
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

SEBASTIAN DRESSLER, THOMAS STEINKE

An Automated Approach for Estimating
the Memory Footprint of Non-Linear

Data Objects

This work is funded by the German BMBF project ENHANCE, grant no. 01IH11004G.

ZIB-Report 13-46 (August 2013)



Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782



An Automated Approach for Estimating the
Memory Footprint of Non-Linear Data Objects

Abstract Current programming models for heterogeneous devices with
disjoint physical memory spaces require explicit allocation of device mem-
ory and explicit data transfers. While it is quite easy to manually im-
plement these operations for linear data objects like arrays, this task
becomes more difficult for non-linear objects, e.g. linked lists or multiple
inherited classes. The difficulties arise due to dynamic memory require-
ments at run-time and the dependencies between data structures. In this
paper we present a novel method to build a graph-based static data type
description which is used to create code for injectable functions that
automatically determine the memory footprint of data objects at run-
time. Our approach is extensible to implement automatically generated
optimized data transfers across physical memory spaces.

1 Introduction

Current programming models for heterogeneous systems with disjoint address
spaces require an explicit data transfer. Therefore, data management and migra-
tion between devices must be implemented by the programmer. For linear data
objects like arrays these tasks are rather simple to implement. Specific program-
ming models, e.g. OpenACC or the Intel Compiler for Intel Xeon Phi, already
enable implicit transfers. However, non-linear data objects are not sufficiently
supported due to the need for serialization before transfers. This is caused by a
lack of sophisticated automatic serialization.

We want to address implicit data movements and propose a three step so-
lution. First, the memory footprint (MF) and transfer direction (intent) of
data objects must be determined. Second, an automated serialization and de-
serialization scheme must be implemented. As third step, code executing the MF
determination, serialization and the data transfer must be injected.

In this paper, we focus on the first step. We present an approach that ana-
lyzes non-linear data objects and estimates their MF dynamically at run-time
alongside with the objects intent. Related methods focus on existing compilers
or implement altered programming models. In contrast, our approach utilizes
the Low Level Virtual Machine (LLVM) compiler framework. LLVM introduces
an intermediate code representation (IR) where higher level abstractions are dis-
closed. Thus, information like data types become directly deducible. This enables
language independence and removes the need for additional object metadata in
our approach.

As we show in the evaluation section, we are able to process a wide range
of simple and non-linear data objects, namely scalars, multi-dimensional arrays,



and C++ classes with templates, multiple inheritance and iterators with both,
static and dynamic allocation. The currently existing limitations concern over-
lapping pointers, function pointers, and re-allocation. The main contributions of
the paper are: i) the design and implementation of two LLVM passes for analyz-
ing data structures and to determine the data-direction of function arguments,
and ii) a method for processing simple and non-linear data objects to derive
run-time properties (MF) without adding additional metadata.

The paper is structured as follows. Next, we provide an overview on related
work. Subsequently, we discuss our implemented analysis process. Then, the
handling of different data objects is discussed in detail. That is, we show how
they are internally represented and how their MFs are estimated. The evaluation
section presents results of several synthetic tests and of real-world applications
and discusses the run-time overhead for selected tests. We conclude the paper
with a summary and an outlook.

2 Related work

Determining the MF of data objects relates to type checking compilers. SAFE-
Code [3] for instances provides array bounds checking. The MF of the array must
be known to perform this task. Currently, only linear arrays are supported, while
our approach also enables analysis of non-linear objects.

HiCUDA [5] targets heterogeneous systems. Allocations and transfers are
performed automatically but require #pragma directives. Additionally, informa-
tion regarding the shape of the data must be provided. We want to remove these
constraints by performing an automated shape recognition.

Uchiyama et al. [10] propose an automated memory allocation method for
OpenMPC [9]. However, for performance reasons CUDA as programming model
is often favored. Therefore, the necessity to analyze data objects in existing
applications remains. With the use of LLVM, our approach only requires sup-
port by a LLVM language frontend, e.g. Clang for C / C++ or DragonEgg for
FORTRAN and other languages supported by GCC.

Jablin et al. [7] proposes the first fully automatic CPU-GPU communication
management. This approach enables the programmer to stay with CUDA. Fur-
thermore, CPU pointers are mapped directly to GPU pointers which means that
no serialization before transfers is required. However, once the programmer does
not access GPU data in the same way as on the CPU, data must be re-ordered
which implies serialization.

In our previous work [4] we focused on simple data objects in C. This paper
focuses non-linear data objects with abstractions toward language independence.

3 The Data Type Analysis Process

This section describes the details of the process of analyzing object types and
estimating their memory footprint (MF). Fig. 1 shows its general outline and
also represents the outline of the discussion.



Original Source Code

Kernel Function Labeling

Argument Type and Structure Analysis

Size-Function Code Injection

Modified Code

Target Function

Type Dependency Graph

Semi-Automatic

Fully-Automatic

Figure 1. Representation of the tool flow for automatically estimating the memory
footprint of data objects.

The analysis process and the subsequent creation of size-functions to esti-
mate the MF both utilize LLVM [8]. In conjunction with LLVM we introduce
a graph-based representation of the objects data structure which simplifies the
subsequent analysis process.

3.1 Labeling of Kernel Functions

The labeling of a kernel function (KF) marks the function to be analyzed.
This is a semi-automatic task since the developer manually chooses the KF.
For labeling, source code #pragma statements are not an option, since they
are not visible in LLVM IR. Instead we use the compiler attribute annotate:
__attribute__((annotate("kernel"))) is placed prior the KF. In LLVM IR
the attribute is a global variable which we search for during analysis.

3.2 Analysis of the Structure of Function Argument Types

This step reveals the structural type layout of an argument of the selected KF.
The goal of the analysis of the type structure is to enable the construction of
formulas expressing the MF of instances of data types. For instance, consider
the class type definition class A { int x, y; }. The MF of an object A a;
is expressible as 2 × sizeof (int) bytes. Type structure information are directly
deduced from LLVM IR during type structure analysis. We store the structural
layout in a graph, the type dependency graph (TDG), avoiding repetitive analysis.

The TDG is a directed graph. Its vertices represent data types and are labeled
with the name of the type and its byte-width, if the data type is a scalar. The
TDG may contain cycles to represent recursive type structures. Furthermore,
the KF is added as root vertex. This ensures a common known entry point and
also makes the TDG unique across different KFs.

If a vertex represents a non-linear data type it contains at least a single
outgoing edge. These edges branch the non-linear data type into known subtypes.



Edges are labeled with an index containing the position of a subtype in its source
type. Fig. 2a depicts the TDG for the previously defined class A.

If a variable is a (multi-dimensional) pointer, its base type is extracted. The
corresponding edge is labeled as pointer-edge. Its target vertex then represents
the type that is pointed to. This approach enables an easier type determination
in subsequent steps while retaining pointer information. Fig. 2b depicts the TDG
of the function definition void f(int *a, int b). In Section 4 we discuss TDG
construction for different data types in detail.

class.A int, 4B

0

1

(a)

f int, 4B

0

1

(b)

Figure 2. Example TDGs for two different data type structures. The number at each
edge represents the position of the member in the class. Dashed edges represent point-
ers. a) illustrates the TDG for class A { int x, y; }. b) illustrates the TDG for
void f(int *a, int b).

3.3 Injection of Size-Functions and Intent Estimation

For each KF argument, we inject an appropriate size-function (SF) and a call to
it with LLVM. A SF returns the MF of an argument at run-time. It is generated
by traversing the TDG and considering dynamic memory allocations. Section 4
discusses this process in detail.

During run-time all SFs are called and their results are gathered. Their sum-
mation occurs in three different sums to distinct between the arguments intent: i)
in, representing read-only arguments, ii) out, representing write-only arguments,
and iii) in-out, representing read-write arguments.

We used Andersen’s algorithm for inter-procedural points-to analysis [1] as
basis to determine data directions. In particular, we construct a data dependency
graph (DDG) containing loads (LD) and stores (ST) related to the argument.

Kernels with side-effects are considered by tracing function calls and linking
correlated arguments. That is, we extend the parent DDG by the one generated
from the called function.

For construction, it also is crucial to distinct, whether LD and ST access an
arguments value or only its address. For instance, in LLVM IR, argument ad-
dresses are commonly stored at the beginning of a function. These ST operations
do not belong to the graph, because they do not write a value to the argument.

To determine the data direction, we consider the count of LD and ST in-
structions accessing the argument. If only LD instructions are recognized, the
argument is labeled with in. In contrast, it is labeled with out, if only ST in-
structions exist. For all other cases, the argument direction is in-out.



Once the processing is finished, the altered LLVM IR is compilable to an exe-
cutable. On execution, SFs are called and their results are gathered as described.
The resulting sums can then be further processed, e.g. printed to the console or
used for memory allocation.

4 Handling of Data Types

This section discusses how the type dependency graph is constructed for different
data types and how a matching SF is derived.

4.1 Scalar Data Types

C / C++ scalar data types, e.g. int, utilize a single vertex. The byte-width of the
vertex is obtained by calling the LLVM function getBitWidth and subsequent
division by 8. Alignments are considered if the MF is affected. The SF returns
the byte-width of the type.

4.2 Pointers

Pointers are represented by pointer-edges in the TDG. We assume, that the
pointed-to value is either a scalar or a pre-allocated (multi-dimensional) array
of scalars. The pointer itself does not belong to the MF of the argument. This
relies on the assumption, that only the pointed-to object is of interest.

To determine the allocated size, we explicitly search for calls to allocation
functions. Currently, only memory allocations by either malloc or new are sup-
ported. A ST can be found, if the argument is related to an allocation function.
The DDG helps determining this relation. Once a matching allocation call was
found, its argument is extracted. At run-time, this argument contains the allo-
cated size in bytes.

If the pointed-to object is a scalar or a one-dimensional array this argument is
returned by the SF. However, if a multi-dimensional array was allocated, our tool
search for loops surrounding the identified allocation function. We use the LLVM
LoopInfo (http://llvm.org/docs/doxygen/html/classllvm_1_1LoopInfo.html)
pass for this search. Currently, only linear multi-dimensional arrays are fully
supported. The SF returns the allocated size in bytes multiplied with the loop
count.

4.3 Classes and Structures

In LLVM IR, classes and structures are represented with the LLVM type struct,
e.g. class A { int x, y; } is expressed as %class.A = { i32, i32 }. The
constructed TDG then contains sub-types resembling the structural layout of
the class (or struct). Thus, a single vertex is created for the class type and
multiple vertices are created for the contained types. Edges between class type



class Coord {
int x, y, z;

};

class Value {
Coord coord;
double value;

};

Value

Coord int, 4B

double, 8B

0

1

0
1
2

Figure 3. Example for TDG construction for a small class.

and contained types are labeled with indices referring to their location. Fig. 3
provides an example.

The SF of a class gathers the values of the SFs of the contained types. This
method is also applicable on hierarchical class structures, classes with inheritance
and with templates. These structures are evaluated at compile-time and thus are
present in LLVM IR. Inheritance extends the TDG by another class. Types of
templates are resolved and placed directly in LLVM IR, thus they are available in
the TDG. Structures with recursion, e.g. linked lists, are currently only supported
if they are implemented with STL containers. Since the SFs are called at run-
time, dynamically typed objects from C++ interfaces are resolved correctly.

4.4 STL Containers

In general, STL containers can be treated like classes. The TDG construction
thus follows the rules provided in the previous section. For most cases, type
deduction can also be done like described previously. But for e.g. std::map, we
use the destructor to identify the key / value types since they are obfuscated.

However, SFs use the provided iterators for object traversal. This eases the
processing and enables support for the aforementioned recursive structures. The
SFs of STL containers call the member begin and end of an instance and tra-
verses through its elements. For each element, its corresponding size function is
called and the returned value is summed. With this technique, element types
with likely differing byte-width, e.g. a vector of strings, are considered. Once
all elements were traversed, the SF returns the summed size. In future, our tool
will be extended to also support custom iterators.

5 Evaluation

We evaluated our tool-chain with two different test scenarios. Synthetic tests
were used to demonstrate the core functionality of the tool-chain. Additionally,
we selected real-world applications, each providing different data structures. The
automatically estimated MFs and directions were checked against the results of
manually inserted computations in our test cases.



Name Kernel Function Interface
NEW void f(int *a, Y *y)
STRVEC void f(std::vector<std::string> x)
NESTTPL void f(X<std::string> x)
MAP void f(std::map<int, std::string> x)
TermFrequency void tf(int k, std::string *genome, vector<string>

*kmer, vector<int> *count)
Octree void OctreeListToMatrixList(OctreeList *l, params *p)
HPCCG int HPCCG(HPC_Sparse_Matrix *A, const double * const

b, double * const x, const int max_iter, const double
tolerance, int niters, double normr, double *times)

miniFE void driver(const int global_box[][2], int
my_box[][2], ComputeNodeType *compute_node, Parameters
*params, YAML_Doc *ydoc)

Table 1. Abbreviations and KF interfaces for the synthetic test cases (first half) and
real-world application test cases (second half).

5.1 Synthetic Test Cases

Table 1 provides an overview on the synthetic test cases. It shows the name and
the kernel function interface of every test case. The test cases do not have a func-
tion body, i.e. their data-direction is always marked as in. We will not discuss
these test cases in detail, since their function arguments are self-explanatory.
The custom class of the pointer *y is defined as class Y { int x, y; }. Im-
plementation details on the custom class X are provided in Listing 1.1.

template <class T>
class X {
public:

Y<T> y;
};

template <class T>
class Y {
public:

std::vector <
Z<T>

> z;
};

template <class T>
class Z {
public:

std::vector <T> v;
};

Listing 1.1. Class layout definition for the synthetic test NESTED.

5.2 Real-World Application Test Cases

For the following description, we spare a detailed KF interface discussion and
solely focus on noticeable data types. Table 1 additionally provides the complete
KF interfaces. TermFrequency and Octree originate from the ENHANCE project
[2], while HPCCG and miniFE were taken from the Mantevo project [6].



TermFrequency computes the amount of short genomic sequences (mers) con-
tained in a genomic string. mer is of type std::vector<std::starting> and
stores the mers. count is a std::vector<int> and stores the corresponding
count of occurrences. This variable is passed as a pointer with data direction
out.

Octree transposes a list of octrees into a list of matrices. Octrees are commonly
used in computer graphics, its vertices always have zero or eight children. The
function does not return any data but writes the matrices to disk. params is
a class containing several values of type double. list is a custom class that
inherits from the type std::vector<Octree>. Octree in turn contains a vector
of child nodes, which again are custom classes containing double values. In
summary, a nested class structure with inheritance has to be processed.

HPCCG calculates the conjugate gradient of a sparse matrix. The most in-
teresting kernel function argument is the sparse matrix A, which is stored in
CSR format with several dynamically allocated arrays. Furthermore, member
allocation is done inside a separate function. Figure 4a depicts the TDG for A.

miniFE performs a FEM calculation. It uses YAML serialization to record
performance data. We analyzed the class YAML_Doc, since it contains recursive
structures. It derives from YAML_Element which contains in turn a STL vector
recursing again to YAML_Element, e.g. std::vector<YAML_Element*>. Figure 4b
depicts the TDG for YAML_Doc.

5.3 Evaluation Results

For each test, the evaluation procedure is as follows. First, we compile the test
to LLVM IR. Next, we process and modify it with our tool-chain. Then, we
compile the result to an executable binary. During execution, the estimated
MFs and data directions are printed to the console alongside with the manually
computed values.

#Elements 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
NEW 0.92 0.86 0.69 0.76 0.54 0.71 0.68 0.78 0.70 0.63

STRVEC 8.14 12.33 22.78 27.76 35.45 38.24 42.12 47.46 53.35 59.23
MAP 5.81 7.47 9.13 13.45 19.53 22.91 27.84 34.17 43.47 52.51

Table 2. Measured overheads of three selected benchmarks with a linearly increasing
number of elements. All measured times are in µs.

The overall result is as follows. Synthetic tests and real-world applications
revealed, that our implementation behaves correctly for these particular tests.
That is, MFs and data directions were all estimated correctly. Additionally, we



(a) (b)

Figure 4. (a) depicts the TDG of the sparse matrix utilized in HPCCG. (b) shows the
TDG of the class YAML_Doc used in miniFE. The vertex K refers to the KF, the index
on the outgoing edge represents the position of the argument in the KF.

measured the run-time overhead for the synthetic test cases with the time mea-
surement and analysis tool elaps’d1. The results are depicted in Table 2. These
measurements revealed the following properties.

The run-time overhead for arrays containing constantly-sized elements is ap-
proximately constant (NEW ). For these data types our tool multiplies the base
byte-width of the element with the number of allocated elements.

For arrays containing elements with potentially varying sizes (STRVEC and
MAP), the overhead correlates with the number of elements. This is a result
from the need to call every size function. If the element itself contains elements
with varying sizes, the effect strengthens, i.e. the overhead increases further.
In contrast to STRVEC, the overhead for MAP must not increase linear, since
the STL implementation of std::map uses a red-black tree. Consequently, its
elements may be spread in memory which causes a memory access slowdown.
For STRVEC, elements are contiguous in memory.

1 http://sdressler.github.io/elapsd



6 Conclusions and Future Work

We presented an automated approach to estimate the memory footprint of non-
linear data objects. By using LLVM and a graph-based approach for information
deduction, our workflow retains extensibility. To demonstrate its correctness
and functionality, synthetic tests and real-world applications were used. Our
evaluation showed, that our tool is able to analyze non-linear data structures
like deeply nested classes with recursion.

Our future work will concentrate on extending the approach to improve sup-
port for objects not providing iterators. For this, the developer may provide
additional object information, e.g. which member indicates the end of a list.
Furthermore, we will use the presented method to automatically inject data
layout transformations.

Acknowledgments

This is developed as part of the ENHANCE project, funded by German ministry for
education and science (BMBF), grant No. 01|H11004G. The reference implementation
of our tool is available at: https://github.com/sdressler/objekt, the terms of the
BSD license apply. We would like to thank Florian Schintke for valuable discussions.

References
1. L.O. Andersen. Program analysis and specialization for the C programming lan-

guage. PhD thesis, University of Cophenhagen, 1994.
2. ENHANCE Consortium. Enhance - enabling heterogeneous hardware acceleration

using novel programming and scheduling models, January 2012.
3. D. Dhurjati, S. Kowshik, and V. Adve. SAFECode: enforcing alias analysis for

weakly typed languages. In ACM SIGPLAN Notices, volume 41, pages 144–157.
ACM, 2006.

4. Sebastian Dreßler and Thomas Steinke. A Novel Hybrid Approach to Automati-
cally Determine Kernel Interface Data Volumes. Technical report, ZIB, 2012.

5. T.D. Han and T.S. Abdelrahman. hiCUDA: High-level GPGPU programming.
Parallel and Distributed Systems, IEEE Transactions on, 22(1):78–90, 2011.

6. M.A. Heroux, D.W. Doerfler, P.S. Crozier, J.M. Willenbring, H.C. Edwards,
A. Williams, M. Rajan, E.R. Keiter, H.K. Thornquist, and R.W. Numrich. Im-
proving performance via mini-applications. Sandia National Laboratories, Tech.
Rep, 2009.

7. Thomas B Jablin, Prakash Prabhu, James A Jablin, Nick P Johnson, Stephen R
Beard, and David I August. Automatic cpu-gpu communication management and
optimization. In ACM SIGPLAN Notices, volume 46, pages 142–151. ACM, 2011.

8. C. Lattner et al. The LLVM compiler infrastructure. The LLVM Compiler Infras-
tructure, 2010.

9. S. Lee and R. Eigenmann. OpenMPC: Extended OpenMP programming and tun-
ing for GPUs. In Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 1–11.
IEEE Computer Society, 2010.

10. H. Uchiyama, T. Tsumura, and H. Matsuo. An Automatic Host and Device Mem-
ory Allocation Method for OpenMPC. 2012.


