
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

DORIAN KRAUSE AND KONSTANTIN FACKELDEY AND

ROLF KRAUSE

A parallel multiscale simulation toolbox
for coupling molecular dynamics and

finite elements

ZIB-Report 13-50 (September 2013)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail:bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

A parallel multiscale simulation toolbox for
coupling molecular dynamics and finite elements

Dorian Krause∗and Konstantin Fackeldey†and Rolf Krause‡

September 6, 2013

Abstract It is the ultimate goal of concurrent multiscale methods to provide com-
putational tools that allow to simulation physical processes with the accuracy of micro-
scale and the computational speed of macro-scale models. Asa matter of fact, the ef-
ficient and scalable implementation of concurrent multiscale methods on clusters and
supercomputers is a complicated endeavor. In this article we present the parallel mul-
tiscale simulation tool MACI which has been designed for efficient coupling between
molecular dynamics and finite element codes. We propose a specification for a thin yet
versatile interface for the coupling of molecular dynamicsand finite element codes in
a modular fashion. Further we discuss the parallelization strategy pursued in MACI,
in particular, focusing on the parallel assembly of transfer operators and their efficient
execution.

∗Institute of Computational Science, Università della Svizzera Italiana, Lugano, Switzerland,
dorian.krause@usi.ch

†Zuse Institut Berlin, Berlin, Germany,fackeldey@zib.de
‡Institute of Computational Science, Università della Svizzera Italiana, Lugano, Switzer-

land,rolf.krause@usi.ch

1

1 Introduction

The goal of sub-project C6 of the collaborative research center 611 “Singular Phenom-
ena and Scaling in Mathematical Models” at the University ofBonn, Germany, was
the development and implementation of novel computationaltechniques for the con-
current coupling of different physical models in the numerical simulation of solids. In
particular, the project was concerned with multiscale coupling between atomistic and
continuum models. Such concurrent multiscale approaches can be used, for exam-
ple, in the numerical simulation of fracture processes. By using a molecular dynamics
model to capture the complicated physical processes in the vicinity of the crack tip
and a computationally faster but less accurate continuum model for the surrounding
material, one can achieve good accuracy at a lower price compared to fully atomistic
simulations.

The design of efficient computational tools for such multiscale simulations is itself
a challenging task. This is even more so when building parallel simulation tools. In
this article we describe the design of the versatile multiscale simulation toolbox MACI

and discuss the novel parallelization approach used in MACI. We introduce a thin yet
capable interface designed for efficient coupling between molecular dynamics (MD)
and finite elements (FE) codes.

1.1 Related work

While the design of algorithms for concurrent multiscale coupling is an active field of
research in the past years, relatively few work has been published about implementa-
tion and parallelization of these algorithms. Broughton etal. [8] report on a parallel
multiscale simulation using theconcurrent coupling of length scalesmethod. This
work is limited to one-dimensional domain decompositions for the molecular dynam-
ics domain. Ma et al. [20] have implemented their MD/GIMP method in the SAMRAI
framework. In comparison to most multiscale methods for thecoupling of MD and
finite elements their constraints are local. Xiao et al. [28]describe a parallel imple-
mentation of the Bridging Domain method in a grid environment. However, this work
is restricted to one-dimensional simulations. Anciaux et al. [2] have implemented the
Bridging domain method in the parallel LIBMULTISCALE. Their approach is closest
to our work.

In this article we present a versatile interface for coupling MD and FE codes. The
common component architecture (CCA) [3] aims to develop a component model for
high performance scientific computing. So far we are not aware of any work using
CCA for multiscale coupling between atomistic and continuum models.

It is one of the goals of the European MAPPER project [21] to develop software
and services for distributed multiscale simulations. While our work focuses on tightly-
coupled simulations on clusters and supercomputers, this work is aimed towards the
utilization of distributed resources in the European e-Infrastructure.

1.2 Article contribution and outline

The outline of the article is as follows. In Section 2 we review the multiscale simulation
method implemented in MACI, focusing on the computational aspects. In Section 3
we propose and discuss a thin interface allowing for the reusing coupling logic with
different molecular dynamics and finite element codes. Thiswork is not limited to
the coupling algorithm presented in Section 2 but can be applied to a broad range

2

of multiscale coupling methods. In Section 4 we discuss the parallelization of MACI

focusing on the description of the data and work distribution in the code. In comparison
to our previous work [18] the focus of this section is the description of the high-level
structure without a detailed discussion of the communication mechanisms employed.

2 Multiscale simulation method

In this section we shortly present atomistic (micro-scale)and continuum (macro-scale)
models for the simulation of the behavior of a solidΩ⊂R3. We then proceed to discuss
an approach to concurrent coupling of these models using projection-based constraints.

2.1 Molecular dynamics

On an atomistic level we can modelΩ as a discrete set ofN atoms/particlesA = {α}
with coordinates and momenta(~xα ,~pα)∈R6. The motion of these particles is governed
by the Hamiltonian equations

~̇xα =
∂H
∂~pα

=
1

mα
~pα

~̇pα =−
∂H
∂~xα

=−∇~xαV +~Fext
α

(1)

with the HamiltonianH = K +V. Here,K denotes the kinetic energy of the atomic
systemK = ∑α

1
2mα

~p2
α , V is the interaction potentialV = V(~x1, . . . ,~xN) andmα the

particle mass. In this article, we concentrate on short-ranged potential that allow for ef-
ficient (i.e., in linear time) computation of energy and forces using a linked cell method
[16] or Verlet neighbor lists [1].

As a particle method, MD does not require discretization in space but only in time.
Usually, lower order symplectic integrators (such as a second order Störmer-Verlet
scheme) are used for their computational efficiency and goodlong-term stability prop-
erties.

2.2 Continuum mechanics and finite elements

In continuum mechanics, the macroscopic deformation of a body Ω ⊂ R3 is described
by a volume preserving mapping~ϕ : [0,T]×Ω →R3, such that~ϕ({t}×Ω) equals the
configuration of the body at timet. The deformation field~U = ϕ −~1 is the solution of
the variational problem

∫

Ω
ρ ~̈U ·~V d~x=

∫

Ω
ρ~b·~V d~x−

∫

Ω
~P(~U) : ~∇~U d~x+

∫

ΓN

~f ·~V dS ,

~U = ~UD on ΓD + initial conditions for~U and~̇U .

(2)

Here,ρ denotes the density in the undeformed configuration,~b and~f are external body
and surface forces (the latter one applied onΓN ⊂ ∂Ω) and~P denotes the first Piola-
Kirchhoff tensor. Dirichlet values~UD are applied onΓD ⊂ ∂Ω. The test function~V is
an element of an appropriate subspace ofC0

(

[0,T];H1(Ω)
)

.

3

In this article, we concern ourselves with first-order (P1 or Q1) finite elements
for the spatial discretization of (2) resulting in a system of coupled partial differential
equations

~̈UA = M−1
A

(

~FA+~Fext
A

)

for each mesh nodeA ,

which has the same structure as Equation (1). Hence, the sametemporal discretization
methods can be applied.

2.3 Coupling method

The goal of concurrent coupling schemes is to allow for interfacing highly accurate, but
expensive, simulation techniques (such as MD) with less accurate, but faster, approxi-
mate schemes. For the latter we consider a continuum mechanics model discretized on
a finite element mesh of a mesh size that is sufficiently largerthan the average atomic
distance. In the following we refer to this problem asMD-FE coupling.

The challenge in the design of concurrent coupling schemes is implementing ap-
propriate transfer conditions between themicro- (MD) andmacro-(FE) scales. Since
each scale features a different resolution, not all modes (e.g., pressure waves of high
wave number) can be resolved on all scales. The interface conditions need to account
for this, in order not to create spurious effects (e.g., wavereflection) that spoil the
solution accuracy.

In the following we review the coupling strategy usingprojection-based constraints
described in [11, 12].

2.3.1 Coupling with overlap

We consider an overlapping decomposition of the simulationdomainΩ into an MD
domainΩMD and an FE domainΩFE with handshake regionΩH = ΩMD ∩ΩFE. In ΩH,
the micro- and macro-scale coexist. Inspired by the Bridging Domain method [29],
volumetric constraints

~0
!
= ~G(~u, ~U) = ~O1~u− ~O2~U (3)

are used in [12] to couple the MD displacement field~u and the FE displacement field
~U . Here, the atomistic displacement field is given by~uα(t) =~xα(t)−~xα(0).

In [12], the operators~O1 and ~O2 are chosen to be equal to a projectionΠ from
micro- to macro-scale and the identity~1, respectively. The projectionΠ allows for
additively decomposing the micro-scale displacement field~u into a macro-scale field~u
andhigh fluctuationremainder~u′ (cf. [27]):

~u=~u+~u′ = Π~u+
(

~1−Π
)

~u .

Note thatΠ~u′ =~0. Hence, the constraints~G provide a pointwise coupling between~U
and~u while not affecting the high fluctuation field~u′ which is not representable on the
macro-scale.

Inspired by non-conforming domain decomposition theory, in [10], anL2 projec-
tion is proposed for micro-to-macro scale transfer. An embedding of the atomistic
displacement space

(

R3
)N

into L2(Ω) is constructed using scattered-data approxi-
mation methods. Hence, given a vector(~wα)α∈A a function~w♮ is constructed such
that ~w♮(~xα(0)) ≈ ~wα . One possible approach for constructing~w♮ ∈ X ⊂ L2(ΩH) is

4

to introduce a set partition of unity basis functionsψα (see, for example, [13]) with
∑α∈A ψα = 1 and define

~w♮ = ∑
α∈A

~wα ψα .

Given the embedding of
(

R3
)N

into L2 we can define the projectionΠ :
(

R3
)N

→ SH

by
(

Π~u,~V
)

ρ
=
(

~u♮,~V
)

ρ
for all ~V ∈ SH .

Here,SH denotes the first-order finite element space onΩH (we assume thatΩH can be
written as the union of a set of elements in the tessellation of ΩFE) and(−,−)ρ equals

theL2 scalar product weighted by the continuum mass densityρ .
The assembly of theL2 projectionΠ requires the computation of (and quadrature

on) the cuts between the elements in the tessellation ofΩH and the support of the basis
functionsψα . Even though, this computation needs to be performed only aspart of
the simulation setup (i.e., not during the time integration), the assembly can be costly.
Alternatively, a least-squares projection

Π~u= argmin~V∈SH

1
2 ∑

α
mα |~uα −~V (~xα(0))|2

has been discussed in [11].
Let us point out that in either case we can writeΠ = ~̃M−1~T with a mass matrix

~̃M and a rectangular matrix~T and hence we can equivalently use the constraints~G =
~T~u− ~̃M~U .

The coupled equations of motion for the micro- and macro-scale are derived from
a weighted Hamiltonian/Lagrangian (cf., [12, 29]) resulting in a system of algebraic
differential equations. We use a RATTLE integration scheme, requiring two linear
solves per time step.

2.3.2 Damping high fluctuation modes

The design of the projection-based constraints~G ensures that the high fluctuation field
~u′ is not affected by the constraints, irrespective of the resolution of the finite element
mesh. To avoid spurious reflections at∂ΩMD , a modified perfectly matched boundary
layer (PML) method is proposed in [12] which (approximately) removes the high fluc-
tuation field and has only minor effect on the information transfer between micro- and
macro-scale. To this end, an additional force term

~f PML
α =−2d (~xα(0))

(

(~q~v)α +d (~xα(0))(~q~u)α

)

is added to the MD forces~fα . Here,d : ΩMD → [0,∞) is a scalar function with support

in ΩH and~q=~1−~NΠ, ~N being the interpolation operator fromSH →
(

R3
)N

.

2.3.3 Complete algorithm

In Algorithm 1 the seven most important steps in the RATTLE integration from timet
to timet+ τ are explained. As mentioned earlier, two linear systems need to be solved
in each timestep to compute the Lagrange multipliers~λ and~µ . We refer to [12] for the
definition of the symmetric positive definite matrixΛ.

Two simulation results for a wave propagation benchmark andmode-I fracture
computation using this concurrent coupling technique are shown in Figures 1 and 2.

5

Figure 1: Results of a two-dimensional wave propagation benchmark at the beginning,
middle and end of the simulation. A radial wave propagates from ΩMD into ΩFE on
the lower and upper side of the MD domain. The elongation in z-direction equals the
(scaled) magnitude of the displacement field.

(a) Velocity distribution. The velocities can be seen to fluctuate strongly inΩMD but to be smooth towards
the boundary of the handshake region.

(b) Distribution of atoms and finite elements over 12+4 processing elements.

Figure 2: Results of a mode-I fracture simulation using 2,496 finite elements and
62,390 atoms. Surface forces are applied on the left and right boundary ofΩFE.

6

Algorithm 1 RATTLE time integration scheme

1. Apply standard “Verlet kicks” and “Verlet drifts” to the micro-and macro-scale
displacements and velocities yielding trial values~u∗,~v∗, ~U∗,~V∗:

[

~v∗

~V∗

]

=

[

~vn

~Vn

]

+
τ
2

[

~m−1~f n+1

~M−1~Fn+1

]

,

[

~u∗

~U∗

]

=

[

~un

~Un

]

+ τ
[

~v∗

~V∗

]

,

where~f n, ~Fn denote the forces computed in step 4 of the previous time step.

2. Evaluate the displacement residual~G∗ = ~T~u∗− ~̃M~U∗ and solve~G∗ = Λ~λ for~λ .
3. Correct the trial values

[

~vn+ 1
2

~Vn+ 1
2

]

=

[

~v∗

~V∗

]

+
1
τ

[

~m−1~TT~λ
−~M−1 ~̃MT~λ

]

,

[

~un+1

~Un+1

]

=

[

~u∗

~U∗

]

+

[

~m−1~TT~λ
−~M−1 ~̃MT~λ

]

.

4. Evaluate forces~f n+1, ~Fn+1 according to the Hamiltonian equation (without con-
straints).

5. Add the damping term~f PML to the MD force~f n+1.
6. Compute trial velocity values

[

~v∗

~V∗

]

=

[

~vn+ 1
2

~Vn+ 1
2

]

+
τ
2

[

~m−1~f n+1

~M−1~Fn+1

]

.

7. Evaluate the velocity residual̇~G∗ = ~T~v∗− ~̃M~V∗ and solve~̇G∗ = Λ~µ for ~µ .
8. Correct the velocities

[

~vn+1

~Vn+1

]

=

[

~v∗

~V∗

]

+

[

~m−1~TT~µ
−~M−1 ~̃MT~µ

]

.

3 Multiscale simulation toolbox

The development of capable, efficient and scalable molecular dynamics or finite ele-
ment codes is a complicated and labor-intensive task. Unless the scope of the applica-
tion is limited, it is therefore often infeasible to developa multiscale simulation tool
as a single monolithic code, that implements MD and FE functionality along with the
coupling logic. Instead we focus on reusing existing, established molecular dynamics
and finite element implementations, such as TREMOLO [16], LAMMPS [19, 23] and
UG [5].

In this article we are concerned with the design and efficientimplementation of con-
current coupling codes for MD-FE coupling that allow for reuse of the coupling logic
with different implementations of the molecular dynamics and finite element function-
ality. In comparison to the on-going research oncommon component architecture[3],
we are restricting ourselves to the scenario of concurrent MD-FE coupling and expose
more details (e.g., about the data distribution) to the coupling code to simplify the de-
velopment of efficient and scalable code. Additionally we impose some restrictions
onto the MD and FE codes that we consider (see below). We have verified that our
assumptions are fulfilled by the major molecular dynamics and finite element software
packages that are discussed in the literature.

7

3.1 Interface Design

In this section we propose a simple yet versatile interface for coupling molecular dy-
namics and finite element simulations. Our work addresses modularity, performance
and parallelization. We assume that the FE component is parallelized with a standard
domain decomposition approach based on a partition of elements. We do not expose
halo or ghost-cells through the presented interface. We moreover assume that the finite
element mesh is statically balanced, i.e., that no dynamic load balancing (as used, for
example, for adaptive mesh refinement) is performed. For theMD component we also
assume a non-overlapping decomposition of the particles, i.e., each particle is stored
on exactly one processing element. This assumptions is fulfilled by the majority of the
molecular dynamics codes known to the authors, whether theyuse a domain decompo-
sition (as do most codes such as TREMOLO, LAMMPS, NAMD [22] and DESMOND

[7]) or particle-based decomposition (as, e.g., used byDDCMD [26]). Note that the
(potentially) dynamic distribution of particles is deliberately exposed to the coupling
code for parallel scalability considerations. For furtherdiscussions of the paralleliza-
tion aspects we refer to Section 4.

Our approach is based on the following three pillars:

• Use of opaque handlers for particles, node and elements to hide the details of the
data layouts used by the MD and FE components.

• Use of access epochsto hide differences in data representation and allow to
couple codes working in separate address spaces.

• The use ofpiggybackingto manage metadata in a simple and effective manner.

In the following we elaborate on theses three aspects of the coupling interface.

3.1.1 Opaque Handlers

In general, the data layouts used by different MD or FE codes will dependent strongly
on the choice of the algorithms, the scope as well as the intended use case for the
application. For example, the data layout used by an MD code based on a linked-
cell method will be very different from the data layout used in a code that utilizes
Verlet neighbor lists. Similarly, the data layout in an FE code will be different de-
pending on whether the code supports dynamic (e.g., adaptively refined) or only static
meshes. To hide these differences, the proposed interface provides opaque handles for
the local particles, nodes and elements on a processing element in the form of iterators
ParticleHandle, NodeHandle andElementHandle. These iterators implement
increment, comparison and assignment operators.

Since the abstraction of the data layout necessarily incursa performance penalty,
these iterators are intended for use in gather/scatter operations that copy the compo-
nent data from or to a buffer in a layout suited for the coupling code. Each iterator
provides aGetLocalId() function that can be used to address a contiguous buffer.
Moreover, to have a unique local identifier for all mesh nodesin ΩH we provide
GetUserChosenId() andSetUserChosenId() functions forNodeHandle that al-
low to assign arbitrary (local or global) indices to the meshnodes (forParticleHandle
this index can be stored as part of thePiggybackType, see below). Access to the par-
ticle data and dynamic variables (ParticleMass, ParticlePos, ParticleDispl,
ParticleVel,ParticleForce,FeDispl,FeVel, FeLumpedMass) is possible through
static functions taking aParticleHandle or NodeHandle instance as an argument.

8

Note that these functions are application specific (in this case targeted to coupled simu-
lations of solids) but the approach can be generalized easily. Since the data distribution
of the MD component can change dynamically in a parallel simulation, the life time of
aParticleHandle should be limited to the scope of the coupling routine that created
it.

To allow for parallelization of the coupling code we also expose node ownership
information (for nodes shared by multiple processing elements) as well as provide
ParallelSumup, ParallelMax andParallelCopy routines to compute the sum
(or max) of values stored at duplicated mesh nodes. These functions can be more ef-
ficiently implemented by taking advantage of the communication primitives of the FE
component.

3.1.2 Access Epochs

MD and FE components do not always work with compatible data representations or
with the same reference frame. For example, some MD codes rescale the simulation
domain to the unit cube[0,1]3. Hence, all coordinates, velocities and forces need to
be scaled before being accessed by the coupling code. Similarly, any updated particle
position needs to be rescaled. Moreover, updating the particle positions might require
a subsequent exchange of particles that have crossed subdomain boundaries (if the MD
component uses a domain decomposition approach).

To cope with these difficulties we propose the use ofaccess epochs, which work
similar to RMA epochs in the MPI standard [14]. The coupling interface provides sub-
routinesAccessBegin(int),AccessEnd() andCanAccess(). A call toAccessBegin
starts an access epoch. The bit field passed toAccessBegin specifies which data fields
can be accessed in read, write or read-write mode during the epoch. Access to any data
field (via the functionsParticlePos, FeDispl, etc.) outside of an access epoch is
illegal. An access epoch ends with a call toAccessEnd. The functionCanAccess al-
lows to check whether access is permitted (in particular fordebugging). For example,
in Algorithm 1, the third step would be wrapped by calls toAccessBegin(VEL RD |

VEL WR | DISPL RD | DISPL WR) andAccessEnd() (note that “|” is a bit-wise
or operation in C allowing to build bitfields from, e.g.,enum variables). Providing
detailed information about read and write accesses to the state variables allows the in-
terface code to optimize the actions performed inAccessEnd(). While it is likely that
in a parallel MD code,AccessEnd needs to trigger an exchange of particles between
processing elements after step three, this usually is not required after step six, since in
this step only velocities are modified. The calls toAccessBegin andAccessEnd are
collective, i.e., all MD or FE processing elements need to call these functions in order
to achieve progress. The rationale for this decision is thatAccessEnd might require
exchange of particles and hence (global) communication.

Beyond a transparent handling of the differences in data representation between
MD and FE components, this epoch-based design also permits for coupling codes stor-
ing data in a different address space than the one of the coupling code. For example
we have successfully coupled MACI with a CUDA MD code. In this case, the coupling
code ran on the CPU while the particle data resided in the graphics card memory. In
AccessBegin andAccessEnd data is copied between CPU and GPU memory. The
use of asynchronous copies is possible but would require modifications of the MD code
to ensure that the MD code blocks for the completion of the host-to-device copy started
in AccessEnd at the appropriate time.

9

3.1.3 Piggybacking of Metadata

For the efficient implementation of a concurrent coupling scheme such as Algorithm 1,
a set of states need to be maintained for each particle. For example, each particle with
~xα(0) ∈ ΩH is assigned a local index and needs to store a weightw∈ (0,∞) as well as
the valued (~xα(0)). Depending on the algorithm and use case, the amount of data and
its structure can vary. In order not to impact the scalability of the coupling code this
data should be migrated together with the particles. Hence,it appears impracticable to
leave the management of it to the coupling code since particle migration is managed
by the MD component. Here, wepiggybackthis data onto the particles and use the
communication subroutines of the MD code to exchange it along with the other state
of the particle (positions, velocities, etc.). This might require modification of the MD
code, for example, to add aPiggybackType to theParticle structure and to ensure
that the additional data is communicated correctly. We havedone these modifications in
a copy of the TREMOLO code in less than 50 lines of code (mainly to add serialization
and de-serialization ofPiggybackType). For other codes, such as LAMMPS even less
modifications may be required since serialization and de-serialization routines can be
easily added by defining a newAtomVec class.

Note that we do not provide aPiggybackType for the FE component because
we restricted ourselves to statically balanced meshes. However, the same piggyback
technique can used in dynamically balanced finite element simulations.

3.2 Description of the MACI code

We have implemented a new concurrent coupling code MACI (Multiscaleatomistic
continuuminterface) based on the interface defined in the previous section. In this
section we shortly describe the architecture of MACI, as depicted in Figure 3.

MD component

• Instance wrapper
(Python)

• TimeIntegrator

• Interface
implementation

Coupling component

• HandshakeGeometry

• Assembly ofΠ , q and
TruncatedMassMatrix

• Multiplication by Π , q
• RattleCorrector

• Plugins (visualization,
measurements, . . .)

• Python driver

FE component

• Instance wrapper
(Python)

• TimeIntegrator

• Interface
implementation

Third-party packages

• PYTHON

• PETSC

• TRILINOS

• UMFPACK

Figure 3: Overview of the architecture of the MACI multiscale simulation tool.

MACI is written in C/C++ for efficiency and portability. Since C, C++ and For-
tran are the predominant programming language in high performance computing, this
choice allows us to interface to most MD and FE codes without need for additional lan-
guage translation (for example, via BABEL [25]). MACI is scriptable using the Python

10

programming language. The translation from C++ to Python isperformed using the
SWIG tool [6]. It is worth pointing out that while we believe that scripting capabili-
ties are of great advantage for complicated scientific applications like MACI, the use
of Python in this project had some inevitable impact on portability (for example, onto
earlier Cray massively parallel systems) and complexity (in particular the handling of
dynamically shared objects without circular references).

MACI consists of three major components (MD component, FE component, cou-
pling component). The code is designed to run in a SPMD (single program, multiple
data) fashion. Each processing element runs the coupling code along with either MD
or FE code. Hence, MACI needs to run with at least two processing elements. Each
component performs communication using different MPI communicators, effectively
shielding the MD and FE code from mutual interference.

The coupling code implements functionality for managing the handshake geometry
(allow, for example, to find all particles with~xα(0) ∈ ΩH), for the assembly of the
transfer operatorΠ, the high fluctuation filter~q andΛ; for computing the Lagrange
multipliers λ , µ (cf. Algorithm 1) and the corresponding Lagrange accelerations as
well as for the computation of~f PML. To solve the linear systems arising in the RATTLE
integration scheme, MACI can use iterative solvers from the PETSC [4] and TRILINOS

[17] packages as well as the direct solver packages UMFPACK [9] (if the handshake
regionΩH is not distributed over multiple FE processing elements).

4 Parallelization aspects

Molecular dynamics and finite element workloads each are well parallelizable and
highly scalable implementations do exist. To allow for the treatment of interesting
problem sizes using concurrent multiscale methods, their parallelization is of high in-
terest. Unfortunately, the coupling of two scalable codes is not readily scalable. In
fact, the parallelization of the coupled code introduces several challenges related to the
data and work distribution and load balancing. In this section we describe how these
challenges are approached in MACI.

4.1 Challenges

Finite elements codes are usually parallelized using an element-wise partitioning of
the computational mesh (computed, for example, via graph partitioning algorithms).
As mentioned earlier, we restrict ourselves to statically balanced meshes in which this
domain decompositionis kept fixed over the course of the (time-dependent) simulation.

In contrast to this fixed partition, molecular dynamics codes that support short-
ranged interactions usually feature dynamically balancedload since the pair interaction
lists (i.e., the set of tuples(α,β) of particles that interact with each others) depends on
the current particle positions. Hence, to achieve maximum locality in the expensive
force evaluation, particles are migrated between processing elements. One common
scheme (found, e.g., in LAMMPS, TREMOLO, NAMD and DESMOND) is to statically
decompose the simulation boxB=

⋃

pBp into subdomainsBp (one for each process-
ing element) and to assign particles to processing elementp if ~xα(t) ∈ Bp. Hence, if
a particle crosses a subdomain boundary it is assigned to a different processing element.

In the context of our concurrent coupling strategy the dynamic data distribution of
particles is a challenge since our displacement-based constraints (3) arenon-local. In

11

fact, we have~TAα 6= 0 if and only if meas(suppψα ∩suppθA) > 0, whereθA is the
nodal basis function withθA(~xA) = 1. Since suppψα is a polygon or sphere centered
at the initial particle position~xα(0) we can have~TAα 6= 0 even if |~xα(t)−~xA| is very
large, cf. Figure 4. This implies that thecommunication graph(i.e., the graph with pro-
cessing elements as nodes and edges between pairs of nodes that exchange messages)
is dynamically changing. Thus a scalable implementation ofthe multiplication by the
matrices~T (thescale transfer) and~q is much complicated compared to “classical” par-
allel sparse linear algebra, cf. [18].

MD proc 2 MD proc 3

MD proc 1MD proc 0

FE proc 0

xα(0)

xα(t)

✗
TAα

Figure 4: The challenge of dynamic particle distribution inparallel concurrent MD-FE
coupling. Particle migration introduces new edges in the communication graph.

Additionally, parallel concurrent coupling introduces novel challenges for load bal-
ancing. Much research has been devoted to devising and implementing good load bal-
ancing schemes for MD and FE algorithms (and hence for Steps 1, 3, 4, 6 and 8 in
Algorithm 1). However, Steps 2, 5 and 7 introduce additionalload on a subset of pro-
cessing elements. For example, the matrixΛ is of sizeL× L whereL is the number
of mesh nodes inΩH. In practiceL is much smaller than the total number of mesh
nodes or particles and hence the (iterative) solver forΛλ = ~G∗ usually does not scale
well enough to distribute this task over all processing elements. Instead only a subset
(e.g., all the FE processing elements that own cells intersection the handshake region)
will be responsible for solving the linear system. This introduces a strong load imbal-
ance. Even worse the synchronous nature of the RATTLE integrator does not permit
the other processing elements to overlap the wait time with other computations (since
the Lagrange forces need to be available before the algorithm can proceed), resulting
in unwanted idle time.

In this article we concentrate on the first challenge. At thispoint MACI does not
provide functionality to optimize the load balancing. Thisis a strong limiting factor
for the parallel efficiency (cf. Figure 5a). As can be seen in Figure 5b, for a fixed
number of processing elements, the choice of the number of MDand the number of
FE processing elements is crucial for the performance even on a moderate number of
cores. Here, a priori load models need to be developed to assist users in finding an
optimal configuration.

12

2 4 8 16 32
2
4
8

16

32

Speedup

Processing elements

S
p

ee
d

u
p

Ideal

Maci

(a) Speedups (for the optimal choice of MD and
FE processing element).

2 4 8 16 32
1

2

3

4

5
Worse/Best Ratio

Processing elements

R
at

io

(b) Ratio between time per time step in the worst
and best configuration.

Figure 5: Speedup plots from a two-dimensional fracture simulation with 142,628
atoms and 28,178 finite elements on up to 32 cores. The simulation was run onan 4x
DDR Infiniband cluster with dual-socket quad-core Barcelona Opteron nodes.

4.2 Data distribution in the M ACI code

MACI is written in an MPMD (multiple programm, multiple data) fashion (even though
it is implemented as a single executable), i.e., processingelements that run the MD
component (plus coupling code) take a (mostly) disjoint execution path compared to
the execution path of the FE processing elements. Any exchange of data between MD
and FE processing elements is done via message passing. To decrease communication
cost it might be advantages to use threading and let one MD andone FE processing
element share one address space. We refrained from this design in MACI since it com-
plicates the coupling code (which in this case must be able tocope with one FE and
one MD component) and requires good a priori knowledge aboutthe communication
graph including the communication volume per edge. Since the graph is dynamic, it
usually is infeasible to do an optimal process mapping statically.

An example of the data distribution used by MACI is shown in Figure 2b. In this
simulation, the MD domain is distributed over 12 processingelements. The FE mesh
is distributed over 4 processing elements. All the datastructures (including the~T,~q and
Λ matrices) are distributed over the four FE processing elements and 8 MD processing
that own mesh nodes with~xA ∈ ΩH or owned (att = 0) particles in the handshake
region.

The matrices~T,~q andΛ are distributed by row. For~T andΛ theAth row is stored
on the processing element that owns the nodeA (note that the cellwise mesh decompo-
sition results in the duplication of mesh nodes on several processing elements). Also
for the matrix~q we use a static distribution: Theαth row is stored on the processing el-
ementp with~xα(0)∈ Bp. This static decomposition of~q implies that the matrix-vector
multiplication~y=~q~x requires two communication steps: one gather operation to col-
lect~x values on the processing elements storing rows of the matrixand a second scatter
operation, after the local matrix vector multiplication, to send the entry~yα to the cur-
rent owner of particleα. On the other hand a dynamic distribution of~q (where theαth
row of~q is stored on the processing element owning the particleα) would require MD
processing elements to be informed about the particle distribution on other processing

13

elements. In particular if~qαβ 6= 0 andβ ∈ Bq, the processing elementq would need to
know on which processing element particleα is located. Maintaining such a mapping
from particles to processing elements in a scalable manner is itself very complicated.

The sets
{

A | ~TAα 6= 0
}

,
{

β |~qβ α 6= 0
}

are stored as part of thePiggybackType

structure of the particleα and hence migrate with the particle. This allows MD pro-
cessing elements to create lists of data item that have to be send to either FE processing
elements (multiplication by~T) or handshake MD processing elements (multiplication
by~q). Note however that this information is only available on the sender side. To the
receiver side, the particle data distribution is unknown, cf. Subsection 4.4.

4.3 Parallel assembly

In order to avoid bottlenecks in the computational workflow it is crucial to parallelize
the complete application, in particular, the assembly of the transfer operator~T and of

the interpolation matrix~N. In MACI, the matrices~q andΛ are computed from~T, ~̃M
and~N using sparse matrix-matrix multiplications. Compared to direct assembly of
the matrix entries (used initially in MACI), this approach is slower but the additional
flexibility allows us to easily implement different transfer operators.

For a given mesh nodeA, the assembly of~T and~N requires the identification of all
particlesα ∈ A such that either meas(suppψα ∩suppθA) > 0 or θA(~xα) 6= 0. To find
all α in (quasi-)optimal time we use (parallel) tree queries.

In a first step, a parallel quad- or octree is build with particles as leaves. The bound-
ing boxes of intermediate nodes are chosen in a leaf-to-rootpass such that the bounding
box of a parent node contains the union of the bounding boxes of all children. On the
leaf level, the bounding box is chosen to be the support ofψα . Note that, different from
[24], we do not use the tree to constructωα = suppψα , since we require an algorithm
producing open covers without adding additional points to the set of particles. Instead
we make use of the lattice structure of the MD system to choosethe patch size~h a
priori in such a way that

ωα =
3

∏
i=1

(

(~xα)i −
1
2
~hi ,(~xα)i +

1
2
~hi

)

yields an open covering ofΩH. When using Shepards method, the evaluation of the
basis functionψα requires the detection of overlapping patches. This can be achieved
by using again a tree. In MACI, the rectangular domain decomposition used by most
MD applications is employed to compute a priori potential remote intersection partners
(this is possible since we know the patch size~h). These lists are be exchanged and
inserted into the local tree. Once this extended local tree is constructed, all intersection
queries can be performed locally.

The assembly of the transfer operator~T is performed on the MD processing ele-
ments as shown in Algorithm 2.

Note that basis functionsψα computed with Shepards method are onlyC0. To
achieve good accuracy in the computation of~T via numerical quadrature, we need to
compute a partition

ωα =
⋃

Q

Q such that ψα |Q ∈C∞ . (4)

This is possible (though not inexpensive) since our patchesωα are axis parallel quadri-
laterals or hexahedra.

14

Algorithm 2 Parallel assembly of~T.

1. Exchange tree root bounding boxes between MD and FE processing elements.
2. On FE processing elements: Build lists of elementsE intersecting the bounding

boxes of the MD processing elements.
3. Send element lists from FE processing elements to MD processing elements.
4. for all ElementsE received (only on handshake MD processing elements)do
5. Query (locally) all particlesα with meas(suppψα ∩E)> 0.
6. for all foundα do
7. for all Q as in Equation (4)do
8. Compute intersectionQ∩E.
9. Perform quadrature on the intersection.

10. end for
11. end for
12. end for
13. Send computed values back to the FE processing element.
14. On FE processing elements: Merge the received lists and construct sparse matrix

datastructure.

4.4 Runtime support

In this section we consider the implementation of Steps 2, 5 and 7 in Algorithm 1
in MACI. As noted in [18], the computation of the Lagrange forces~TTΛ−1~G∗ and
~TTΛ−1~̇G∗ can be handled in the same way as the multiplication by~q. These operations
can be written as

Scatt ◦Op◦Gatt , (5)

whereScatt andGatt are time-dependent (since the particle distribution is changing
over time) scatter and gather operations and whereOp is some (black box) operation
executed on a subset of processing elements (theworkers). For example, in Step 2 of
Algorithm 1, the black box operation is given by

Op(~z) = ~TTΛ−1
(

~T~z− ~̃M~U∗
)

.

Finite element processing elements owning handshake mesh nodes (or equivalently,
a non-zero row of~T) are designated as workers. The computation of the Lagrange
multipliers required for the correction of the FE displacement is aside effectof the
execution ofOp on the worker processing elements.

Note that the choice of the workers and the order of the input and output data to and
from Op is not time-dependent. Hence,Gatt andGatt′ (t 6= t ′) are required to order the
input data forOp in the same way. Similarly,Scatt receives the output ofOp always in
the same order.

The advantage of this approach is that the data distributionis transparentto the
workers. In particular no adaptation of the worker data structures are required when
the particle distribution changes (this is to compare with the approach in [2] where the
worker datastructures are updated using an event-based notification system).

The implementation of the gather and scatter operations arebased on the piggy-
backed metadata. As noted in Subsection 4.2, the piggyback data allows MD pro-
cessing elements to build send lists. However, workers/receivers do not know about

15

the particle distribution and therefore cannot post matching receives. To cope with
this problem, in [18] the use ofone-sided communicationor remote memory accessis
proposed.

In MACI we use the newly developed communication library MEXICO [18] to im-
plement the Operation (5). The unique feature of MEXICO is that the library pro-
vides gather and scatter operations in the described asymmetric setup. All information
required by MEXICO is provided by the source processing elements (processing ele-
ments that provide data toGatt) and target processing elements (processing elements
that retrieve data fromScatt). In MACI this information (the list of worker processing
elements including local indices in the input and output buffers ofOp) are stored in the
piggyback data. MEXICO can use MPI RMA, MPI Point-to-point, MPI collectives, the
GLOBAL ARRAYS library [15] or SHMEM for inter-process communication.

In Algorithm 3, the implementation of the second step in the RATTLE integration
scheme (cf. Algorithm 1) is shown. The computational work isperformed in Steps 5, 6
and 7. The input and output buffers for these operations are ordered according to an a
priori (during the assembly phase) chosen ordering. Hence,the sparse-matrix storage
scheme for, e.g.,~T, can be kept unmodified over time.

Algorithm 3 Implementation of Step two in Algorithm 1.

1. Pack displacements into contiguous buffer.
2. On MD processing elements: Extract list of workers and corresponding local in-

dices for each particle.

3. On FE processing elements: Compute~̃M~U∗.
4. Communicate MD displacements to worker (MEXICO).
5. On worker: Compute~G∗ using the input buffer containing MD displacements.
6. On worker: SolveΛ~λ = ~G∗.
7. On worker: Compute~TTλ and store the result in the output buffer.
8. Communicate Lagrange forces to MD processing elements (MEXICO).
9. Correct displacements and velocities.

Acknowledgement
This work was supported by the Deutsche Forschungsgemeinschaft through the SFB
611 “Singular Phenomena and Scaling in Mathematical Models”, by the “Swiss High
Performance and Productivity Computing” (HP2C) initiative and by the DFG Research
Center MATHEON.

References

[1] Allen MP, Tildesley DJ (1987) Computer Simulation of Liquids. Oxford Science
Publications

[2] Anciaux G, Coulaud O, Roman J (2006) High Performance Multiscale Simula-
tion or Crack Propagation. In: Proceedings of the 2006 International Conference
Workshops on Parallel Processing, IEEE Computer Society, pp 473 – 480

[3] Armstrong R, Gannon D, Geist A, Keahey K, Kohn S, McInnes L, Parker
S, Smolinski B (1999) Toward a common component architecture for high-
performance scientific computing. In: Eighth International Symposium on High
Performance Distributed Computing, 1999. Proceedings., pp 115 –124

16

[4] Balay S, Brown J, Buschelman K, Gropp W, Kaushik D, Knepley M, McInnes L,
Smith B, Zhang H (?) Petsc web page. http://www.msc.anl.gov/petsc

[5] Bastian P, Birken K, Johannsen K, Lang S, Neuss N, Rentz-Reichert H, Wieners
C (1997) UG - A Flexible Software Toolbox for Solving PartialDifferential Equa-
tions. Comp Vis Science 1:27 – 40

[6] Beazley DM (1996) Swig: an easy to use tool for integrating scripting languages
with c and c++. In: Proceedings of the 4th conference on USENIX Tcl/Tk Work-
shop, 1996 - Volume 4, USENIX Association, Berkeley, CA, USA, TCLTK’96,
pp 15 – 15

[7] Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, et al (2006) Scalable
Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In:
Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa,
Florida, pp 84 – 88

[8] Broughton JQ, Abraham FF, Bernstein N, Kaxiras E (1999) Concurrent coupling
of length scales: Methodology and application. Phys Rev B 60

[9] Davis TA (2004) Algorithm 832: UMFPACK, an unsymmetric-pattern multi-
frontal method. ACM Trans Math Softw 30:196 – 199

[10] Fackeldey K, Krause R (2009) Multiscale coupling in function space – weak cou-
pling between molecular dynamics and continuum mechanics.Int J Num Meth
Engrg 79(12):1517 – 1535

[11] Fackeldey K, Krause D, Krause R (2010) Numerical validation of constraints
based multiscale methods. In: Proc. Meshfree Methods for Partial Differential
Equations V, Lecture Notes in Computational Science and Engineering, vol 79,
pp 141 – 154

[12] Fackeldey K, Krause D, Krause R, Lenzen C (2011) Coupling molecular dy-
namics and continua with weak constraints. Multiscale Modeling & Simulation
9(4):1459 – 1494

[13] Fasshauer GE (2007) Meshfree Approximation Methods with Matlab. World Sci-
entific

[14] Forum MPI (2009) MPI: A Message-Passing Interface Standard, Version 2.2

[15] Global Array (?) http://www.emsl.pnl.gov/docs/global

[16] Griebel M, Knapek S, Zumbusch G (2007) Numerical Simulation in Molecular
Dynamics. Springer-Verlag Berlin Heidelberg

[17] Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, et al (2005) An overview of
the trilinos project. ACM Trans Math Softw 31(3):397–423

[18] Krause D, Krause R (2011) Parallel scale-transfer in multiscale md-fe coupling
using remote memory access. In: IEEE 7th International Conference on E-
Science, e-Science 2011, Workshop Proceedings, Stockholm, Sweden, December
5 – 8, 2011, pp 66 – 73

[19] Lammps (2012) http://lammps.sandia.gov

17

[20] Ma J, Lu H, Wang B, Hornung R, Wissink A, Komanduri R (2006) Multiscale
Simulations Using Generalized Interpolation Material Point (GIMP) Method
and Molecular Dynamics (MD). Computer Modeling in Engineering Sciences
14:101–118

[21] MapperProject (?) http://www.mapper-project.eu

[22] Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C,
Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD.
J Comput Chem 26(16):1781 – 1802

[23] Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics.
J Comp Phys 117:1–19

[24] Schweitzer MA (2003) A Parallel Multilevel Partition of Unity Method for El-
liptic Partial Differential Equations, Lecture Notes in Computational Science and
Engineering, vol 29. Springer

[25] Smolinski BA, Kohn SR, Elliott N, Dykman N (1999) Language interoperabil-
ity for high-performance parallel scientific components. In: Proceedings of the
Third International Symposium on Computing in Object-Oriented Parallel Envi-
ronments, Springer-Verlag, ISCOPE ’99, pp 61 – 71

[26] Streitz FH, Glosli JN, Patel MV, Chan B, Yates RK, et al (2005) 100+ TFlop
Solidification Simulations on BlueGene/L. In: Proceedingsof the ACM/IEEE
Conference on Supercomputing (SC05), Seattle, Washington

[27] Wagner GJ, Liu WK (2003) Coupling of atomistic and continuum simulations
using a bridging scale decomposition. J Comp Phys 190:249 – 274

[28] Xiao S, Ni J, Wang S (2008) The Bridging Domain Multiscale Method and its
High Performance Computing Implementation. J Comp Theo Nanoscience 5:1–
10

[29] Xiao SP, Belytschko T (2004) A bridging domain method for coupling continua
with molecular dynamics. Comp Meth Appl Engrg 193:1645 – 1669

18

