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Abstract It is the ultimate goal of concurrent multiscale methodsrovjtle com-
putational tools that allow to simulation physical pro@swith the accuracy of micro-
scale and the computational speed of macro-scale modela.méetter of fact, the ef-
ficient and scalable implementation of concurrent multesscaethods on clusters and
supercomputers is a complicated endeavor. In this artielprgsent the parallel mul-
tiscale simulation tool Mc1 which has been designed for efficient coupling between
molecular dynamics and finite element codes. We proposecifisption for a thin yet
versatile interface for the coupling of molecular dynan@osl finite element codes in
a modular fashion. Further we discuss the parallelizaticateyy pursued in Mcl,
in particular, focusing on the parallel assembly of tranefeerators and their efficient
execution.
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1 Introduction

The goal of sub-project C6 of the collaborative researchered11 “Singular Phenom-
ena and Scaling in Mathematical Models” at the UniversityBohn, Germany, was
the development and implementation of novel computatiteainiques for the con-
current coupling of different physical models in the nuroafrsimulation of solids. In
particular, the project was concerned with multiscale ¢iogetween atomistic and
continuum models. Such concurrent multiscale approachede used, for exam-
ple, in the numerical simulation of fracture processes. 8pgia molecular dynamics
model to capture the complicated physical processes inithieity of the crack tip
and a computationally faster but less accurate continuumieifor the surrounding
material, one can achieve good accuracy at a lower price agadpo fully atomistic
simulations.

The design of efficient computational tools for such muétlesimulations is itself
a challenging task. This is even more so when building paraiinulation tools. In
this article we describe the design of the versatile mudtessimulation toolbox Mci
and discuss the novel parallelization approach usedAciMWe introduce a thin yet
capable interface designed for efficient coupling betweeteoular dynamics (MD)
and finite elements (FE) codes.

1.1 Related work

While the design of algorithms for concurrent multiscaleling is an active field of
research in the past years, relatively few work has beerighdal about implementa-
tion and parallelization of these algorithms. Broughtomlet[8] report on a parallel
multiscale simulation using theoncurrent coupling of length scalesethod. This
work is limited to one-dimensional domain decompositiamsthe molecular dynam-
ics domain. Ma et al. [20] have implemented their MD/GIMP haet in the SAMRAI
framework. In comparison to most multiscale methods forabepling of MD and
finite elements their constraints are local. Xiao et al. [@8cribe a parallel imple-
mentation of the Bridging Domain method in a grid environtméfowever, this work
is restricted to one-dimensional simulations. Anciauxlef3 have implemented the
Bridging domain method in the parallei@MULTISCALE. Their approach is closest
to our work.

In this article we present a versatile interface for couphfD and FE codes. The
common component architecture (CCA) [3] aims to developrapmment model for
high performance scientific computing. So far we are not avedrany work using
CCA for multiscale coupling between atomistic and contimuuodels.

It is one of the goals of the European MAPPER project [21] teettep software
and services for distributed multiscale simulations. Wleilir work focuses on tightly-
coupled simulations on clusters and supercomputers, thik i8 aimed towards the
utilization of distributed resources in the European edstructure.

1.2 Article contribution and outline

The outline of the article is as follows. In Section 2 we rewthe multiscale simulation
method implemented in Wci, focusing on the computational aspects. In Section 3
we propose and discuss a thin interface allowing for theimgusoupling logic with
different molecular dynamics and finite element codes. Wosk is not limited to
the coupling algorithm presented in Section 2 but can beiegpb a broad range



of multiscale coupling methods. In Section 4 we discuss #dralfelization of MaCI
focusing on the description of the data and work distribuiiothe code. In comparison
to our previous work [18] the focus of this section is the diggion of the high-level
structure without a detailed discussion of the commuricatiechanisms employed.

2 Multiscale simulation method

In this section we shortly present atomistic (micro-scate continuum (macro-scale)
models for the simulation of the behavior of a sdlid- R3. We then proceed to discuss
an approach to concurrent coupling of these models usirjggiton-based constraints.

2.1 Molecular dynamics

On an atomistic level we can modelas a discrete set & atoms/particled = {a}
with coordinates and momen(t&, fy ) € R®. The motion of these particles is governed
by the Hamiltonian equations
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with the Hamiltonian# = K +V. Here,K denotes the kinetic energy of the atomic
systemK = ¥, ﬁﬁé , V is the interaction potentidl =V (Xy,...,Xy) andmy the
particle mass. In this article, we concentrate on shorgedipotential that allow for ef-
ficient (i.e., in linear time) computation of energy and &sasing a linked cell method
[16] or Verlet neighbor lists [1].

As a particle method, MD does not require discretizatiorpiace but only in time.
Usually, lower order symplectic integrators (such as a isécarder Stérmer-Verlet
scheme) are used for their computational efficiency and ¢moghterm stability prop-
erties.

2.2 Continuum mechanics and finite elements

In continuum mechanics, the macroscopic deformation ofdyt6d c R? is described
by a volume preserving mappiy: [0, T] x Q — R3, such tha ({t} x Q) equals the
configuration of the body at time The deformation fieltl = ¢ — 1 is the solution of
the variational problem

/pd-v dX:/pBV d%—/E(U):ﬁU dx+ [ f-Vds,
Q Q Q N _ @)
U=Uponlp + initial conditions forJ andU .

Here,p denotes the density in the undeformed configuratiamd f are external body
and surface forces (the latter one applied’anc dQ) andP denotes the first Piola-
Kirchhoff tensor. Dirichlet valueBp are applied ofip C 9Q. The test functio is
an element of an appropriate subspac€df(0, T|;H(Q)).



In this article, we concern ourselves with first-ord®d (or Q1) finite elements
for the spatial discretization of (2) resulting in a systehcaupled partial differential
equations

|jA =Mt (lfA+ lf,SXt) for each mesh nod,

which has the same structure as Equation (1). Hence, theteamperal discretization
methods can be applied.

2.3 Coupling method

The goal of concurrent coupling schemes is to allow for flatng highly accurate, but
expensive, simulation techniques (such as MD) with lessrate, but faster, approxi-
mate schemes. For the latter we consider a continuum mexshaoidel discretized on
a finite element mesh of a mesh size that is sufficiently lattgen the average atomic
distance. In the following we refer to this problemMB-FE coupling

The challenge in the design of concurrent coupling schemé@aplementing ap-
propriate transfer conditions between thero- (MD) and macro-(FE) scales Since
each scale features a different resolution, not all modes, (eressure waves of high
wave number) can be resolved on all scales. The interfaaditgmms need to account
for this, in order not to create spurious effects (e.g., waaflection) that spoil the
solution accuracy.

In the following we review the coupling strategy usimi@jection-based constraints
described in [11, 12].

2.3.1 Coupling with overlap

We consider an overlapping decomposition of the simulatiomainQ into an MD
domainQyp and an FE domaifrg with handshake regio® = Qump NQfFe. In Qy,
the micro- and macro-scale coexist. Inspired by the Brigddmmain method [29],
volumetric constraints L . L

0=G(u,U)=0,0-0xU 3)

are used in [12] to couple the MD displacement figldnd the FE displacement field
U. Here, the atomistic displacement field is giventigyt) = X4 (t) — X4 (0).

In [12], the operator®; and O, are chosen to be equal to a projectidrfrom
micro- to macro-scale and the identify respectively. The projectiofi allows for
additively decomposing the micro-scale displacement fiétdo a macro-scale field
andhigh fluctuatiorremainder (cf. [27]):

d=0+0 =Nd+ (1—|‘|)n.

Note thatld’ = 0. Hence, the constrain provide a pointwise coupling betweéh
andt while not affecting the high fluctuation field which is not representable on the
macro-scale.

Inspired by non-conforming domain decomposition theamyj1i0], anL? projec-
tion is proposed for micro-to-macro scale transfer. An edalidy of the atomistic
displacement spacéR3)N into L?(Q) is constructed using scattered-data approxi-
mation methods. Hence, given a vectdly)qcs a function® is constructed such
that W (%, (0)) ~ Wg. One possible approach for constructifige X C L2(Qy) is



to introduce a set partition of unity basis functiapig (see, for example, [13]) with
S aea Yo = 1 and define
V_Vu = Z Wa‘l’a .
acA

Given the embedding ((R?’)N into L2 we can define the projectidi : (R3)N —SH
by
(nmv) :(mxo forallV € Sy .
p p

Here,Sy denotes the first-order finite element spac&pn(we assume thady can be
written as the union of a set of elements in the tessellatiddrg) and(—, —),, equals
theL? scalar product weighted by the continuum mass dempsity

The assembly of the? projectionll requires the computation of (and quadrature
on) the cuts between the elements in the tessellati@yadind the support of the basis
functionsy,. Even though, this computation needs to be performed onpassof
the simulation setup (i.e., not during the time integratidime assembly can be costly.
Alternatively, a least-squares projection

. 1 Y,
Nid= argminy g, > z Mg |Ug —V (Xa (O))|2
a

has been discussed in [11]. .
_ Let us point out that in either case we can wiite= M~1T with a mass matrix
M and a rectangular matrik and hence we can equivalently use the constrants
Tu—MU.

The coupled equations of motion for the micro- and macrdesaie derived from
a weighted Hamiltonian/Lagrangian (cf., [12, 29]) resudtiin a system of algebraic
differential equations. We use a RATTLE integration scheneguiring two linear
solves per time step.

2.3.2 Damping high fluctuation modes

The design of the projection-based constra@tnsures that the high fluctuation field
o’ is not affected by the constraints, irrespective of thelwgiwmm of the finite element
mesh. To avoid spurious reflectionséf®yp, a modified perfectly matched boundary
layer (PML) method is proposed in [12] which (approximajegmoves the high fluc-
tuation field and has only minor effect on the informatiomsf@r between micro- and
macro-scale. To this end, an additional force term

M = ~20 (%a(0)) ( (4V) +d (%a(0)) (d0), )

is added to the MD forcef,. Here,d : Qup — [0, ) is a scalar function with support
in Qn andd = 1 — NI, N being the interpolation operator frofy — (R?’)N.

2.3.3 Complete algorithm

In Algorithm 1 the seven most important steps in the RATTLE&egnation from timet
to timet + 1 are explained. As mentioned earlier, two linear systemd t@be solved
in each timestep to compute the Lagrange muItipﬁeafndﬁ. We refer to [12] for the
definition of the symmetric positive definite matvix

Two simulation results for a wave propagation benchmark raode-| fracture
computation using this concurrent coupling technique hosva in Figures 1 and 2.



Figure 1: Results of a two-dimensional wave propagatiortherark at the beginning,
middle and end of the simulation. A radial wave propagatesf2yp into Qrg on
the lower and upper side of the MD domain. The elongation dtireetion equals the
(scaled) magnitude of the displacement field.

(a) Velocity distribution. The velocities can be seen totflate strongly ilQup but to be smooth towards
the boundary of the handshake region.

(b) Distribution of atoms and finite elements over{12 processing elements.

Figure 2: Results of a mode-I| fracture simulation using9 finite elements and
62,390 atoms. Surface forces are applied on the left and riginidbary ofQrg.



Algorithm 1 RATTLE time integration scheme

1. Apply standard “Verlet kicks” and “Verlet drifts” to the nmg-and macro-scale
displacements and velocities yielding trial valugsv*, U*, V*:

vl [v] T [mrtfnel ol _ [, [V
Vel = on| T2 M-t 0 |Ge| T (a0 T e

wheref", F" denote the forces computed in step 4 of the previous time step
2. Evaluate the displacement resid@l= Tt* — MU* and solveG* = AA for A.

3. Correct the trial values
_ v } unJrl _ O
= |y + . s L—jn+1 = U* +

4. Evaluate forced™?1, Fntl according to the Hamiltonian equation (without con-
straints).

5. Add the damping ternfML to the MD forcef™?.

6. Compute trial velocity values

-

7. Evaluate the velocity residu@l* = Tv* — MV* and solveG* = Afi for [i.
8. Correct the velocities
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3 Multiscale simulation toolbox

The development of capable, efficient and scalable moleciylaamics or finite ele-
ment codes is a complicated and labor-intensive task. Witesscope of the applica-
tion is limited, it is therefore often infeasible to develapnultiscale simulation tool
as a single monolithic code, that implements MD and FE fametiity along with the
coupling logic. Instead we focus on reusing existing, distabd molecular dynamics
and finite element implementations, such as=moLo [16], Lammps [19, 23] and
UG [5].

In this article we are concerned with the design and efficgiaptementation of con-
current coupling codes for MD-FE coupling that allow for sewof the coupling logic
with different implementations of the molecular dynaming éinite element function-
ality. In comparison to the on-going researchammmon component architecty,
we are restricting ourselves to the scenario of concurrddtiE coupling and expose
more details (e.g., about the data distribution) to the ingrode to simplify the de-
velopment of efficient and scalable code. Additionally wepase some restrictions
onto the MD and FE codes that we consider (see below). We hexified that our
assumptions are fulfilled by the major molecular dynamiakfanite element software
packages that are discussed in the literature.



3.1 Interface Design

In this section we propose a simple yet versatile interfacedupling molecular dy-
namics and finite element simulations. Our work addressetutadty, performance
and parallelization. We assume that the FE component idlglamed with a standard
domain decomposition approach based on a partition of eltsn&e do not expose
halo or ghost-cells through the presented interface. Weowar assume that the finite
element mesh is statically balanced, i.e., that no dynamaid balancing (as used, for
example, for adaptive mesh refinement) is performed. Fokibeomponent we also
assume a non-overlapping decomposition of the particles,dach particle is stored
on exactly one processing element. This assumptions iiddIfiy the majority of the
molecular dynamics codes known to the authors, whethentbey domain decompo-
sition (as do most codes such areEMoLO, LAMMPS, NAMD [22] and DESMOND
[7]) or particle-based decomposition (as, e.g., usedbgMD [26]). Note that the
(potentially) dynamic distribution of particles is delilagely exposed to the coupling
code for parallel scalability considerations. For furtbescussions of the paralleliza-
tion aspects we refer to Section 4.

Our approach is based on the following three pillars:

¢ Use of opaque handlers for particles, node and elementdédiné details of the
data layouts used by the MD and FE components.

e Use ofaccess epoch® hide differences in data representation and allow to
couple codes working in separate address spaces.

e The use opiggybackingo manage metadata in a simple and effective manner.

In the following we elaborate on theses three aspects ofdhpling interface.

3.1.1 Opaque Handlers

In general, the data layouts used by different MD or FE codéslependent strongly
on the choice of the algorithms, the scope as well as thedettmise case for the
application. For example, the data layout used by an MD caded) on a linked-
cell method will be very different from the data layout usedai code that utilizes
Verlet neighbor lists. Similarly, the data layout in an FEdeawill be different de-
pending on whether the code supports dynamic (e.g., adéptefined) or only static
meshes. To hide these differences, the proposed interfagaps opaque handles for
the local particles, nodes and elements on a processingptémthe form of iterators
Particl eHandl e, NodeHand! e and El ement Handl e. These iterators implement
increment, comparison and assignment operators.

Since the abstraction of the data layout necessarily ineyrsrformance penalty,
these iterators are intended for use in gather/scatteatipes that copy the compo-
nent data from or to a buffer in a layout suited for the coupliode. Each iterator
provides aGet Local I d() function that can be used to address a contiguous buffer.
Moreover, to have a unique local identifier for all mesh noute€)y we provide
CGet User Chosenl d() andSet User Chosenl d() functions forNodeHand! e that al-
low to assign arbitrary (local or global) indices to the meeHes (folPar t i cl eHandl e
this index can be stored as part of figggybackType, see below). Access to the par-
ticle data and dynamic variableBaf t i cl eMass, Parti cl ePos, Parti cl eDi spl ,
Particl eVel ,Parti cl eForce,FeDi spl ,FeVel ,FeLunpedMass)is possible through
static functions taking &ar t i cl eHandl e or NodeHandl e instance as an argument.



Note that these functions are application specific (in thiedargeted to coupled simu-
lations of solids) but the approach can be generalizede&iiice the data distribution
of the MD component can change dynamically in a parallel fatian, the life time of
aParticl eHandl e should be limited to the scope of the coupling routine thaated
it.

To allow for parallelization of the coupling code we also ege node ownership
information (for nodes shared by multiple processing elaisjeas well as provide
Par al | el Sunup, Par al | el Max andPar al | el Copy routines to compute the sum
(or max) of values stored at duplicated mesh nodes. Thestidas can be more ef-
ficiently implemented by taking advantage of the commuiocgprimitives of the FE
component.

3.1.2 Access Epochs

MD and FE components do not always work with compatible depaeasentations or
with the same reference frame. For example, some MD codealesthe simulation
domain to the unit cub, 1]3. Hence, all coordinates, velocities and forces need to
be scaled before being accessed by the coupling code. Byimday updated particle
position needs to be rescaled. Moreover, updating thecpapositions might require
a subsequent exchange of particles that have crossed sabdooundaries (if the MD
component uses a domain decomposition approach).

To cope with these difficulties we propose the usactess epochsvhich work
similar to RMA epochs in the MPI standard [14]. The couplintgiface provides sub-
routinesAccessBegi n(i nt),AccessEnd() andCanAccess().AcalltoAccessBegi n
starts an access epoch. The bit field pass@d¢essBegi n specifies which data fields
can be accessed in read, write or read-write mode duringothehe Access to any data
field (via the functionsrar ti cl ePos, FeDi spl , etc.) outside of an access epoch is
illegal. An access epoch ends with a calltecessEnd. The functionCanAccess al-
lows to check whether access is permitted (in particulad&iugging). For example,
in Algorithm 1, the third step would be wrapped by callsAtessBegi n( VEL_RD |
VELWR | DISPL.RD | DI SPLWR) andAccessEnd() (note that " is a bit-wise
or operation in C allowing to build bitfields from, e.@pumvariables). Providing
detailed information about read and write accesses to #te gariables allows the in-
terface code to optimize the actions performefdnessEnd() . While it is likely that
in a parallel MD codeAccessEnd needs to trigger an exchange of particles between
processing elements after step three, this usually is ooined after step six, since in
this step only velocities are modified. The callsdessBegi n andAccessEnd are
collective, i.e., all MD or FE processing elements need tbtibase functions in order
to achieve progress. The rationale for this decision is AhatssEnd might require
exchange of particles and hence (global) communication.

Beyond a transparent handling of the differences in dateesgmtation between
MD and FE components, this epoch-based design also peonitedipling codes stor-
ing data in a different address space than the one of the iogugdde. For example
we have successfully coupledAdi with a CubA MD code. In this case, the coupling
code ran on the CPU while the particle data resided in thehjzagard memory. In
AccessBegi n andAccessEnd data is copied between CPU and GPU memory. The
use of asynchronous copies is possible but would requirefioatibns of the MD code
to ensure that the MD code blocks for the completion of the-teslevice copy started
in AccessEnd at the appropriate time.



3.1.3 Piggybacking of Metadata

For the efficient implementation of a concurrent couplinigesne such as Algorithm 1,
a set of states need to be maintained for each particle. Bonghe, each particle with
X4 (0) € Qn is assigned a local index and needs to store a weight0, «) as well as
the valued (X, (0)). Depending on the algorithm and use case, the amount of ddta a
its structure can vary. In order not to impact the scalabditthe coupling code this
data should be migrated together with the particles. Héhappears impracticable to
leave the management of it to the coupling code since pantdgration is managed
by the MD component. Here, waiggybackthis data onto the particles and use the
communication subroutines of the MD code to exchange itgloith the other state
of the particle (positions, velocities, etc.). This migbaguire modification of the MD
code, for example, to addRh ggybackType to thePart i cl e structure and to ensure
that the additional data is communicated correctly. We ldawvee these modifications in
a copy of the REMOLO code in less than 50 lines of code (mainly to add serialipatio
and de-serialization dfi ggybackType). For other codes, such aaumMPs even less
modifications may be required since serialization and diglggation routines can be
easily added by defining a nedv onVec class.

Note that we do not provide Bi ggybackType for the FE component because
we restricted ourselves to statically balanced meshes. eMenvthe same piggyback
technique can used in dynamically balanced finite elememilstions.

3.2 Description of the MACI code

We have implemented a new concurrent coupling codecMM ultiscaleatomistic
continuuminterface) based on the interface defined in the previougosectn this
section we shortly describe the architecture ofdvl as depicted in Figure 3.

MD component

e [nstance wrapper
(Python)
e Ti nel nt egr at or

e Interface
implementation

Coupling component

HandshakeGeonetry

Assembly off1, g and
Truncat edMassMat ri x

Multiplication by 1, q
Ratt| eCorrector
Plugins (visualization,
measurements, ...)
Python driver

FE component

e Instance wrapper
(Python)
e Ti nel nt egrat or

e Interface
implementation

Third-party packages

PYTHON
PETSC
TRILINOS
UMFPACK

Figure 3: Overview of the architecture of thealdl multiscale simulation tool.

MAcI is written in C/C++ for efficiency and portability. Since C+€ and For-
tran are the predominant programming language in high pegoce computing, this
choice allows us to interface to most MD and FE codes witheatifor additional lan-
guage translation (for example, via\BEL [25]). MACI is scriptable using the Python
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programming language. The translation from C++ to Pythgmeidormed using the
SwiG tool [6]. It is worth pointing out that while we believe thatripting capabili-

ties are of great advantage for complicated scientific apptins like Macl, the use

of Python in this project had some inevitable impact on gwlity (for example, onto

earlier Cray massively parallel systems) and complexitypérticular the handling of
dynamically shared objects without circular references).

MAc! consists of three major components (MD component, FE coeoigou-
pling component). The code is designed to run in a SPMD (gipgbgram, multiple
data) fashion. Each processing element runs the couplidg almng with either MD
or FE code. Hence, Wi needs to run with at least two processing elements. Each
component performs communication using different MPI camicators, effectively
shielding the MD and FE code from mutual interference.

The coupling code implements functionality for managingltandshake geometry
(allow, for example, to find all particles witk, (0) € Qu), for the assembly of the
transfer operatofl, the high fluctuation filted andA; for computing the Lagrange
multipliers A, u (cf. Algorithm 1) and the corresponding Lagrange accelenatas
well as for the computation d”™L. To solve the linear systems arising in the RATTLE
integration scheme, McI can use iterative solvers from the Bsc[4] and TRILINOS
[17] packages as well as the direct solver packagesrAck [9] (if the handshake
regionQy is not distributed over multiple FE processing elements).

4 Parallelization aspects

Molecular dynamics and finite element workloads each aré paehllelizable and
highly scalable implementations do exist. To allow for theatment of interesting
problem sizes using concurrent multiscale methods, ttegallelization is of high in-
terest. Unfortunately, the coupling of two scalable codasoit readily scalable. In
fact, the parallelization of the coupled code introduceess challenges related to the
data and work distribution and load balancing. In this sectie describe how these
challenges are approached immi.

4.1 Challenges

Finite elements codes are usually parallelized using amexé-wise partitioning of
the computational mesh (computed, for example, via graptitipaing algorithms).
As mentioned earlier, we restrict ourselves to staticadliabced meshes in which this
domain decompositias kept fixed over the course of the (time-dependent) sirulat
In contrast to this fixed partition, molecular dynamics odleat support short-
ranged interactions usually feature dynamically balahead since the pair interaction
lists (i.e., the set of tuple@x, B) of particles that interact with each others) depends on
the current particle positions. Hence, to achieve maximoeallity in the expensive
force evaluation, particles are migrated between proggssiements. One common
scheme (found, e.g., inAMMPS, TREMOLO, NAMD and DESMOND) is to statically
decompose the simulation b&= |, B into subdomain®,, (one for each process-
ing element) and to assign particles to processing eleméng, (t) € B,. Hence, if
a particle crosses a subdomain boundary it is assigned ffeeedit processing element.

In the context of our concurrent coupling strategy the dyicatata distribution of
particles is a challenge since our displacement-basedrednts (3) arenon-local In
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fact, we havelay # O if and only if meagsuppyy Nsuppda) > 0, whereby is the
nodal basis function witlfa(Xa) = 1. Since supgy is a polygon or sphere centered
at the initial particle positior, (0) we can hav@ia, # 0 even if[%q (t) — Xa| is very
large, cf. Figure 4. This implies that titemmunication grapli.e., the graph with pro-
cessing elements as nodes and edges between pairs of natdesdfiange messages)
is dynamically changing. Thus a scalable implementatioefmultiplication by the
matricesT (thescale transferandg is much complicated compared to “classical” par-
allel sparse linear algebra, cf. [18].

e x,(t)

MD proc 2 || MD proc 3

Figure 4: The challenge of dynamic particle distributioparallel concurrent MD-FE
coupling. Particle migration introduces new edges in tharmainication graph.

Additionally, parallel concurrent coupling introduces/ebchallenges for load bal-
ancing. Much research has been devoted to devising andrimepling good load bal-
ancing schemes for MD and FE algorithms (and hence for Stefs4, 6 and 8 in
Algorithm 1). However, Steps 2, 5 and 7 introduce additidoadl on a subset of pro-
cessing elements. For example, the maftiis of sizeL x L whereL is the number
of mesh nodes i®y. In practiceL is much smaller than the total number of mesh
nodes or particles and hence the (iterative) solventbr= G* usually does not scale
well enough to distribute this task over all processing @ets. Instead only a subset
(e.g., all the FE processing elements that own cells intéisethe handshake region)
will be responsible for solving the linear system. Thisdwoluces a strong load imbal-
ance. Even worse the synchronous nature of the RATTLE iategdoes not permit
the other processing elements to overlap the wait time vihlerocomputations (since
the Lagrange forces need to be available before the algodtm proceed), resulting
in unwanted idle time.

In this article we concentrate on the first challenge. At ot MACI does not
provide functionality to optimize the load balancing. TiEsa strong limiting factor
for the parallel efficiency (cf. Figure 5a). As can be seenigufe 5b, for a fixed
number of processing elements, the choice of the number ofakiDthe number of
FE processing elements is crucial for the performance ememmoderate number of
cores. Here, a priori load models need to be developed tetassérs in finding an
optimal configuration.
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Figure 5: Speedup plots from a two-dimensional fractureutation with 142628
atoms and 28178 finite elements on up to 32 cores. The simulation was ruamnofx
DDR Infiniband cluster with dual-socket quad-core Barceal@pteron nodes.

4.2 Data distribution in the M ACI code

MAcI is written in an MPMD (multiple programm, multiple data) fégn (even though
it is implemented as a single executable), i.e., processliegents that run the MD
component (plus coupling code) take a (mostly) disjointcetien path compared to
the execution path of the FE processing elements. Any exghafdata between MD
and FE processing elements is done via message passingcréaske communication
cost it might be advantages to use threading and let one MDbaad-E processing
element share one address space. We refrained from thg;xdedvAci since it com-
plicates the coupling code (which in this case must be abtmpe with one FE and
one MD component) and requires good a priori knowledge attmitommunication
graph including the communication volume per edge. Sineggtlaph is dynamic, it
usually is infeasible to do an optimal process mappingcstiyi

An example of the data distribution used by is shown in Figure 2b. In this
simulation, the MD domain is distributed over 12 proces@legmnents. The FE mesh
is distributed over 4 processing elements. All the datasires (including th&, g and
A\ matrices) are distributed over the four FE processing efésrend 8 MD processing
that own mesh nodes witkh, € Qy or owned (att = 0) particles in the handshake
region.

The matriced, g andA are distributed by row. FOF andA the Ath row is stored
on the processing element that owns the nadeote that the cellwise mesh decompo-
sition results in the duplication of mesh nodes on seve@gssing elements). Also
for the matrixg we use a static distribution: Teeth row is stored on the processing el-
ementp with X, (0) € Bp. This static decomposition @fimplies that the matrix-vector
multiplicationy = GX requires two communication steps: one gather operationlto ¢
lectX values on the processing elements storing rows of the ne&tdxa second scatter
operation, after the local matrix vector multiplication,gend the entry, to the cur-
rent owner of particlex. On the other hand a dynamic distributiontfwhere theath
row of g is stored on the processing element owning the partigi&ould require MD
processing elements to be informed about the particleluligion on other processing
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elements. In particular ;g # 0 andp € B, the processing elemegtould need to
know on which processing element particlés located. Maintaining such a mapping
from particles to processing elements in a scalable masritseif very complicated.

The sets{A | Tag # O}, {B | dpq # 0} are stored as part of tt ggybackType

structure of the particler and hence migrate with the particle. This allows MD pro-
cessing elements to create lists of data item that have terizkte either FE processing
elements (multiplication bi) or handshake MD processing elements (multiplication
by §). Note however that this information is only available oe #ender side. To the
receiver side, the particle data distribution is unknowinSabsection 4.4.

4.3 Parallel assembly

In order to avoid bottlenecks in the computational workflovws icrucial to parallelize
the complete application, in particular, the assembly efttnsfer operatof and of
the interpolation matriN. In MAcl, the matricesj andA are computed frori, M
and N using sparse matrix-matrix multiplications. Compared i@at assembly of
the matrix entries (used initially in Wc1), this approach is slower but the additional
flexibility allows us to easily implement different transfgperators.

For a given mesh nodg, the assembly 6f andN requires the identification of all
particlesa € A such that either me&suppyy NsuppBa) > 0 or Ba(Xy) # 0. To find
all a in (quasi-)optimal time we use (parallel) tree queries.

In afirst step, a parallel quad- or octree is build with péetas leaves. The bound-
ing boxes of intermediate nodes are chosen in a leaf-topaxsst such that the bounding
box of a parent node contains the union of the bounding boikal children. On the
leaf level, the bounding box is chosen to be the suppai,ofNote that, different from
[24], we do not use the tree to construgt = suppy, since we require an algorithm
producing open covers without adding additional point$ioget of particles. Instead
we make use of the lattice structure of the MD system to chtiusegpatch sizdh a
priori in such a way that

W = iﬁ ((Ya)i - %Eh (Xa)i + %ﬁi)

yields an open covering @y. When using Shepards method, the evaluation of the
basis functionp, requires the detection of overlapping patches. This carcbhieeed
by using again a tree. In M, the rectangular domain decomposition used by most
MD applications is employed to compute a priori potentiahoée intersection partners
(this is possible since we know the patch sﬁe These lists are be exchanged and
inserted into the local tree. Once this extended local seenstructed, all intersection
gueries can be performed locally.

The assembly of the transfer operalois performed on the MD processing ele-
ments as shown in Algorithm 2.

Note that basis functiong/; computed with Shepards method are o688 To
achieve good accuracy in the computatioriofia numerical quadrature, we need to
compute a partition

wy=[JQ suchthat gloeC”. (4)
Q

This is possible (though not inexpensive) since our patalesre axis parallel quadri-
laterals or hexahedra.
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Algorithm 2 Parallel assembly of .

1. Exchange tree root bounding boxes between MD and FE procesiments.
2. On FE processing elements: Build lists of elemdatmtersecting the bounding
boxes of the MD processing elements.

3. Send element lists from FE processing elements to MD protwgstements.
4. for all ElementsE received (only on handshake MD processing elemelas)
5. Query (locally) all particlesr with meagsuppyy NE) > 0.
6. for all founda do
7. for all Q as in Equation (4)lo
8. Compute intersectio@ NE.
9. Perform quadrature on the intersection.
10. end for
11. end for
12. end for

13. Send computed values back to the FE processing element.
14. On FE processing elements: Merge the received lists andraohsparse matrix
datastructure.

4.4 Runtime support

In this section we consider the implementation of Steps 2nd ain Algorithm 1
in MACI. As noted in [18], the computation of the Lagrange forgéé\~1G* and

TTA-1G* can be handled in the same way as the multiplicatiod.bhhese operations
can be written as
ScattoQpoGaty, (5)

whereScat { andGat ; are time-dependent (since the particle distribution isngiiveg
over time) scatter and gather operations and wipres some (black box) operation
executed on a subset of processing elementsiytrkery. For example, in Step 2 of
Algorithm 1, the black box operation is given by

»@) =TTA? (fz_ ﬁ.o*) _

Finite element processing elements owning handshake natsr{or equivalently,

a non-zero row ofl) are designated as workers. The computation of the Lagrange
multipliers required for the correction of the FE displaemis aside effeciof the
execution ofOp on the worker processing elements.

Note that the choice of the workers and the order of the inpdicautput data to and
from Op is not time-dependent. Hena@t  andGat ¢ (t #t’) are required to order the
input data foip in the same way. Similarl\gcat ; receives the output @p always in
the same order.

The advantage of this approach is that the data distribusidransparentto the
workers. In particular no adaptation of the worker datacitmes are required when
the particle distribution changes (this is to compare withapproach in [2] where the
worker datastructures are updated using an event-basiéidatan system).

The implementation of the gather and scatter operationbased on the piggy-
backed metadata. As noted in Subsection 4.2, the piggybaiekallows MD pro-
cessing elements to build send lists. However, workersivecs do not know about

15



the particle distribution and therefore cannot post matghieceives. To cope with
this problem, in [18] the use ane-sided communicatiar remote memory access
proposed.

In MACI we use the newly developed communication librargXco [18] to im-
plement the Operation (5). The unique feature cfXNco is that the library pro-
vides gather and scatter operations in the described asyriosetup. All information
required by Mexico is provided by the source processing elements (proceskng e
ments that provide data t@t ;) and target processing elements (processing elements
that retrieve data frorBcat t). In MACI this information (the list of worker processing
elements including local indices in the input and outpufdnsfofp) are stored in the
piggyback data. Mxico can use MPI RMA, MPI Point-to-point, MPI collectives, the
GLOBAL ARRAYS library [15] or SHMEM for inter-process communication.

In Algorithm 3, the implementation of the second step in tAdRLE integration
scheme (cf. Algorithm 1) is shown. The computational wonkésformed in Steps 5, 6
and 7. The input and output buffers for these operations@ered according to an a
priori (during the assembly phase) chosen ordering. Heheesparse-matrix storage
scheme for, e.gT, can be kept unmodified over time.

Algorithm 3 Implementation of Step two in Algorithm 1.

1. Pack displacements into contiguous buffer.

2. On MD processing elements: Extract list of workers and gpoading local in-
dices for each particle. 3

On FE processing elements: Comphitg *.

Communicate MD displacements to workergékico).

On worker: Comput&* using the input buffer containing MD displacements.
On worker: Solve\d = G*.

On worker: Computd TA and store the result in the output buffer.
Communicate Lagrange forces to MD processing elementex{ib).

Correct displacements and velocities.
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