026 .0018 .0014 .0013 .0012 .0013 .0015

errKMeans
pos .0186 .0159 .0148 .0141 .0138 .0134 .0133 .0131 .0127 .0122

Table 2.4: Position errors for 2SP2P K-agglomerative clustering and LSP2P K-means

The error plot in Figure 2.11 shows that 2SP2P clustering converges relatively fast. After 6
exchanges with random peers, the error does not improve further. The gossiping routine was
implemented as a pull gossiping, which means, that a node polls for remote centroids, but

27

2.3 Discussion

does not send them. LSP2P K-means clustering has a lower speed of convergence and the
error remains higher.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

.005

.01

.015

0

t

er
r p
o
s

errKAgglopos

errKMeans
pos

Figure 2.11: Position errors for 2SP2P K-agglomerative clustering and LSP2P K-means
with |datai| = 8 ∀i ∈ [n].

2.3 Discussion

The results of section 2.2.4.1 show that 2SP2P K-agglomerative clustering quickly converges
toward the global solution in a static network. We conclude that the approximated version has
the same properties as 3S K-agglomerative clustering, its global counterpart. We observe too,
that LSP2P K-means works as a gossiped version, which does not poll a fixed neighborhood,
but a single random peer from the whole network. Table 2.5 outlines the features of 2SP2P
K-agglomerative clustering and LSP2P K-means. We will now discuss them in more detail.

Simplicity. First, one notices that the framework of 2SP2P K-agglomerative clustering is
much simpler than the one of LSP2P K-means. The centerpiece is the same – the diffusion of
locally estimated centroids. LSP2P K-means immediately averages them, whereas 2SP2P K-
agglomerative clustering concatenates first and merges only if two centroids are close enough.

LSP2P K-means:

vij,l+1 =

∑
Nk∈Waiti c

k
j,ln

k
j,l∑

Nk∈Waiti n
k
j,l

2SP2P K-agglomerative:

c = c ++ crem

w = w ++ wrem

c = c\{ci, cj} ∪
ciwi + cjwj
wi + wj

if ci, cj being close enough

For the next iteration LSP2P K-means does not forward the weighted average V i, but the
centroids and counts carried out after one iteration. Hence, V i is moved into direction of
the local data. Whereas 2SP2P K-agglomerative clustering simply forwards Ci and averages
cluster counts wi. Hence, centroids are spread with higher speed, which can be seen by the
fast convergence of 2SP2P K-agglomerative clustering. After approximately 5 exchanges the
locally estimated centroids are the same as the global ones.

Communication costs. Let I denotes the maximum number of iterations carried out and
L the maximum number of neighbors to whom a node will send its centroids and counts. In
each iteration a node sends at most k centroids to L neighbors. The communication costs

28

2.3 Discussion

for both approaches are O(kIL).

Computational costs. Let D denotes the maximum size of a data set stored at a node.
For initialization the local data set is reduced from D data points to mk centroids. This
requires O(D2) comparisons of pairwise distances. This is done only once. During the
communication phase mk remote centroids are concatenated with the local ones. The set
of centroids is reduced from 2mk to mk by comparing pairwise distances which is the most
expensive part. For applications asking for k centroids, the set is reduced further until
c == k. The number of comparisons is

∑2mk
i=k i =

∑2mk
i=1 i−

∑k−1
i=1 i = (2mk+1)2mk

2 − (k−1)k
2 =

2m2k2 +mk − k2/2 + k/2 = O(m2k2) per node. For the whole lifetime of a node we finally
have O(Im2k2 + D2) computations. The computational costs for LSP2P K-means depend
on the size of the local data set. The averaging of local and remote centroids is cheap: O(k).
The subsequent K-means iterations requires to parse the data at most two times. One time
for labeling – each data point is assigned to its closest centroid and centroid re-estimation.
For LSP2P K-means we end up with O(IDk) per node. Concerning data set size D, 2SP2P
clustering is expensive when initialization is executed and LSP2P K-means does not scale in
the ‘active’ state when centroids are re-estimated.

Space costs. 2SP2P K-agglomerative clustering does not partially synchronize like LSP2P
K-means. Hence, no counters, history or poll tables have to be stored. But we need a buffer
to separate singletons and being flexible for an arbitrarily requested k. We store during the
computational phase k · m centroids and for requests additionally a reduced set of size k.
Whereas LSP2P K-means needs to store history tables for nodes residing in older stages and
poll tables for requesting nodes. O(kI) are the costs for storing a history table and O(IL)
the space costs for a poll table [4].

Convergence. The experimental evaluations above show (at least) empirical convergence.
In the paper of Datta et al. [4] analytical bounds on the accuracy for the distributed K-
means clustering algorithm are shown. For the proof the authors only had to assume that
communicating parties are sampled uniformly at random. This corresponds exactly to the
testing conditions under which we sampled peers randomly from the whole network instead
of taking a fixed neighborhood.

Properties
2SP2P K-
agglomerative

LSP2P K-means

synchronization of iterations required no yes
minimal number of data points per node
required

no yes

k must be fixed during computing phase no yes
order of centroids and counts must be kept
fixed

no yes

robustness for outliers yes no
communication costs O(kIL) O(kIL)
computational costs O(Im2k2 +D2) O(IkD)
memory costs during exchange

phase: Ω(mk)
history and poll ta-
ble: O(I(k + L))

quality depends on sampling service yes yes
quality depends on degree of entropy no yes

Table 2.5: comparison of 2SP2P K-agglomerative clustering and LSP2P K-means

29

2.3 Discussion

Pros. 2SP2P K-agglomerative clustering returns either the natural centroids or places several
equally sized centroids into a single cluster similar to K-means. But K-means fails to detect
all latent centroids if k is less than kdata and might return centroids that reside between two
clusters. The reason for keeping the centroid set size large was to have a buffer for removing
singletons. The buffer has a second advantage – applications are able to request arbitrary k’s3

as opposed to K-means. K-means has no other chance than repeating the whole computations
for a new input k.

2SP2P K-agglomerative clustering was intended to estimate coordinates of centroids. There-
fore, it is able to deal with data sets of size one or even zero. As long as the list of concatenated
centroids does not exceed mk or k, respectively, the node just accumulates data. LSP2P K-
means, as presented by Datta et al., is intended to work on large data sets distributed over a
P2P network. The algorithm has to be modified to handle nodes storing data sets with sizes
less than k.

Cons. We need some estimates over the network to set variables like θ, the upper bound for
standard agglomerative clustering or ε the upper bound for singleton sizes. For appropriate
settings of θ we need an estimate of the standard deviations of clusters, and for ε an estimator
of the system size.

3We simply replace mk in the clustering routine by mkmax+pn, where kmax is an upper bound for requested
values of k, p an estimate for nodes being a singleton, and n the estimate for the net size

30

Chapter 3

Quantiles and Histograms on
Distributed Streams

In large, unstructured data sets it is difficult to detect trends or patterns. There is a need for
data summaries in terms of quantiles or histograms. Quantiles characterize distributions in
ways that are less sensitive to outliers than simpler approaches as the mean and variance [10].
In many settings data is distributed across multiple sources, like servers in a web application
or measuring devices in a sensor network. One would like to analyze the performance of
websites or distributed applications, or summarize the distribution of measured values in a
sensor network.

Due to space and temporal limitations, it is impractical to set up a supervising unit which
collects all the data and computes a quantile or histogram on it. Instead, local summaries
are computed and merged into a final structure. Currently all known approaches for quantile
computation on distributed data streams are not distributed itself. Data summaries are
merged along a routing tree (see Figure 3.1(a) [14] or collected by a single node which combines
all nodes’ summaries to finally compute quantiles [16].

A histogram can be constructed from a series of quantiles or reverse quantiles (namely ranks).
It can be used for answering different kinds of queries such as range queries, since we only
need to determine the set of buckets which lie within the user specified ranges [9].

In this chapter we will examine whether quantile summaries can be distributed in a gossiping
manner without losing upper bounds of the error. We evaluate experimentally the q-digest
presented by Shrivastava et. al in 2004 [14]. A q-digest is a tree-like summary of an input
data stream. Q-digests can be merged, compressed, and need only constant memory size. It
can be used to answer queries for quantiles, ranks or histograms.

3.1 Quantiles

Given a set of n observations S = {x1, x2, ..., xn} the φ-quantile of a distribution is defined
as the value x below which φn elements of S lie. In other words, the φ-quantile is the value
whose rank is φn in the ordered set. For example, the .5-quantile is the median of a set, and
the 0- and 1-quantile the minimum and the maximum of a set.

31

3.1 Quantiles

root node normal peers

(a) Routing tree. Data is summarized by par-
ent nodes along the route.

super-peer normal peers

(b) Super-peer. A single node collects data
summaries from all nodes of the network.

normal peers

(c) Gossiping. Each node communi-
cates with a randomly chosen neigh-
bor.

Figure 3.1: Strategies of communicating information in a network.

32

3.1 Quantiles

A straightforward method to compute a φ-quantile is to sort the data in increasing order and
to return the φnth element. This implies the storage of all observations X := {x1, x2, ..., xn}
and to pass the data more than once due to sorting. For determining a given quantile one
can do better.

The rank determination belongs to the group of selection problems. Munro and Patterson [12]
gave lower bounds on the selection and sorting problem with limited storage. They showed
that if an algorithm passes the input data p times, it needs to store at least n1/p items.

Theorem 1. Any p-pass algorithm to solve the selection problem on a stream of n elements
requires Ω(n1/p) space.

Munro and Patterson described an algorithm that almost achieves this lower space bound.
A left and a right filter are maintained between which the candidate elements lie. In every
pass the gap between the filters is tightened until a small group of candidates remain. In a
final pass the φ-quantile is selected.

A consequence of theorem 1 is that if we have space limitations that are typically much
smaller than n, any p-pass algorithm solving the sort and selection problem and storing less
than n1/p items is merely approximate.

3.1.1 Frequency Distributions and Histograms

The cumulative distribution function cdf describes the probability that a random variable X
with a given probability distribution is less or equal than a given x ∈ X.

cdfX(x) = P (X ≤ x)

Quantiles are related to frequency distributions and histograms in the following way. The
cdf is the inverse of the φ-quantile (see Figure 3.2).

Xsorted

P
(X
≤
x

)

φ

1

1/n

x1 xφn xn

Figure 3.2: φ-quantile on a cumulative distribu-
tion function of normally distributed X.

Histograms are a way to summarize data.
They divide the value range into buckets or
bins and store for each bucket a counter –
the number of elements within the bucket.
Depending on the type of bins used, there
are two kinds of histograms: equi-width and
equi-probable (or equi-depth) histograms. For
equi-width histograms the range is subdi-
vided into equally sized bins. The equi-
distant bin edges are queried to compute the
heights.

The key source of inaccuracy in the use of
histograms is that the distribution of data
points within a bucket is not retained. If the
bucket edges are fixed, like for equi-width
histograms, we might lose precision if the bin
width is chosen to big or the data deviation is very small. Otherwise some bins contain no
or very few elements if the bin width is chosen to be too small.

33

3.1 Quantiles

It is less erroneous to store equi-probable buckets, where the bucket widths are flexible and
it is guaranteed that no bucket represents ‘too many’ (inaccuracy!) or ‘too few’ (space
limitation!) items.

When histograms are combined, the absolute error of equi-width histograms grows with the
number of observations, whereas for equi-probable histograms we can guarantee an error
reduction, if we simply increase the number of bins (shown by Piatetsky-Shapiro and Connel
[13]). The structure that is experimentally analyzed and presented in section 3.2 is similar
to an equi-probable histogram, except that the bins are overlapping.

A structure that answers φ-quantiles and ranks, can be used to compose both kinds of his-
tograms. An equi-probable histogram can be built from a series of quantiles (see Figure
3.7 and Algorithm 16), and an equi-width histogram from a series of inverse quantiles (see
Algorithm 17). Given an observation, the inverse quantile is its relative rank in the sorted
sequence.

3.1.2 Data Streams and Loss of Information

If the input data is a stream, we have n → ∞ on the one hand, and a memory space that
is strongly limited on the other hand, like in a typical sensor network environment. Thus,
the approach described in 3.1 is impractical, we are not able to parse the input data several
times. Algorithms on data streams are therefore one-pass algorithms – each data point is
scanned once, and if not explicitly stored, it is irretrievably lost. Since we can not store all
seen data, we will definitely lose information.

In the following, we do not use n for the complete data set size (which is unknown in a data
stream), but for the number of input items that are buffered locally beside the computed data
summary or statistics. Generally, a data summary can be computed either on the whole data
stream or on recent items. Recent items can be modeled by two sliding window types. The
count-based sliding window which includes the last n items seen, and the time-based sliding
window which stores all items arriving within the time window [16]. The count-based sliding
window can be seen as a special case of the time-based sliding window with one item arriving
at a time.

As concluded from Theorem 1, any single-pass algorithm for quantile estimation, storing a
fixed amount of data, can only be approximate. To get an impression of how big the error
can get if no information is given about the data distributions connected to each sensor, an
example is given. Assume there are three sensors A, B, and C. Sensors A and B know the
exact median of their own data sets XA and XB of a fixed size n – say medA and medB.
Now, sensor C queries the medians of A and B, and calculates a median estimate by taking
the maximum (or minimum) of medA and medB. No matter of how medA and medB are
combined, in the worst case the estimated median is n/2 positions afar from its real location
in the whole data set XC := XA ∪XB (see figure 3.3). The problem is that we do not know
the rank of medA in XB and vice versa. Thus, communicating quantiles without additional
information does not work. The best one can do is to compute data summaries that are small
enough to be sent over a network and which can be utilized to compute quantiles and other
queries on it.

34

3.2 Quantile Digest

XA : XB :

XC : medC := max(medA,medB) = 9

n n

2n

n/2 n/2 + 1

1 · · · 1 · · · 1

medA

1 · · · 1 9 · · · 9

medB

1 · · · 1 · · · 1 9 · · · 9

medC = 1

Figure 3.3: Combination of Medians. (left) exact: merge, sort and find position bnc
in XA ∪ XB, (right) approximate: maximum of medA and medB, for (right) the error
corresponds to a right shift of the median of about n/2 positions

3.2 Quantile Digest

A way to summarize observations is to compute a quantile digest (q-digest) which can in-
corporate arbitrary many observations. A q-digest is a binary tree whose nodes represent
overlapping and almost equi-probable bins of a histogram with a value range from 1 to σ.
Given the decompression parameter k, at most 3k nodes of the complete binary tree are
stored. The variable count represents the bucket height, the value range is given by the left
and the right most leaves in a complete binary tree.

a:1

j:4 k:6

f:2 g:2

1 2 3 4 5 6 7 8

Figure 3.4: Q-digest: Complete binary tree on range [1..σ = 8]. Only green nodes are
stored. Node a represents a bin covering the whole range with one item, node f covers the
range 5-6 and contains two items.

35

3.2 Quantile Digest

Algorithm 13 Compression – establishing the q-digest property

proc Compress (Q,n, k) ≡
l := log2 σ
while l > 0 do

for v in level l do
if v.count+ vs.count+ vp.count ≤ bnk c
vp.count := vp.count+ v.count+ vs.count
Q := Q\{v, vs}

fi
od

od
return Q

end

3.2.1 Construction and Compression

A q-digest holds almost equi-probable bins, by requiring that all subtrees satisfy the q-digest
property:

v.count ≤ bn/kc (3.2.1)

v.count+ vp.count+ vs.count > bn/kc (3.2.2)

where vp is the parent and vs the sibling of node v. All inner nodes must not incorporate
more than 1/k-th of all n observations. At the same time, we force inner nodes to represent
at least 1/k-th of all observations together with their sibling and parent count. Excluded are
the root and the leaf nodes. The root node is allowed to violate against property 3.2.2 and
the leaf nodes against property 3.2.1. The reason is, that the counter of the root can not be
compressed further, while for leaf nodes, with relatively high counts, it is not necessary to
compress them. Nodes with count zero are not stored.

For initially building a q-digest, a simple histogram H = {(i, fi) : 1 ≤ i ≤ σ} on a series of n
observations is built. The observations and their frequency counts constitute the leaf nodes
of a q-digest. In the bottom-up procedure of Algorithm 13, nodes violating property 3.2.2
are removed together with their sibling and their counts are added to the parent node. As a
result, bins representing only a ‘small’ fraction of observations are merged and will never be
reconstituted again. With each merge the precision of the resulting node gets bisected.

3.2.2 Merging

Q-digests can be merged such that they represent the input data of many sensors. This is
done by adding the counts of a all nodes (see Figure 3.6). Afterwards, the q-digest property
is reconstituted by applying the compress procedure.

The maximum error in count of any node is log σ
k · n. This relative maximum error does not

36

3.2 Quantile Digest

h:1 j:4 k:6 l:1 m:1 n:1 o:1

d:1

j:4 k:6

f:2 g:2

b:1

j:4 k:6

f:2 g:2

a:1

j:4 k:6

f:2 g:2

Figure 3.5: Compression. n = 15, k = 5, σ = 8, parts violating the q-digest property are
marked by a dashed box.

37

3.2 Quantile Digest

Algorithm 14 Combining two q-digests

proc Merge (qdigest Q1, int n1,qdigest Q2, int n2, int k) ≡
Q := Q1 ∪Q2

Compress(Q,n1 + n2, k)
return Q

end

increase if q-digests are merged. Proof:

error(v) ≤
∑
i

error(vi) ≤
∑ log σ

k
ni (3.2.3)

=
log σ

k

∑
i

ni =
log σ

k
n (3.2.4)

Intuitively it should be clear, that if two q-digest are merged and compressed again, the
precision can not be better than the precision of the worst q-digest, since at most 3k nodes
of the q-digest now represent n1 + n2 data items. Moreover, merging several q-digests into a
single one, results in absolute node errors of at most log σ

k

∑
i ni (see section 3.4 in [14]).

Concerning space complexity, we have:

Lemma 1. A q-digest constructed with compression parameter k has a size of at most 3k
(nodes).

3.2.3 Quantile Computation

Given a q-digest and φ ∈ [0, 1], the goal is to determine a leaf node whose predecessors
represent at least φn items in a postorder traversal. The source of inaccuracy are inner
nodes, whose counts are distributed arbitrarily between subjacent leaf nodes. The postorder
traversal sorts the nodes according to their right endpoints. Nodes with smaller ranges
appear first. The counts are summed up until the expected position φn is reached. One
of the subjacent leaf nodes of the current node corresponds to the correct φ-quantile. Since
there might be more counts of subsequent postordered nodes than we have summed up so far,
the rightmost leaf is returned (see Algorithm 15). To keep in mind, only leaf nodes represent
single bin values.

3.2.4 Equi-probable Histogram Computation

Histograms are composed of series of quantiles or ranks. For an equi-probable histogram
of step size τ , the φ-quantiles for φ ∈ [0 : τ : 1] are computed. Between two neighboring
quantiles lie τn elements. Figure 3.7 shows an equi-probable histogram with φ assigned to
the x-axis. All bins have the same width and a height corresponding to the quantile value
from the ordered set of observations.

38

3.2 Quantile Digest

n = 10, k = 5, σ = 8

a:1

j:4 k:6

f:2 g:2

+

n = 15, k = 5, σ = 8

a:2

h:4 i:7 k:2

a:3

h:4 i:7 j:4 k:8

f:2 g:2

n = 25, k = 5, σ = 8

a:7

h:4 i:7 j:4 k:8

n = 25, k = 5, σ = 8

Figure 3.6: Merging two q-digests. First the counts are added (bottom right), second the
q-digest property is reconstituted.

39

3.2 Quantile Digest

Algorithm 15 Quantile computation on a q-digest

proc quantile (qdigest Q, int σ) ≡
L := postorder(Q.tree, σ)
s := 0
for v ∈ L do

s := s+ v.count
comment: expected position reached?
if s >= p ·Q.n

return rightLeaf(v, σ)
fi

end
return rightLeaf(L.end, σ)

end

Algorithm 16 Computing an equi-probable histogram

proc histogramEquiProb (qdigest Q, int σ,float τ) ≡
φ := [0 : τ : 1]
comment: determine 1/τ + 1 quantiles
qi := quantile(Q,φi) ∀i ∈ [1..|φ|]
return q

end

3.2.5 Equi-width Histogram Computation

In order to compute an equi-width histogram with a given bin width on the range [1..σ], we
proceed as follows: for each bin we query the ranks for the upper and lower edges. The rank
difference gives us the number of elements that lie in the bin and corresponds to the bin
height (see Algorithm 17).

3.2.6 Distributed Combination of Q-Digests

A framework for gossiping q-digests in a P2P system is given below. In this version each
call of Initialize resets the current q-digest to a new one, computed on the local data set.
First, the leaf nodes of the bottom level are constituted. They form an exact histogram of
the input data. The leaf nodes are finally compressed into a q-digest. With every call of
the Timer, a randomly selected neighbor from the network receives the local q-digest and its
count, and sends its own q-digest back (see Shuffle). To implement a push version, Shuffle
must not send the local q-digest to the sender, and for a pull version the input arguments of
Shuffle must be void.

The Request function could be a wrapper for any statistical query that has been discussed

40

3.3 Evaluation

φ

φ
−
qu
a
n
ti
le

xmax

xmin

0 0.2 0.4 0.6 0.8 1

Figure 3.7: Equi-probable histogram from 7 φ-quantile queries with φ ∈ [0 : .2 : 1].
Quantiles are assigned to the axis of ordinates.

Algorithm 17 Computing an equi-width histogram

proc histogramEquiWidth (qdigest Q, int σ, int bwidth) ≡
b := [1 : bwidth : σ + 1]
comment: determine ranks of all bin edges
invQi := inverseQuantile(Q, bi) ∀i ∈ [1..|b|]
hi := invQi+1 − invQi ∀i ∈ [1..|invQ| − 1]
return h

where
proc inverseQuantile(qdigest Q, int σ, int x) ≡

comment: list of nodes in postorder
L := postorder(Q.tree)
rank := 1
for i = 1 : length(L)

comment: add node count if x is not reached yet
if rightLeaf(L(i, 1), σ) >= x then exit fi
rank := rank + L(i, 2)

end
return rank

end

so far – single quantiles, ranks, equi-width or equi-probable histograms. For the subsequent
experimental evaluation, equi-probable histograms were computed.

3.3 Evaluation

To measure the quality of q-digests, a series of quantile queries for φ ∈ [0 : 0.1 : 1] was
computed and compared to the exact approach1. Let Qj := {q1, q2, ..., qm} be a set of

1By sorting the whole data set and selecting the positions φ · n for all settings of φ.

41

3.3 Evaluation

Figure 3.8: Framework for Gossiped Merging of Q-Digests in P2P Systems

Algorithm 18 Distributed, Gossiped Merging of Q-Digests

proc Initialize(data, k, σ) ≡
leaves := buildtree(data, σ);
n := |data|
QDigest := Compress(leaves, n, k)

end
proc Timer ≡
peer := SelectRandomPeer()
sendTo peer : Shuffle(QDigest, n)

end
proc Shuffle(QDigestsrmt, nrmt) from p ≡

sendTo p : ShuffleResponse(QDigest)
QDigest := Merge(QDigest, n,QDigestrmt, nrmt)

end
proc ShuffleResp(QDigestrmt, nrmt) from p ≡

(QDigest, n) := Merge(QDigest, n,QDigestrmt, nrmt)
end
proc Request(τ) from p ≡
H := histogramEquiProb(QDigest, σ, τ)
sendTo p : RequestResponse(H)

end

quantiles. The error between two quantile sets (or equi-probable histograms), representing the
same quantile queries, is defined as the squared, average difference between two corresponding
quantiles relative to their range σ.

ehist(Q1, Q2) :=
1

σ2m

∑
(q1,i − q2,i)2 (3.3.1)

The data was generated randomly according to a normal distribution N (µ, σN). The mean µ
and deviation σN were taken randomly with equal probabilities from the intervals [σ/4, 3σ/4],
and [1, σ/4], respectively. Either all sensor data followed a common normal distribution or
the distribution parameters were tossed separately.

3.3.1 Compression Error

The size of a q-digest in terms of number of nodes can be controlled by the parameter k.
The q-digest property ensures that at most 3k nodes are stored. Thus, if k is decreased,
the tree gets more compressed and quantile queries are less precise, because node counts are
associated to wider value ranges. Plot 3.9 shows the effect of varying k.

The results are the average of 100 repetitions. For each repeat the newly generated data set
had the size 1024. In comparison to k = 5, the error for k = 20 is reduced by two third. But
setting k to 40 in comparison to 20, does not provide a smaller error.

42

3.3 Evaluation

k

e h
is
t(
Q
ex
a
ct
,Q

q
d
ig
es
t)

×10−5

0.04

0.06

0.08

0.1

0.15

5 10 20 30 40 50 60 70 80 90 100

Figure 3.9: Error between exact equi-probable histogram and histogram computed on a
single q-digest. µ ∈ [σ/4, 3/4σ], σN ∈ [1, σ/4], φ ∈ [0 : .1 : 1].

3.3.2 Gossiping versus Routing

For the subsequent tests, a network of 1024 sensors was simulated. Each sensor was equipped
with a buffer to store the last 1024 observations. Given the compression factor k, the buffer
content was converted into a q-digest and cleared. Two different strategies of distributing
q-digests are compared – unsupervised gossiping and deterministic routing.

For gossiping in each round a gossiping partner was chosen randomly from the whole network
for each node and queried for its q-digest (see Algorithm 18). The querying node then merged
its own q-digest with the remote q-digest according to Algorithm 14. The resulting q-digest
replaced the original one. This corresponds to a pull gossiping, which is expected to have a
lower convergence rate than push-pull gossiping.

To simulate routing, a random routing tree was generated as shown in Figure 3.1(a). Q-
digests had been merged bottom-up to a root node. It was assumed that currently updated
nodes send their q-digest to their parents simultaneously. The quantile error for each stage
was computed on currently updated nodes, the root node and all nodes in between. In the last
phase the root node holds a q-digest representing the compressed data of all nodes’ buffers.

For the first test, all local data sets followed a common normal distribution (Figure 3.10(a)).
In the second test, mean and deviation had been drawn individually for each sensor (Figure
3.10(b)).

We observe, that if the distribution of the local data sets follows a common global distribution,
each sensor has a summary that represents the global data set relatively well without any
communication (round = 0). The subsequent exchange and merging of q-digests slightly
worsens the error. Especially for strong compressed q-digests (k = 5). The quantile error
converges late (after 20 rounds) for strong compressed and quickly for low compressed q-
digests.

43

3.3 Evaluation

0.35

0.4

0.5

×10−1

error(routed, exact)

error(gossiped, exact)

k = 20

k = 10

k = 5

gossip round

e h
is
t

1 5 10 15 20 25

(a) One normal distribution for all sensor data.

0.2

0.3

0.4

error(routed, exact)

error(gossiped, exact)

k = 20

k = 10

k = 5

1 5 10 15 20 25

gossip round

e h
is
t

×10−1

(b) Different normal distributions for each sensor.

Figure 3.10: Error between exact quantiles φ = [0 : .1 : 1] and quantiles computed on
q-digests for different compression parameters k = [5, 10, 20]. For comparison the error
between exact quantiles and quantiles computed on q-digests of a routing tree are plotted
also. Number of sensors = 1024, local data set sizes = 1024, σ = 128.

44

3.4 Experimental Results

The routing tree is traversed up to its root after approximately log2(1024) steps. Thus, it
always takes a constant number of rounds to communicate the final q-digest to all nodes, e.g.
by broadcasting the root’s q-digest.

If sensor data is biased, the first quantiles computed on local summaries are highly erroneous.
But they quickly improve through summary exchange. After five merging steps the quantile
error is almost constant and slightly below the one for routing trees. Again, the compression
factor k determines the final height of the average quantile error independently from the
communication method.

3.4 Experimental Results

The experiments in section 3.3.2 showed that the error computed on gossiped q-digests is only
slightly worse than the error computed on the q-digest of the root node of a routing tree, or
even better. For all settings of the compression parameter k and different data distribution
dependencies, the error converges towards a k-dependent constant. One would expect that
merging data summaries along a routing tree is always less erroneous than gossiping, which
induces a high degree of redundancy. Redundancy in this case means that the same q-digest
is (indirectly) processed several times.

Although, the structure of a routing tree is sampled randomly, the subsequent digestion is
deterministic and not redundant. But this seems to be of no advantage with respect to the
quantile error.

Generally we observe, that the relative error for gossiping and routing converges towards
a constant term. Locally computed quantiles will always differ substantially from globally
computed quantiles, no matter of how many q-digests are exchanged during a node’s lifetime.

3.5 Discussion

If local data sets do not follow a global data distribution, there is a necessity for exchanging
data summaries. The quantile errors in Figure 3.10(b) for sensor nodes communicating in a
gossiping manner meet the ones of routing trees after approximately five gossiping rounds.
The quick convergence complies with the requisites of transient networks where nodes are
short-living and/or nodes have a high data throughput. For the above sensor network a
binary routing tree has depth log2 1024 = 10. It takes ten communication rounds until a
single node – the root – has the similar amount of information as any node in a gossiping
network.

Besides, forwarding along a routing tree can be considered as a special case of gossiping. In
each step, the pool of communicating sensors is diminished by those sensors, who received
q-digests from all their children and have sent their summary to parent sensors. This corre-
sponds to a real world scenario in which we can not force all sensors to communicate in each
time interval. Sensors might be temporary unavailable.

From the fact, that the quantile error converges towards a k-dependent constant, we can con-
clude, that supervision and tracking of the number of gossiping steps is not necessary. On the
other hand, we can not improve the quality of q-digests by introducing more communication

45

3.5 Discussion

steps.

Greenwald and Khanna [15] showed that merging quantile summaries deterministically, leads
to a final summary that is h(n)/(2B)(+ maxi(εi))-approximate. With h(n) being the maxi-
mum height of the algorithm tree, B the buffer size for storing observations and maxi(εi)
the worst precision of any algorithm subtree. Assuming that the local buffer size can not be
increased, one consequence is, that we get the highest precision for hierarchical merging, if
the algorithm tree is flat, thus the branching factor is high. In routing trees, the message
forwarding scheme is fixed, but for nodes organized in a ring-like overlay network, like Chord,
it is relatively simple and cheap to implement higher branching factors.

For frameworks using a randomized merging approach, one might conjecture, that the error
is unbounded if the algorithm runs for an infinite number of rounds, because this is corre-
sponding to an algorithm tree of arbitrary height h. Although, one has to be careful with
drawing conclusions from deterministic, hierarchical to randomized, unhierarchical merging,
this is an important aspect, that has to be examined for any approach running an infinite
number of steps. In the experimental setup above, the error for q-digests always converged.
One explanation might be, that using gossiping, results relatively quick in local q-digests that
are close to the ‘average’ q-digest. Merging similar q-digests neither gives new information,
nor does it increase the error.

The table below shows the average quantile errors of all nodes in a algorithm tree (hierarchi-
cal) and nodes in a network communicating via the gossip protocol (gossiping) with different
branching factors a. For hierarchical merging, the error after the merging of the leaves im-
proves with the height of a. But for a > 4, either the subsequent merging introduces an error
that exceeds the fact that knowledge is shared, or the intermediate q-digests are that close
to the global one, that merging only reinforces their error.

Whereas for gossiping, the error of different branching factors always converges towards a
constant between [0.23, 0.25]. For higher branching factors, the error only slightly deterio-
rates, but has the same speed of convergence like hierarchical merging. We conclude that for
gossiping the branching factor only determines the speed of convergence, but not the error
itself. The quantile error, in turn, depends solely on the choice of the compression parameter
k given a data set.

a error

2
hierarchical 0.677 0.414 0.299 0.272 0.260 0.244 0.236 0.224 0.227 0.228 0.218

gossiped 0.677 0.377 0.292 0.274 0.260 0.250 0.244 conv conv conv conv

4
hierarchical 0.677 0.265 0.213 0.226 0.220 0.218

gossiped 0.677 0.258 0.250 0.247 conv conv conv conv conv conv conv

8
hierarchical 0.677 0.186 0.210 0.227 0.218

gossiped 0.677 0.230 0.242 0.242 conv conv conv conv conv conv conv

16
hierarchical 0.677 0.177 0.219 0.236

gossiped 0.677 0.229 0.236 conv conv conv conv conv conv conv conv

32
hierarchical 0.677 0.158 0.232

gossiped 0.677 0.232 0.237 conv conv conv conv conv conv conv conv

Table 3.1: Deterministic, hierarchical merging of q-digests and gossiped merging with vary-
ing branching factors a. Data set size = 1024, number of sensors = 1024, for each sensor
data set µ and σN had been drawn randomly from [σ/4, 3σ/4] and [1, σ/4], respectively.

Summed up, we conclude that the q-digest is an appropriate structure for aggregating ob-

46

3.5 Discussion

servations in data streams. It is not only restricted to represent the last n observations.
The merging procedure (see Algorithm 14) provides a mechanism to compute q-digests for
arbitrary window sizes2. Together with the gossip protocol, we can circumvent an increasing
error, that is introduced by merging q-digests permanently.

3.5.1 Efficient Implementation of Higher Branching Factors

For applications running on top of Chord-like overlay networks, which require higher speeds
of convergence, there are ways to implement any branching factor a with Θ(logaN) time for
look-ups and Θ(a logaN) space complexity of the routing table with N being the identifier
space of network nodes[17].

We assume that the identifier space has size N = aL, where L is some integer. To achieve
an a-ary look-up, a routing table of logaN = L levels is stored at each node. Each level
corresponds to a different degree of graininess of the view of the identifier space. Each
level divides the closest partition of the preceding level into a equally sized more closed-
grained intervals of the identifier space. This is repeated for the subsequent levels, until the
subdivisions correspond to consecutive identifiers. All nodes store in their routing tables
contact nodes to each of the intervals. If p is the identifier of a node, then the l-th entry of
its routing table is [(p⊕ i ·aL−l)%N] for i ∈ [0, ..., a− 1]. Contact nodes must not be the first
numeric node of an interval.

Figure 3.11 gives an example of a fully populated network with an identifier space of N = 64,
and branching factor a = 4. Node 0 stores a routing table with a logaN = aL contact nodes.
For example, three routing table look-ups are necessary to pass a message from node 0 to
node 46. First, node 0 contacts the closest, preceding node, which is node 32. Node 32 has
the address of node 44 in the second level of its routing table. Node 44 stores in the third
level of its routing table the address of node 46. Thus, the message is passed from node 0 to
node 44, and then further to node 46 (see blue path in Figure 3.11).

In an a-ary routing scheme, hierarchical, deterministic merging needs Θ(N) time steps to
digest the data of all nodes. We proceed as follows: a random node is chosen to be the root
node. The root sends to all its first level contact nodes the message to send a q-digest back.
We state, that a node can answer with a q-digest only if it either has been contacted as a
last level node (no further refinement possible) or it has received all q-digests from nodes
belonging to its view. In the second case, the node merges its own and the received q-digests
into a single one before sending it back via the network.

In hierarchical, deterministic merging, the root sends a− 1 messages to its first level contact
nodes. The root and its first level routing neighbors send altogether a(a−1) messages to their
second level neighbors, and so on. At the bottom level, we have aL−1(a− 1) sent messages.
Hence, we have Θ(aL) = Θ(N) communication costs, which is not surprising, since each node
of the network has to be contacted once. But in an a-ary routing scheme, we can parallelize
most of the message passing. A node is contacted after at most L time steps to send a q-digest
back, or at most L − 1 time steps to contact a − 1 further neighbors. Therefore, any node
of the network forwards a query for only a− 1 successors and will be reached within L time
steps. If a node can send messages only sequentially, then the slowest messages take Θ(aL)
time steps, otherwise Θ(L).

2By merging q-digests representing older observations with the q-digest on the last n observations.

47

3.5 Discussion

44

46

0 1 2
3

4

8

12

16

32

48

3rd level nodes
2nd level nodes
1st level nodes

Figure 3.11: Contact nodes (orange) in node 0’s routing table with N = 64 = 43, a = 4
and L = 3. The blue path shows routing from node 0 to node 46. The last two look-ups
are performed by the nodes with ids 32 and 44.

48

Chapter 4

A Lifetime Estimator for P2P
Networks

A major challenge in P2P networks is to maintain the infrastructure of the overlay with the
least possible effort. The overlay infrastructure is maintained by routing tables which contain
addresses of other nodes in the network. The Chord protocol, for example, involves fixfinger
messages, a type of message that verifies or repairs entries in a routing structure called finger
table. The problem is to find the optimal frequency with which fixfinger messages are sent.
Sending with a high frequency is unnecessarily bandwidth consuming, whereas sending with
a too low frequency might result in a disrupted infrastructure. The most intuitive way to
adjust the frequency for fixfinger messages is to make it dependent from the mean lifetime of
nodes in the network. From the mean lifetime we are able to deduce the turnover or churn
rate – the probability that a node leaves (or enters) the network.

In this chapter we show a method for computing the mean lifetime based on a small set of
samples that is collected while the network has already been established. This method fits the
requirements of P2P networks – it is completely decentralized and can be implemented at each
node. To model lifetimes we use the Weibull probability function whose latent parameters
are estimated from the sample set using linear regression. The complexity is linear in terms of
the sample set size. The locally estimated mean lifetime will be used to trigger the frequency
for fixfinger messages.

4.1 Weibull Distribution

The Weibull probability distribution was first identified by Maurice Fréchet in 1927. It was
described in detail by Waloddi Weibull [18], who showed the wide range of its application.
Whether it is the breaking strength or fatigue life of material, the size distribution of particles,
or the failure probability of electronic devices – they all can be modeled by the Weibull
distribution function. The reason is that the Weibull distribution is able to assume the shape
of an exponential, normal or Rayleigh distribution, depending on the parameter settings.

We first give the cumulative distribution function F for the Weibull function, and then derive
its frequency distribution. The cumulative distribution function is the probability P choosing

49

4.2 Parameter Estimation

at random an individual X ∈ X being less or equal to any x ∈ X.

P (X ≤ x) = F (x)

Any distribution function can be expressed as

F (x) = 1− e−φ(α)

The cumulative distribution function for one-dimensional Weibull distributed data is defined
as

F (x; k, λ, θ) :=

{
1− e−(

x−θ
λ

)k , x ≥ θ
0 , x < θ

where k > 0 is the shape parameter, λ > 0 the scale parameter and θ the location. Differen-
tiating F with respect to x results in the frequency or probability density function f

f(x; k, λ, θ) =
dF

dx
=

{
k
λ

(
x−θ
λ

)k−1
e−(

x−θ
λ

)k , x ≥ θ
0 , x < θ

(4.1.1)

Figure 4.1 shows the probability density function with different settings of the shape. For k =
5, the shape of the probability density function becomes similar to the normal distribution.

x

k λ

(x λ) k−1
ex

p
−
(x
/
λ
)k

k = 5, λ = 1

k = 1, λ = 1

k = 0.5, λ = 1

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Figure 4.1: Probability density function for Weibull distributed data with varying shape
parameters.

4.2 Parameter Estimation

Given a set of sampled lifetimes X ∈ Rn×1, the goal is to determine the parameters k and
λ from linear regression, such that the data fits the Weibull distribution function best. The
first moment µ can be derived from the estimated shape kest and the scale parameter λest:

µ = λestΓ(1 + 1/kest) (4.2.1)

50

4.2 Parameter Estimation

with Γ being the Gamma function, an extended factorial function shifted down by 1.

Γ(x) :=

∫ ∞
0

tx−1 exp−t dt

4.2.1 Linear Regression

Given a sample set X ∈ Rn×m with a corresponding set Y ∈ Rn×1 for which we assume
a linear relationship: yi = α0 + α1xi,1 + α2xi,2 + · · · + αmxi,m, ∀i ∈ [1..n]. Our goal is
to determine the coefficient vector α such that the squared error E between samples and
regression line becomes minimal. We prepend the column vector 1n to X such that we can
multiply X and α without the need to add the extra α0.

E =
1

2
(Y −Xα)T (Y −Xα) → min! (4.2.2)

We minimize E by determining the root of the derivation for α.

∂E

∂α
= 0

1

2
(−X)T (Y −Xα) +

1

2
(Y −Xα)T (−X) = 0

−XT (Y −Xα) = 0 (due to ATB = BTA)

−XTY +XTXα = 0

α = (XTX)−1(XTY) (4.2.3)

4.2.2 Application to Weibull Distributed Data

To make use of Formula 4.2.3, we have to linearize the Weibull function. We can not linearize
it directly, but its cumulative distribution function. When the double logarithm of F is plotted
versus the logarithm of x, the dependencies may be described as a linear equation of the form
y = mx + c. Thus, by changing the variables, F can be linearized and utilized for linear
regression.

F (x; k, λ) = 1− exp−(x/λ)
k

− ln(1− F (x; k, λ)) = (x/λ)k

ln
(
− ln(1− F (x; k, λ))

)︸ ︷︷ ︸
y

= k lnx︸ ︷︷ ︸
mx

− k lnλ︸ ︷︷ ︸
c

We can calculate easily y and lnx for all x ∈ X of our samples. The remaining parameters
k and c can be estimated by solving the linear equation system:

ln(− ln(1− F (x1))
ln(− ln(1− F (x2))

...
ln(− ln(1− F (xn))

 =

lnx1 1
lnx2 1

...
...

lnxn 1

(
k
c

)
(4.2.4)

51

4.3 Evaluation

Plugged into result (4.2.3), we get:(
k
c

)
= (XTX)−1XTY (4.2.5)

The computation of the inverse of XTX is trivial, since it is in R2×2. Let A ∈ R2×2 with

A =

(
a b
c d

)
, then the inverse of A is:

A−1 =
1

det(A)
adj(A) =

1

ad− bc

(
d −b
−c a

)
The case det(A) = 0 (singular or non-regular matrix) represents are rare case, but has to be
checked in an implementation.

After having estimated c and kest, λ can be inferred by its relation to k and c:

λest = exp−c/kest

Finally, kest and λest are plugged into Equation 4.2.1 to compute the mean of the sampled
lifetimes. Let n be the number of samples, then the expected running time is Θ(n).

4.3 Evaluation

4.3.1 Linear Regression Error

In order to measure the quality of the mean µLR estimated by linear regression, it was com-
pared to Matlab’s built-in function wblfit, which iteratively approximates k and λ. Given
the shape and the scale parameter, formula 4.2.1 gives the mean µM . Both approximated
means were plugged into error Formula 4.3.1. The estimated mean µLR was compared to the
exact, but latent mean µ also (see error plot 4.2).

e(µLR, µ) =
(µLR − µ

µ

)2
e(µM , µ) =

(µM − µ
µ

)2
Figure 4.2 shows the result of 10,000 repetitions. The scale parameter was fixed, the shape
was chosen randomly from the interval [1, 5]. The exact mean µ is the result of equation 4.2.1.
The error decays exponentially. Depending on the robustness of the application or protocol,
5, 10, or 20 samples are sufficient to compute an almost-exact mean. For the subsequent tests
in Chord, most peers collected not more than 5 samples.

52

4.3 Evaluation

2 5 10 20 30 40 50 60 70 80 90 100

0.01

0.05

0.1

0.15

data set size

er
ro

r

(µLR−µ
µ

)2
(µM−µ

µ

)2

Figure 4.2: Comparison between Matlab’s built-in wblfit and parameter estimation with
linear regression.

4.3.2 Message Reduction in Chord

We now show how to use the lifetime estimator in an overlay network using the simulation
framework Oversim1. Oversim is an open-source framework for simulating P2P networks
and different layer types. Among the overlay protocols there is an implementation of Chord.
Nodes in an overlay network using the Chord protocol are arranged in a ring-like structure
(see Figure 3.11 in the previous chapter). For ring maintenance there are essential messages
which are send if an internal timer has expired or as a response:

fix_finger Called periodically to refresh finger table entries.
If enlisted nodes have become unavailable, new
successors have to be determined.

stabilize Called to check whether the predecessor of a
node’s successor is the same.

notify Sent by node who might be the predecessor of
the receiver.

ping, pingResponse Helper routine to check for aliveness.

For our purpose we added a new version of the Chord protocol which contains the following
modifications:

1. We added the function churnRateEstimator in ChordFingerTable.cc which proceeds
like described in section 4.2.2 to estimate the mean lifetime. The function receives a

1http://www.oversim.org/

53

http://www.oversim.org/

4.3 Evaluation

vector of pairs of node IDs and simulation time points from nodes that did not respond
to ping messages. See code in Appendix 5.3.

2. The function handleFixFingersTimerExpired in ChordNew.cc calls churnRate-
Estimator and adjusts the frequency f of the finger table update according to the
estimated µ. We do not trigger the frequency of the function call of handleFixFingers-
TimerExpired directly, but implemented a switch using the formula:

fixFingerCalls = (fixFingerCalls + 1) % frequency.

Each time fixFingerCalls equals zero fix_finger messages are sent. For all other
cases the procedure collects lifetimes by sending ping messages to all nodes in its routing
table (see lines 991 to 1003 in Appendix 5.3) and storing the current simulation time.
If a node does not respond, it is considered to be dead and its lifetime is computed by
taking the difference of the former system time and its time of creation 2.

There are different strategies possible to adjust the frequency of fixfinger messages.

i) Simply switching between a high and a low frequency:

f requency = (µ < c) ? αlow : αhigh

ii) The frequency depends linearly from the estimated churn rate:

f requency = dα · µe

iii) The frequency depends logarithmically from the estimated churn rate:

f requency = log2 µ

4.3.2.1 Results with OverSim

All three strategies for adjusting the frequency of fix finger messages resulted in a smaller
total number of sent messages compared to the standard Chord implementation with constant
frequency. Figure 4.3 shows the results for the third strategy, which has the advantage that
no parameters have to be tuned. The blue line refers to the standard implementation, the
green line to the modified version ‘ChordNew’. The plotted values are mean values, averaged
for 100 repetitions of the simulation. Different mean lifetimes from the interval [200; 800]
have been modeled, they are assigned to the x-axis.

Each experiment starts with a short initial phase in which the specified number of nodes
is created for the overlay, here 1024. The node creation phase is followed by the transition
phase – a temporal buffer to give the nodes time to establish the infrastructure of the overlay.
Finally the measurement phase starts – the only interval in which statistical data is collected.
Among these are:

• The Number of maintenance messages is the mean of the number of all messages
needed to maintain Chord’s infrastructure. Decreasing the number of fixfinger messages
does not automatically decrease the total number of messages in the network. In our
case, we have to send more ping messages to test for aliveness of nodes.

2see line 331 in function churnRateEstimator in Appendix 5.3

54

4.4 Discussion

• The number of fixfinger messages is the mean of the number of sent fixfinger
messages per second.

• The number of ping messages and ping response messages are the mean of the
numbers of sent ping messages and their responses per second.

• Packets dropped is the mean of the total number of dropped UDP-packets due to
unavailable destination. This characteristic reflects the health of the infrastructure.
Packets are dropped if finger table entries are out of date.

• One-way hop count is the mean of hops a packet spends in traveling from one node
to the target node.

Figure 4.3(a) shows that the number of messages needed for ring maintenance gets halved
for nodes with mean lifetimes of at least 400s. One reason for the decreased number of
maintenance messages is that the adjusted frequency for fixfinger messages is lower than the
one of the standard implementation (see Figure 4.3(b)). The price for a reduced number
of fixfinger messages is that more ping and ping response messages need to be sent. But,
expressed in number of hops, they are much cheaper than fixfinger messages.

Most important – a lower fixfinger frequency does not harm the infrastructure. We need
up to two more hops for packet delivery (see Figure 4.3(f)), but less UDP packets of the
transport layer get lost (see Figure 4.3(e)).

4.4 Discussion

We showed how to utilize the lifetime estimator to reduce the number of messages that serve
for ring maintenance in the Chord protocol. There are many more applications of the lifetime
estimator, which are not restricted to the overlay. Mean lifetimes can be transmitted to the
application layer, where applications may alter their behavior depending on the churn rate
of clients.

In our implementation lifetime data was collected by sending ping messages to neighbors
from the finger table. Since Chord guarantees communication costs of Θ(logN) between
two arbitrary nodes, one could also implement a gossiping-based version for sending ping
messages, like Pruteanu et al. [19] did in their churn rate detecting algorithm. The main
focus of this chapter was not to develop an efficient framework for the distributed churn
estimation problem, but to show how to determine the parameters of a Weibull distribution
based on a small set of samples.

55

4.4 Discussion

(a) Number of maintenance messages. (b) Number of fixfinger messages.

(c) Number of ping messages. (d) Number of ping response messages.

(e) Packets dropped due to unavailable destination. (f) One-way hop count.

Figure 4.3: Strategy: frequency = log2 µ, steady-state net size: 1024, measuring time:
5000s, number of repetitions: 100.

56

Chapter 5

Summary

5.1 Approximate Distributed Clustering over a P2P Network

We modified the unsupervised learning technique of agglomerative clustering to produce
meaningful coordinates for the placement of a fixed number of replicas. The constraints
for optimal replica placement are avoidance of outliers, and replica spreading into different
clusters. During the last unification steps of agglomerative clustering these constraints are
potentially violated. By stopping the clustering routine much earlier, we keep enough cen-
troids to reject outliers and merge the remaining centroids with a new merging criterion which
takes into account the relative cluster sizes. If the designated number of centroids is less or
equal to the real number of centroids, the modified agglomerative clustering routine is able
to detect the latent centroids and will reject the smaller ones for replica placement. Whereas
K-means would compute centroid coordinates that lie between two or more latent clusters.

On the other hand, if several replicas have to be stored in the same cluster, we reduce
failure probabilities by maximizing the spatial distances between them. K-means meets this
criterion best, since it minimizes the distances between centroids and assigned nodes. The
agglomerative clustering procedure does not label nodes. This fact offered the opportunity
to design a very simple version for P2P systems which gossips locally estimated centroids
and does not require any kind of synchronization. But for ensuring large distances between
replicas in the same cluster, we had to take into account the current relative sizes of centroids
in a final merging phase to force agglomeration towards 1/k-th of the total net size.

5.2 Quantiles and Histograms on Distributed Streams

In histogram computation, equi-width histograms are the ones with unbounded errors. If
the bucket width is not adaptive, arbitrary many or few items might be counted into a
single bin. A q-digest is a structure that corresponds to an equi-probable histogram, except
that the buckets are overlapping. By ensuring that a bucket count does not fall below or
exceeds a threshold, we can guarantee some degree of exactness and an upper bound for the
storage space. With the constraint that the storage space is not increased, q-digests can be
merged in a deterministic way, such that the root node receives a q-digest aggregating the
data from all sources. In chapter 3 we showed, that the error bounds are preserved if q-

57

5.3 A Lifetime Estimator for P2P Networks

digests are merged randomly for arbitrary many iterations. Therefore, we can use the robust
gossiping-protocol which meets the requests of P2P systems much better than supervised or
deterministic approaches.

5.3 A Lifetime Estimator for P2P Networks

Knowing the churn rate of web clients is not only interesting for commercial applications,
but also for the underlying overlay protocol. Maintaining the P2P overlay structure requires
frequent passing of messages for detecting dead or joined nodes and correcting routing table
entries at peers. Since messages dedicated for maintenance also consume prized bandwidth,
it is a goal to reduce their frequency without disrupting the infrastructure of the overlay.
Obviously, the lower bound of needful maintenance messages correlates with the mean lifetime
of peers. In chapter 4 we showed how nodes can sample a few lifetimes of peers and use
linear regression to estimate the latent parameters of the Weibull distribution function. The
Weibull function is flexible enough to model exponential decay or normally distributed data.
We modified the Chord protocol and charged the update frequency for fix_finger messages
with the estimated mean lifetime. Thereby, we reduced the number of maintenance messages
significantly without degrading the infrastructure.

58

Appendix

Code

Listing 1: ChordNewFingerTable::churnRateEstimator

313 /∗ e s t imat ing the churnRate with l i n e a r r e g r e s s i o n ∗/
314 double ChordNewFingerTable : : churnRateEstimator (double f i x f i n g e r s D e l a y , std : : map

<OverlayKey , std : : pa ir<int , s imtime t> > ∗ pingSent)
315 {
316 double k = −1; // shape parameter
317 double lambda = −1; // s c a l e parameter
318 double mu = −1; // est imated mean l i f e t i m e (churn ra t e)
319 double MIN DOUBLE = −50;
320 double MAX DOUBLE = 10000;
321

322 std : : vector<double> data ;
323 std : : map<OverlayKey , s imtime t > : : i t e r a t o r i t ;
324 std : : map<OverlayKey , std : : pa ir<int , s imtime t> > : : i t e r a t o r i t 1 ;
325

326 OverlayKey key ;
327 /∗ use age o f not ping responding nodes ∗/
328 for (i t 1 = pingSent−>begin () ; i t 1 != pingSent−>end () ; i t 1++){
329 i t = insertTocByKey . f i n d ((OverlayKey) (∗ i t 1) . f i r s t) ;
330 i f (i t != insertTocByKey . end () && ((∗ i t 1) . second . f i r s t != 1))
331 data . push back (SIMTIME DBL((∗ i t 1) . second . second) − SIMTIME DBL((∗

i t) . second) − f i x f i n g e r s D e l a y /2) ;
332 }
333 /∗ e l s e : use age o f v i v i d f i n g e r s ∗/
334 i f (data . s i z e () == 0) {
335 for (u int p = 0 ; p < f i nge rTab l e . s i z e () ; p++){
336 i f (f i nge rTab l e [p] . f i r s t . i s U n s p e c i f i e d ())
337 continue ;
338 key = (OverlayKey) f i nge rTab l e [p] . f i r s t . getKey () ;
339 i f (i s D u p l i c a t e (p))
340 continue ;
341 i t = insertTocByKey . f i n d (key) ;
342 i f (i t != insertTocByKey . end ()) {
343 data . push back (SIMTIME DBL(simTime ()) − SIMTIME DBL(insertTocByKey [

key])) ;
344 }
345 }
346 }
347

348 /∗ no data c o l l e c t e d − re turn ∗/
349 i f (data . s i z e () == 0)
350 return 0 ;

59

5.3 A Lifetime Estimator for P2P Networks

351 else i f (data . s i z e () == 1)
352 return data . at (0) ;
353

354 std : : vector<double> y vec ;
355 std : : vector<std : : pa ir<double , double> > x mat ;
356

357 i n t y d e l = 0 ;
358 double y va l ;
359 for (u int i = 0 ; i < data . s i z e () ; i++){
360 y va l = log (− l og (1− ed f (data , i))) ;
361 /∗ remove o u t l i e r s ∗/
362 i f (y va l > MAX DOUBLE | | y va l < MIN DOUBLE) {
363 ++y d e l ;
364 continue ;
365 }
366 y vec . push back (l og (− l og (1− ed f (data , i)))) ;
367 x mat . push back (std : : make pair<double , double>(l og (data [i]) , 1)) ;
368 }
369

370 /∗ s i z e d = v a l i d e n t r i e s ∗/
371 uint s i z e d = data . s i z e () − y d e l ;
372 i f (s i z e d == 0)
373 throw new cRuntimeError (”ChordNewFingerTable : : churnRateEstimator : a l l

data out o f range !\n”) ;
374

375 i f (s i z e d == 1)
376 data . at (0) ;
377

378 uint d2 = 2 , d1 = 1 ;
379 double ∗∗y ;
380 double ∗∗x ;
381 double ∗∗ alpha ;
382 double ∗∗ x t rans ;
383 double ∗∗xx ;
384 double ∗∗ xx inv ;
385 double ∗∗xy ;
386

387 /∗ a l l o c a t e memory ∗/
388 y = new double ∗ [s i z e d] ;
389 x = new double ∗ [s i z e d] ;
390 alpha = new double ∗ [d2] ;
391 x t rans = new double ∗ [d2] ;
392 xx = new double ∗ [d2] ;
393 xx inv = new double ∗ [d2] ;
394 xy = new double ∗ [d2] ;
395

396 for (u int i = 0 ; i < s i z e d ; i++){
397 y [i] = new double [d1] ;
398 x [i] = new double [d2] ;
399 }
400

401 for (u int i = 0 ; i < d2 ; i++){
402 alpha [i] = new double [d1] ;
403 x t rans [i] = new double [s i z e d] ;
404 xx [i] = new double [d2] ;
405 xx inv [i] = new double [d2] ;
406 xy [i] = new double [d1] ;
407 }
408

60

5.3 A Lifetime Estimator for P2P Networks

409 /∗ a s s i g n data ∗/
410 for (u int i = 0 ; i < s i z e d ; i++){
411 y [i] [0] = y vec . at (i) ;
412 x [i] [0] = x mat . at (i) . f i r s t ;
413 x [i] [1] = x mat . at (i) . second ;
414 }
415

416 /∗ s o l v e us ing l e a s t squares , alpha = (x ’ x) ˆ{−1}(x ’ y) ∗/
417 t rans (x trans , x , s i z e d , d2) ; // x ’
418 mult (xx , x trans , d2 , s i z e d , x , s i z e d , d2) ; // X ’X
419

420 /∗ (X ’X)ˆ−1 ∗/
421 inv (xx inv , xx) ;
422

423 mult (xy , x trans , d2 , s i z e d , y , s i z e d , d1) ;
424 mult (alpha , xx inv , d2 , d2 , xy , d2 , d1) ;
425

426 k = alpha [0] [0] ;
427 lambda = exp(−alpha [1] [0] / k) ;
428 mu = lambda∗tgamma(1+1/k) ;
429

430 /∗ f r e e memory ∗/
431 for (u int i = 0 ; i < s i z e d ; i++){
432 delete [] y [i] ;
433 delete [] x [i] ;
434 }
435 delete [] x ;
436 delete [] y ;
437 for (u int i = 0 ; i < d2 ; i++){
438 delete [] a lpha [i] ;
439 delete [] x t r an s [i] ;
440 delete [] xx [i] ;
441 delete [] xx inv [i] ;
442 delete [] xy [i] ;
443 }
444 delete [] a lpha ;
445 delete [] x t r an s ;
446 delete [] xx ;
447 delete [] xx inv ;
448 delete [] xy ;
449

450 return mu;
451 }

Listing 2: ChordNewFingerTable::Helper Functions

460 /∗ c a l c u l a t e the t r a n s p o s a l o f a g iven matrix ∗/
461 void ChordNewFingerTable : : t rans (double∗∗ A trans , double∗∗ A, u int height , u int

width) {
462 for (u int i = 0 ; i < width ; i++){
463 for (u int j = 0 ; j < he ight ; j++)
464 A trans [i] [j] = A[j] [i] ;
465 }
466 }
467

468 /∗ m u l t i p l i c a t e two matr i ce s A o f s i z e kxl and B o f s i z e mxn ∗/
469 void ChordNewFingerTable : : mult (double∗∗ AB, double∗∗ A, u int k , u int l , double

∗∗ B, u int m, u int n) {
470 i f (l != m | | ! (k&&l&&m&&n))

61

5.3 A Lifetime Estimator for P2P Networks

471 throw new cRuntimeError (”ChordNewFinger : : mult () : Wrong dimension f o r
matrix m u l t i p l i c a t i o n \n”) ;

472

473 for (u int idx1 = 0 ; idx1 < k ; idx1++){
474 for (u int idx2 = 0 ; idx2 < n ; idx2++){
475 AB[idx1] [idx2] = 0 ;
476 for (u int idx3 = 0 ; idx3 < l ; idx3++)
477 AB[idx1] [idx2] += A[idx1] [idx3]∗B[idx3] [idx2] ;
478 }
479 }
480 }
481

482 /∗ e m p i r i c a l d i s t r i b u t i o n func t i on ed f (t) = (rank (t) −0.3) /(n+0.4) ∗/
483 double ChordNewFingerTable : : ed f (std : : vector<double>v , u int idx) {
484 uint countLEQ = 0 ;
485 for (std : : vector<double> : : s i z e t y p e i = 0 ; i != v . s i z e () ; i++){
486 i f (v [i] <= v [idx])
487 countLEQ++;
488 }
489 return ((double) countLEQ−0.3) / ((double) v . s i z e () + 0 . 4) ;
490 }
491

492 /∗ i n v e r s e o f 2x2 matrix : 1/ det (A) ∗ adj (A) ∗/
493 void ChordNewFingerTable : : inv (double∗∗ A inv , double∗∗ A) {
494 double det = A[0] [0] ∗A[1] [1] − A[0] [1] ∗A [1] [0] ;
495 i f (det == 0)
496 throw new cRuntimeError (”ChordNewFingerTable : : inverseD2 : determinant o f

matrix i s ze ro \n”) ;
497 A inv [0] [0] = A[1] [1] / det ;
498 A inv [0] [1] = −A[0] [1] / det ;
499 A inv [1] [0] = −A[1] [0] / det ;
500 A inv [1] [1] = A[0] [0] / det ;
501 }

Listing 3: ChordNew::handleFixFingersTimerExpired

941 void ChordNew : : handleFixFingersTimerExpired (cMessage∗ msg) {
942 /∗ es t imate churn ra t e only i f at l e a s t one node didn ’ t respond ∗/
943 std : : map<OverlayKey , std : : pa ir<int , s imtime t> > : : i t e r a t o r i t ;
944 for (i t = pingSent . begin () ; i t != pingSent . end () ; i t ++){
945 i f ((∗ i t) . second . f i r s t != 1) { // 0 no response , 1 ping response , 2 ping

timeout
946 churnRate = f ingerTab le−>churnRateEstimator2 (f i x f i n g e r s D e l a y , &

pingSent) ;
947 i f (churnRate <= 0) break ;
948

949 /∗ ad jus t f requency f o r t a b l e s t a b i l i z a t i o n ∗/
950 i f (churnRate < 100000) {
951 churnRates . push back (churnRate) ;
952 f r equency = std : : max((f l o a t) 1 , (f l o a t) pow(log10 (churnRateMean

(churnRates)) , 2)) ;
953 }
954 break ;
955 }
956 }
957 f i x F i n g e r C a l l s = (f i x F i n g e r C a l l s +1) % frequency ;
958 u i n t 3 2 t nextFinger ;
959 OverlayKey o f f s e t , lookupKey ;
960 i f ((s t a t e != READY) | | s u c c e s s o r L i s t−>isEmpty ())

62

5.3 A Lifetime Estimator for P2P Networks

961 return ;
962

963 /∗ send F i x f i n g e r s C a l l s accord ing to the f r equence ∗/
964 i f (f i x F i n g e r C a l l s == 0) {
965 for (nextFinger = 0 ; nextFinger < karyLength (thisNode . getKey () .

getLength ()) ; nextFinger++) {
966 o f f s e t = o f f s e tFunc (nextFinger) ;
967 lookupKey = thisNode . getKey () + o f f s e t ;
968 /∗ send message only f o r non−t r i v i a l f i n g e r s ∗/
969 i f (o f f s e t > s u c c e s s o r L i s t−>ge tSucce s so r () . getKey () − thisNode .

getKey ()) {
970 // c a l l FIXFINGER RPC
971 Fix f ingersNewCal l ∗ c a l l = new Fix f ingersNewCal l (”

Fix f ingersNewCal l ”) ;
972 c a l l−>s e tF inge r (nextFinger) ;
973 c a l l−>setBitLength (FIXFINGERSNEWCALL L(c a l l)) ;
974 sendRouteRpcCall (OVERLAY COMP, lookupKey , c a l l , NULL,

DEFAULT ROUTING, f i x f i n g e r s D e l a y) ;
975 }
976 /∗ d e l e t e t r i v i a l f i n g e r s (po in t s to the s u c c e s s o r node) ∗/
977 else
978 f ingerTab le−>removeFinger (nextFinger) ;
979 }
980 }
981

982 /∗ send ping messages to nodes in f i n g e r t a b l e ∗/
983 else {
984 /∗ check a l i v e n e s s o f f i n g e r s ∗/
985 i f (! p ingRespFingerSet . empty ()) {
986 pingRespFingerSet . c l e a r () ;
987 pingRespTime [’ s ’] . c l e a r () ;
988 pingRespTime [’ r ’] . c l e a r () ;
989 }
990 f i nge r sUn ique . c l e a r () ;
991 for (nextFinger = 0 ; nextFinger < f ingerTab le−>g e t S i z e () ; nextFinger++)

{
992 i f (f inge r sUn ique . f i n d (f ingerTab le−>getF inger (nextFinger) . getKey ())

== f inge r sUn ique . end ()) {
993 f i nge r sUn ique . i n s e r t (f ingerTab le−>getF inger (nextFinger) . getKey

()) ;
994 pingNode (f ingerTab le−>getF inger (nextFinger) , −1, 1 , NULL, ”PING

” , NULL, 2 , UDP TRANSPORT) ;
995 pingRespTime [’ s ’] . push back (simTime ()) ;
996 std : : pa ir<std : : map<OverlayKey , std : : pair<int , s imtime t> > : :

i t e r a t o r , bool> r e t ;
997 r e t = pingSent . i n s e r t (std : : pa ir<OverlayKey , std : : pa ir<int ,

s imtime t> > (f ingerTab le−> getF inger (nextFinger) . getKey ()
, s td : : make pair<int , s imtime t >(0 , simTime ()))) ;

998 i f (r e t . second == fa l se) {
999 pingSent . e r a s e (r e t . f i r s t) ;

1000 pingSent . i n s e r t (std : : pair<OverlayKey , std : : pair<int ,
s imtime t> > (f ingerTab le−> getF inger (nextFinger) .
getKey () , s td : : make pair<int , s imtime t >(0 , simTime ())
)) ;

1001 }
1002 }
1003 }
1004 sentAl ivenessCheck = true ;
1005 }

63

5.3 A Lifetime Estimator for P2P Networks

1006 /∗ schedu le next f i n g e r r e p a i r p roce s s ∗/
1007 cance lEvent (f i x f i n g e r s t i m e r) ;
1008 scheduleAt (simTime () + f i x f i n g e r s D e l a y , msg) ;
1009 }

64

Bibliography

[1] Dhillon, Inderjit S. and Modha, Dharmendra S.: A Data-Clustering Algorithm
on Distributed Memory Multiprocessors. Revised Papers from Large-Scale Parallel Data
Mining, Workshop on Large-Scale Parallel KDD Systems, SIGKDD, 2000, Springer-
Verlag, London, UK.

[2] Marie Hoffmann: An Agglomerative, Gossip-based Clustering Approach for Dis-
tributed Systems. Bachelor’s Thesis, FU Berlin, Institut für Informatik, 2009.

[3] Thorsten Schütt, Alexander Reinefeld, Florian Schintke, and Marie
Hoffmann: Gossip-based Topology Inference for Efficient Overlay Mapping. Peer-to-
Peer Computing, 2009

[4] Souptik Datta, Chris R. Giannella, and Hillol Kargupta: Approximate Dis-
tributed K-Means Clustering over a Peer-to-Peer Network. IEEE Transactions on Knowl-
edge and Data Engineering, Volume 21, October 2009

[5] Christopher M. Bishop: Pattern Recognition and Machine Learning Springer 2006.

[6] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris: Vivaldi: A
Decentralized Network Coordinate System. SIGCOMM’04, Aug. 30-Sept. 3, 2004, Port-
land, Oregon, USA.

[7] A. K. Jain, M. N. Murty, and P. J. Flynn: Data Clustering: A Review. ACM
Computing Surveys, Vol. 31, No. 3, September 1999.

[8] http://entwickler.com/itr/psecom,id,84,nodeid,.html

entwickler.com - Lexikon.

[9] edited by Charu C. Aggarwal: Data Streams – Models and Algorithms. Springer
2007.

[10] Chiranjeeb Buragohain and Subhash Suri: Quantiles on Streams.

[11] Raj Jain and Iimrich Chlamtac: The P2 Algorithm for Dynamic Statistical Calcu-
lation of Quantiles and Histograms Without Storing Observations. Communications of
the ACM, Vol. 28, No. 10, October 1985.

[12] J. I. Munro and M. S. Paterson: Selection and Sorting with Limited Storage.
Theoretical Computer Science, pp 315–323, 1980.

65

BIBLIOGRAPHY

[13] G. Piatetsky-Shapiro and C. Connell: Accurate Estimation of the Number of Tu-
ples Satisfying a Condition. ACM SIGMOD Intl. Conf. on Management of Data (SIG-
MOD), 1984.

[14] N. Shrivastava, C. Buragohain, D. Agrawal, S. Suri: Medians and Beyond:
New Aggregation Techniques for Sensor Networks. SenSys ’04, November 3-5, 2004,
Baltimore, Maryland, USA.

[15] M. B. Greenwald and S. Khanna: Quantiles and EquiDepth Histograms over
Streams. Chapter 2 of Part II of ”Data Stream Management: Processing High-Speed
Data Streams”, edited by M. Garofalakis, J. Gehrke, and R. Rastogi, Springer, 2005.

[16] H.L. Chan, T.-W. Lam, L.K. Lee and H.F. Ting: Continous Monitoring of Dis-
tributd Data Streams over a Time-based Sliding Window. Symposium on Theoretical
Aspects of Computer Science 2010 (Nancy, France). pp. 179-190.

[17] Ali Ghodsi: Distributed k-ary System: Algorithms for Distributed Hash Tables Dis-
sertation submitted to the Royal Institute of Technology (KTH), December 2006, School
of Information and Communication Technology, Department of Electronic, Computer,
and Software Systems Stockholm, Sweden.

[18] Waloddi Weibull: A Statistical Distribution Function of Wide Applicability Con-
tributed by the Applied Mechanics Division for presentation, by title, at the Annual
Meeting, Atlantic City, N.J., November 25 – 30, 1951, of The American Society of Me-
chanical Engineers.

[19] Pruteanu, Andrei and Iyer, Venkat and Dulman, Stefan: ChurnDetect: A
Gossip-Based Churn Estimator for Large-Scale Dynamic Networks Euro-Par 2011 Par-
allel Processing, Lecture Notes in Computer Science, pp 289–301, Springer Berlin Hei-
delberg, 2011.

[20] Spyros Voulgaris and Daniela Gavidia and Maarten Van Steen: CYCLON:
Inexpensive Membership Management for Unstructured P2P Overlays Journal of Net-
work and Systems Management, volume 13, 2005.

66

Eidesstattliche Erklärung

Ich erkläre hiermit, dass ich diese Abschlussarbeit selbständig verfasst, noch nicht ander-
weitig für andere Prüfungszwecke vorgelegt, keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate als solche gekennzeichnet habe.

Berlin, den 04. Februar 2013

67

	Introduction
	Gossiping

	Approximate Distributed Clustering over a P2P Network
	Clustering Approaches
	K-Means Clustering
	Agglomerative Clustering
	Case Distinction
	Boost Agglomeration below 1k
	Identifying Singletons
	2SP2P K-agglomerative Clustering

	Error of Global Clustering
	Experimental Setup and Results
	Data Generation
	Results for and z in new merge criterion
	1S versus 3S Agglomerative Clustering

	Adaption to P2P Systems: Approximate Clustering
	Approximate K-Means Clustering
	Behavior in a Dynamic Environment

	Approximate Agglomerative Clustering
	Behavior in a Dynamic Environment

	Error of Distributed Approximate Clustering
	Experimental Setup and Results
	Results

	Discussion

	Quantiles and Histograms on Distributed Streams
	Quantiles
	Frequency Distributions and Histograms
	Data Streams and Loss of Information

	Quantile Digest
	Construction and Compression
	Merging
	Quantile Computation
	Equi-probable Histogram Computation
	Equi-width Histogram Computation
	Distributed Combination of Q-Digests

	Evaluation
	Compression Error
	Gossiping versus Routing

	Experimental Results
	Discussion
	Efficient Implementation of Higher Branching Factors

	A Lifetime Estimator for P2P Networks
	Weibull Distribution
	Parameter Estimation
	Linear Regression
	Application to Weibull Distributed Data

	Evaluation
	Linear Regression Error
	Message Reduction in Chord
	Results with OverSim

	Discussion

	Summary
	Approximate Distributed Clustering over a P2P Network
	Quantiles and Histograms on Distributed Streams
	A Lifetime Estimator for P2P Networks

	Literaturverzeichnis
	Statement

