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Zusammenfassung in deutscher
Sprache

In dieser Arbeit wird die Verteilung von Kontrolleuren in einem Verkehrsnetz spiel-
theoretisch untersucht. Es wird ein Stackelbergmodell zwischen Kontrolleuren und
Nutzern des Verkehrsnetzes formuliert, welches Spot-checking game genannt wird
und es werden mathematische Programme und Methoden préasentiert, um relevante
Gleichgewichte zu berechnen. Ziel ist es Strategien zu berechnen, die einen guten
Kompromiss zwischen Rechenzeit und Einnahmen aus den Nutzungsgebiihren und
den Strafen fiir gefasste Schwarzfahrer darstellen. Obwohl das Spot-checking game
im Allgemeinen kein Nullsummenspiel ist, ldsst sich ein lineares Programm (LP)
finden, mit dem Nash-Gleichgewichte berechnet werden kénnen. Die Anzahl der
Nutzer-Strategien, die in einer ersten Formulierung der Anzahl der Méglichkeiten
von Routen durch das Netz entspricht, ist in der Regel sehr grofs. Ein Schnittebenen-
verfahren zur Losung des aufgestellten sehr grofen LP und eine alternative kompakte
Représentation des LP mit Hilfe von Netzwerkfliissen wird vorgestellt. Das Finden
der optimalen Strategie in einem Spot-checking game ist wesentlich schwieriger. Hier
wird fiir die Berechnung ein gemischt-ganzzahliges Programm (MIP) verwendet.

Es werden einige theoretische Ergebnisse zu Abweichungen zwischen Strategien ei-
nes Nash-Gleichgewichts und eines Stackelberg-Gleichgewichts présentiert und das
Modell wird auf vereinfachte Instanzen des deutschen LKW-Maut-pflichtigen Auto-
bahnnetzes, sowie einige seiner Teilnetze unter Verwendung realer Daten angewandt.

Wenn bestimmte Eigenschaften erfiillt sind, kann gezeigt werden, dass die optima-
le Strategie fiir die Kontrolleure auch eine Strategie eines Nash-Gleichgewichts ist.
Es gibt jedoch einfache Beispiele fiir die dies nicht der Fall ist. Interessanterweise
ergeben realistische Werte fiir die gefundenen einfachen Gegenbeispiele jedoch eine
Abweichung in Bezug auf die Einnahmen fiir die Kontrolleure, die relativ klein ist.
Diese Beobachtung entspricht den experimentellen Ergebnissen fiir die Anwendung
auf deutsche Autobahnen. Hier werden in dem spieltheoretischen Modell die opti-
male Verteilung von Kontrolleuren im Verkehrsnetz mit der Verteilung entsprechend
eines Nash-Gleichgewichts und der Verteilung von Kontrolleuren proportional zur
Verkehrsdichte miteinander verglichen. Insbesondere lassen experimentelle Untersu-
chungen vermuten, das die Strategie eines Nash-Gleichgewichts fiir die Kontrolleure
haufig ein guter Kompromiss zwischen Berechnungszeit und Effizienz der Kontrollen
ist.



Aufterdem wird eine Anwendung, in der zeitliche und ortliche Beschrankungen be-
achtet werden, prasentiert und ein probabilistischer Dienstplan extrahiert. Ergebnis-
se dieser Arbeit konnen moglicherweise in einem aktuellen ganzzahligen Programm
zur Berechnung eines integrierten Dienst- und Kontrollplanes fiir reale Anwendungen
verwendet werden.

vi



Preface

This thesis represents a game-theoretic investigation of the allocation of inspectors
in a transportation network, comparing Nash and Stackelberg equilibrium strategies
to a strategy in which inspections are conducted proportional to the traffic volume.
Parts of the model were presented at the International Network Optimization Con-
ference (INOC) 2013. We furthermore present some theoretical results concerning
the deviations of Nash and Stackelberg equilibrium strategies and an application in-
tegrating space and time dependencies. This works contains extensive experimental
tests for the application in the transportation network of German motorways relying
on real data.

In general we will assume a worst-case situation in which users of the network and
the inspectors play a Stackelberg game, i.e. the users can observe the strategy
chosen by the inspectors before choosing their best-response strategy in order to
minimize their costs. We formulate a game between inspectors and users, which we
call a spot-checking game and find that this game is best-response equivalent to a
zero-sum game and hence, a Nash equilibrium can be computed by solving a lin-
ear program (LP). As the number of strategies for the users is potentially huge, a
cutting-plane method to solve the large-scale LP and an alternative, efficient user-
flow formulation is presented. Finding the optimal strategy to commit to for the
inspectors in the Stackelberg game (i.e. finding a Stackelberg equilibrium strategy)
is much harder. Here we use a mixed-integer program (MIP) for the computation.
If certain properties are satisfied, we can prove that any inspectors’ Stackelberg
equilibrium strategy is also a Nash equilibrium strategy. We will then present sim-
ple examples in which Nash equilibrium strategies may exist, and which are not
a Stackelberg equilibrium strategy, or in which a Stackelberg equilibrium strategy
might not be a Nash equilibrium strategy at all. Interestingly, on the other hand,
realistic values for the input parameters of these examples yield a gap between the
inspectors’ payoff for playing with a Nash equilibrium strategy and the inspectors’
payoff in a Stackelberg equilibrium that is relatively small. This observation corre-
sponds to the experimental results for the application on German motorways, that
will be presented afterward. We will see that the Nash equilibrium strategy com-
puted is often close to the Stackelberg equilibrium strategy in terms of inspectors’
payoff, i.e. experimental results suggest that instead of solving an MIP to compute
a Stackelberg equilibrium, one may often use an LP computing a Nash equilibrium
strategy in order to have a good approximation and a much faster computation time.
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Chapter 1

Motivation

1.1 Optimizing toll enforcement on German motor-
ways

The revenues from the heavy goods vehicle toll (HGV toll or German: Lkw-Maut)
for commercial trucks of twelve tonnes or more on German federal motorways serve
to maintain and upgrade the said transportation system, grossing about 4.5 billion
euros annually [Fed13|. The distance-based toll, introduced in 2005 and extended
to parts of major federal highways (Bundesstrassen) in 2012, may be paid using an
automated GPS/GSM system (through a so-called On-Board-Unit, or OBU) or by
manually purchasing a ticket. Levying, administration, control and surveillance of
the HGV-toll is a sovereign task of the German Federal Office for Goods Transporta-
tion (BAG). To this end, road inspections are conducted. The alternative of building
entry-barriers would be rather costly due to the large number of entry points. In-
stead a combination of 300 stationary control gantries (which is not enough for
a network-wide control), random local inspections at turn-off or exit points, and
random tours of about 300 mobile inspection units is deployed.

In a current project with the BAG, the Konrad-Zuse-Institute Berlin (ZIB) is opti-
mizing the distribution of the mobile inspection units on subnetworks of the German
toll network. The aim is to optimize toll enforcement and to assure a network-wide
control whose intensity is proportional to given spatial and time-dependent traffic
distributions. While doing so, legal regulations for the staff have to be fulfilled.
L.e. a feasible duty roster and an optimal tour plan for the mobile inspection units
has to be produced. A mathematical approach, called the Toll Enforcement Prob-
lem (TEP) |BSS11|, was developed to depict this problem and was formulated as a
large-scale integer program (IP). This IP could be solved to optimality for real-world
instances associated with a control area of a German subnetwork [BSS12].

While the TEP is dealing with the complexity of creating a feasible integrated
control and duty roster, this thesis corresponds to a theoretical investigation of the
allocation of inspectors in a transportation network.



CHAPTER 1. MOTIVATION

1.2 Advantageous routes and strategic users

It is quite natural to say that inspections imply that potential toll evaders exist.
If the aim of inspections is to enforce the payment of a toll, the practicality of
the methodology to distribute inspection intensities proportional to recorded traffic
volumes needs to be evaluated. A recent report on behalf of the German government
states that on a distance equivalent to one fourth of the distance covered by all
federal motorways, there was an average increase from 2005 to 2007 of 50 or more
trucks per workday through toll avoidance[Bun09]. One reason why the HGV toll
was extended to certain federal highways. The following figure 1.1 shows results
of a route simulation from the latter report. The blue lines represent toll liable
motorways, the gray lines represent toll free trunk roads with an average increase
from 2005 to 2007 of less than 50 trucks per workday, while the yellow, orange and
red lines show trunk roads with an average increase of 50 or more trucks.
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Figure 1.1: Increase of traffic diversion to avoid paying HGV toll in 2007



1.3. OBJECTIVE AND RELATED WORKS

In this thesis, we will focus our attention on users who strategically choose their
Origin-Destination path (short: OD-path) through the network in order to minimize
their expenses and are willing to evade the toll if this leads to a cheaper trip.

1.3 Objective and related works

We will use a game-theoretic approach to investigate the allocation of inspectors in a
transportation network. This thesis extends basic ideas of a problem formulation by
Borndérfer et al. from 2012 [BOSS12|. In the said article, the strategic interaction
between inspectors and users of a transportation network is studied when a user’s
route is fixed. A variety of related problems in which the objective is to randomize
patrols in a strategical way, has been studied using game theory. In [JKK*10] US
air marshals are allocated to a list of flights. In [PJM*08] a game-theoretic model
is applied to schedule security forces to protect the Los Angeles Airport towards
adversaries and, in [YJJ*12|, an approach to compute an optimal duty roster for
fare inspectors for the Los Angeles Metro is presented.

In contrast to previous works, we consider a network with arbitrary topology (in
[YJJT12] single metro lines are considered), and users are free to choose their OD-
path and may take a detour to avoid inspectors. A wise modeling approach has to
be chosen, as the number of user strategies is exponential. [JKK*10| deals with a
huge number of strategies for the defenders and gives a branch-and-price algorithm.
We will present a simple cutting-plane method and an alternative network flow for-
mulation to represent strategies of the users which will simplify matters. Parts of
this thesis, i.e. the results referred to in subsection 3.2, were presented on the INOC
2013 in a cooperative work with Borndorfer et al. [BBSS12]. Moreover, we find sim-
ilar applications of game theory in studies of arms control and disarmament, usually
relating to an arms control treaty that has been signed, problems in accountancy
and auditing, enforcement of environmental regulations, crime control and related

areas [AvSZ02].

In the following, we will introduce a model which we call spot-checking game and
present mathematical programs and methods to compute its relevant equilibria. Our
aim is to find equilibrium strategies with a good balance between computation time
and inspectors’ payoff. We will present some theoretical results and afterward apply
the model to simplified instances of the transportation network of German motor-
ways using real data. Computed optimal distributions of inspectors are compared to
distributions proportional to recorded traffic volumes in a spot-checking game. We
will present an application where we are considering inspections regarding spacial
restrictions and time dependencies and extract a probabilistic duty roster. Results
of this thesis may be used as input for the current large-scale integer program to
compute an integrated control and staff roster for the real-world problem mentioned
at the beginning of this section.






Chapter 2

A game-theoretic approach

We are using a game-theoretic approach to model the strategic interaction between
inspectors and users of a transportation network. We start off by creating a general
model, where the users face some costs, independent of inspections, for using arcs of
the network and in addition a fine if an inspector is present. The inspectors receive
a reward for every arc taken by a user and the profit from fines. Later on in chapter
3, we will apply this model to the transportation network of German motorways
where the users are legally obliged to pay a toll. In contrast to previous works, a
user will have multiple Origin-Destination-path (OD-path) options. The number of
OD-path options can be huge. To receive results in reasonable amount of time, a
suitable problem formulation has to be chosen. In the following we present a spot-
checking game and methods to compute its equilibria. We give a brief overview on
the related class of security games and their general properties and present some
theoretical results specific to our model. Algorithmic Game Theory, written by
Noam Nisan et al. in 2007 [NRT07|, and Game Theory, written by Fudenberg
and Tirole in 1991 [FT91|, served as reference books for the basic game-theoretic
concepts used in the following. As a reference book for the basic concepts of linear
and integer programming, Schrijver’s Theory of linear and integer programming from
1998 [Sch98] was used.

2.1 A spot-checking game

Transportation network A transportation network is represented by a weighted
digraph D = (V, E,w,f, o). Traveling costs for a network user for taking arc e € E
are given by w,, the reward for the inspectors if a user takes e € F is f., and o, is
an additional fine opposed by the inspectors on a user for taking an arc e € E when
an inspector is present on e.

The following relations hold:

fe <w, and 0< o, Ve € E.
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Players, strategies, payoffs We assume that all users are distributed over a
set IC of commodities. If we do not consider time, a commodity corresponds to an
Origin-Destination node pair (short: OD-pair) in D. If we consider time and a set of
time intervals 7 is given, then a commodity is a pair (k,t), where k is an OD-pair in
D and t € 7. The number z; of users of a commodity k € K is given. We may also
refer to x; as the demand for commodity k. Let R, denote the set of all OD-paths
of k € KC. The user’s costs for traveling on a commodity k are bounded from above
by some value w,+ for taking some path r; € Ry. We slightly abuse the notation
and use Wy 1= zeer; we. No inspections can be conducted on any arc in r; and

the inspectors’ reward if a user takes rj is given by f.. := Ze@,z fe- (In practice,

7} corresponds to a path of k£ on which users pay the toll fare and do not face any
fine).

We will only consider strategic interactions between a network user and the inspec-
tors, i.e. we do not consider congestions or similar and instead, we formulate a
non-cooperative multi-player game G between one inspectors player (also referred
to as the inspectors) representing the team of inspectors and, for each commodity
k € K, one player k representing all users of commodity k.

The number of inspectors in a transportation network is given and denoted by
~v. The set of pure strategies of the inspectors player, which we denote by L, is
defined as the set of subsets of £ of cardinality less than or equal to v. Every
[ € L fulfills the requirement that Vk € K, a path 7}, on which no inspections can
be conducted, exists. A mixed strategy of the inspectors player corresponds to a
probability distribution over all sets in £. For any mixed strategy and Ve € F, let
¢ denote the marginal probability that an inspector is present on e, i.e. let ¢, be
the sum over all pure strategies [ € £ which cover arc e of the probability that [ is
chosen in the mixed strategy. Our model will only depend on the vector q holding
these marginal probabilities, where 0 < ¢, < 1and >, ;¢ <y and q € Q for some
polytope Q. Whenever we refer to q as a strategy of the inspectors, we actually
mean the vector holding the marginal probabilities for the presence of inspectors on
arcs. We point out that for every vector q satisfying the conditions, we can find a
probability distribution over sets in £ whose marginal equals q.

For all k£ € K, the set of pure strategies of player k consists of all paths r € R;.
A mixed strategy of player k is given by any probability distribution over all of his
pure strategies and is denoted by p¥. The set of mixed strategies of player k is
denoted by QF. Let p := ((p*)rex) denote the finite sequence of mixed strategies

k of all player k, k € K. The cartesian product of the sets of mixed strategies of
all player k, k € IC, is denoted by €.

The expected payoft of player k is given by

7-"k(paq) = Tk p q Z s Z OeQe + we

reERy ecr



2.2. GAME SETTINGS AND EQUILIBRIA

The expected payoff of the inspectors is given by

7Tc(p> CI) = ka Z pf Z(JeQB + fe)'

ke reR ecr

2.2 Game settings and equilibria

Let game G be of complete information (i.e. every player knows the payoffs and
strategies available to himself and all other players). Each player is risk-neutral and
trying to advance his self-interest (i.e. the preferences of a player over the different
outcomes of G are determined by his expected payoff for the mixed strategy profiles
(p,q), which he wishes to maximize). Note that in general game G is not zero-sum.

Some research has been done on the suitableness of game settings and equilibria
describing the strategic interaction between inspectors or security patrols, respec-
tively, and adversaries on certain targets; see [AvSZ02|, [vSZ04], [CS06], [PJOT09],
[YKK*10]. In reality, despite the limited rationality of a user, we are uncertain
about the user’s ability to observe the inspectors’ action (i.e. the strategy that is
chosen by the inspectors). If adversaries, or users, act without acquiring (possi-
bly costly) information, a simultaneous game setting may be suitable [YKK™10|,
[PJOT09]. Here, a stable outcome is described by a Nash equilibrium. The famous
Nash theorem from 1951 [Nasbl]| states that every (non-cooperative) game with a
finite set of players and a finite set of strategies has a Nash equilibrium of mixed
strategies, hence a Nash equilibrium of G exists. But it seems reasonable to assume
that the users monitor the inspectors to some extent. A setting, in which the users
have perfect information about the inspectors’ action is described by a Stackelberg
game, which was introduced by Heinrich von Stackelberg in 1934 [vS34]. Here one
player, the leader (in G, the inspectors), commits to a strategy knowing that the
other player(s), the follower(s) (in G, every player k), will observe it perfectly and
then react to it with a best response. Being aware of that the followers will play opti-
mally, an outcome where the leader commits to a strategy that maximizes his payoff
is called a Stackelberg equilibrium. As pointed out in [vSZ04], for zero-sum games
a Stackelberg game was explicitly defined by von Neumann and Morgenstern (p.
100 ff., calling it a minorant, resp. majorant game) [vNM47| in order to introduce
the maxmin value, respectively minmax value, of the game. For finite two-person
zero-sum games, the different game-theoretic solution concepts of maxmin, minmax,
Nash equilibrium and Stackelberg equilibrium all yield the same optimal strategies
for the leader (see e.g. [YKK™10]). In general, the ability to commit to a strategy
can often be exploited to influence the outcome of the game in the leader’s favor,
e.g. the leader may be best off playing a strategy that is strictly dominated by
another strategy [CS06|, such a strategy would not be chosen in a Nash equilibrium.
Consider the following example of a bimatrix game taken from [CS06|: For the table
given below, we have a row player whose pure strategies are the row on the left and
the row on the right and we have a column player whose pure strategies are the
upper column and the lower column. An entry (r,c) in the table holds the payoffs

7
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of the players for the corresponding pure strategy profile, i.e. r is the payoff for the
row player and c is the payoff for the column player. The row player is the leader
and the column player is the follower.

2,14, 0
1,03 1

)l

The lower strategy for the row player is strictly dominated by the upper strategy.
If the row player chooses the upper strategy, the column player will choose the left
strategy. This outcome corresponds to the unique Nash equilibrium of this game
with a payoff of 2 for the row player. Now, in a Stackelberg game, if the row player
would commit to the lower strategy instead, the column player would prefer the
right strategy, giving the row player a higher payoff of 3. For any mixed strategy
where the row player chooses the lower strategy with probability 0.5+ € with € > 0,
the column player prefers the right-hand side. The smaller the ¢, the higher the
payoff will be for the row player. It is a standard assumption and sufficient for a
Stackelberg equilibrium (of mixed strategies) to exist [CS06], to assume that, if the
follower is indifferent regarding a set of strategies to respond with, he will choose a
strategy which favors the leader the most, i.e. the optimal strategy to commit to
for the row player is to play the lower strategy with probability of 0.5. Here, the
column player prefers the right-hand side and the expected payoff for the row player
is 3.5.

We see that in general, Nash and Stackelberg equilibrium may not coincide and the
corresponding leader’s strategies and payofts may be different. The leader’s payoff of
a Stackelberg equilibrium (of mixed strategies) in two-player games is always greater
than or equal to the payoff of a Nash equilibrium [vSZ04]. On the other hand, in
certain cases it is much easier to compute a Nash equilibrium, and the deviation
of the payoffs of a Nash strategy and a Stackelberg strategy might be very small.
Definitions, some properties and relations between the different equilibria that are
specific to spot-checking game G will be given and analyzed in the following:

Nash equilibrium A Nash equilibrium of spot-checking game G is a strategy
profile (p, q) satisfying

7T-c(pa q) Z 7Tc(P, q/), Vq’ € Q, and
m(PF,q) > m(p¥,q), Vp¥ € QF, Vk e K.

In the following, we may also use the term Nash strategy to refer to a Nash equilib-
rium strategy.

Stackelberg equilibrium For every k € IC, let the set of best responses for player
k to q € Q be given by

BRi(q) == {p" € 0¥ : mi(p*,q) > m(p", q), Vp" € '}

8
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Respectively, the set of best responses for all player k, k € K, to q € Q (short: the
set of best responses to q € Q) is given by

BR(q) :={p € Q: m(p*,q) > m(p" . q), ¥p* € QF, Vk € K}.
The set of best responses to p € €2 is

BR(p) :={q€ Q: m.(p,q) > m.(p.qd), Vq' € Q}.

A Stackelberg equilibrium of G is a strategy profile (p, q) satisfying

/ /
(P, q) = max x| m(p', d).
A Stackelberg equilibrium is a profile (p,q) which maximizes the leader’s payoff
among the set of all profiles, where the followers’ strategies are best responses to the
leader’s strategy. If a follower has several best responses available, he will select the
one that favors the leader the most. We may also use the term Stackelberg strateqgy
to refer to a Stackelberg equilibrium strategy.

In the following proposition, we prove an equivalent representation of the best re-
sponses of player k, k € K, as specific shortest paths.

Proposition 2.2.1. The vector p* is a best response to q for a player k if and only
if it is a probability distribution assigning positive values only to the shortest paths
of Ry w.r.t. the total expected costs for player k w.r.t. q.

Proof. Let p* be a best response to q. By definition of BRy(q), ¥p* € QF, we
have

Z Dr Z Oe(e +we > Tk p q Z prlz Oc(e +we)-

reERy ecr reER ecr
(2.1)

Equivalently, Vp* € QF,

—m(P @) = Y P (0eqe +we) < —m (P @) = D P Y (0ege +we). (2.2)

rERL ecr reERy ecr

The term ) ., (0cqe + we) corresponds to the total expected costs, when q is fixed,
for taking a path r € Ry,. Let us assume that there exists a path 7 € Ry, with pf > 0
that is not a shortest path. Then a path 7 € R, that is shorter than path 7 exists
and we can construct a probability distribution

0 ifr=r,
pff/ =< phpk o ifr=7,
pk else

9
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with

—me(Pf ) = Y pE Y (0eqe + we) > —mi(p @) = D pf Y (0eqe + we). (2.3)

reRy ecr reER ecr

As every probability distribution over R, is a mixed strategy for player k, p’ € QF,
(2.3) is a contradiction of (2.2).

Conversely, let p* be a probability distribution over the elements of R, assigning
positive values only to the shortest paths of Ry w.r.t. their total expected costs for
given q. Then, as ) . (0cqe + we) corresponds to the total expected costs w.r.t.
q for using a path r € Ry, for every other probability distribution p*¥" over Ry,
D orery PF Yoeer(Tee + we) <30 cn, >, (0eqe + w,) holds. Every probability
distribution over R, is a mixed strategy for player k, so p,p’ € QF and the latter
inequality can be written as m(p*, q) < m(p", q), ¥p* € QF, hence by definition
of BRk(q), p is a best response for player k to q. ]

A spot-checking game is a Stackelberg game. Below, we formally define the payoff
for the inspectors in a Stackelberg game when playing with some mixed strategy

qec Q.

Inspectors’ payoff in a Stackelberg game The inspectors’ payoff in a Stack-
elberg game when playing with strategy q is determined by the following function:

stac _>R7 — c
Ustack © Q +q pg}%)ﬂ(p ,q).

2.2.1 Inspectors’ Nash vs. Stackelberg equilibrium strategies

Spot-checking games form a special superclass of security games (e.g. formally
defined in [YKK™10|; reductions are given in appendix A). While in security games
the interaction between inspectors and adversaries are studied, we are considering
inspectors and users of a transportation network. A striking feature of spot-checking
games is the often very likely exponential number of strategies for the users. We
have to develop a good formulation and approaches to handle this difficulty. In the
comprehensive study by Yin et al. [YKK™10] about the relation of Stackelberg and
Nash equilibria in security games some positive results are proven. We will show
in subsection 2.3.1 that, as in all security games, the strategies in different Nash
equilibria of a spot-checking game are interchangeable!. We will present a much
easier proof than the one presented in [YKK*10]. For security games, Yin et al.
showed that under certain conditions an inspectors’ Stackelberg strategy is also a
Nash strategy. In general, these conditions do not hold for spot-checking game G.
But just as in the experimental tests of Yin et al., our experimental results for the
application in the transportation network of German motorways will yield that the

!Given any two Nash equilibria (p,q) and (p’,q’) of G, (p,q’) and (p’,q) are also Nash equi-
libria of G.

10



2.2. GAME SETTINGS AND EQUILIBRIA

inspectors’ payoff in a Stackelberg equilibrium is often close or equal to the payoff
in a Stackelberg game when playing with a Nash strategy. In particular, instead
of solving a mixed-integer problem (MIP) to compute a Stackelberg equilibrium
(subsection 2.4), we may use a linear program (LP) to compute a Nash strategy
(subsection 2.3) and drastically reduce the computation time in return for a good
approximation. We will now present some theoretical results for spot-checking game

G.

Let us begin with two trivial lemmas that give a general idea of the relation between
the inspectors’ Nash strategies and Stackelberg strategies in terms of the inspectors’
payoff. Let (p,q) be some Nash equilibrium and q* be an inspectors’ Stackelberg
strategy of G. Then

(P, q) is the inspectors’ profit for the Nash
equilibrium (p, q),

Ustack(q) = max  m.(p’,q) is the inspectors’ profit in a Stackelberg game
p’'€BR(q)

when playing with Nash strategy q,

Ustack (") = mag Ustack (') is the inspectors’ profit for a Stackelberg
q'e
equilibrium.

Lemma 2.2.2. Let (p,q) be a Nash equilibrium and let q* be an inspectors’ Stack-
elberg strategy of G. Then

Wc(p> Q) S Ustack(q) S Ustack(q*)'

Proof. (p,q) is a Nash equilibrium, i.e. q € BR(p) and p € BR(q). Using above
definitions, we have 7.(p, q) < maxpepr(q) Te(P', ) = Vstack(Q) < MaXge Vstack(q')
= 'Ustack(q*)' O

Lemma 2.2.3. Let (p,q) be a Nash equilibrium and let q* be an inspectors’ Stackel-
berg strateqy of G. Furthermore, let (P, q) := arg maxy o {7.(p’,q’) : p’ € BR(q'),
q € BR(p')} be a best Nash equilibrium of G from the inspectors’ point of view.
Then

7Tc(p7 Q) S 770(137 Q) S Ustack(q*)-

Proof. (p,q) is a Nash equilibrium, i.e. q € BR(p) and p € BR(q), so 7m.(p,q) <
maxpy o {7(p’,q’) : p' € BR(qd'),d’ € BR(p')} = 7.(pP,q). The second inequality is
obtained by applying lemma 2.2.2. O]

Note that an optimal Nash equilibrium from the inspectors’ point of view (which is
a pair of best response strategies) is not the same as the best of all inspectors’ Nash
strategies in a Stackelberg game.

11
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In the following, we will present a proposition that states a restriction on G' which
implies that the inspectors’ payoff in a Stackelberg game for playing with a Nash
strategy and the inspectors’ payoff of a Stackelberg equilibrium are identical.

Proposition 2.2.4. [If

1. the Nash equilibrium (p,q) of game G is unique, and

2. for all inspectors’ Stackelberg strategies q*, there exists a followers’ strategy
p*, such that (p*,q*) is a Nash equilibrium,

then 'Ustack;(q) — Ustack(q*)'

Proof. Let (p,q) be the unique Nash equilibrium of G and for all Stackelberg
strategies q* of G, let there exist a followers’ strategy p*, such that (p*,q*) is
a Nash equilibrium. Then (p*,q*) must be the Nash equilibrium (p,q) and i.e.

q" = q and hence vy (q*) = Vstacr(q)- O

In low dimensions, practical examples where the Nash equilibrium is not unique seem
to correspond to the cases that are uninteresting: for example, if all users pay the
toll. But examples exist and we will present such an example below. The second
condition of proposition 2.2.4 is always satisfied for a restricted subclass of spot-
checking games. We formulate this result in the following theorem 2.2.5. In other
words, for a special case, we can prove, that any inspectors’ Stackelberg strategy is
a Nash strategy by using some results of [YKK'10].

Theorem 2.2.5. If all OD-paths in transportation network D are disjoint, then
every inspectors’ Stackelberg strategy in spot-checking game G is also a Nash strategy.

Proof. Recall that £ denotes the set of pure strategies of the inspectors, i.e. all
subsets of cardinality less or equal to v in arc set E of the transportation network
D = (V,E) (w.r.t. to some linear constraints). arcs Let R denote the union over
k € K of all paths r € Ry, (i.e. R is the set of all OD-paths in spot-checking game G).
We define a new set that holds information about which OD-paths are covered by
a pure strategy | € £ of the inspectors, i.e. VI € £, let R :={r e R:Je € (rnNi)}.

Yin et al. introduced a restriction called an SSAS property for security games (see
equation (2) in [YKK™10]). For spot-checking game G, this property corresponds
to the property that

Viel,VSCR, A eL:S=R"

Now, if all OD-paths are disjoint and a certain number of paths are controlled
when choosing a pure strategy, then also for every subset of these paths we can
find a pure strategy controlling these paths exclusively, because an inspectors pure
strategy corresponds to a subset of arcs of cardinality smaller than or equal to . Le.
the SSAS property is satisfied. We apply corollary 4.9 of [YKK'10], which states
that in security games with the SSAS property any defender’s (i.e. inspectors’)
Stackelberg strategy is also a Nash strategy. O]

12



2.2. GAME SETTINGS AND EQUILIBRIA

In the following, we will present an example where the Nash equilibrium is not
unique, but the conditions of theorem 2.2.5 are satisfied and hence any Stackelberg
strategy is also a Nash strategy. The maximal gap between the payoffs for playing
with a Nash strategy can be determined w.r.t. fixed users’ traveling costs w and
inspectors’ rewards f. Afterwards, we present an example, where the Stackelberg
strategy is not a Nash strategy.

Example I We consider a spot-checking game between one inspector and a single
user of commodity k = (o0, d) in the transportation network given by

el =1}

o O 0 d

€y =T

We assume that the inspector may only control on arc ey and has the ability to
control with a certain probability. Her mixed strategy is denoted by ¢. The user
of k (player k) has two options to travel, either using e; corresponding to the path
r; where no inspections may be conducted or taking e, which is denoted as path r.
His mixed strategy is p. The costs for player k are w,+ for taking rj and w, + oq
for taking path r, respectively, the payoff for the inspector if player k takes ry is f-
and if player k takes r it is f. 4+ oq.

If w, > wyy, player k will always choose path r and if w,» > w, + o, player k will
always choose path r independent of the inspector’s strategy. Hence lets assume
w, < wyr < w, + 0. Here the best response of player £ depends on the value of g.

It is easy to see that the pure strategy profile, where player k plays r; and the
inspector plays e, is a Nash equilibrium (7 is a best responses to e; and e5 is a best
responses to 75). The following graphic shows the best response of the inspector to
p in blue and the best response of player k to ¢ in green (on the y-axes we have the
values of p.» which implicitly gives the value of p, as the sum of p,» and p, must
equal one). All points of the intersection of best responses (below in red) correspond
to Nash equilibria of G:

pr,’; pr,’; pr;;
1 1 1
0 1 q 0 wy—wr 1 ¢ 0 wg-w 1 ¢
— q € BR(py;) pr: € BR(q) — Nash equilibria

13
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Player k is indifferent between taking path rj and r if w,s = w, + go equivalent
wr* —Wpr

to ¢ = ——. A Nash equilibrium is obtained for all ¢ > . If in a Nash
equilibrium w,: < w, + qo, then player k’s best response is to use path r;. The
inspector’s payoff is f,-. Else, if w,» = w, + qo, player k will be indifferent between
r and 7. Depending on player k’s choice, the inspector’s payoff will be f, or
fr+qo. So the maximal difference between the inspector’s payoffs for the best Nash

’LUT* —Wp

with ¢ = —— i.e.

oz

Wx —w

equilibrium and any other Nash equilibrium is |f, + go — f
the gap is given by

\fi +

Wy — W,

k
—r 00— fr
o k

= |(wr,§ - fr;) — (w, = fr)].

In the following graphs the inspectors’ payoff in a Stackelberg game vg,1(q) and
player k’s costs (labeled costi(q)) in a Stackelberg game for given q are sketched for

the two cases f.» < f. 4+ qo when ¢ = wr’z;wT (on the left) and f.« > f. + gqo when

wr;; —Wypr
g

q= (on the right). Recall that every maximum of vg,e,(q) is an inspectors’
Stackelberg equilibrium payoff (see definition at the beginning of this section).

wr; 1 wrz 1
Ustack (C]) Ustack (Q)

fr;: O fr; ®

Wy ¥ Wy ¥
fr ]
fr T
0 W L11)T i q 0 W LU)T i q
o o

W, % — Wy

On the left, the inspectors’ Stackelberg strategy is ¢ = T’“U

and unique. In the
wr;z — Wy

case displayed on the right, all ¢ >

—— are inspectors’ Stackelberg strategies. In

a third case, when f.. = f. + ’t;wra call ¢ > are Stackelberg strategies.
Therefore the above presented gap also corresponds to the maximal gap between
the inspectors’ payoff in a Stackelberg game for playing with a Nash strategy and

the inspectors’ payoff for a Stackelberg equilibrium.

w,. Wpx —Wr

Realistic values for the transportation network in the application on German mo-
torways are a toll fare of 0.17 euro cents per driven km and a fine of 200 euros. In
this simple spot-checking game, let for example, r and 7} both have a length of 100
km. We can interpret r; as a path where the user pays the toll and r as a path
where he evades it. Let us assume that there are no other traveling costs than the
toll fare, i.e.

14
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wpr = 17, fr* =17,
k k

w, = 07 fez = 07

o = 200.

Then the maximal gap between the inspector’s payoff for the Stackelberg strategy
and any Nash strategy is

|(wr;§ - r;;) - (wr - fr)‘ = |(17— 17) - (0 _O)’ = 0.

If we adjust the values a bit, for example adding additional traveling costs for the
player k£ on path r and on path r; and varying their lengths, we still receive a
relatively small maximal gap. (By relative gap, we mean the maximal gap divided
by the the maximal user’s cost w,»). O

We now present an example where the inspectors’ Stackelberg strategy in a spot-
checking game G is not part of any Nash equilibrium.

Example II Consider the following transportation network D (labels represent

we/fe):

2/0.5 1/1

1/1

1/1

The fine for being caught evading is 0 = 10 on every arc and we have one inspector
that can control arc (0,1) or arc (2,1). There are two different commodities to be
considered: Commodity (0, 1) with demand x (1) = 5 and two path options in D, i.e.
path {(0,1)} or path {(0,2),(2,1)}, and commodity (2, 1) with demand z( 1y = 10
also also two path options, path {(2,1)} or path {(2,0),(0,1)}. The OD-paths
for every commodity on which no controls can be conducted are not drawn in the
picture, we assume that the costs for taking those paths are very high and therefore,
they will never be chosen.

As all players have two pure strategies, we can represent the mixed strategies using
a one-dimensional variables: p(®!) is the probability that the users of (0, 1) take path
{(0,1)}, pY is the probability that the users of (2,1) take path {(2,1), (1,0)} and
q is the probability that the inspector is inspecting arc (0, 1).

Player (0, 1) is indifferent between choosing path {(0,1)} and path {(0,2), (2,1)} if
q = (1 — ¢) which is equivalent to ¢ = 0.5. If ¢ < 0.5, she will choose path {(0,1)}
and if ¢ > 0.5, she will choose path {(0,2),(2,1)}. Player (2,1) is indifferent between
choosing path {(2,1)} and path {(2,0),(0,1)} if 3+ 10g = 1 + 10(1 — ¢) which is

15
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equivalent to ¢ = 0.4. If ¢ < 0.4, he will choose path {(2,0),(0,1)} and if ¢ > 0.4,
he will choose path {(2,1)}. Below, in the picture on the left the value of p®V for
given ¢ is shown in gray color. On the right the strategy of player (2, 1) for given ¢
is displayed in orange.

/)\Q.M

Doing the math for the inspector, we find that she is indifferent between inspecting
arc (0,1) and arc (2, 1) if p©@Y +2p>D = 1.5, If p®V) 4-2p2V) is smaller than 1.5, she
will control arc (0,1) and if it is greater, she will control arc (2,1). The inspector’s
strategy when the strategies chosen by the other players are given is displayed below
in blue:

R -———— (0.1)
PR Y

1
q

A Nash equilibrium corresponds to a point in the cube, where the strategies of all
players intersect:

(2,1)
])

@ Nash equilibrium l:
I

users’ intersection A=

0.75 0.25
l (0,1)
o)1
N 0.5

1
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We have a unique inspectors’ Nash strategy at g1y = 0.4, q2,1) = 0.6.

Now in the following picture, the inspectors’ payoff in a Stackelberg game w.r.t to
q is shown:

100

80 -
@ 60 [~
Q
3
@
S 40 |-
20
0 | | | | | | | | | J
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
q

The maximium value for vg,.(q), i.e. the inspectors’ payoff in a Stackelberg equi-
librium, is reached at gy = 0.5 with an inspectors’ profit of 95. For the Nash
strategy q,1) = 0.4 the payoff is only 92.5. [

In conclusion, we can state that for a restricted subclass of spot-checking games,
we could prove that inspectors’ Stackelberg and Nash strategies coincide. In theory,
we can find simple counterexamples for which this is not true, but realistic input
parameters yield a gap between the inspectors payoffs that is relatively small. This
observation resembles experimental results for the application on German motorways
that will be presented later on.

We will now present programs to compute an inspectors’ Nash and an inspectors’
Stackelberg strategy. We will see that it is much easier to compute a Nash strategy.

2.3 Computation of an inspectors’ Nash equilibrium
strategy

A polymatrix game is a multi-player game in which a finite number of players is
each playing a finite number of bimatrix games simultaneously; the payoff of a
player is the sum of the payoffs from every bimatrix game she plays. A zero-sum
polymatrix game is a polymatrix game in which every bimatrix game is zero-sum. As
pointed out by Borndorfer et al. [BOSS12|, in 2009 Daskalakis and Papadimitriou
generalized the famous Minmax theorem of John von Neumann from 1928 [vN2§]
to zero-sum polymatrix games. As a corollary, a mixed Nash equilibrium can be
computed efficiently in polynomial time using linear programming [DP09].

17
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Our spot-checking game is a polymatrix game, but it is not zero-sum and the usage
of a linear program to compute a Nash equilibrium is not straight forward as done in
[BOSS12|. This is due to the multiple OD-path options for every user accompanied
by varying traveling costs. We will overcome this obstacle by proving a best-response
equivalence of G and a zero-sum game G’ for which Daskalakis and Papadimitriou’s
results hold. Two games are best-response equivalent if they have corresponding best
responses; therefore their Nash equilibria coincide. The terminology was introduced
by Rosenthal in 1974 [Ros74]. We then present a linear program formulation to find
a Nash strategy for the inspectors in G’ corresponding to the formulation presented
in the introductory example in [DP09].

2.3.1 Best-response equivalent zero-sum game

For a nicer display in the following proof and in the derivation of our linear program
formulation, we will represent spot-checking game G explicitly as a polymatrix game:
in G the inspectors player is playing a bimatrix game against every player k, k € K,
and every player k is playing one bimatrix game against the inspectors player. Recall
that the expected payoff of player k is given by

Wk(p, q) - = Z pylf Z(UeQe + we)a

reRyg ecr

and the expected payoff of the inspectors is

Wc(p,Q) = Zxk Z pf Z(OeQe + fe)'

ke r€R ecr

For simplicity reasons, let us assume that we have exactly v inspectors. Less than
~ inspectors could be modeled by adding artificial arcs to the network that can
be controlled, but that are never taken by the users. Now consider the following

matrices:
Ze’er (wer — fer)
Y

= i
Je+% ifreRyandecr,

(Bk) reRy,e€E = y and

(Ak)reRk,eeE =
=
=< ifre Ry and e ¢ r.

Then, using the standard representation for polymatrix games, the expected payoff
of a player k, k € IC, is equivalently given by

m(p,q) = —(p")"(4r. + Bi)a,

because
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SO A B = % gk (o4 By, ¢ ()

reR ecr edr

= -y (Zoeqe+ 3 (Beeteyg )
reRy ecr eckE

- - 5 (Soar B v )
reRy ecr eck

— - = (o (B
reRy ecr

= - Z pf Z(UeQe + we) = Wk(PaCI)
reRy ecr

Respectively, for the expected payoff of the inspectors we have

Z $k TAkCl

kel

We define zero-sum polymatrix game G’ to have the same players as game G with
the same strategy sets, but a different payoff of the inspectors player:

The the expected payoff of a player k, k € K, in G’ is given by

m.(p,q) = m(p, q) = —(p")" (A + Br)a,
and the expected payoff of the inspectors in G’ is
Z i, (P*)" (Ay, + Br)q.
kek

Note that the payoff of the inspectors from every partial bimatrix game played
against a player k is weighted by the demand x;, of commodity k. Game G’ is zero-
sum as we could interpret the inspectors’ payoff as if Vk € K, the inspectors player
would play the same bimatrix game against x; player k, which will all choose the
same strategy for a given q.

L.e. we create a zero sum game G’ out of G by replacing f. by w, for all e € E.

Proposition 2.3.1. Spot-checking game G and zero-sum game G’ defined above are
best-response equivalent.

Proof. As all player k, k& € K, have the same set of strategies with the same
expected payoffs in G and G'.

Now let g € Q be a best response of the inspectors to p € Q¥ in G’, i.e

> e (") (A + Bia > (p")"(Ax + Bo)d', Vo' € Q.
ke keK
By, is a matrix that holds the same values in every column, i.e. let by, := ( M)rem

be a vector of dimensions |Rg|, then By = [by by ... by] and it is easy to see that
(P")'Bid' = (p*)"biy, Vq' € Q.
Therefore:
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> 2 (PF) T (Ae + Br)a > Y ()T (Ak + Br)d, Vq' € Q
ke ke
s 3 ) T(Ana+ X ze(d") by = 3 z(p®)TAr)d + X zk(p*) by, V4 € Q
ke ke ke ke
& > @e(PF) T (Ar)a > Y ak(p®)T AR, vq' € Q

kel keK

L.e. q is a best response of the inspectors to p in spot-checking game G.

We presented an equivalence transformation, hence the transformation holds in both
directions. O

Recall that in zero-sum games, all Nash equilibrium strategies are interchangeable,
i.e. replacing a Nash strategy in a Nash equilibrium with any other Nash strategy
also yields a Nash equilibrium. Furthermore, in zero-sum games, all Nash equilibria
yield the same payoff for every player. The latter property cannot be transferred to
the payoffs of several Nash equilibria in GG, e.g. as we have seen in the last subsection
2.2.1 in example 1.

For the best-response equivalence transformation of G and G’, we adopted a sim-
ple transformation presented in an article by Kannan and Theobald in 2010 (see
section 2.1 in [KT10|) dealing with bimatrix games (A, B) where the sum of the
matrices A and B has a fixed rank, and where polynomial algorithms for finding an
e-approximation of a Nash equilibrium are presented.

In particular, our spot-checking game G belongs to the class of strategically zero-
sum games introduced by Moulin and Vial in 1978 [MV78]. A bimtarix game (A, B)
is strategically zero-sum if and only if there exist scalars w > 0 and v > 0 such that
wA +vB = W 4+ V where W is a matrix with equal columns and V' is a matrix
with equal rows. In our case, for the bimatrix games between the inspectors and
player k, we have A = Ay, B = —(Ax + By) and w = v = 1. By is a matrix
with equal columns. The equivalence can be generalized straightforwardly to multi-
player games (see statement in section 3.4 in [MV78]). Strategically zero-sum games
are the games for which no completely? mixed Nash equilibrium can be improved
upon. Every strategically zero-sum game is best-response equivalent to a zero-
sum game (see example 5 and proof in [MV78|). But as we are not sure whether a
completely mixed Nash equilibrium exists, we cannot be sure that a Nash equilibrium
we compute will be optimal (optimal in terms of yielding the highest possible payoff
for a Nash equilibrium profile). Furthermore, we do not know whether the optimal
Nash equilibrium strategy corresponds to a Stackelberg strategy or at least to the
best of all Nash strategies in a Stackelberg game.

We will now present two equivalent approaches to compute an inspectors’ Nash
strategy, one using user path variables and one using user flow variables.

2The support of the mixed strategies includes all pure strategies.
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2.3.2 User-paths Nash LP and cutting-plane method

The above result yields that we can compute a Nash equilibrium for G' by computing
a Nash equilibrium for G'. We will formulate a linear program to calculate a Nash
equilibrium from the inspectors player’s point of view, using the well-known ideas
of the Minmax theorem as proposed by Daskalakis and Papadimitriou [DP09].

First of all, Vk € K, let A}, := Ay + Bj denote the cost matrix of player k of the

bimatrix game against the inspectors player, respectively, A; is the payoff matrix

of the inspectors in G’ from the bimatrix game against player k. Furthermore let
A = (pF)T(Ar + Bi)q denote the expected costs of player k (equivalent to the
negative expected payoff of player k).

In zero-sum game G’, when q is fixed player k, k € K solves

: ENT 7/
A
nin (p*)” Ay,

while the inspectors player when p* is fixed solves

max Z 1, (pM)T Alq.

Since p* is a probability distribution, we have

: ENT 7! : /
m Alq = min(ALq),, Yk € K.
Jnin, (p7)" Aya = min (4q) €

Hence the following LP determines an inspectors’ Nash strategy for G':

(P) max > xp Ak
;lkeeR kek

e < (A4)r, Vre Ry, Vkek

We will also refer to (P) has the user-paths Nash LP of game G. A corresponding
Nash strategy for all player k, k € K, can be determined from the optimal dual
variables of the constraints in (P) (see e.g. [FT91]).

In contrast to [BOSS12|, we have multiple OD-path options for every commodity
k € K and, accordingly, the number of pure strategies for a player k£ has increased
drastically, i.e. Ry is very large. In a complete digraph the number of OD-paths is
O(n!). Even if in general a transportation network will not be complete, in many
cases Ry will be huge. Therefore, (P) has a very large number of constraints. Thus
we need to find a suitable solving algorithm. A standard solving algorithm in such
a case is a cutting-plane method.
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We will apply a method proposed by Ford and Fulkerson in 1958 [FF58|. Here,
an equivalent “arc-chain formulation” of the multi-commodity max-flow problem is
solved “by replacing the pricing operation of the simplex method [...| with several
applications of a combinatorial algorithm for finding a shortest chain joining a pair
of points in the network”. Their argument is that “the enumeration of all chains
from commodity sources to sinks in a network of moderate size would be a lengthy
task, to say at least”.

At the beginning, we consider only subsets of paths for every commodity k, i.e.
subsets Ry C Ry, and receive the following restricted LP:

(P) max > xp Ak
;lkeeR kek

M < (A9),, VreRy,Vkek

The optimal value for an optimal restricted solution Ay, q of (P) is an upper bound

for the optimal value of (P) (and we know that a feasible solution for (P) exists, e.g.

the users may choose any of their OD-paths and the inspectors may randomly check

arcs). Hence, if A, q is feasible for (P), it is optimal. Now, as proposed in [FF58],

instead of Vk € IC,Vr € Ry, checking inequality A\, < (A,Qq),, we solve our so-called

pricing problem: Yk € K, we check if the inequality is satisfied for arg 1271211 (ALQ)-
T k

by solving a shortest-path problem. For this purpose we construct a copy D of
network D with modified weights 0.G, + w. on every arc e € E. In D the length
of path r € Ry equals the value of (A,q),. All weights are positive, so the shortest
paths can easily be computed (e.g. using one of the methods proposed in [FF58| or
simply Dijkstra’s algorithm that was published one year later in 1959 [Dij59]|). If
the shortest paths satisfy the inequalities, all inequalities are satisfied and we have
optimality, otherwise we add the cutting planes found (i.e. an inequality for every
shortest path that did not satisfy the inequality) to the restricted LP and repeat
the procedure, see Algorithm 1 below.

Algorithm 1 Cutting-plane method for user-paths Nash LP (P)
1: Initialize Ry, Vk € K.

2: repeat

3: Solve (P).

4: for k € K do

5: Create D for computed solution g of (P).
6: Determine the shortest path 7* in D.

7 if A, > r«* then

8: Add r* to Ry.

9: end if

10: end for
11: until No path has been added to (P).

We point out that we can compute shortest paths simultaneously for commodities
with same same origin, which reduces the computation time.
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2.3.3 User-flow Nash LP

The above approach using path variables solves our problem. But what could be
a different, a better modeling approach? An approach that is more compact, with
less variables, and for which we could get faster results? In other words, we are
looking for an efficient representation of the shortest paths of the network users
w.r.t. the costs for taking a path, when q is fixed, as those correspond to the best
responses of player k to q (see proposition 2.2.1). A shortest path in a digraph w.r.t.
positive weights can always be always be found by solving a special min-cost flow
problem with a simple linear program as, for example, presented in [AMO93|. In
the following, instead of using one separate variable for every path and commodity,
we will use a compact flow representation of the paths. By doing so, we drastically
reduce the number of variables. Here we may use a standard LP solver instead of a
cutting-plane method as discussed above.

An application of the following user-flow problem formulations to compute Nash and
Stackelberg strategies for the inspectors was also presented at the INOC Conference
2013 in a corporate work together with Borndérfer et al. [BBSS12|. This particular
application will be presented in this thesis in section 3.2.

Let us see how the strategy set of player £ € IC and the payoffs when using a flow
formulation change.

Player k’s strategy In the user-flow formulation of G, a mixed strategy p* of
player k is given by flow variables 0 < p* < 1,Ve € E,Vk = (0,d) € K, satisfying
the following flow conservation:

—1 ifv=o,
dopk= D) =4 1 ifv=d
e€d—(v) ecdt(v) 0 elseifvelV.

The flow variables p* corresponds to the probability that player k € K uses an arc
ec k.

The expected payoft of player k, k € K, is now given by

(P @) = (P q) = —\e = = )l (0ege + we).

eck

The expected payoff of the inspectors in spot-checking game G is

71-c(pa q) = Z T Zpls (Ueqe + fe)a

ke ecl

and the expected payoff in the best-response equivalent game G’ is

(P, q) = Z TR = Z Tk pr (0eqe + we).

kel ke eck
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Taking a closer look at the inspectors’ payoffs in G and in G we see that the second
term in the parenthesis, i.e. f. in G and w, in G', does not depend on the value of
qe, Ve € E. Following the concept of the best-response equivalence transformation
presented in subsection 2.3.1, we can conclude that G and G’ are best-response
equivalent.

We use the following modified linear program formulation, which we will call Nash
LP, to compute a Nash strategy q for the inspectors:

Let O :={o0: 3k = (0,d) € K} C V be the set of origins of commodities k € K.
The set of origins O will be used again to reduce our number of variables: because of
the optimal substructure of shortest paths, we can use a single-source (i.e. “single-
origin”) shortest path problem formulation for all players starting at the same origin
instead of solving the shortest path problem for every commodity. The Nash LP is
given by

max ,;ka)\k (2.4a)
Yo = Yo < O(uw)q(u0) T Wuw)s Yoe O, V(u,v)€EE (2.4b)
ys =0, Yoe€ O (2.4c)
Ao = 15, Vkek, k=(o,d) (2.4d)
qe @ (2.4e)

(2.4b)-(2.4¢) form the single-source shortest path linear program formulation for the
users, where the variables y are the so-called node potentials which are bounded
from above by the length of a shortest path from the origin o to any node v € V.
The length of a shortest path for commodity & corresponds to the costs A\ (2.4d).
(2.4e) ensures a feasible marginal inspectors’ strategy q.

Note that the optimal dual variables of constraint (2.4b) define a flow in D from
which Nash strategies for the player k, k € IC, can be inferred.

2.3.4 Computation of the inspectors’ payoff in a Stackelberg
game

To compute the payoff of the inspectors in a Stackelberg game when playing with
Nash strategy q, we have to determine a best response to q for all player k, k € K,
which favors the inspectors the most (see definition of vy, in section 2.2). Let
Dgsp,(q) denote the shortest path arborescence w.r.t. the costs for a player £ when
q is given. Dgp,(q) can be inferred from the saturated inequalities of the user-
paths Nash LP for the optimal solution q (and corresponding ) or respectively
from the saturated inequalities of the constraints (2.4b) of the user-flow Nash LP
for the optimal solution. As the user’s costs for a given q on every arc e € E of
the transportation network D are non-negative, Dgp, (q) is a acyclic directed graph,
i.e. it contains no cycles (or cycles of weight zero). The reason for this is that
traveling on a cycle of positive weight would always increase the costs of a user
and cannot be part of a shortest path. Now, to determine a best response to q of
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player k that favors the leader the most, we look for a longest path in Dgp, (q) W.I.t.
the inspectors’ payoff from rewards and fines. We do so by assigning non-positive
weight —(fe +0.qe) to every arc e that is in the arc set of Dsp,(q)- Dsp,(q) With non-
positive weights —( f. + 0.q.) has no negative cycles and we can compute a shortest
path of commodity k, e.g. using the Bellman—Ford-Moore algorithm (published
by Bellman in 1958 [Bel58|, Ford in 1956 [For56] and Moore in 1959 [Moo59] and
equally credited to all of them). Such a shortest path w.r.t. non-positive weights
—(fe + 0eqe) in Dgp,(q) corresponds to a longest path w.r.t. non-negative weights
(fe+0cqe) in Dgp,(q), which is a best response of player k in favor of the inspectors.
The length of such a longest path is the inspectors’ payoff from the partial game
played against player k£ in the Stackelberg game. To compute the total inspectors’
payoff for Nash strategy q in a Stackelberg game, we have to determine the lengths
of such a longest path for every k € K and then compute their sum over k € K.

2.4 Computation of an inspectors’ Stackelberg equi-
librium strategy

To compute a Stackelberg equilibrium of GG, we will use a simplified complementary
slackness condition to integrate an optimality condition for the follower in the op-
timization problem of the leader similar as done in a paper by Paruchuri et al. in
2008 [PPM*08]. In the latter paper, a mixed integer problem (MIP) is presented
to compute a Stackelberg equilibrium for a Bayesian Stackelberg game?, optional
computation method can be found for example in [CS06]. The MIP formulation
was developed to efficiently solve the related problem of randomizing patrols and
selecting checkpoints in a strategical way to protect the Los Angeles International
Airport towards adversaries. That problem was also modeled using game theory.

Now let us consider a user-flow formulation. To formulate a complementary slackness
condition, let us explicitly write down the primal and dual linear program of player
k = (o0,d),k € K, to compute a best response w.r.t. q. The primal LP is given by

H;Ln ZE(Ueqe + we) Pl (2.5a)
ec

-1 ifv=o0
Soopk- > pE =51 ifv=d (2.5b)

e€s— (v) e€st(v) 0 elseifveV
pE>0, VeckE (2.5¢)

The dual LP corresponds to the shortest path problem formulation using node po-

3 A Bayesian Stackelberg game is a Stackelberg game between a leader and a follower of unknown
type. Each type of follower has its own pure strategy set. A probability distribution over possible
types of followers is given and used to optimize the expected payoff of the leader. Our Stackelberg
game with several followers and a concrete distribution over those followers (given by the demand
for the commodities) can be transformed into such a Bayesian Stackelberg game.
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tentials y* as presented in Nash LP 2.4, i.e. player k is solving

max yij (2.62)
yk

yf - yqu < O (u,0)q(u,v) + W(u,w) v (u> U) S (26b)

ys =0 (2.6¢)

If primal and dual LP have a feasible solution, then an optimality criterion for the
solutions is given by the complementary slackness theorem (see e.g. [Sch98|), i.e. if
p" is feasible for the primal LP 2.5 and y* is feasible for the dual LP 2.6, then they
are optimal for their corresponding programs if and only if

( O (u,v)4(u,v) + W(y,w) — (yqu - yqu)) p](gum) = 0, v ('LL, U) SN

To integrate the best response of player k to q in a Stackelberg game into the opti-
mization problem solved by the inspectors, we simplify the complementary slackness
condition by only considering one optimal pure strategy of player k£ which favors the
inspectors the most (see definition of a Stackelberg equilibrium in section 2.2). This
is realized by using a formulation with a big constant M. A further specialty of our
problem formulation will be a single-source-multi-sink formulation of the user flow,
which will again reduce the number of variables. For every origin o € O, we define
D, := {d : (0,d) € K}, its set of destinations. The inspectors’ Stackelberg equi-
librium strategy q in spot-checking game (G is an optimal solution of the following
MIP:

max Z Tk A — Z Zpg we + Z Zp‘e’ fe (2.7a)

QY,\ KPP

ke 0€0 ecE 0€0 eeE
0 < 0@ Q(uw) T Wuw) = Wo = Yo) < MQA = ply ), Vo€ O,V (u,v) €E (2.7b)
Yo =0, Yoe€ O (2.7¢)
Ak = Y, VEeK, k= (o,d) (2.7d)
— > T ifv=o,
de®,
o > = Zlom) itveo, YWEV,VoeO (2.7e)
e€5(v) e€6+(v)
0 else,
0 <p? < Mpug, YoeO,Vee E (2.71)
pg € {0,1}, VoeO,Ve€eFE (2.7g)
qe @ (2.7h)

To avoid a quadratic term in the objective of the leader (2.7a), we do not use the
explicit change of variables as proposed in [PPM™08], but represent the payoff of the
inspectors in linear terms with help of the previously defined costs A, of player k. In
(2.7e) a feasible user-flow for the player k, k € K, is defined as single-source-multi-
sink flow problem for every origin 0o € O. We introduce binary variables 1° (2.7g),
which indicate whether an arc belongs to a shortest path arborescence rooted in
origin o and a big constant M that helps us to choose an optimal pure strategy for the
player k, k € IC. (2.7b) and (2.7f) represent the simplified complementary slackness
conditions and together with (2.7c) form the single-source shortest path formulation
for the player k, k € K, where the length of a shortest path for commodity k
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corresponds to the costs Ay (2.7d). (2.7h) ensures a feasible marginal inspectors’
strategy q.

We will now present some experimental results for the spot-checking game on an
application on German motorways.
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Chapter 3

Application on German motorways

We apply the established spot-checking game to the transportation network of Ger-
man motorways. The users of the network are the truck drivers which are legally
obliged to pay a toll. Instead of paying the toll, a cheaper option might be to evade
by taking a detour to avoid inspectors. The aim is to optimize the allocation of
inspectors on motorways to enforce the payment of the toll. There are several ways
for the application to represent the German motorway network. In the following we
present two approaches, a two-level network in which the users can switch between
paying and evading during their trip and a single-pay-path network, where users
take either the shortest path when paying the toll or evade on some route in the
motorway network. Afterward, we consider inspections regarding space and time,
i.e. we consider duties for the inspectors of a fixed length that are distributed over
a time horizon. A transition from one spot in the motorway network to another
within an inspection duty is only possible if those spots are connected.

In a spot checking game applied to German motorways, a transportation network
corresponds to an extended representation of a simplified real-world motorway net-
work. A simplified real-world German motorway network, respectively one of its
subregions, is given by a digraph holding toll liable arcs and toll-free trunk roads.
An arc represents a part of a motorway from one entry, turning or exit point to
another. For experimental tests, lengths and connections of toll liable arcs corre-
sponding to the topology of the real German motorway network as well as real traffic
data were available. The number of nodes, arcs and commodities was reduced for
the sake of simplicity. Almost all free trunk roads were generated artificially, be-
cause the data was not available, by creating a certain number arcs from one node
to another node when their geographical distance was between 30 to 50 km.

In section 3.1, we present the most advanced model to represent a transportation
network in which users can decide on which parts of their trip they are paying toll
and which parts they are evading. We then present a model in 3.2 with a reduced
number of arcs, where users have exactly one path on which they can pay the toll
and other paths on which they evade. The model presented in 3.3 extends the model
in 3.1 integrating spatial and time dependencies.
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Figure 3.1: Geographical map of Germany Figure 3.2: Simplified motorway network
(source: OpenStreetMap). with free trunk roads (orange).

3.1 Two-level transportation network

To realize a transportation network in which drivers can pay the toll for one part
of their trip and evade on the other part, we construct a digraph D = (V| E)
which we call two-level network, consisting of two copies of the simplified real-world
motorway network: one representing the network in which drivers pay the toll and
one in which drivers evade. Both copies are connected by so-called transition arcs.
For every driver’s origin, we add an artificial origin node with arcs without costs to
the corresponding nodes in the copies, respectively we add an artificial destination
node to be the head of free arcs from its corresponding nodes in the copies.

paying toll LEVEL

evading toll LEVEL

Figure 3.3: Sketch of an excerpt of two-level network D
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Le., the arc set £ is partitioned into the set E, of arcs on which drivers are paying
the toll, the set E,. of arcs on which drivers evade the toll, the set E; of toll-free
trunk roads and a set F, representing transitions between a paid arc and an evaded
arc and vice versa. In order to simplify matters, the cost-free arcs connecting the
origin and destination nodes to the two levels have lengths equal to zero and belong
to the set F,.

The users of the network, the truck drivers, are distributed over a set of commodities
K in D. The demand for a commodity k, i.e. the number of drivers who make a
trip on k, during a given period of time is known and denoted by x;. R, denotes
the set of all OD-paths of a driver on a commodity k.

The distance-based toll fare per km is f and the fine! for evading the toll if being
inspected is P. The number of inspectors in D is limited by a capacity 7. ¢. denotes
the probability that an inspector is present on e € E and o, is the probability to
be inspected when an inspector is present. In the application, the variables o, of
chapter 2 are replaced by o.P for all e € F.

The driver’s costs excluding fines for using an arc e are given by

bl Ve € E.

w. — (b+ f)l. Vee€ E,
¢ (b+a)l. Vee€ Ey
0 Ve € E,

o~
(4}

length of arc e € £

basic costs per km (fuel, salary, etc.)

additional costs per km for taking a trunk road
costs for a switch between paying and evading

with

D> Q@

The driver’s total expect costs for using an arc e € F are
0eqe P + w,.
A justification for using o. as an input parameter is given in appendix B.

Whenever a driver switches from paying to evading (or evading to paying) he has to
take a transition arc and pays an additional transition cost, as we assume switching
would be an organizational expenditure. These transition costs are hard to deter-
mine in reality, but in theory it can give an idea of how far these influence the
behavior of the drivers. The two-level network gives furthermore a nice representa-
tion of parallel behavior on a single road as we will see later on in the experimental
results.

! In Germany the amount of the fine for evading varies (on average between 200 and 400 Euro).
In addition to the fine, a driver caught evading would have to pay the toll fare for his trip. Instead
we use the simplified assumption that the fine is a constant.
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Inspectors’ strategy Inspections can be conducted on all arcs e € E.. The in-
spectors do not have an interest to place more inspectors in the network than needed
to maximize their payoff, hence the pure strategy set of the inspectors corresponds
all subsets of E. of cardinality smaller or equal to . As discussed in the last chapter
(see section 2.1) our model will only depend on the marginal probabilities g, that
an inspector is present on arc e. The set of marginal probabilities is given by

€€E(‘

To simplify the notation, we introduce constants g, = 0 for all arcs e € F'\. E. where
no inspections will be conducted.

Player k’s strategy A driver on commodity k is free to choose a OD-path r €
Ry through the two-level network D. By choosing his paths, he chooses which
portions of the real motorway network where he will be evading the toll and which
portions where he will be paying. In addition, he is allowed to take toll-free trunk
roads. Switching between evading and paying during the trip will be coupled with
additional transition costs as explained above. The set of pure strategies of player k
consists of all paths r € Ry. Using the user-paths formulation introduced in section
2.3 of the last chapter, the set of mixed strategies of player k is given by

F={pte o R Y pf =13
reERk
pF may also be interpreted as the proportion of drivers associated with commodity

k € K that are using path r € Ry.

In the user-flow formulation mixed strategy p* € QF, Vk € K, is a flow in two-
level-network D with 0 < pF < 1, Ve € E,Vk € K, satisfying the following flow
conservation Vv € V,Vk = (o0,d) € IC.

-1 ifv=o,
o= > p=¢ 1 ifo=4d
e€s—(v) ecst(v) 0 else.

p¥ is the probability that a driver associated with commodity k € K is using an arc
ec k.

Recall that a best response of player k£ to the inspectors’ strategy q is to take a
shortest OD-path with respect to arcs weights o.q.P + we, Ve € E (see proposition
2.2.1).

Scenario We assume that every driver wants to minimize his total expected costs?.
For the inspectors, we assume that they are trying to maximize the profits they

2 We do not consider other drivers’ behavior (for example being honest and always paying the
toll). In order to enforce the payment of a toll by means of mobile inspection units, users which
strategically minimize their total costs are the incentive of inspections.
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can gain from toll fares and fines. We will call this scenario MAXPROFIT. This
objective might not be equivalent to enforcing payment of tolls. In this section where
we use a two-level network to represent the transportation network, we will limit our
attention to the latter scenario. In the next section 3.2, we will introduce a different
transportation network, the single-pay-path-network. The topology of that network
will be easier and we will consider further scenarios, i.e. a scenario MAXTOLL,
where the inspectors’ objective is to maximize the profit gained from toll fares and
a scenario MAXPAYERS, where they wish to minimize the number of users evading
tolls.

The approximate probability to be inspected on arc e € FE is given by o0.q. and
the expected number of times player £ is subject to inspections on path r € Ry is
Y ecr Ocqe- In general, we will have a model, where a driver can be fined several
times for being caught evading. Experimental results of previous a previous work
[BOSS12| suggest, that the risk to be caught evading more than once is very small.
Hence, we will approximate the probability 1 —J]..,(1 — 0.q.) to be inspected on r

with ) ., 0cge.

User-paths formulation In the user-paths formulation the expected payoff of

player k is given by
_)\k = Z pf Z(UeQeP + U}e),

reRg ecr

the expected payoff of the inspectors player is

Zwkzpf ZUGQCP+ Z fle )

kel rE€NRy ecr ecrnNkp

and the expected payoff of the inspectors’ in the best-response equivalent zero-sum

game is
P I (Z OeqeP + Z%) =z

ke reRg eer ecr kex

The user-paths Nash LP, which we will solve using the cutting-plane method pre-
sented in 2.3.2, is given by

IE%\X Z Tk (3.1a)
kek
Me €3 (0eqeP+we),  VreRg, Vhek (3.1b)
ecr
0<g <1 Veec E, (3.1c)
> g <n (3.1d)
eckE,.

Recall that we have defined constants g. = 0,Ve € E \ E..
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User-flow formulation Following previous thoughts, we approximate the prob-
ability to be inspected in the user-flow formulation by . 0cqe p*. The expected
payoff for player k is given by

A ==Y (0g.P +we) pf.
eceE

Integrating the flow representation of player k’s strategies, the expected payoff of
the inspectors is given by

Zxk ZaeQePplg + Z flepl; )

ke eck eckE,

and the inspectors’ payoff in the best-response equivalent zero-sum game is

kel

Let O := {o : 3k = (0,d) € K} C V be the set of origins for commodity in
KC. According to the construction presented in subsection 2.3.3, we may use the
following user-flow Nash LP to compute an inspectors’ Nash strategy:

(Ilr’lj’i:})\( kZ: TEAE (3.2a)
ex

Yo — Yo < O(u0)q(u0) P+ Weuw), Voe O, V(u,v) € E (3.2b)

yo =0, Yoe O (3.2¢)

Ak =Yg Vke K, k= (o,d) (3.2d)

0<gq <1, Vec E., (3.2e)

> <~ (3.2f)
eck,

Again, q. = 0,Ve € £\ E., is a constant.

To use the single-source-multi-sink formulation to compute an inspectors’ Stackel-
berg strategy presented in section 2.4, let furthermore ©, := {d : (0,d) € K} be the
set of destinations to an origin o in two-level network D. The Stackelberg MIP is
given by:
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max Z TEAL — Z Zpgwe + Z Zpéfe (3.3a)

Ay, P, i

ke ocOeckE ocO ecE
0 < 0w )P + W) — Wo —yo) <MQA—pl,.), Vo€O,V(uv)€E (3.3b)
Yo =0, Yoec O (3.3¢)
Ak =Yg VkeK, k=(o,d)  (3.3d)
- > Toa ifv=o
o Y o=y foed YUEV,0€0 (3.3¢)
e€s—(v) e€st(v) (6’0) clse ¢
0 <pg < Mpg, VoeO,Ve€eE (3.3f)
pe € {0,1}, YoeO,VecE (3.3g)
0<g¢ <1, Vee€ E, (3.3h)
> g <y (3.31)
eckE.

3.1.1 Experimental results I

For experimental tests we employ real traffic data. Implementations where done in
the Python programming language and all computations where made on a PC with
4 processors at 3 GHz using the CPLEX solver. The 3-dimensional visualization was
done using MayaVi. As said at the beginning of this chapter, the motorway networks
of Germany and its subregions presented in the following correspond to simplified
depictions of the real world. The toll-free trunk roads were generated artificially.
We do not consider any costs for conducting an inspection and in the following set
the basic costs b for the truck drivers per km (fuel, salary, etc.) constantly to one.

We will choose values for input parameters like the toll fare per km and the fine
according to average values in the real world. The probability to be inspected
when an inspector is present corresponds to an estimated approximation. We solve
instances of different sizes and topologies and compare results and solving approaches
with respect to computation time, number of inspectors deployed and the inspectors’
payoff. As e.g. explained in the report about traffic diversion on behalf of the
German Government [Bun09] mentioned in chapter 1, we can not be sure what
price reflects the additional costs for taking a trunk road as well as we do not know
the price for switching between evading and paying. We will chose values and with
respect to those values check to what extend the number of inspectors deployed
influences the usage of trunk roads.

Results for the subregion Sachsen-Anhalt

We will start of with experimental results for the German subregion Sachsen-Anhalt.
The simplified motorway network and the corresponding two-level network have the
following properties:
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Motorway network Two-level network

number of nodes : 26 number of nodes ;104
total number of arcs T4 number of arcs . 304
number of trunk road arcs : 20

number of commodities ;192

number of truck drivers : 342,095

We create instance ST-6 of Sachsen-Anhalt, with the following input parameters:

f (toll per km) : 0.176
a (additional trunk road costs per km) ;04
P (fine) : 200
6 (costs for switch between paying and evading) :0.01

oe,Ve € E (prob. to be inspected when insp. present) : 0.15
~ (number of inspectors) : 6

User-paths Nash LP and user-flow Nash LP yield the same result for an inspectors’
Nash strategy q. The level of control on every arc of the motorway network is given
in the following figure 3.4. Parallel arcs correspond to opposite direction on the same
motorway. The trunk roads are drawn as doted lines in gray color. Red indicates a
high control level, i.e. a high probability that an inspector is present on an arc. The
highest control level on an arc is about 0.18. Blue indicates a low control rate.

_—;—__\--——‘/—-'9'L - / 0.16

0.14

o o
—
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o
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Figure 3.4: Inspectors’ Nash strategy for instance ST-6

The difference between the user-paths and user-flow formulation lies in computation
time of a solution. We initialized the cutting-plane method to solve the user-paths
LP considering the shortest path in the paid level of the two-level network and the
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shortest path in the evaded level when no inspectors are present. While the cutting-
plane method needs 5 iterations and 19 seconds to solve the paths LP, the flow LP
can be solved in 7 seconds.

The Stackelberg strategy is almost identical to the computed Nash strategy with
small differences between 0.044 and 0.001 on some arcs, while the computation time
to solve the Stackelberg MIP of 75 seconds is much longer than the computation time
to compute a Nash strategy. The inspectors’ profit from toll and fines when playing
with the computed Nash strategy is 4,869,105 corresponding to 99,3% (-34,333) of
the Stackelberg equilibrium profit of 4,903,438. The computed proportion of driven
km in the toll liable network on which the toll was paid is 64%. Figure 3.5 shows
the drivers flow in the computed Stackelberg equilibrium for instance ST-6.

Figure 3.5: Drivers flow in Stackelberg equilibrium of instance ST-6

The width of the tubes in figure 3.5 give an impression of the distribution of drivers.
The greater the width of an arc, the more drivers are using this arc. The maximal
number of drivers on an arc in figure 3.5 is 55,165. Again, parallel arcs correspond
to opposite direction on the same motorway. Red arcs represent arcs on which
drivers evade the toll and green arcs represent arcs on which drivers pay the toll.
Yellow arcs are either toll-free trunk roads or transition arcs between the paid level
and the evaded level of the two-level network. Note that a driver may have several
best responses in favor of the inspector, the paid and evaded km in a best response
may vary. Figure 3.5 shows one option for best responses in favor of the inspectors.
Recall that the objective of the inspectors in this game setting was to maximize their
profit from toll and fines. As a result of chapter 2, this profit is bounded from above
by the sum over all users of the costs when taking a route which is not evaded. The
more inspectors, the closer the profit will be to this bound, where one best response
to the inspectors strategy corresponds to not evading the toll. The trunk roads in
our model often correspond to geographical short cuts. But we assume that the
additional costs per km for taking a trunk road are much higher than the toll fare.
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CHAPTER 3. APPLICATION ON GERMAN MOTORWAYS

At label A in figure 3.4 and figure 3.5, we see that it is a cheaper option to take a
trunk road than paying the toll or evading. Other yellow arcs which are connecting
red and green arcs represent drivers switching from paying to evading and vice versa.

We have solved instances with the same input values as ST-6 but different numbers
of inspectors v. We compared the profit gained in a Stackelberg game when playing
with a Stackelberg strategy (STACK) to playing with a Nash strategy (NASH) and
to playing with a strategy chosen proportional to a recorded traffic distribution
(PROP). The result is presented in figure 3.6.
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Figure 3.6: Inspectors’ profit vs. number of inspectors ()

We see that the profit of NASH is often very close to STACK, while PROP yields
much less profit for v < 8. While for all v € {1,...,12}, the user-flow Nash LP
is solved in 7 to 8 seconds, for v € {2,...,6}, the cutting plane method needs 9
to 20 seconds to solve the user-paths Nash LP, but only 5 seconds for v = 1 and
v € {7,...,12}. For all v € {7,...,12}, the STACK profit is equally 4,915,309, i.e.
there is no increase with growing . With growing v the computed paid fraction
of km driven in the toll liable motorway network in STACK increases: For one
inspector (7 = 1) we computed 4 % and we reached 100 % for at least 7 inspectors.
For v € {1,...,6}, the total number of kilometers driven on trunk roads is 892,595
km. This number increases to 2,183,955 km for v € {7,...,12}, here almost all
users pay the toll®> and/or take a trunk road to complete their trip. A picture of
the computed drivers flow for 7 = 7 and the corresponding inspectors Stackelberg
strategy is given in figure 3.7.

For the following instance of the subregion of Rheinland-Pfalz, we will present results
when the costs for taking a trunk road are larger at a = 2 per km.

Concluding, for this simple instance, we can say that in terms computation time,
the user-flow approach is better than the user-paths approach. A Nash strategy

398% of the km driven in the toll liable network are paid.
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Figure 3.7: Inspectors strategy (left) and drivers flow (right) in STACK for v =7

is a good trade-off for the Stackelberg strategy between efficiency of controls and
computation time.
Results for subregion Rheinland-Pfalz

Let us now compute results for a much larger instance representing the German
subregion Rheinland-Pfalz.

Motorway network Two-level network

number of nodes .37 number of nodes o 148
total number of arcs o142 number of arcs ;506
number of trunk road arcs : 56

number of commodities . 323

number of truck drivers : 425,082

We create instance RP-6 of Rheinland-Pfalz, with the following input parameters:

f (toll per km) : 0.176
a (additional trunk road costs per km) )

P (fine) : 200
0 (costs for switch between paying and evading) :0.01

0., Ve € E (prob. to be inspected when insp. present) : 0.15
~ (number of inspectors) : 6

For this larger instance than ST-6 with additional trunk roads costs per km of 2 and
the same number of inspectors, we computed an inspectors’ Stackelberg equilibrium
payoff of 5,070,128 equivalent to the payoff for the computed Nash strategy. The
computed fraction of paid distance of the toll-liable network is 35%. The computed
inspectors’ Stackelberg strategy and the corresponding drivers flow are shown in
figure 3.8.  Also here, we compare the inspectors’ profit for STACK, NASH and
PROP for instances with the same input values as RP-6 but different numbers of
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Figure 3.9: Inspectors’ profit vs. number of inspectors ()

inspectors 7. Results are shown in figure 3.9. While NASH is almost everywhere
equal to STACK (and much higher than PROP), the differences in computation
times are significant as we can see in the figure 3.10. For v € {1, ..., 12} we needed
18 to 21 seconds to solve the user-flow Nash LP and we solved the user-paths Nash
LP using the cutting-plane method in 17 to 35 seconds. The solving time of the
Stackelberg MIP ranges between 121 and 581 seconds with one outlier at v = 10
with 1278 seconds.

In the next paragraph, we will present result for an representative instance of the
complete German motorway network. We will then consider observations concerning
the computation time made and try to solve the Stackelberg MIP using the Nash
LP solution as a warm start.

For our network of the subregion Rheinland-Pfalz and set input values, we observed
that the total km driven on trunk roads increases from 1,094,841 km for v = 1 to
1,281,225 km for v > 3 up to 2,663,464 km for v = 12.
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Figure 3.10: Computation time vs. number of inspectors ()

Results for Germany

In general control units are assigned to fixed subregions. We will here compute an
optimal inspectors strategy in a Stackelberg game for a coalition of control units on
the complete German motorway network.

Motorway network Two-level network

number of nodes - 319 number of nodes : 1,271
total number of arcs ;2110 number of arcs © 6,124
number of trunk road arcs : 1316

number of commodities ;5013

number of truck drivers : 2,549,743

We create instance GER-50 of Germany with the following input values:

f (toll per km) : 0.176
a (additional trunk road costs per km) : 04
P (fine) : 200
0 (costs for switch between paying and evading) :0.01

oe,Ve € E (prob. to be inspected when insp. present) : 0.15
v (number of inspectors) ;50

Interestingly, for the large instance of Germany it was much faster to solve the user-
paths Nash LP using the cutting-plane method than solving the user-flow Nash LP.
While the cutting-plane method took only about 20 minutes (i.e. 1,224 seconds),
the user-flow LP was solved after about 24 hours. We used the inspectors’ Nash
strategy as a feasible warm start solution for the Stackelberg MIP and after more
than 2 days did not receive results. One optional approach using the inspectors’
Nash strategy and the computed best responses for the users in a Stackelberg game
as a warm start remains to be done. The inspectors Nash strategy is presented in
figure 3.11.
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Figure 3.11: Inspectors’ Nash strategy for instance GER-50

3.2 Single-pay-path and variations of the inspec-
tors’ objective

In this section, we briefly present a different variant to represent the transportation
network of German motorways and experimental results which were presented at
the INOC 2013 in a corporate work together with Borndérfer et al. [BBSS12].

Recall in the spot checking game applied to German motorways, a transportation
network represents a simplified real-world motorway network consisting of of toll
liable arcs and trunk roads. Here we will present a transportation network, where
truck drivers take either the shortest path when paying the toll or evade on some
route in the motorway network. L.e. we do not allow any switching between paying
and evading during a trip.

Using the terminology introduced in the latter section, the transportation network
D = (V, E), which we call single-pay-path network, is holding all arcs F. on which
drivers evade the toll and that can be controlled, all toll-free trunk road arcs Ey
and for each commodity k£ € K, an additional arc e} going from the origin node
of k directly to the destination node of k£ on which the drivers pay the toll and no
inspection can be conducted. The arc e; can only be used by drivers of commodity
k. The set Ry corresponds to set of OD-paths of commodity k£ in D. The OD-path
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on which the users of £ are paying the toll is denoted by r;. The traveling costs w.
for using an arc e € E.UFE, are defined as given in in the latter section 3.1. The costs
we: for taking arc ey correspond to the traveling costs for using the shortest path of
k when paying the toll, i.e. including the legitimate toll fare for the corresponding
distance, which we denote by fe:.

Players and strategies (i.e. strategy q for the inspectors’ player and Vk € I, strategy
p* for player k) are defined as in section 3.1, except that in the user-flow formulation,
we have to make sure that arc e; is only used by player k: For every commodity
k € K, let Ej, denote the set E.U E;U {e;}. Then Vk € K, flow variables p¥ € [0, 1]
are defined for all e € Ej. Furthermore, Vk € K, we add an additional constant
ez = 0 for ej.

Using a user-flow formulation, the expected payoff of player k, Vk € IC, is given by

== 3 (0o P+ w,) k.

EEEk

Variations in the inspectors’ objective We assume that every driver wants to
minimize his total expected costs. In section 3.1 we limited our focus to the objective
of inspectors to maximize their profit gained from toll and fines (MAXPROFIT). We
exploited the structure of the objective functions of the players in this scenario to
transform the non-zero sum game into game for which we could use an LP to compute
a Nash equilibrium. We now want to consider different objectives of inspectors. We
introduce two optional scenarios: MAXTOLL, where the inspectors’ objective is to
maximize the profit gained from toll fares and a scenario MAXPAYERS, where the
objective is to minimize the number of evaders. MIP Due to the special structure
of the single-pay-path-network, we can find easier problem formulations for the new
scenarios.

Inspectors’ payoff We will express the payoff of the inspectors in general terms
by introducing parameters « € [0,1] and 8. € R, Ve € E. « denotes the fraction
of revenue from fines and (3, is the inspectors’ reward if a user takes arc e. We can
consider the different scenarios by selecting the values of these parameters in the
expected payoff of the inspectors given by

S Y el + 5. (3.4)

ke ecEy

If we choose a =1, 8. = 0, Ve € E.UE; and f,; = fr,Vk € K, then the inspectors’
expected payoff for the MAXPROFIT scenario is defined. A MAXTOLL scenario
can be constructed by choosing o« = 0 instead and a MAXPAYERS scenario with
a=0and S =1,Vk € K.
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User-flow Nash LP for MAXPROFIT As in section 3.1, O is the set of origins
to a commodity in . Following the concepts presented in section 2.3.3, the LP to
compute an inspectors’ Nash strategy for the MAXPROFIT scenario is given by

(I;}&); Z TE\k (3.5a)
ke
yg - yz < U(u,v)Q(u,v)P + W(u,w)» Voe Oa v (ua U) € E.UEy (35b)
yg = 0, Yo < O (35C)
e < yg, Vke K, k=(o,d) (3.5d)
M < Wer, VkekK, k=(o,d) (3.5¢)
0<gqg. <1, Vee E, (3.5f)
d a <y (3.58)
ecE.

Recall that ¢ = 0,Ve € E, is a constant. The LP corresponds to LP (3.2) of
section 3.1 applied to the single-pay-path network, except that we are looking for
the shortest path length w.r.t q for player k using arcs of E.UFE, (constraints (3.5b)-
(3.5¢)). We then bound the costs for player k from above by node potential y9 and
by the costs wex for taking pay-path e; ((3.5d)-(3.5¢)).

Stackelberg MIP As in section 3.1, we have ©, := {d : (0,d) € K}, the set of
destinations to an origin o € O and formulate the following Stackelberg MIP using
a big-M formulation to compute an inspectors’ Stackelberg strategy:

max > g (ade + pF(Bep —awer)) + DD p2(Be — owe) (3.6a)
QYA u,P

ke ocOeckE
0 < 0(u)Qu) P + Wiaw) — (yo —yo) < M(1— :u?u,v))? Yo € O,V(u,v) € E.UEy4 (3.6b)
yo =0, Yo € O (3.6¢)
0 <yg— Ak < MpP, VEk € K, k = (o0,d) (3.6d)
0 <wer — A < M1 —pb), Vk € K, (3.6¢)
0<q <1 Ve € E, (3.6¢)
ge =0 Vee E\ E, (3.6g)
> g <y (3.6h)

ecE
Y a1 —plo?) ifv=o,
deD,
> Phw T 2 Pl T - — ey
u:(v,u)EE.UE (v.e) w:(u,v)EE.UE () x(o’v)(l H ) ifve :DO’
0 else,
Yv € V,Yo € O

(3.61)
0<pl<Mul Yo € O,Ve € E,U Ey (3.6)
pl € {0,1}, p* € {0,1} Yo € O,Ye € E.U Ey4 (3.6k)
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The objective function (3.6a) corresponds to the expected inspectors’ payoff (3.4)
introduced in the above paragraph when )\, and p? are written in terms of p*. The
rest of the formulation corresponds to MIP (3.3) presented in section 3.1 applied
to the single-pay-path network, except that Vk € K, the shortest OD-path length
w.r.t. the user costs for a given q is bounded from above by node potential ¥
and the costs w,: for taking pay-path ey, ((3.6d)-(3.6¢)). Furthermore, we introduce
additional binary variables p; which indicate whether a player k takes the pay-path
ey, or not (see constraint (3.6d), (3.6e) and (3.61)). We set the value of flow variable
pr. = pF to receive a user-flow that represents player k’s strategy. Recall section
2.21, where the basic construction of an MIP to compute an inspectors’ Stackelberg
strategy was presented.

For the MAXTOLL and MAXPAYERS scenario, i.e. when a =0 and 3, = 0,Ve €
E. U E;, we can simplify the above MIP (3.6) as the variables p? are no longer
involved in the objective function (3.6a). In the computation for an inspectors’
Stackelberg strategy for those scenarios, we can remove the second inequality of
constraint (3.6b), constraint (3.61) and constraint (3.6j).

3.2.1 Experimental results II

We give a brief overview on experimental results using a single-pay-path network
for a simplified motorway network representing the subregion Berlin-Brandenburg
and for a network representing complete Germany. Computations where done on a
PC with 8 processors at 3.2 GHz using CPLEX.

Results for the subregion Berlin-Brandenburg

We computed results for representative network of Berlin-Brandenburg with 45
nodes, 130 arcs and 596 commodities. In the following figures, we compare the
inspectors’ Stackelberg strategies with respect to the number of inspectors v of the
scenarios MAXTOLL and MAXPROFIT, the inspectors’ Nash strategy in the sce-
nario MAXPROFIT and a strategy chosen proportional to recorded traffic volumes
(PROP). For both scenarios, we see that the Stackelberg strategies do much bet-
ter than PROP for v < 6 in terms of profit gained (figure 3.12) and evasion rate
(figure 3.13). The MAXTOLL scenario yields a higher rate of toll payers than MAX-
PROFIT. Also here, when using the single-pay-path network representation, results
also yield that the inspectors’ Nash strategy is a good trade-off between computation
time and efficiency of inspections for the Stackelberg strategy in the MAXPROFIT
scenario.

In figure 3.14, we present the inspectors’ profit for scenarios defined by different input
values for parameter « in the objective function of MIP (3.6) (with 5. = 0, Ve €
E.UEg and Ber = fer,Vk € K). For a = 0.75, we receive an inspectors’ Stackelberg
strategy yielding an inspectors’ profit close to the profit in MAXPROFIT, but with
less profit coming from fines, i.e. we with more toll payers.
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Results for Germany

Our representative network for Germany has following has 319 nodes, 2948 arcs and
5013 commodities. We used a computed inspectors’ Nash strategy (this took 29
seconds) together with computed best responses for all player k, k € K as a warm
start solution and where able to compute an inspectors’ Stackelberg strategy for the
MAXPROFIT scenario with an optimality gap of 1.5% after only 350 seconds. The
Nash strategy computed differed from the Stackelberg strategy only on a few arcs
and captured 99.7% of the profit. The computed distribution of inspectors in the
Stackelberg equilibrium for 50 inspectors is shown in figure 3.15.

Brief comparison of two-level network and single-pay-path network

In the two-level network we added the option to switch between paying the toll and
evading. The choices are depending on the transition costs 6. Two-level network
and single-pay-path yield different models in terms of the strategy sets for all player
k and different results. As the size of a single-pay-path network is much smaller, we
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Figure 3.15: Inspectors’ Stackelberg strategy in MAXPROFIT for v = 50

were able to get results in shorter time (but we have to consider that computations
where done on different PCs with with different numbers of processors at different
values of GHz). On the other hand, the two-level network depicts users that have
much more freedom in choosing to act.

We will know present an extension of the model where users are choosing their
strategy in a two-level network and the inspections have to obey certain spatial
restrictions and time dependencies.
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3.3 Inspections regarding space and time

As explained earlier, inspections in reality have to fulfill a variety of regulations
and of course they will have to obey the laws of nature such as time and spatial
dependencies of consecutive inspection tasks. In the following we will try to integrate
these points to get more realistic results. We will start with considering inspections
of a fixed duty time lengths and the integration of a real-world regulation to conduct
an inspection task within a fixed section of the motorway network. Furthermore,
we want to model realistic transitions between different motorway sections, that are
actually possible, because of the sections’ connections.

3.3.1 Introducing a cyclic duty digraph

In a recent work from 2012 by Yin et al., schedules for randomized patrols for fare in-
spection in the Los Angeles Metro Rail System are calculated using a game-theoretic
approach [YJJT12]. In contrast to our transportation network, they consider a more
trivial topology of a single metro-line. A nice detail in their approach is that feasi-
ble inspection duties are modeled as a flow through a network. In the following we
will use some ideas of of [BSS11] and [YJJT12] and construct a cyclic duty digraph
D= (f/, E) from which we can extract probabilistic inspections regarding space and
time. We introduce the following parameters:

inspection duty length (for example 2A)
set of predefined inspection sections, where section S; € S is a subset of F

H planning horizon (for example 24 hours)

A time discretization (uniform duration of a time interval)
T set of (non-overlapping) time intervals in H with |T] = %
L

S

Section digraph We assume that the arc set of the motorway network is divided
into inspection section S; € §. Let digraph Dg, which we call section digraph, be
the digraph with nodes corresponding to inspection sections and arcs representing
their connections.

Example 3.3.1. Our section digraph Dy is given by three sections with connections
as shown in the picture below.

section 1 section 2 section 3

]

Duty digraph To construct cyclic duty digraph D = (f/, E), for every time in-
terval t € T, we create a copy of every section S; € S. Let t” € T denote a duty
starting time interval. We replicate above copies again for every starting time in-
terval tV € T and receive triples (t7,t,S;) which represent the inner nodes of D.
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Furthermore, we have one starting depot node d; and one ending depot node d; for
the inspectors.

Our goal is to have a duty digraph such that every (ds,d;)-path corresponds to
a cyclic duty of lengths L with time interval and section transitions that comply
with the real world. This can be realized by creating arcs from starting depot node
ds to every node o = (tV,t,S;) where the duty starting time interval ¢V and the
time interval ¢ (corresponding to the conduction time interval of an inspection task)
coincide and by creating arcs from every node ¢ = (t%,¢,5;) where the difference
between t” and ¢ equals % mod % (see footnote?) to the ending depot node d;. The
inner nodes (i.e. nodes that are not a depot node) will be connected with each other
by arcs w.r.t. possible section transitions and consecutive time interval transitions
in a cyclic duty roster, such that every (ds,d;)-path is of lengths L. Nodes with
degree zero should be removed.

Example 3.3.2. Let section digraph Dg be given as in example 3.3.1 and let plan-
ning time horizon H = 6 (hours), time discretization A = 2 and inspection lengths
L = 4. We receive the cyclic duty digraph D shown in the following figure 3.16. For

section 1, 2 and 3 we use the labels Sy, Sy and S5. n
t=1 t=2 t=3
Sy 1151><1251 135
=1 Sy K18, 125, 135,
* =
Ss/ A1 S, 128, 3.5

1 215, 225, 235

—
rer /5224/«2/22‘572%2352
ds S3—2155 22855 23855 d;

3353><315y
3353><31§{
S3 328 338 318

Figure 3.16: Duty digraph D of example 3.3.2

For now, we will assume that every inspector is allowed to start its duty on ev-
ery section in any time interval. An extended formulation with several inspection
vehicles and varying restrictions will be given in the following section in 3.3.4.

4The difference equals the number of time intervals per duty modulo the number of time intervals
in the planning horizon.
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Inspectors’ strategy We introduce flow variables ¢: > 0 for all arcs é € E. For
simplicity reasons, lets assume that we have exactly 7 inspectors. A mixed strategy
of the inspectors corresponds to a flow through D = (V, F), i.e. q := (G¢)zcpp, Where

—v if v =d,,
Z G — Y G=8 7 ifo=d, (3.7)
eco—(9) eest(v) 0 elseifveV.

Let us consider a MAXPROFIT scenario, where the network users are choosing their
OD-path in a two-level network (see section 3.1).

Probability that an inspectors is present in the two-level network The
sum of the incoming flow of a node (tV,¢,S;) € V over all starting time intervals
tY € T is the fraction of inspections q(s,+ in time interval ¢ on section Sj, i.e.

Usi = D Z G, VS, eSVteT.

t1967’ ecéd (v):
o=(t%t,5;)eV

(3.8)

Recall that the set E. C E of the two-level network D = (V| E) is the set of all arcs
on which inspections may be conducted. Let s, := > g g, [ denote the length
of section S;. (VS; € S, we assume lg, > 0). As an approximation, we will suppose
that within a section S; and a time interval ¢ the inspection flow ¢, ;) is spread
among all arcs on which inspections may be conducted proportional to their length.
Le. let gz denote the probability that an inspector is present on arc e € E, in
time interval ¢ € T, then the following has to hold:

: le
Qlet) = mln( Z q(5;,t) g R 1 ) Ve € Ec,Vt € T (39)

S;ES: e€S;

Note that several sections may cover the same arc. According to the formulation
presented in section 3.1, we introduce constants gy =0, Ve € B\ E,, Vt € T.

An optional approximation for the probability that an inspector is present on arcs
of the two-level network when using the duty digraph to represent the inspectors
strategies is given in the subsection 3.3.4. This alternative is meant to approximate
the behavior of experienced inspectors within a section.

Because previous experimental results suggest that the Nash solution is often a
very good trade-off for the Stackelberg strategy in the MAXPROFIT scenario w.r.t.
computation time and the efficiency of inspections, in the following, we will present
the user-flow Nash LP that integrates inspection duties regarding space and time.
A user-flow Stack MIP may be constructed similarly. We assume that every user is
scheduled to do his trip in a fixed time interval and adjust our notation such that
a commodity is given by a pair of Origin-Destination-nodes and a time interval, i.e.
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we have (k,t) € K, where k = (o0,d) for selected nodes o,d € V, 0 # dand t € T.
The demand for commodity (k,t) is given and denoted by x . For simplicity
reasons, we assume that every user trip has a duration of A. The pair (v,t) is a
node in time interval copy D; = (V;, E;) of two-level network D corresponding to
node v € V' in time interval ¢. Accordingly, (e, t) is an arc of D, and O, is the set
of all origins of a commodity in time interval ¢. We integrate equations (3.7), (3.8)
and (3.9) into the user-flow Nash LP (3.2) of section 3.1 and receive the following
LP which computes an inspectors’ Nash strategy q regarding space and time and
the corresponding values for q from which probabilistic inspection duties can be
attained as we will present in next subsection 3.3.2:

- ' 3.10
a,8,5,) Z T (k,t) Ak, t) ( .,
(kt)eK

ygzg - ygzg < O (uw)t) U(uw),) P+ Wiuwy ), V(0,8) € O, V((u,0),t)) € By, VEET

(3.10Db)
vy =0, V(ot) €O, VEET (3.10¢)
Aty = Yon) V (k1) € K, (k) = ((0,d), 1) (3.10d)

—y if ¥ =d, 3
oG- Y, @ =8 7 ifv=d, VieV (3.10e)
ées— (o) Eest(d) 0 else,
0 < gz, VéecE (3.10f)
dsy =Y, > VS, eS8, VteT (3.10g)
v E€s ():
o=(t",t,5:)eV

le
d(e,t) < Z q(S;,t) r, Vee E., Vte T (310h)

S,€5:e€S S
ety < 1, Vee E, VteT (3.10i)
ety = 0, Vee ENE, VteT (3.10j)

(3.10b)-(3.10c) form the single-source shortest path LP formulation for the users
of time interval copies D; of two-level network D, where node potentials ygzg are
bounded from above by the length of a shortest path from origin o to node v in D;.
The length of a shortest path for commodity (k,t) corresponds to the costs A
(3.10d). (3.10e)-(3.10j) ensure a feasible marginal inspectors’ strategy q subject to

a feasible flow q in the cyclic duty digraph.

3.3.2 Extracting a probabilistic duty roster

From the probability distribution on arcs in duty digraph D we can extract prob-
abilities to choose a duty. Computed distributions may be used as input for the
current large-scale integer program solving the TEP [BSS11], briefly introduced in
section 1.1, to compute an integrated control and staff roster. Our approach will be
explained using the following example.
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CHAPTER 3. APPLICATION ON GERMAN MOTORWAYS

Example 3.3.3. Let us assume a given motorway network is divided into two sec-
tions S; and S;. We have one inspector and consider two conducting time intervals,
just one duty starting time interval and a duty lengths equivalent to the length of
two time intervals. Let the computed optimal inspectors flow q correspond to the
labels of duty digraph Dp given by:

118, 0.1 125,

. 0.4 .
0.5 %

115, 05 125,

Arc (115, 12S5) has been removed because its flow value is zero. We search for an
arc € with minimal ¢; > 0. Let us for example chose arc (1157, 1257). Now we push
the value 0.1 forward towards d; and backward towards d;, extracting a (ds, d;)-path.
L.e. we compute a (1257, d;)-path and a (ds, 1157)-path and connect them with arc
(115y, 12S5;). This path corresponds to a duty that is chosen with probability 0.1.
We decrease the flow values on all arcs which belong to the extracted path by 0.1,
remove all arcs with ¢z = 0 and repeat the procedure until all flow values are zero.
For this example, we compute the following three duties:

Duty | Description Chosen with probability

duty 1 | on section S; int=1,2 0.1

duty 2 | starting on section S; in¢ =1 and | 0.4
ending on S5 in t = 2

duty 3 | on section Sy int=1,2 0.5

3.3.3 Experimental results III

As in the experimental results I presented in subsection 3.1.1, the computations
where done on a PC with 4 processors at 3 GHz using the CPLEX solver.

Impact of inspection sections

To get an impression of the impact of assigning inspectors to inspection sections, we
compute the optimal Nash strategy for the inspectors for instance ST-6 presented

52



3.3. INSPECTIONS REGARDING SPACE AND TIME

Figure 3.17: BAG inspection sections for Sachsen-Anhalt

in the experimental results I (see 3.1.1). Let us for now neglect temporal restric-
tions. The following picture shows an approximate spatial distribution of inspection
sections of the subnetwork Sachsen-Anhalt of the BAG.

Below, on the left we see the inspectors’ Nash strategy for instance ST-6 as presented
in 3.1.1, where no inspection sections where considered, which we compare to the
picture on the right showing the inspectors’ Nash strategy for instance ST-6 subject
to the BAG inspection sections.

— /*——:—Z/ 0.16 )\ 0.200
T 7 i

\ 0.14 0.175
0.12 _ 0.150 —
g // g
0.10 § 0.125 §
o o
G G
0.08 % 0.100 <
% 3
0.06 3 i_‘i—_: 0.075 =2
0.04 0.050
0.02 0.025
0.00 0.000

Figure 3.18: Inspectors’ Nash strategy for in- Figure 3.19: Inspectors’ Nash strategy for in-
stance ST-6 (no inspection sections) stance ST-6 subject to BAG inspection sec-
tions

When considering BAG inspection sections, the computation time for an inspectors’
Nash strategy for instance ST-6 using Nash LP (3.10) with |7| = 1 is 8 seconds,
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CHAPTER 3. APPLICATION ON GERMAN MOTORWAYS

which is +1 second compared to the computation time of a Nash strategy with Nash
LP (3.2) where no sections are considered. The inspectors’ profit from toll and fines
in a Stackelberg game for the solution of (3.10) given in figure 3.18 is 4,660,486.
This is 2% less (- 9,2024) compared to the profit from the solution of (3.2) given in
figure 3.19.

Inspections for a cyclic schedule

We computed an inspectors’ Nash strategy for instance ST-6 subject to BAG in-
spection sections for a cyclic schedule with H = 24 (hours), a time discretization
A = 2 and a duty length L = 4. The result is shown in the series of pictures in
figure 3.21. We see that for v = 6, i.e. 6 inspectors distributed over the whole
day, we receive inspections on arcs in the northern region of Sachsen-Anhalt mostly.
The inspectors’ profit in a Stackelberg game when playing with the computed Nash
strategy is 1,296,887. The plot in figure 3.20 shows the quotient inspectors’ profit
/ driven km in the toll liable network, which gives some information about the ef-
ficiency of controls in every time interval. Recall that the toll fare per km is 0.176
and corresponds to an upper bound for this quotient.

r
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Figure 3.20: inspectors’ profit per driven km in the toll liable network vs. time interval
We have also computed an instance of with the same values as SA-6 with v = 20,

presented in figure 3.22; the effect is that inspection are distributed throughout the
network, the inspectors’ profit in a Stackelberg game is 3,492,790.

The extracted probabilistic duty roster for the computed inspectors’ Nash strat-
egy for instance ST-6 with v = 6 is given in table 3.1. The sections used in the
descriptions were given in figure 3.17.
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Figure 3.21: Inspectors’ Nash strategy for ST-6 for a cyclic schedule
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Figure 3.22: Inspectors’ Nash strategy for ST-6 with v = 20 for a cyclic day
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3.3. INSPECTIONS REGARDING SPACE AND TIME

Duty Description Chosen with probability

duty 1 | 6-8 h: section 1, 8-10 h: section 11 0.854
duty 2 | 8-10: section 1, 10-11 h: section 11 0.414
duty 3 | 10-12: section 1, 12-14 h: section 11 | 0.641
duty 4 | 12-14: section 2, 14-16 h: section 11 | 0.002
duty 5 | 12-14: section 17, 14-16 h: section 4 | 0.358
duty 6 | 12-14: section 1, 14-16 h: section 11 | 0.524
duty 7 | 14-16: section 11, 14-16 h: section 2 | 0.002
duty 8 | 14-16: section 2, 14-16 h: section 11 | 0.002
duty 9 | 14-16: section 1, 14-16 h: section 11 | 0.344
duty 10 | 14-16: section 11, 14-16 h: section 1 | 0.463
duty 11 | 16-18: section 11, 18-20 h: section 1 | 0.414
duty 12 | 18-20: section 11, 20-22 h: section 1 | 0.854
duty 13 | 20-22: section 11, 22-24 h: section 1 | 0.564
duty 14 | 20-22: section 11, 22-24 h: section 11 | 0.564

Table 3.1: Probabilistic duty roster for ST-6 for a cyclic schedule

3.3.4 Extensions

Simple extensions (for example adding a fine for every evader detected to approx-
imate the loss of time in practice for recording an evader) are easy to imagine.
Others, like forcing a duty mix over different time intervals may be handled by the
IP to solve the TEP [BSS11]| (see section 1.1 of this thesis) when creating a real
duty roster that is subject to a complex set of legal constraints. In the following,
we will present two simple extensions. Fist, how to integrate multiple depot for the
inspectors when computing probabilistic inspections w.r.t. space and time according
to subsection 3.3.1 and secondly, we present an optional approach to approximate
the distribution of inspectors within a section.

Multiple depots

In praxis on German motorways, an inspector will usually begin and end an in-
spection duty by inspecting a section close to his home. Therefore, to make the
model more realistic, we may extend it by integrating multiple depots, one for each
inspector, into the duty digraph D= (f/, E) introduced in subsection 3.3.1:

Let J denote the set of inspectors. For every inspector j € .J, we define non-negative
flow variables (qg) scip- In cyclic duty digraph D we replace the starting depot node
ds and the ending depot node d; by starting depot nodes d/ and ending depot nodes
d! for every inspector j € J. We add connections to sections according to regulations
that have to be given.
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CHAPTER 3. APPLICATION ON GERMAN MOTORWAYS

Here the sum over all j € J and over all starting time intervals ¢V of the incoming
flow of a node (7, ¢, S;) gives the fraction of inspections q(s,+) on section S; in time

interval £, i.e.
aso=y Y, D, @ (3.11)
J )

9 a€d (v
6:(t197t7si)

In the MAXPROFIT scenario, we are looking for (d/, d/)-flows with flow value one
which maximize the sum over all inspectors j € J of the profit from toll and fines.

Approximating the distribution of inspectors within a section

Earlier we approximated inspections within an inspection section and a time interval
by distributing inspectors on arcs proportional to their lengths. Here, we will present
an optional approach that is meant to approximate the behavior within a section of
experienced inspectors, i.e. we allocate inspectors within a section such that, in a
spot-checking game, the profit from toll and fines in that section is maximized.

Let us consider two-level network D = (V| E). Recall that S; C E. For every section
S; € §, and for every time interval ¢ € T, we create an arc set =g, of arcs from
an imaginary node to every node in V' that is incident with an arc of section S;.

Example 3.3.4. Let two-level network D be given by the following digraph. The
red arcs (arcs ey, es, eg and ejg) belong to a section S; € S:

€1, €2 ) €3, €4
]65 €6

Arc set Zg, 1) for some time interval ¢ € T consists of new arcs d;, d; and ds, which
are drawn below in gray color:

€1, €2 ) €3, €4
; €5, Ce ‘
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3.3. INSPECTIONS REGARDING SPACE AND TIME

Now to optimize the allocation of inspectors within a section, VS; € S, Vt € T, we

) . St o
introduce new flow variables (zé ))ee BUSs, ,, Satisfying:

deZ Z;Si’t) = 4(8;,t)
=(85,t)
2509 = 0, Vee EX (SiNE,),
(Sit) (Sit) (3.12)
. Ze = Y oz YueV(S),
e€d— (v) ecdt(v)
= mi (99 1), Vee B,V
Qe,t) = min( ) 277, 1), Vec E,VteT.
S;eS

Above extensions may be included into the Nash LP regarding space and time (3.10)
presented in subsection 3.3.1 by adjusting variable q as explained above, adding
new flow variable z and sets =g, and replacing constraints (3.10g)-(3.10j) with
equations (3.11) and (3.12).
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Chapter 4

Conclusion

We modeled the strategic interaction between the inspectors and the users of a
transportation network as a specific Stackelberg game which we call spot-checking
game. Our aim was to find equilibrium strategies with a good balance between
computation time and inspectors’ payoff. We found that a spot-checking game is
best-response equivalent to a zero-sum game and hence, a Nash equilibrium can be
computed by solving an LP. As the number of strategies for the users is potentially
huge, a cutting-plane method to solve the large-scale LP and an alternative efficient
user-flow formulation was presented. Finding the optimal strategy to commit to for
the inspectors in the Stackelberg game is much harder. Here we used an MIP for
the computation. We established a relation between spot-checking games and the
class of security games, i.e. spot-checking games form a superclass of the class of
security games. Using some results for security games, a theoretical analysis of our
spot-checking game yielded some positive conclusions, concerning the deviations of
Nash equilibrium and Stackelberg equilibrium strategies. If certain properties are
satisfied, we could prove that any inspectors’ Stackelberg equilibrium strategy is
also a Nash equilibrium strategy. But simple examples can be found for which this
is not true. We applied the model to simplified instances of the transportation
network of German motorways and some of its subregions using real data. We
presented two representations of a transportation network, one in which users are
free to pay the toll or evade on parts of their trip and another approach where the
users have a single path on which they can pay the toll and further path options
on which they evade. The second approach yields faster results due to the smaller
size of the network, while the first approach corresponds to the most advanced
representation of a transportation network. Computed distributions of inspectors
in the equilibria were compared to distributions proportional to recorded traffic
volumes in a spot-checking game. Our experimental results suggest that, for a
reasonable number of inspectors, the allocation proportional to a recorded traffic
distribution yields a much smaller payoff than the optimal payoff for inspectors.
While the payoff for distributing inspectors according to a Nash equilibrium strategy
is often close the optimal payoff. L.e. experimental results suggest that instead of
solving an MIP to compute a Stackelberg equilibrium, one may often use an LP
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computing a Nash equilibrium strategy in order to have a good approximation and
much less computation time. Furthermore, we presented an application where we
were considering inspections regarding spacial restrictions and time dependencies
and extracted a probabilistic duty roster. Results of this work may be used as input
for the current large-scale integer program to compute an integrated control and
staff roster for the real-world problem [BSS11|. In our model, we assumed that the
users have full information about the inspectors strategy before they chose their
own strategy, an interesting aspect that could integrated into our model would be
robustness in terms of uncertainties about the users behavior.
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Appendix A

Spot-checking games as superclass of
security games

Security games are formally defined for example in [YKK*10|. In the following, we
show that every spot-checking game can be reduced to a security game with possibly
an exponential number of targets w.r.t. the size of the transportation network and
conversely, we show that every security game can be reduced to a spot-checking
game whose size of the transportation network is linear in the number of OD-paths.
This yields that spot-checking games form a superclass of the class of security games.
For simplicity reasons, we consider a spot-checking game between one player k£ and
the inspectors player. The formulation can be generalized to a game with multiple
followers.

Reduction of a spot-checking game to a security game Given a spot-
checking game G, the set of possibly exponentially many OD-paths R, w.r.t. the
size of the transportation network corresponds to the set of targets T' = {t1,...,t,}
in a security game. The set of defender’s resources and the set of defender’s sched-
ules in a security game are modeled non-explicitly by assuming that we have a
limited number of v inspectors in spot-checking game G which can cover subsets
of the arc set E of cardinality up to v subject to some further linear constraints.
In [YKK'10] the expected utilities of the players in a security game are defined in
terms of utilities, when a target is covered by a defender or not, i.e. by

U5(t;), the defender’s utility if ¢; is attacked while ¢; is covered,
U¥(t;), the defender’s utility if ¢; is attacked while ¢; is not covered,

US(t;), the attacker’s utility if ¢; is attacked while ¢; is covered,

Ul(t;), the attacker’s utility if ¢; is attacked while ¢; is not covered.

We do not explicitly define player k’s costs, respectively the inspectors’ payoff, if
player k takes a path r € R; and the inspectors control some subset of arcs be-
longing to r, but rather state that the expected payoff for choosing a path r when
the inspectors’ marginal probability q is given is — > o (ge0e + w,). This term
corresponds to the term ¢;US(t;) + (1 — ¢;)UY(t;) in a security game, where ¢; is
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the marginal probability that a target t; is covered. The expected payoff for the
inspectors in a spot-checking game, when player k takes path r is Zrem(%ae + fe)
corresponding to ¢;US(t;) + (1 — ¢;)UY(t;) in a security game.

As 0. > 0,Ve € E, the key properties of security games are satisfied. l.e. 1) the
payoff for player k for taking path r, when no inspector is present on any arc of path
r, is strictly larger than the payoff for player k, when an inspector is present and
2) the inspectors’ payoff gained by covering some arc of r if player k takes path r
is strictly larger than the inspectors’ payoff if player k takes r and no arcs of r are
controlled.

The attacker’s strategy a in a security game corresponds to player k’s strategy pF,
hence the expected payoff for player k£ in a spot-checking game given by

- Z pf Z(Qeae + we)

reERg ecr

can be formulated as

Z a; (c;Uq(t;) + (1 — i) U (L))

i=1,..,n

corresponding to the attacker’s utility in a security game. Accordingly, the expected

payoff for the inspectors
> kD (geoe + f)

reRy ecr

can be written as defender’s utility in a security game given by

> ai(@Us(t) + (1= a)Ug (1)

i=1,..,n

Reduction of a security game to a spot-checking game Conversely, we
can reduce any given security game between a defender and an attacker to a spot-
checking game between inspectors and player k in a transportation network D =
(V,E,w,f, o) with exactly one arc from the origin to the destination of player & for
every attacker’s target t; € T = {t1, ..., t, }. The utilities in a security game, when a
target is covered by a defender or not, are given in the spot-checking game as follows
(a target t; € T is represented by an arc e € F):

US(t;), the defender’s utility if ¢; is attacked while ¢; is covered, is given by f. + o,
UY(t;), the defender’s utility if ¢; is attacked while ¢; is not covered, is given by fe,
°(t;), the attacker’s utility if ¢; is attacked while ¢; is covered, is given by w, + o,

)
U(t;), the attacker’s utility if ¢; is attacked while ¢; is not covered, is given by we.

S
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The additional OD-path on commodity £ in a transportation network, that is never
controlled by the inspectors could be modeled by adding another arc, whose costs
are very high and hence it is never taken by player k.

The marginal probability ¢; that t; € T is covered, correspond to ¢, for e € E. q
is subject to some linear constraints, and schedules covering certain targets can be
extracted. The attacker’s strategy a is given by player k’s strategy p*. Therefore,
the expected attacker’s utility when the defender is playing with marginal strategy
c and the attacker is playing with strategy a given by

Z a; (ciUg () + (1 — e)U, (),

i=1,..,n

can be represented by the expected payoff for player k in a spot-checking given by

- Z p]: Z(Qeae + we)'

rER ecr

The expected utility for the defender in a security game for the strategy pair (c, a)
given by

> i (qUg(t) + (1 — ) Ug(t:)) -

i=1,..,n

corresponds to the expected payoff for the inspectors in a spot-checking game given

by
S D (qeoe + fo).

reRk ecr
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Appendix B

German motorways control system
and the probability to be inspected
when an inspector is present

In the application on German motorways, the value of 0., the probability to be
inspected when an inspector is present on e € E, can be approximated independent
of the strategies chosen by the players k.

On German motorways, the inspectors are driving special inspection vehicles and
are able to inspect every truck they overtake using an infra-red tool which checks the
on-board unit of the truck or by manually checking the number plate in a wireless
access data base. As stated in [BBSS12|, o, can be derived from the ratio of the
speed of the inspectors over the trucks’ speed.

In addition, in reality we can assume that a large number of users are honest and
do not act strategical. Let the total number of drivers (honest drivers, drivers
that strategically choose their OD-Path and all other drivers) on an arc e € E be
denoted by y. and let 7 denote the number of drivers that can be inspected by one
inspector, then o, can be approximated by min(;—e, 1). The assumption that there
is a negligible small number of strategical users does not contradict our approach
to consider strategical acting drivers. Those are the users which are influenced by
inspections, the users we would like to deter from evading.
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