
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

FLORIAN WENDE AND THOMAS STEINKE

Swendsen-Wang Multi-Cluster Algorithm
for the 2D/3D Ising Model on

Xeon Phi and GPU

Accepted at SC’13, November 17-21, 2013, Denver, CO, USA

ZIB-Report 13-44 (August 2013)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Swendsen-Wang Multi-Cluster Algorithm for the
2D/3D Ising Model on Xeon Phi and GPU

Florian Wende
Zuse Institute Berlin

Takustrasse 7
D-14195 Berlin-Dahlem

wende@zib.de

Thomas Steinke
Zuse Institute Berlin

Takustrasse 7
D-14195 Berlin-Dahlem

steinke@zib.de

ABSTRACT
Simulations of the critical Ising model by means of local update
algorithms suffer from critical slowing down. One way to partially
compensate for the influence of this phenomenon on the runtime
of simulations is using increasingly faster and parallel computer
hardware. Another approach is using algorithms that do not suffer
from critical slowing down, such as cluster algorithms. This pa-
per reports on the Swendsen-Wang multi-cluster algorithm on Intel
Xeon Phi coprocessor 5110P, Nvidia Tesla M2090 GPU, and x86
multi-core CPU. We present shared memory versions of the said al-
gorithm for the simulation of the two- and three-dimensional Ising
model. We use a combination of local cluster search and global la-
bel reduction by means of atomic hardware primitives. Further, we
describe an MPI version of the algorithm on Xeon Phi and CPU, re-
spectively. Significant performance improvements over known im-
plementations of the Swendsen-Wang algorithm are demonstrated.

Categories and Subject Descriptors
D.1.3 [PROGRAMMING TECHNIQUES]:
Concurrent Programming—Parallel Programming;
I.6.8 [SIMULATION AND MODELING]:
Types of Simulation—Monte Carlo, Parallel;
J.2 [PHYSICAL SCIENCES AND ENGINEERING]: Physics

General Terms
ALGORITHMS, PERFORMANCE

Keywords
Many-core processors, Xeon Phi, GPGPU, CUDA, Ising model,
Swendsen-Wang multi-cluster algorithm, performance evaluation,
graph algorithms

1. INTRODUCTION
The present paper focuses on the evaluation of the compute per-
formance of current parallel processor platforms—Intel Xeon Phi
hardware accelerator, Nvidia Tesla M2090 GPU, and Intel octa-
core Xeon E5-2680 CPU, namely—for the simulation of the two-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SC13, November 17-21, 2013, Denver, CO, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503254

and the three-dimensional critical Ising model, which serves as a
test model for algorithm design and performance evaluation, and
as a toy model in statistical physics for already several decades.
In particular we report about the parallelization of Swendsen and
Wang’s multi-cluster algorithm for the Ising model, which, amongst
the single-cluster algorithm by U. Wolff, is the matter of choice for
simulations at criticality.

At the core of the Swendsen-Wang algorithm is connected com-
ponent labeling which has application domains in Percolation The-
ory, Computer Vision to detect connected regions in images, and
Computational Physics, to name a few.

The structure of the paper is as follows: Section 2 recaps work
already done in simulating the Ising model on parallel computer
systems, and outlines this paper’s contributions in this field. Sec-
tion 3 gives a brief overview of the hardware used in this paper.
In Sec. 4, we introduce the Ising model. Our approach to simulat-
ing the Ising model by means of the Swendsen-Wang multi-cluster
algorithm on parallel processor platforms is detailed in Sec. 5, in-
cluding an MPI version. Section 6 summarizes benchmark results
and measurement data. Concluding remarks are given in Sec. 7.

2. RELATED WORK
Since its introduction and the advent of commodity computer sys-
tems, the Ising model has been studied intensively by means of sim-
ulation programs using vector processors, FPGAs, and multi-core
processors, respectively. The use of GPUs for that purpose became
increasingly popular during the past years. Since GPUs are usually
used for the execution of programs with massive data parallelism,
the major focus of investigations in the context of GPU-based simu-
lations of spin models was on local update algorithms of Metropolis
type [24, 25, 26]. With the newer GPU generations, porting (non-
local) cluster algorithms to these devices became feasible. Cluster
update algorithms for the simulation of the two-dimensional Ising
spin model on GPU are detailed in [12, 23]. Y. Komura and Y. Ok-
abe achieve update times per spin down to 2.86ns on a single Nvidia
GeForce GTX580 GPU [13] respectively 0.029ns on a multi-GPU
system made up of 256 Nvidia Tesla M2050 devices [14].

The present paper extends these investigations by the following
aspects:

• We give implementations of the Swendsen-Wang cluster al-
gorithm for the two- and the three-dimensional Ising model.
To our knowledge, this paper is the first that reports on par-
allel implementations of the said algorithm for three dimen-
sions on GPU, and for two and three dimensions on Xeon Phi.

• We describe a novel label reduction technique using atomic
hardware primitives.

• We present an MPI version of the Swendsen-Wang algorithm
suitable for simulations on lattices with more than 232 − 1
sites despite 32-bit words are used for the labeling.

3. AN OVERVIEW OF THE PROCESSOR
PLATFORMS

Table 1 summarizes the processor platforms considered in this pa-
per. Access to a Xeon Phi cluster was generously provided to us by
Intel.

3.1 Intel Many Integrated Core
(MIC) Architecture

The Xeon Phi consists of more than 50 Pentium-P54C-based cores,
each of which augmented with 64-bit support, fully-coherent L1
and L2 cache, 32 512-bit SIMD registers, and 4-way interleaved
hardware multi-threading [8, 9, 11]. With its SIMD unit, each core
is capable of processing 16 32-bit words or 8 64-bit words per clock
cycle. The cores, up to 8 memory controllers, and the PCIe client
logic are connected by a logically bidirectional ring bus. Each di-
rection of the ring consist of 5 independent rings: the data-block
ring for data transfers, 2 address rings which are used to send read-
/write commands and memory addresses, and 2 acknowledgment
rings used to send flow control and coherence messages.

Memory accesses first go through a tag directory that checks the
L2 caches of all cores for the word requested, and forwards the
request to the memory controllers only if the word is not present in
any L2 cache.

Current Xeon Phi cards are connected to the host system via
PCIe. The Phi runs a Linux OS making it appear as a ‘computer in
a computer.’ From the programmers point of view it can be used
in ‘offload mode’ as a coprocessor to the host’s CPU—the same
way as current GPGPUs are used for computations—or else as a
separate compute device in ‘native mode.’ In both cases, applica-
tions that execute on the Xeon Phi are scheduled by its Linux OS. In
particular the Phi is capable of executing (parallel) programs writ-
ten for x86 CPUs using MPI, OpenMP, or pThreads, for instance.
Development cycles thus can be shortened by simply reusing x86
codes written for the CPU, (maybe) adapting them to benefit from
Phi specific instructions, and recompiling them for the Xeon Phi.
Throughout the entire chain, developer tools and programming lan-
guages known from x86 programming can be used.

3.2 Nvidia Fermi GPU Architecture
The Fermi GPU architecture [20, 21] is build around a scalable
set of streaming multiprocessors (SM), each of which consisting of
32 scalar processors (SPs or CUDA cores), two thread schedulers,
four special function units, 16 load/store units, and 64kB of on-chip
low latency memory with a configurable partitioning into shared
memory and L1 cache. Fermi-based GPUs are equipped with up to
16 SMs, up to 6 GB of ECC main memory (accessible with up to
177 GB/s), and are connected to the host system via PCIe.

In the CUDA programming model, GPU programs consist of
a host program written in C/C++ and a set of GPU kernels which
when called from within the host program are executed on the GPU
asynchronously. In this model the GPU acts as a coprocessor to the
host system. It is left to the programmer to partition the problem at
hand into sub-problems that can be mapped onto the GPU’s scalar
processors by the SM’s thread schedulers. The number of CUDA
threads that execute the sub-problems is defined by the programmer
using a grid-block hierarchy of threads.

Thread blocks are dynamically created at run time by the GPU
scheduler and then are assigned to SMs for execution. The thread

Intel CPU Intel Xeon Phi Nvidia GPU
Xeon E5-2680 Coprocessor Tesla M2090
(Sandy-Bridge) 5110P (Fermi)

Cores/Multi-Processors 8 60 16
Logical Core Count 16 (=8x2) 240 (=60x4) ≤768 (=16x48)
SIMD Width (32-Bit) 4 (SSE), 8 (AVX) 16 ≤32 (SIMT)
Clock Frequency 2.7 GHz 1.05 GHz 1.3 GHz
Card Memory Size — 8GB (ECC) 6 GB (ECC)
Memory Bandwidth 51.2 GB/s 320 GB/s 177 GB/s
Power Consumption <130W <225W <225W

Table 1: Characteristics of the processor platforms used for
simulations and benchmarking (information are from the ven-
dors and [8, 9, 20]). The logical core count refers on CPU to the
total number of hyper-threads and on Xeon Phi and GPU to the
number of SIMD threads scheduled in hardware.

schedulers on the SMs partition these thread blocks into so-called
warps (groups of 32 threads) which execute on the SPs in SIMD
(more precisely: SIMT—Same-Instruction Multiple-Threads) man-
ner using up to 48-way interleaved multithreading. The two thread
schedulers per SM manage a total of up to 1536 concurrent threads
(48 warps), distributed over up to 8 thread blocks.

During their execution, threads can access different memory lay-
ers ranging from fast on-chip shared memory (used for intra-thread-
block communication/-synchronization and data sharing) to ‘more
or less exotic’ texture memory with special data fetching modes,
constant memory, and finally the global memory.

4. THE ISING MODEL
The Ising model postulates a periodic d-dimensional lattice with
magnetic dipoles placed on the lattice sites, and with each of them
associated with a spin si taking on values si = ±1. The model is
described by the Hamiltonian

H = −
∑
〈ij〉

Jijsisj + h
∑
i

si ,

where 〈ij〉 refers to sites i and j are nearest neighbors (‘NN’), Jij
is a coupling constant, and h is an external magnetic field. What
makes the Ising model be of interest for various considerations is
the fact that in more than one dimension it exhibits a phase transi-
tion if h=0. For the (d >1, h=0)-NN Ising model (subsequently,
Ising model for short) the order parameter of the phase transition is
the spontaneous magnetizationms for temperatures T <Tc, where
Tc is the critical temperature. For temperatures T > Tc the model
is in a paramagnetic phase, whereas for T < Tc it is in an anti-
ferromagnetic (Jij < 0) or in a ferromagnetic (Jij > 0) phase.

Simulating the Ising model on the computer can be done by
means of Monte Carlo methods [19]. The focus is on generating a
sequence of spin configurations sµ1, sµ2, sµ3, . . . using some kind of
update method for the spins si, and to take measurements over the
course of the simulation. There are 2N spin configurations sµ with
N =

∏d
k=1 nk, where nk is the lattice extent in direction k. Con-

figuration sµ is generated with probability pµ = 1
Z

exp(−βEµ),
where Z =

∑
µ exp(−βEµ) is the partition function and Eµ is

the energy of the spin system occupying configuration sµ. We here
introduced the inverse temperature β = 1/kT , with k being Boltz-
mann’s constant, and T being the system’s temperature.

Common methods for generating configurations sµ are the Me-
tropolis algorithm, and cluster algorithms—the single-cluster al-
gorithm by U. Wolff [27] and the multi-cluster algorithm by R. H.
Swendsen and J.-S. Wang [22] are the most popular ones. The latter
of the two is more suitable for parallelization as, unlike the former

one, it divides up the entire lattice into clusters. When to use the
Metropolis algorithm or cluster algorithms depends on the temper-
ature T the spin system should be simulated at. Cluster algorithms
are most efficient for simulations at T ≈ Tc. In all other cases the
Metropolis algorithm is the better choice due to its simplicity. In
addition to its universality for simulation purposes, the Metropolis
algorithm for the Ising model also serves as an ideal candidate for
benchmarking of parallel computers as its locality allows for highly
parallel implementations.

The Metropolis algorithm and the multi-cluster algorithm differ
in how spin configurations are altered. The discarding aspect for
a configuration sν, created from configuration sµ, is an increase of
the system energy E, making transitions sµ → sν with ∆E =
Eν − Eµ > 0 be less attractive than those with ∆E ≤ 0. While
the former of the two algorithms has its focus on changing the ori-
entation of single spins (local update algorithm), the latter one con-
siders clusters of spins (non-local update algorithm)—at criticality,
the cluster size diverges and clusters grow up to the lattice extent.

For the Metropolis algorithm, the transition sµ→ sν is accepted
with probability pµ→ν = min(1, exp(−β∆E)), where the compu-
tation of ∆E is as follows [19]: choose a spin si at random, assume
this spin is flipped over, and compute ∆E = −2Jsµi

∑
〈ij〉 s

µ
j . If

we give up choosing spins si at random, but divide the lattice into
even and odd sites (checkerboard decomposition), where a site is
said to be even if its Cartesian coordinates add up to an even value
(otherwise it is said to be odd), all even sites can be updated si-
multaneously in a first step, and then all odd sites are updated in a
second step. Updating the entire lattice defines a ‘sweep.’ This ap-
proach allows for highly parallel implementations of the Metropolis
algorithm.

Going from sµ to sν by means of the Swendsen-Wang algorithm
is done by first dividing up the entire lattice into clusters of spins,
and then by flipping each of these clusters with probability one half
[19]. A cluster of spins refers to a subset σk ⊆ {si | 0 ≤ i ≤ N −
1} of the spins with each spin sj ∈ σk being the nearest neighbor of
at least one other spin σk 3 s′j 6= sj if |σk| > 1, and with all spins
sj ∈ σk having the same orientation. The subsets σk correspond to
connected components in graph theory if the lattice is understood
as a graph with vertices given by the lattice sites, and with edges
connecting NN spins with the same orientation. For simulation
purposes, we remove some of the edges with probability pdelete =
exp(−2Jβ), depending on the temperature T . NN spins with the
same orientation then do not necessarily belong to the same σk.

5. SIMULATING THE ISING MODEL
In this section we consider a squared respectively cubic lattice with
periodic boundary conditions for simulation purposes.

5.1 General Aspects
When simulating the Ising model or other Ising-like spin models on
parallel computers, we are usually interested in large system sizes.
To meet memory limitations, information about spin orientations
are stored in the smallest computer word possible. As for the Ising
model si=±1, we use arrays of the C data type char to store spins.
When spins are processed, converting them to a data type other than
char might be meaningful.

Another aspect is random number generation. As investigated in
[16, 26], simple random number generators like LCG and MWC
should not be used for high precision Monte Carlo simulations be-
cause of systematic errors due to deficiencies in random number
sequences [7]. Unfortunately, on the GPU well established gener-
ators such as Lüscher’s Ranlux [15] or the Mersenne twister ran-
dom number generator [18] allow for fast random number genera-

tion just if the amount of requested random numbers is sufficiently
large—on the GPU these generators consume too many resources
to have each individual thread run its own instance. Making use of
these generators for simulations, however, would require us to pre-
compute random numbers, store them in main memory, and then to
reload them from memory during the simulation. If lots of random
numbers are consumed by the simulation, the portion of the main
memory that is given to random number generation becomes non-
negligible, which then in turn restricts the extent of the system to be
simulated. A better approach in this respect is to produce random
numbers when they are needed.

On the CPU and the Xeon Phi we found the Mersenne twister
random number generator, however, be suitable for on-the-fly ran-
dom number generation with acceptable production rate. For our
parallel setups we use dcmt by M. Matsumoto and T. Nishimura
[17] and a configuration file for up to 8192 independent Mersenne
twisters. The suitability of dcmt for parallel random number gen-
eration is documented by Matsumoto and Nishimura, and for our
purposes it is supported by simulation results presented in Tab. 2.

On the GPU we use a combination of an MWC and a 32-bit
Xorshift generator with random state shuffling. The source code for
that generator is listed in [26]. The quality of the random number
sequences is demonstrated by the author, and by this paper as well.

5.2 Swendsen-Wang Multi-Cluster Algorithm
Unlike local update algorithms, such as of Metropolis type, cluster
algorithms consider regions of connected aligned NN spins (clus-
ters) to be flipped over as a whole instead of flipping single spins.
As for T → Tc clusters have sizes up to the lattice extent, flipping
them results in significant alterations of spin configurations. For
the Ising model it is known that cluster algorithms almost entirely
remove the critical slowing down problem, local update algorithms
suffer from. Critical slowing down means that the relaxation time
for the system increases, and finally diverges, as the system param-
eters are moved towards criticality.

The most popular cluster algorithms for the Ising model are the
single-cluster algorithm by U. Wolff [27] and the multi-cluster al-
gorithm by R. H. Swendsen and J.-S. Wang [22]. While the Swen-
dsen-Wang (‘SW’) cluster algorithm divides up the entire lattice
into clusters and then flips each of them with probability one half,
the single-cluster algorithm builds up just one cluster per update
step which then is flipped over. The SW algorithm therefore is the
better candidate for parallelization.

The serial algorithm is depicted in Listing 1. In words: Iterate
over all spins of the system one after another, and for each spin that
does not belong to an already existing cluster start a new cluster
with that spin as the root. Clusters are created as follows: Given
a root, consider all of its aligned NN spins not being part of an al-
ready existing cluster for possible inclusion into the current cluster
with probability padd = 1 − pdelete, and repeat this procedure for
all newly included spins until no more spins are included.

With respect to graph theory, clusters map to the connected com-
ponents (‘CC’) σk of the graph G = (V,E) with vertices V =
{v0, v1, . . . , vN−1} corresponding to spins s0, s1, . . . , sN−1, and
edges E = {(vi, vj) | si and sj are aligned NN sites on the lattice
∧weight wij = 1}. Weights wij are 1 with probability padd. Oth-
erwise, wij = 0. The findAndFlipCluster() function (see Listing 1) de-
termines the CCs σk using an adapted version of the breadth-first
search (BFS) algorithm. Given a root, the exploration of the associ-
ated CC is performed in a wavefront manner. Wavefronts here are
subsets of vertices that are reachable from the root, and that have
the same distance to the root in terms of fewest number of edges.
The wavefront exploration is enforced by the queue data structure.

swendsenWangUpdate(L[N])
for i=0 to N-1 do

if L[i] is marked as ‘discovered ’ then
continue

else
findAndFlipCluster(L,i)

TAKE SYSTEM OBSERVABLES HERE
for i=0 to N-1 do // reset
mark L[i] as ‘undiscovered ’

findAndFlipCluster (L[N],root)
flip=false
draw a random number r uniform on [0,1)
if r< 0.5 then
flip=true

Queue q=∅
q.enqueue(root)
mark L[root] as ‘discovered ’
while q.empty()==false do
x=q.dequeue()
forall ‘undiscovered ’ aligned NNs L[y] of L[x] do
draw a random number r uniform on [0,1)
if r< padd then
q.enqueue(y)
mark L[y] as ‘discovered ’

L[x]=L[x]*(flip==true?-1:+1) // in-place cluster flipping

Listing 1: Pseudo-code of the Swendsen-Wang multi-cluster al-
gorithm for the Ising model. The system has N spins si stored
in L[]. The notation predicate?a:b is a short form of if predicate==true
then a else b.

On a parallel computer with possibly hundreds or thousands of
cores, a parallel version of Listing 1 would suffer from parallelism
can be achieved across the breadth of the wavefronts only, and also
from global synchronization in the context of the wavefront execu-
tion. Other approaches to finding clusters make use of union-find
data structures that are accessed by multiple concurrent threads. In-
vestigations on porting cluster algorithms for the two-dimensional
Ising model to the GPU can be found in [12, 13, 23].

5.3 Shared Memory Implementation
Our approach breaks down finding and flipping clusters into 3 steps.
At first, we partition the lattice into equal-sized sub-lattices. Sub-
clusters then are identified independently within sub-lattices. Since
clusters might span several sub-lattices, in-place cluster flipping is
not possible in this step as it is not known which sub-clusters be-
long to the same cluster. Instead, sub-clusters are assigned unique
labels. In a second step, sub-clusters are merged together so that
finally all of them belonging to the same cluster are assigned the
same label—the merging problem is defined as the geometric con-
nected component labeling (GCCL) problem [3]. In a third step,
clusters are flipped over with probability one half, and data struc-
tures are prepared for a new iteration of the cluster algorithm.

Subsequently, we give some details on how these steps are im-
plemented on the hardware used in this paper.

Step 1a: Sub-lattices are loaded into local memory, which is the
shared memory on the GPU, and SIMD registers on the Xeon Phi.
With respect to Sec. 5.1, spin orientations si are stored as 8-bit
words—the values si=±1 are encoded as 0 or 1 into the 1st bit of
the word. When loaded, these 8-bit words are converted to 32-bit
words. On the Xeon Phi we utilize the _mm512_extload_epi32() intrin-
sic for that purpose, whereas on the GPU we use a simple type cast.

After the load, we draw a set of random numbers in order to es-
tablish edges between aligned NN spins with probability padd =
1 − exp(−2Jβ). In two (three) dimensions there are up to two

0 1 2 3
4 5 6 7
8 9 10 1

12 13 14 15

0 0 2 2
4 5 6 6
8 9 9 9

12 12 14 14

0 0 2 2
4 5 2 2
4 5 9 9
4 12 14 9

0 0 2 2
4 5 2 2
4 5 5 5
4 4 9 9

0 0
9
9 9 9 12 12

12

1299
35 36

2 2
2 2

4 4 4
4 4

4 4
4 4 4

37 37 37
37 3737

37
3232

3232
32

32
88

8
8

32

7
7

48
48 62

49
40

49 49
49
49

47
47 47

47
47
47
47

0 0 2 2
4 5 2 2
4 5 5 5
4 4 9 5

0 0 2 2
4 5 2 2
4 5 5 5
4 4 5 5

Init Direction 1 Direction 2 Direction 1

Dir.1

1

2

Direction 2

labelsPeriodic
boundary
conditions
(PBC:)

Label
Equ.
labelLabel

Equ.
label

4 2
12 9
32 8
36 12
36 35
37 4

37 32
47 40
49 0
49 47
62 4

0 0
9
9 9 9 9 9

9

999
9 9

2 2
2 2

2 2 2
2 2

2 2
2 2 2
2 2 2
2 22

2
22

22
2

2
22

2
2

2

7
7

48
48 2

0
0

0 0
0
0

0
0 0

0
0
0
0

0 0
9
9 9 9 12 12

12

1299
35 36

2 2
2 2

4 4 4
4 4

4 4
4 4 4

37 37 37
37 3737

37
3232

3232
32

32
88

8
8

32

7
7

48
48 62

49
40

49 49
49
49

47
47 47

47
47
47
47

Reduce labels within

sub-lattices using an atomic minimum operation

Graph re-
presentation
of the spin

 = vertex
 = edge

lattice:
A

Start

B

B

C

C

CFinal

A

the striped area across

(incorporating PBC): resolve label equivalences

AAAA
1

Figure 1: Illustration of the labeling for a 16×16 lattice. Step
A©draws on the cluster self-labeling method by C. F. Codding-
ton and P. D. Baillie [1]. Step B© refers to the label translation
from local to global ones. After the translation, labels are re-
duced across the boundaries of the sub-lattices (striped area in
C©) so as to finally have each cluster be represented by one label.

(three) edges ei1 , ei2 (and ei3) ∈ E connecting spin si and its alig-
ned nearest neighbors in positive spatial direction 1, 2 (and 3). The
information on whether these edges are actually established is en-
coded into the 3rd, 4th (and 5th) bit of the word—these bits then
are set to 1. As si might be the root of a cluster, we use the 2nd bit
as the ‘flip-bit’ (see below)—it is set to 1 with probability one half.

The 8-bit words then are written to main memory with the first
5 bits set to either 0 or 1 each. On the Xeon Phi the conversion is
done using the _mm512_extstore_epi32() intrinsic, whereas on the GPU
we again use a type cast.

During the cluster labeling and flipping, all information encoded
into the 8-bit words can be recovered using bitwise AND with 0x1,
0x2, 0x4, 0x8 (and 0x10). The lattice is stored in L[].

Step 1b: We use the cluster self-labeling method by C. F. Codding-
ton and P. D. Baillie [1] for the identification of sub-clusters within
sub-lattices. The idea is as follows (see Fig. 1, step A©—the 16×16
lattice is divided into 4 sub-lattices of extent 4×4 each. In three di-
mensions the method works quite similar): First, we assign unique
labels to the sites i ∈ {0, . . . , Ñ − 1} of the sub-lattice, where
Ñ denotes the number of sub-lattice sites. We store the sub-lattice
labels in CC[0 . . . Ñ−1] (data type unsigned int) and we use the ar-
ray index i as initial label. Thereafter, for each sub-lattice site, we
consider its connected NN site in positive direction 1 and reduce
the respective labels to the minimum of the two. If there is no con-
nected NN, we move on to the next site. In Fig. 1, we start in the
top-left corner CC[0] and iterate towards CC[Ñ − 1]—note that we
do not have periodic boundary conditions on the level of the sub-
lattices. For all sites we note the number of reductions that differ
from the identity operation. Afterwards, we apply the same scheme
to all sub-lattice sites but now considering their connected NN sites

in positive direction 2. Again we note the number of non-identity
reductions. If at the end this number is larger than zero, we reset
the non-identity counter and repeat the entire reduction procedure.
Otherwise, the labeling within the sub-lattice is complete, and we
stop the iteration.

Obviously, this method terminates after O(Ñ=
∏d
k=1ñk) update

steps for an ñd×ñd−1×. . .×ñ1-sub-lattice. It can be improved by
some kind of ‘path compression’ known from grouping m distinct
elements into a collection of disjoint sets using a disjoint-set data
structure [4]. In our case the path compression can be achieved by
replacing CC[i]=CC[CC[i]] for all i ∈ {0, . . . , Ñ − 1} after every
sequence of reductions in positive direction 1, 2, . . . , d—doing the
replacement with multiple concurrent threads does not result in the
same CC[] array as obtained by using a single thread.

On the Xeon Phi the replacement CC[i]=CC[CC[i]] can be imple-
mented as CC[i]=_mm512_i32gather_epi32(CC[i],&CC[0],4)i=0,16,32,...if the
array CC[] is 64-byte aligned and has size (

∏d
k=2 ñk)×16. ñ1 = 16

follows from array entries in direction 1 are direct successors in
main memory, and the Phi’s SIMD width for 32-bit words is 16.

selfLabeling(LL[],CC[])
// Requirements:
// LL[] is ñ2x16 sub-lattice, ñ2∈N
// CC[] is ñ2x16 sub-cluster array, ñ2∈N
// LL[],CC[] 64-byte aligned
do
changes=0
// direction 1
for y=0 to ñ2 -1 do
i=16*y
m1=vecCmp(vecAnd(LL[i],0x4),0x4,EQ);
m2=m1<<1
while true do

13: r1=CC[i]
14: r2=vecPermute((1,2,..,13,14,15,15)16,r1)
15: r2=vecMaskMin(r2,m1,r1,r2)
16: vecMaskStore(&CC[i],m1,r2)
17: r2=vecPermute((0,0,1,2,3,..,13,14)16,r2)
18: CC[i]=vecMaskMin(CC[i],m2,CC[i],r2)

if vecCmp(CC[i],r1,NE)==0 then
break

else
changes++

// direction 2
for y=0 to ñ2 -2 do
i=16*y
m1=vecCmp(vecAnd(LL[i],0x8),0x8,EQ)

27: r1=vecMin(CC[i],CC[i+1])
changes+=vecMaskCmp(m1,CC[i],r1,NE)
changes+=vecMaskCmp(m1,CC[i+1],r1,NE)

30: vecMaskStore(&CC[i],m1,r1)
31: vecMaskStore(&CC[i+1],m1,r1)

while changes>0

Listing 2: Pseudo-code of the cluster
self-labeling method within sub-lat-
tices using Xeon Phi SIMD intrinsics.
vecCmp: _mm512_cmp_epi32
vecMaskCmp: _mm512_mask_cmp_epi32
vecPermute: _mm512_permutevar_epi32
vecMin: _mm512_min_epi32
vecMaskMin: _mm512_mask_min_epi32
vecMaskStore: _mm512_mask_store_epi32
EQ: _MM_CMPINT_EQ, NE: _MM_CMPINT_NE

Figure 2: Illustration of the cluster
self-labeling method.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Sub-lattice LL[]

Sub-cluster array CC[]: Initialization

1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0
SIMD mask m1: y=0

SIMD mask m2: y=0

// do...while loop
// for y=0 to Y-1 do: direction 1

// while loop: y=0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Line 13: SIMD register r1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Line 14: SIMD register r2

15

Line 15: SIMD register r2

Line 16: CC[0]

Line 17: SIMD register r2

Line 18: CC[0]

0 2 2 4 4 6 6 8 8 9 11 11 13 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 2 4 4 6 6 8 8 9 11 11 13 13 140

0 0 2 2 4 4 6 6 8 8 9 11 11 13 13 14
...
// end while loop: y=0

// end for loop: direction 1

0 0 2 2 4 4 6 6 8 8 8 11 11 13 13 13
16 17 17 17 17 17 22 22 22 25 26 27 27 29 30 31
32 33 33 33 33 37 37 37 37 37 42 43 43 43 43 47
48 48 50 50 50 50 54 54 54 57 57 57 57 61 61 61

0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1
SIMD mask m1: y=0
// for y=0 to Y-2 do: direction 2

...

Sub-lattice LL[]

Line 27: SIMD register r1: y=0
0 0 2 2 4 4 6 6 8 8 8 11 11 13 13 13

Line 30: CC[0]
0 0 2 2 4 4 6 6 8 8 8 11 11 13 13 13

Line 31: CC[1]
16 17 17 17 17 4 6 22 22 25 26 11 27 29 30 13

// end for loop: direction 2
...

0 0 2 2 4 4 6 6 8 8 8 11 11 13 13 13
16 17 17 17 17 4 6 22 22 25 26 11 27 29 30 13
16 33 33 33 33 4 37 37 37 25 26 43 28 29 30 13
16 33 50 50 50 4 54 54 54 57 26 57 57 29 30 61

Sub-lattice LL[]

// end do...while loop
...

0 0 2 2 4 4 6 6 8 8 8 11 11 13 13 13
16 4 4 4 4 4 6 6 6 4 26 11 11 11 11 13
16 16 16 16 16 4 4 4 4 4 26 11 11 11 11 13
16 16 4 4 4 4 54 54 54 26 26 26 26 11 11 11

Sub-lattice LL[]: Final labeling

1 0 1 0 1 0 1 0 1 1 0 1 0 1 10

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

0 1 2 3
4 5 6 3
4 9 10 11

12 9 14 11

0 1 1 3
4 4 3 3
4 9 10 11

12 9 14 11

0 0 1 3
4 3 3 3
4 4 10 10

12 9 9 11

0 0 1 3
4 3 3 3
4 3 10 10

12 9 9 11

0 0 1 3
4 3 3 3
4 3 10 10

12 3 9 10

0 0 0 3
3 3 3 3
4 3 10 10

12 3 9 10

0 0 0 3
3 3 3 3
3 3 10 10

12 3 3 10

0 0 0 3
3 3 3 3
3 3 10 10

12 3 3 10

1. 2.

3. 4. 5.

6. 7. 8.

0.
Initialization

negative direction 2
negative direction 1
positive direction 1
positive direction 2

Final labeling

Figure 3: Cluster self-labeling method on GPU using a checker-
board decomposition of the sub-lattice. For the sake of simplic-
ity, it is assumed that for aligned NN sites (the equal colored
ones) edges are established with probability 1. Circled sites are
those threads are assigned to.

Listing 2 illustrates some details of the implementation of the
cluster self-labeling method in two dimensions using Xeon Phi spe-
cific SIMD intrinsics. (x0,x1,...,x15)16 denotes a 16-element SIMD reg-
ister with entries x i. SIMD masks are extracted from the bit repre-
sentation of the words stored in LL[] (see Step 1a). The return value
of the _mm512_[XXX]_cmp_epi32() intrinsic can be interpreted as 16-bit
unsigned integer with bits set to 1 for elements for which the com-
parison operation evaluates to true, and 0 otherwise. For reasons of
clarity and comprehensibility we introduced abbreviations for the
intrinsics and point out the first steps of the iterations graphically
(see Fig. 2).

As can be seen from the final label assignment, for the root ĉk of
cluster k it holds that CC[ĉk]= ĉk (for instance: CC[0]=0, CC[2]=2,
etc.). Hereafter, we want to refer to this property as ‘root-property.’
After the labeling within the sub-lattices, local labels have to be
translated into global ones so that all labels are still unique, and lo-
cal root-labels become global root-labels. Global labels are stored
in C[] of data type unsigned int.

Remark 1: On the GPU we actually make use of the path com-
pression method, whereas on the Phi we found it slow down the
simulation.

Remark 2: On the GPU there is no support for per-thread SIMD
operations as the programming model addresses SIMD operations
on the level of the warps. We therefore assign sub-lattices to thread-
blocks of 256 threads each. This allows for a total of 1024 threads
per SM if the register usage per thread is restricted to 32 (there
are no limitations by the shared memory). Sub-lattice sizes on the
GPU are 16×32 in two dimensions, and 4×4×32 in three dimen-
sions, respectively. The number of sites per sub-lattice is twice the
number of threads per block as our implementation uses a checker-
board decomposition of the sub-lattices with one thread per even
site. In addition to reducing labels in positive direction 1, 2 (and
3), label reductions then have to be performed for NNs in negative
direction 1, 2 (and 3) as well. The self-labeling method on GPU is
illustrated in Fig. 3 for two dimensions.

Remark 3: On Xeon Phi and CPU we use a single thread per sub-
lattice. Sub-lattice sizes on the Phi are 8×16 in two dimensions, and
2×4×16 in three dimensions—threads iterate over the set of sub-
lattices. On the CPU there is just one sub-lattice per thread. Since
our CPU’s SIMD registers allow for 4 32-bit integers only (AVX
has insufficient integer support), and also because the instruction
set does not allow for masked SIMD operations, we have no SIMD

atomicMin(volatile *address,desired)
while true do
current=*address
if current≤ desired then

return *address
if atomicCAS(address,current,desired)==true then

return current

Listing 3: Pseudo-code of an atomic minimum function. The
atomic compare-and-swap function atomicCAS() returns true if the
value pointed to by address equals the value of current. If so, the
value pointed to by address is atomically set to the value of desired.
Otherwise, the atomicCAS() function returns false and the value
pointed to by address remains the same.

version of the labeling on CPU. Instead we leave vectorization to
the compiler (the Intel compiler actually reports about the relevant
loops have been vectorized).

Step 2: The merging of the sub-clusters is done by reducing the
labels C[] of all aligned NN sites along the boundaries of adjacent
sub-lattices (see the striped area in Fig. 1, Step C©), so that finally
every cluster is represented by the smallest label of each of the sub-
clusters it is made up of.

If the label reduction is done by multiple concurrent threads,
some of them will find label equivalences which later might be
modified by other threads. Suppose that two threads A and B find
label equivalences (c1, c2

A) and (c1, c2
B) with c2

A < c1, c2
B < c1,

and c2
A 6= c2

B. Since A does not know about (c1, c2
B), and B does

not know about (c1, c2
A), we need a mechanism that prevents loos-

ing information if both A and B update the label c1 concurrently,
that is, establish the reference C[c1]=c2

A|B.
We can distinguish two cases (we assume c1 has not changed yet,

and no other thread tries to update c1—this will be dropped below):

1) If c2
A< c2

B , we actually have label equivalences (c1, c2
A) and

(c2
B, c2

A), that is, we have to establish the references
C[c1]=c2

A, C[c2
B]=c2

A.

2) If c2
A> c2

B , consider case 1) and interchange c2
A and c2

B.

The scheme can be easily generalized to more than two threads.
The challenging part of the update is the atomicity requirement

such that a thread establishing a reference is not interrupted by any
other thread in doing so. For that purpose we use an atomic min-
imum function which performs the update if and only if the label
c1 to be updated is larger than the desired one, say, c2, and if it has
not changed when it comes to actually establishing the reference
C[c1]=c2. The atomic minimum function ‘fails’ if in the meantime
another thread has found the equivalence (c1, c2

′) with c′2≤ c2. The
calling thread obtains c3 = c′2 as return value, and then has to es-
tablish the reference C[c2]=c3 if c2 6= c3. Otherwise, nothing has to
be done. The update was ‘successful’ if the atomic minimum func-
tion returns a label c3 >c2. The calling thread then has to establish
the reference C[c3]=c2.

The label reduction method using the atomic minimum function
is illustrated in Listing 4.

Atomic minimum function: For our GPU implementation we uti-
lize the built-in atomicMin() available for CUDA capable Nvidia GPUs
with compute capability 1.1 and above [21]. On Xeon Phi and CPU
there is no such operation, so we had to build our own. Listing 3
gives the pseudo-code of our implementation.

Step 3: As a result of Step 2, we have a list of label equivalences
(references) with some entries pointing to themselves—these labels
are the root-labels. As our initial labels have been the array indices

reduceLabels(C[N])
parallel forall NNs i and j belonging to adjacent sub-lattices do
|| c1=C[i] // label within sub-lattice A
||while c1 6=C[c1] do
|| c1=C[c1]
|| c2=C[j] // label within sub-lattice B
||while c2 6=C[c2] do
|| c2=C[c2]
||while true do
|| c3=atomicMin(&C[c1],c2)
|| if c3==c2 then
|| break
|| elseif c3 > c2 then c1=c3
|| elseif c3 < c2 then c1=c2, c2=c3

Listing 4: Pseudo-code of the label reduction method using an
atomic minimum function. It is assumed that sub-lattices have
been already labeled, with the respective labels stored in C[].

i ∈ {0, 1, . . . , N−1}, the root-property implies: C[i]= ĉk⇒ ĉk= i
for all root labels ĉk. The information about whether to flip a cluster
or not is stored in L[ĉk] if ĉk is the root-label that represents the
cluster. If for each site i we follow the references down to the root,
we get the array index ĉk= root(i) of the root and then look up the
desired information in L[]. Remember: for each lattice site i the
bitwise AND of L[root(i)] and 0x2 allows to test the flip-bit. If it is
set, spin si is flipped over using a bitwise XOR of L[i] and 0x1.

Finding out the root-label for every spin si can be done as fol-
lows (implementation of the root() function):

Method A: We split up the array C[] containing N cluster labels
into P equal-sized contiguous partitions of size N/P each (for the
sake of simplicity, we assume that N is a multiple of P). With P
threads it takes dlog2P e iterations to transform the array C[] into C’[]
with C’[i] = ĉk and ĉk being the root-label of the cluster si belongs
to. During each iteration, all threads iterate through their partition
and replace C[i] = C[C[i]] for i ∈ [idN

P
, (id + 1)N

P
) ∩ N, where ‘id’

is the thread ID.

Method B: The root-label for every spin si is determined from
scratch by traversing the array C[] from start position ci = C[i], and
by replacing ci = C[ci] as long as ci 6= C[ci]. The method can be
improved by replacing C[i]= ĉk after having found the root-label
ĉk associated with the cluster si belongs to (‘path compression’).
This way, traversals of C[] can be shortened thereafter.

The two methods are illustrated in Listing 5, including flipping
the clusters.

5.4 Distributed Labeling using MPI
If lattice sizes become significantly larger than 32768×32768 or
1024×1024×1024 (values are for 6 GB Tesla M2090 and 8 GB
Xeon Phi, respectively, with cluster labels stored as 32-bit unsigned
integers, and spins/flip-bits/edges encoded into 8-bit words), or if
the effective update time per spin saturates, the use of more than
one compute device becomes necessary.

Subsequently, we describe how to extend the shared memory im-
plementation of the SW algorithm detailed in Sec. 5.3 to make use
of multiple devices. The description is for the Xeon Phi and the
CPU. The approach should apply to multi-GPU systems too.

Step 0a: Divide up the lattice into equal sized slices (we assume a
homogeneous compute system) and assign these slices to different
MPI ranks. In our implementation, we cut the lattice along direc-
tion 2 in two dimensions, and along direction 3 in three dimensions.
Within the slices the multithreaded shared memory SW algorithm
is used for the labeling. The implementation in Sec. 5.3 has not to

flipClusters_A(L[N],C[N])
parallel region: P threads
|| id=get thread ID unique in {0,1,...,P-1}
|| start=id*dN/Pe
|| stop=min(N,start+dN/Pe)
|| iterations=dlog2Pe
|| // find root-labels
|| for n=1 to iterations do
|| for i=start to stop-1 do
|| C[i]=C[C[i]]
|| barrier
|| // flip clusters
|| for i=start to stop-1 do
|| if (L[C[i]]&0x2)==0x2 then
|| L[i] =̂0x1 // flip spin : bitwise XOR

flipClusters_B(L[N],C[N])
parallel region: P threads
|| id=get thread ID unique in {0,1,...,P-1}
|| start=id*dN/Pe
|| stop=min(N,start+dN/Pe)
|| for i=start to stop-1 do
|| c=C[i]
|| while c 6=C[c] do
|| c=C[c]
|| C[i]=c // root label found: ‘path compression’
|| if (L[c]&0x2)==0x2 then
|| L[i] =̂0x1 // flip spin : bitwise XOR

Listing 5: Pseudo-code of the cluster flipping method using two
different approaches.

be modified except for there are no periodic boundary conditions in
direction d for the d-dimensional model.

Labels used within the slices can range from 0 to N̂ − 1 if there
are N̂ sites per slice.

Step 0b: Before the actual label reduction, we translate per-slice
labels into global ones (similar to the shared memory implementa-
tion). Simultaneously, we minimize the number of labels assigned
to all clusters in all slices. For the minimization we determine the
number of root-labels numLabels for every slice. This can be done by
multiple threads concurrently. Each thread is assigned a contiguous
partition of the slice in which it counts the number of root-labels.
A single thread then sums up these values into numLabels and calls
MPI_Scan(&numLabels,&labelOffset,...). The accumulated number of root-
labels per slice labelOffset then becomes available to all ranks by:

PER MPI RANK DO:
numLabelsPartition[P]
parallel region: P Threads
|| id=get thread ID unique in {0,1,...,P-1}
|| numLabelsPartition[id]=0
|| forall sites i in partition do
|| if C[i] is root-label then
|| numLabelsPartition[id]++
numLabels=0
for i=0 to P-1 do
numLabels+=numLabelsPartition[i]

MPI_Scan(&numLabels,&labelOffset,1,UNSIGNED,MPI_SUM)
labelOffset-=numLabels

The value of the labelOffset variable is used to translate per-slice
labels into global labels, i.e.:

PER MPI RANK DO:
sliceLabels[]
parallel region: P Threads
|| id=get thread ID unique in {0,1,...,P-1}
|| label=0

|| for i=0 to id-1 do
|| label+=numLabelsPartition[i]
|| forall sites i in partition do
|| if C[i] is root-label then // encoding: bit 0..30 for label
|| if (L[i]&0x2)==0x2 then // bit 31 for flip-info

11:|| C[i]=(labelOffset+label)|0x80000000 // set flip-bit : bitwise OR
|| else

13:|| C[i]=(labelOffset+label)|0x0 // do not set flip-bit : bitwise OR
14:|| sliceLabels[label++]=C[i]

|| L[i]|=0x80 // store root information in highest bit of L[i] : bitwise OR
||barrier
|| // update cluster labels of non-root sites
|| forall sites i in partition do
|| if C[i] is not root-label: (L[i]&0x80)!=0x80 then
|| C[i]=C[C[i]]

In Line 11 (and 13, respectively) per-slice root-labels are replaced
by (labelOffset+label)|X, where label is a per-thread label counter and X
encodes whether the associated cluster should be flipped over (set
bit 31) or not (do not set bit 31). Afterwards, all non-root sites in
all slices adapt their new labels.

By the integration of the flip-bit into the cluster labels, all in-
formation about which clusters should be flipped and which not is
automatically distributed across all ranks when labels are reduced
(see below). The actual labels can be recovered by applying a bit-
wise AND operation with 0x7FFFFFFF. The effect of the procedure
on the labeling is illustrated in Fig. 4 in two dimensions.

As we use the upper most bit as the flip-bit, the maximum num-
ber of labels that can be assigned to clusters is 231−1 if 32-bit words
are used. Although we loose a factor 2 for the labeling, for the crit-
ical Ising model the mean cluster size is significantly larger than
1. As a consequence even lattices with more than 232−1 (largest
32-bit integer value) sites can be simulated—with the shared mem-
ory version of the SW algorithm the largest lattice is restricted to
have no more than 232−1 sites as otherwise we would not be able
to represent the largest possible label with 32-bit words.

All labels assigned to the clusters are stored in the arrays sliceLa-
bels[] (line 14) of data type unsigned int. Each rank has its own array
and is responsible for a specific non-empty contiguous subset of
the labels. To access a label C[i] in the sliceLabels[] array, the value of
the respective labelOffset variable (each rank has its own) has to be
subtracted from C[i] (see Fig. 5).

Step 1a: Labels are reduced in negative direction d. Since bound-
ary regions connecting neighboring slices are located in the main
memory of different MPI ranks, we first need to send the data from
rank i to rank (i+ 1) mod P̂ if there are P̂ ranks (see Fig. 6).

To minimize the amount of data to be transferred, we actually
send only elements for which there is an edge in positive direction
d. For each such element we send its array index with respect to the

0 6 8 17

62 77
6

6
0 2 4 9 16
60 9 9
0 7

7
7

744 58

0 4 4 14
774

Ra
nk

 0
Ra

nk
 1

Ra
nk

 2
Ra

nk
 3

0 1 2 3

4 5
1

1
6 7 8 9 10
11 9 9
12 13

13
13

1314 15

16 17 17 18
1917

6 Labels

6 Labels

4 Labels

4 Labels

MP
I_S

ca
n(

&n
um

La
be

ls,
&l

ab
elO

ffs
et,

...
)

lab
elO

ffs
et-

=n
um

La
be

ls

16

12

6

0

Result of the cluster self-labeling Label assignment with
method within slices minimum number of labels

Figure 4: Preliminary step of the multi-device SW algorithm.
The total number of labels used during the self-labeling within
the slices is reduced so that afterwards the number of labels
assigned to clusters is minimal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
sliceLabels[] arrays

Rank 0 Rank 1 Rank 2 Rank 3
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 0 1 2 3

Local array index = C[i]-labelOffset

Figure 5: Relation between global labels C[i] and the local array
indices within the sliceLabels[] arrays.

boundary sub-array, and the element itself, that is, 8 bytes. Since
edges are established with probability padd = 1 − exp(−2Jβ) if
and only if the involved spins both are aligned (2 cases out of 4),
the expected number of elements to be transferred is 0.29N̄ in two
dimensions and 0.18N̄ in three dimensions, where N̄ is the number
of border sites in this step. That is, the expected amount of data to
be send is 8×0.29N̄ bytes, and 8×0.18N̄ bytes, respectively. Both
values are below 4×N̄ bytes, which is the size of the entire border.

After the border exchange, each rank resolves label equivalences
similar to the shared memory case. The only difference is that ranks
can establish references only for those labels they are the owner of.
These references have effect on the sliceLabels[] arrays. Reductions
that affect labels the rank, say, i, is not responsible for are noted
and will be send to rank (i− 1 + P̂) mod P̂ in Step 2.

Similar to the shared memory case, we also note the number of
non-identity reductions.

Step 1b: Same as Step 1a, but labels are reduced in positive direc-
tion d. Again the number of non-identity reductions is noted.

After the reductions, we restart with Step 1a if any labels have
been actually reduced. Otherwise, we continue with Step 2.

Step 2: For each site i in each slice determine the root-label and
apply a bitwise AND with 0x80000000. If the upper most bit is set,
flip the respective spin using bitwise XOR of L[i] and 0x1.

In our actual implementation we further minimize the number of
transferred labels by sending information about label changes only.
The procedure is illustrated in Listing 6 using pseudo-code.

6. CODE VALIDATION
AND BENCHMARKING

In this section we summarize 1) the observables computed with the
two- and the three-dimensional Ising model simulations at critical-
ity using our implementations, and 2) the measured runtimes on the
many-core processors.

6.1 Validation—Computed Observables
For the two-dimensional Ising model the inverse critical tempera-
ture is T−1

c = 1
2 log(1 +

√
2) [10], whereas in three dimensions we

use T−1
c ≈ 0.22165 [2] and T−1

c ≈ 0.22165455 [5], respectively.

Rank 0: C[]

Rank 1: C[]

Rank 3: C[]
X X X X X X

X X X X X X X X

X X X X

X X X X X X
Rank 2: C[]

Rank 0: C[]

Rank 1: C[]

Rank 3: C[]

Rank 2: C[]

Step 1a Step 1b

X X X X X X

X X X X X X X X

X X X X

X X X X X X
Step 1a Step 1b

Figure 6: Border exchange of the C[] array. The Xs mark array
entries that are actually transferred.

flipClusters_MPI(L[],C[])
PER MPI RANK DO: P̂ Ranks
rank=get rank ID unique in {0,1,...,P̂-1}
parallel for i=0 to X-1 do

if (L[N̂-X+i]&0x8)==0x8 then // edge in direction 2
label=root(C[N̂-X+i])
cBorderU[i]=label
changesU[]←(i,label)

else
cBorderU[i]=0xFFFFFFFF // invalid label: no edge present

cBorderL[i]=0xFFFFFFFF // invalid label: default value
parallel region: P Threads
|| id=get thread ID unique in {0,1,...,P-1}
|| start=id*dX/Pe
|| stop=min(X,start+dX/Pe)
||do
|| barrier
|| if id==0 then // Step 1a
|| size=2*getSize(changesU)
|| MPI_Isend(changesU,size,UNSIGNED,(rank+1)%P̂,1)
|| MPI_Probe((rank-1+P̂)%P̂,1,status)
|| size=status.getCount()
|| MPI_Recv(changesL,size,UNSIGNED,(rank-1+P̂)%P̂,1,status)
|| APPLY CHANGES TO cBorderL[]
|| changesSlice=0
|| changesL[]=∅
|| barrier
|| for i=start to stop-1 do
|| if cBorderL[i]!=0xFFFFFFFF then
|| label=root(C[i]) // the root function uses sliceLabels[]

30:|| if (cBorderL[i]&0x7FFFFFFF)>(label&0x7FFFFFFF) then
L1:|| cBorderL[i]=label

|| changesL[]←(i,label)
|| atomicAdd(&changesSlice,1)
|| elseif (cBorderL[i]&0x7FFFFFFF)<(label&0x7FFFFFFF) then
|| if labelOffset≤(label&0x7FFFFFFF) then // my labels
|| ADAPT sliceLabels[] USING ATOMIC MINIMUM OPERATION

37:|| IF NECESSARY, GOTO L1
|| barrier
|| if id==0 then // Step 1b
|| size=2*getSize(changesL)
|| MPI_Isend(changesL,size,UNSIGNED,(rank-1+P̂)%P̂,2)
|| MPI_Probe((rank+1)%P̂,2,status)
|| size=status.getCount()
|| MPI_Recv(changesU,size,UNSIGNED,(rank+1)%P̂,2,status)
|| APPLY CHANGES TO cBorderU[]
|| changesU[]=∅
|| barrier
|| for i=start to stop-1 do
|| if cBorderU[i]!=0xFFFFFFFF then
|| label=root(C[N̂-X+i]) // the root function uses sliceLabels[]
|| LINES 30..37 WITH ‘xxxU’ AND ‘xxxL’ INTERCHANGED
|| barrier
|| if id==0 then
|| MPI_Allreduce(&changesSlice,&changes,1,UNSIGNED,MPI_SUM)
|| barrier
||while changes>0

Listing 6: Pseudo-code of the label reduction according to Step
1a,b using P̂ ranks. We consider the two-dimensional case with
slices having N̂ sites and extent Y/P̂×X . The lattice itself has
extent Y ×X . barrier means a thread barrier.

We evaluate the observables ‘internal energy’ E and ‘specific
heat’ cV = ∂E

∂T
|V=const, each per spin, using the Monte Carlo esti-

mates

.EMC =
1
N

1
M

M∑
m=1

Eµm ,

(cV)MC =
1
N

1

T 2
c

(
1
M

M∑
m=1

E2
µm
−
(1
M

M∑
m=1

Eµm

)2
)
.

N is the system volume in terms of spins (see Sec. 5.3),M is the
number of measurements taken during the simulation, and Eµm is
the internal energy of the system in configuration sµm .

From Tab. 2 it can be seen that in the case of the two-dimensional
Ising model Monte Carlo estimates are in agreement with exact cal-
culations according to A. E. Ferdinand and M. E. Fisher [6]—Monte
Carlo estimates of EMC and (cV)MC are correct within errors up to
the 6th, and the 2nd/3rd decimal place, respectively. In three di-
mensions, we compared estimates for L ∈ {32, 64, 128} at T−1

c =
0.22165 with values measured by Barber et al. [2]—for the com-
parison, our values of the internal energy and the specific heat need
to be multiplied by 1/3 respectively T 2

c /3. We found agreement
within errors. To our knowledge, there is no published work giving
estimates of E and cV for L� 128 in three dimensions.

Error estimation was done by means of the Γ-method [28], in-
corporating autocorrelation times.

For selected setups, we performed multiple runs of the simula-
tion to check the reproducibility of the measurements. We found
exact agreement for all runs. Since simulation results additionally
match exact values and values from literature, we assume our im-
plementations be correct.

Remark: The specific heat cV diverges as T → Tc. Since the
estimate 0.22165455 is closer to the actual value of T−1

c than is
0.22165, cV values are larger for T−1

c ≈0.22165455. Additionally,
increasing the lattice extent brings us more close to the infinite vol-
ume limit, also resulting in cV increases.

6.2 Hardware Configurations and Parallel
Programming APIs

Xeon Phi and CPU benchmarks have been performed on a cluster
with 16 compute nodes provided to us by Intel. Each node hosts
2 Intel Xeon E5-2680 CPUs (octa-core Sandy-Bridge, 2.7 GHz)
and 2 Intel Xeon Phi coprocessor 5110P. Nodes are equipped with
128 GB DDR3 RAM and run Red Hat Linux 6.3 with IBM Plat-
form HPC 3.2 and kernel version 2.6.32. They are connected us-
ing 2 single-port Intel True Scale QDR Infiniband cards. The Intel
MPSS stack version is 2.1.6720-13 update 3. All Xeon Phi cards
are configured to directly communicate with each other via Infini-
band.

The GPU benchmarks ran on a Supermicro server with X8DTG-
QF+ motherboard, two Intel Xeon E5620 CPUs (quad-core West-
mere, 2.4 GHz), 48 GB DDR3 RAM, and four Nvidia Tesla M2090
GPU modules in PCIe x16 slots each. The system runs a Scientific
Linux 6.1 with kernel version 2.6.38.

On Xeon Phi and CPU we use OpenMP for parallelization. Vec-
torization on the Phi is done using intrinsics. On the CPU we leave
vectorization to the compiler for two reasons: first, SSE/AVX in-
trinsics do not support masking operations, which we use inten-
sively on the Phi, and second, AVX has no full integer support.

Program code is compiled with Intel’s icpc-13.1.3 to Xeon Phi ‘na-
tive’ executables and executables for the CPU, respectively. On the
GPU Nvidia’s CUDA 4.0 API and nvcc compiler is used.

6.3 Benchmark Results
For benchmarking purposes on CPU and Xeon Phi, we use as many
threads as there are logical compute cores on the hardware. Single-
and dual-socket setups on CPU thus use 16 respectively 32 threads
with Hyper-Threading enabled. Threads are pinned to cores us-
ing KMP_AFFINITY=compact,granularity=fine. On the Xeon Phi we use 240
threads pinned to cores via KMP_AFFINITY= balanced,granularity=fine. On
both the Xeon Phi and the CPU we found these setups give best per-
formance. For GPU benchmarks the number of threads is adapted
to the lattice extents, which throughout all benchmarks are chosen

Xeon PhiXeon Phi d=2, T –1
c = 12 log(1+2

1/2)
L -EExact -EMC (cv)Exact (cv)MC
480 1.4155103... 1.415516(8) 3.1909689... 3.186(3)
960 1.4148619... 1.414862(5) 3.5339349... 3.531(5)
1920 1.4145377... 1.414535(4) 3.8768120... 3.869(8)
3840 1.4143756... 1.414373(3) 4.2196445... 4.234(11)
7680 1.4142946... 1.4142963(17) 4.5624548... 4.575(15)
15360 (MPI) 1.4142540... 1.4142544(14) 4.9052539... 4.89(2)
30720 (MPI) 1.4142338... 1.414233(3) 5.2480475... 5.31(8)

Xeon PhiXeon Phi d=3, T –1
c =0.22165 d=3, T –1

c =0.22165455
L -EMC (cv)MC -EMC (cv)MC
32 1.00696(4) 2.234(4) — —
64 0.996582(17) 2.705(4) — —
128 0.992642(8) 3.202(5) — —
256 0.991134(8) 3.645(16) 0.991479(8) 3.867(17)
512 0.990516(8) 3.78(5) 0.990932(10) 4.54(6)
1024 0.990332(6) 3.47(9) 0.990726(8) 5.37(14)

Tesla M2090Tesla M2090 d=2, T –1
c = 12 log(1+2

1/2)
L -EExact -EMC (cv)Exact (cv)MC
512 1.4154292... 1.415430(8) 3.2229079... 3.222(4)
1024 1.4148214... 1.414812(5) 3.5658628... 3.563(5)
2048 1.4145174... 1.414518(5) 3.9087343... 3.906(12)
4096 1.4143655... 1.414363(4) 4.2515641... 4.248(18)
8192 1.4142895... 1.414290(3) 4.5943730... 4.61(3)

Tesla M2090Tesla M2090 d=3, T –1
c =0.22165 d=3, T –1

c =0.22165455
L -EMC (cv)MC -EMC (cv)MC
32 1.00698(4) 2.234(3) — —
64 0.99659(2) 2.698(5) — —
128 0.992650(9) 3.208(7) — —
256 0.991133(7) 3.652(14) 0.991461(10) 3.83(3)
512 0.990543(7) 3.82(5) 0.990975(11) 4.63(6)
1024 0.990328(4) 3.46(5) 0.990718(6) 5.17(10)

Table 2: Monte Carlo estimates EMC and (cV)MC, each per
spin. In two dimensions we use T−1

c = 1
2 log(1+

√
2). In three

dimensions we use T−1
c = 0.22165 and T−1

c = 0.22165455. Ex-
act calculations in two dimensions are according to A. E. Fer-
dinand and M. E. Fisher.

such that the core count on the device is matched—on the Xeon Phi
lattice extents thus are not necessarily a power of 2.

For MPI benchmarks using the CPU we create one MPI rank per
socket and use 16 threads per rank. For MPI benchmarks using the
Phi, we create one rank per device and use 240 threads per rank.
Network communication goes over Infiniband. We use Intel’s MPI
implementation (version 4.1.1) with fabrics shm:dapl on CPU, and
shm:tmi on Xeon Phi.

Runtime measurements are done using omp_get_wtime() (OpenMP
timer). The accuracy of the timer is ‘nano-seconds.’ Since we mea-
sure the execution time of thousands of lattice updates and then
compute update times per spin, we found almost no variations in
runtime measurements for multiple runs using the same setup.

Execution times per spin update are summarized in Table 3, and
illustrated in Fig. 7. The parallel CPU runtimes are obtained with
16 (single-socket) and 32 (dual-socket) threads, respectively. It can
be seen that for sufficiently large lattices the GPU and the Xeon Phi
lie almost at level, with the Xeon Phi a little faster.

Both accelerators achieve speedups over the multithreaded single-
socket CPU version of about a factor 3. If both sockets are used, the
speedup breaks down to a little more than a factor 1.5. Execution

Xeon PhiXeon Phi d=2, T –1
c = 12 log(1+2

1/2) d=3, T –1
c =0.22165455

L tSequentialCPU tSingle-Sckt.CPU tDual-Sckt.CPU tXeon Phi tSequentialCPU tSingle-Sckt.CPU tDual-Sckt.CPU tXeon Phi
32 — — — — 32.2 3.86 3.05 5.70
64 27.6 4.69 6.15 19.0 31.4 3.34 2.02 2.30
128 27.3 3.30 2.66 7.03 32.1 3.55 1.84 1.66
240 29.6 3.08 2.05 3.62 33.4 4.21 2.17 1.30
480 29.3 2.93 1.64 1.66 33.5 4.71 2.58 1.33
960 29.3 2.89 1.52 1.12 33.7 4.80 2.61 1.41
1920 29.5 3.30 1.63 1.04 — — — —
3840 30.1 3.42 1.81 1.01 — — — —
7680 30.1 3.46 1.84 1.02 — — — —

Tesla M2090Tesla M2090 d=2, T –1
c = 12 log(1+2

1/2) d=3, T –1
c =0.22165455

L tSequentialCPU tSingle-Sckt.CPU tDual-Sckt.CPU tM2090 tSequentialCPU tSingle-Sckt.CPU tDual-Sckt.CPU tM2090

32 — — — — 32.2 3.86 3.05 3.75
64 27.6 4.69 6.15 10.7 31.4 3.34 2.02 1.92
128 27.3 3.30 2.66 3.72 32.1 3.55 1.84 1.52
256 27.3 2.95 1.92 2.09 32.2 4.18 2.16 1.47
512 27.3 2.80 1.58 1.52 32.4 4.62 2.58 1.49
1024 27.3 2.78 1.45 1.31 33.1 4.78 2.59 1.54
2048 27.4 3.24 1.60 1.21 — — — —
4096 27.5 3.26 1.75 1.18 — — — —
8192 27.5 3.29 1.79 1.16 — — — —

Comparison against known GPU implementations:Comparison against known GPU implementations: d=2, T –1
c = 12 log(1+2

1/2)

Weigel [23] Komura [13] Wende et al. (this paper)
L tGPU tGPU tM2090 tXeon Phi
256 — 5.47 (GTX580) 2.09 3.62 (L=240)
512 6.533 (GTX480) 3.54 (GTX580) 1.52 1.66 (L=480)
1024 — 2.98 (GTX580) 1.31 1.12 (L=960)
2048 — 2.86 (GTX580) 1.21 1.04 (L=1920)
4096 — 2.87 (GTX580) 1.18 1.01 (L=3840)
8192 3.934 (Tesla M2070) — 1.16 1.02 (L=7680)
8192 2.697 (GTX580) — 1.16 1.02 (L=7680)

Table 3: Update time per spin in nano-seconds for the simula-
tion of the two- and the three-dimensional critical Ising model
on an Ld-lattice. Single-socket and dual-socket CPU setups use
16 respectively 32 threads. On Xeon Phi 240 threads are used.
On GPU the thread count adapts to the lattice extent.

times per spin for the three-dimensional model are slightly larger
than their counterparts in two dimensions, which is due to a larger
number of arithmetic operations per spin, and also due to less fa-
vorable memory access patterns compared to the two-dimensional
case.

A direct comparison of our GPU implementation with imple-
mentations by Y. Komura and Y. Okabe [13], and M. Weigel [23]
is also given in Tab. 3. Our codes achieve more than a factor 2
performance gain over known GPU implementations. We want to
emphasize that almost all runtimes in [13, 23] are obtained with
consumer GPUs. In the case of the GTX580 the theoretical peak
performance is about a factor 1.15 higher than for the Tesla M2090.
The Tesla M2090 thus is at a disadvantage in this comparison, and
effective performance gains of our implementations are larger than
stated.

Figure 8 illustrates the strong scaling of our implementations
with the number of threads P on Xeon Phi, and the number of
thread blocks P ∗ (of size 256 each) on GPU. Execution times are
found to scale linearly with P and P ∗ as long as the number of
threads is below or equal to the number of logical execution units
on the hardware. However, the scaling is not ideal. One reason for
this is that the label reduction does not ideally scale with the num-
ber of threads. Since the propagation of label equivalences from

26 27 28 29 210 211 212 213

Up
da

te
Tim

ep
er

Sp
in

in
ns

2D Swendsen-Wang2D Swendsen-Wang

Lattice Extent L

1

10

26 28 210 212

Sp
ee

du
p

ov
er

Pa
ra

lle
lC

PU

Lattice Extent L

0

1

2

3
Single-
Socket

26 28 210 212

Lattice Extent L

Dual-
Socket

CPU (sequential)
CPU (single-socket)

CPU (dual-socket)
Tesla M2090

Xeon Phi SC5110P

25 26 27 28 29 210

3D Swendsen-Wang3D Swendsen-Wang

Lattice Extent L

Lower update
times are

better

25 27 29

Lattice Extent L

Single-
Socket

25 27 29

Lattice Extent L

Dual-
Socket

Figure 7: Update times per spin (top) and speedups over a par-
allelized CPU version of the SW algorithm (bottom).

20 22 24 26 28Sp
ee

du
p

ov
er

Se
qu

en
tia

l

2D Swendsen-Wang on Xeon Phi SC5110P2D Swendsen-Wang on Xeon Phi SC5110P

1

10

100 L=480

20 22 24 26 28

Number of Threads P

L=960

20 22 24 26 28

L=1920

Ideal
Measured

20 22 24 26Sp
ee

du
p

ov
er

1T
hr

ea
d

Bl
oc

k

2D Swendsen-Wang on Tesla M20902D Swendsen-Wang on Tesla M2090

1

10

100
L=512

20 22 24 26

Number of Thread Blocks P*

L=1024

20 22 24 26

L=2048

Ideal
Measured

Figure 8: Strong scaling of the implementations of the SW al-
gorithm with the number of threads P on Xeon Phi (top) and
the number of thread blocks P ∗on the GPU (bottom).

the larger ones to the lower ones is done by multiple concurrent
threads, some of them interfere with each other. A certain amount
of work thus is done several times. With increasing number of
threads, the effect on the execution time becomes significant.

Table 4 summarizes update times per spin using MPI. Due to the
MPI overhead in our implementations (including algorithmic mod-
ifications), an execution with one MPI rank is significantly slower

Xeon PhiXeon Phi d=2, T –1
c = 12 log(1+2

1/2)
L t1-Rank t2-Ranks t4-Ranks t8-Ranks t16-Ranks t32-Ranks
15360 1.791 0.902 0.460 0.249 0.181 0.201
30720 1.779 0.896 0.454 0.236 0.145 0.124
61440 — — 0.489 0.259 0.145 0.075
128880 — — — — 0.132 0.070

CPUCPU d=2, T –1
c = 12 log(1+2

1/2)
L t1-Rank t2-Ranks t4-Ranks t8-Ranks t16-Ranks t32-Ranks
16384 4.858 2.434 1.237 0.632 0.343 0.216
32768 4.856 2.433 1.228 0.625 0.324 0.182
65536 5.199 2.624 1.316 0.664 0.338 0.180
131072 — — 1.435 0.720 0.362 0.182

Xeon PhiXeon Phi d=3, T –1
c =0.22165455

L t1-Rank t2-Ranks t4-Ranks t8-Ranks t16-Ranks t32-Ranks
960 2.285 1.151 0.649 0.393 0.234 0.159
1440 — — 0.632 0.335 0.204 0.129
1920 — — — 0.317 0.178 0.107
2400 — — — — 0.169 0.092

CPUCPU d=3, T –1
c =0.22165455

L t1-Rank t2-Ranks t4-Ranks t8-Ranks t16-Ranks t32-Ranks
1024 6.900 3.462 1.734 0.907 0.494 0.332
1536 6.886 3.448 1.723 0.881 0.472 0.275
2048 — 3.460 1.741 0.884 0.457 0.253
2560 — — 1.785 0.877 0.454 0.248

Table 4: Executions times per spin update in nano-seconds for
the simulation of the two- and the three-dimensional critical
Ising model on an Ld-lattice using MPI with up to 16 compute
nodes and 2 CPU sockets respectively 2 Xeon Phis per node.

than its shared memory counterpart. We thus deem it meaningful to
consider just cases in which update times per spin using the shared
memory version saturate, and/or the lattice becomes too large to
hold it in the main memory of a single Xeon Phi card.

Update times per spin are illustrated in Fig. 9. For large lattices,
the available amount of main memory on the Xeon Phi and the CPU
restricts the lower number of MPI ranks used for the benchmark.

It can be seen that the update times reduce almost linearly with
the number of MPI ranks if lattices are sufficiently large. With 32
Xeon Phis we achieve about 1

0.07ns≈14.3 and 1
0.092ns≈10.9 spin flips

per nano-second in two respectively three dimensions on lattices
with extent 128880×128880 and 2400×2400×2400.

Our CPU implementation using MPI performs about a factor 2.6
below its Xeon Phi counterpart in two dimensions, and about a fac-
tor 2.7 below it in three dimensions. The scaling with the number
of ranks is almost linear, even on smaller lattices.

Efficiency considerations with the shared memory version as a
reference attest our Xeon Phi MPI version a poor performance, as
we obtain only a speedup of about 1.02ns

0.070ns ≈14.6 in two and 1.41ns
0.092ns ≈

15.3 in three dimensions using 32 Xeon Phis. The efficiency thus
is ≈45%. Taking one MPI process as a reference—which appears
more meaningful to us, as the MPI version is algorithmically more
complex than the shared memory version—, the efficiency is above
75% in two and three dimensions. On the CPU the efficiency is
above 80% (with respect to the MPI execution using one process).
Currently, all network traffic between two Xeon Phi cards installed
in two different nodes first goes over the PCIe bus and then over the
actual network. With the next Intel MIC architecture standalone de-
vices become available and the coprocessor-host bottleneck should
disappear. We assume that with an improved Phi-to-Phi network

20 21 22 23 24 25

Up
da

te
Tim

e
pe

rS
pin

in
ns

2D Swendsen-Wang (MPI), CPU vs. Xeon Phi2D Swendsen-Wang (MPI), CPU vs. Xeon Phi

Number of MPI Ranks

0.1

1

L=16384,
15360

20 21 22 23 24 25

L=32768,
30720

20 21 22 23 24 25

L=65536,
61440

20 21 22 23 24 25

L=131072,
128880

CPU
Xeon Phi

20 21 22 23 24 25

Up
da

te
Tim

e
pe

rS
pin

in
ns

3D Swendsen-Wang (MPI), CPU vs. Xeon Phi3D Swendsen-Wang (MPI), CPU vs. Xeon Phi

Number of MPI Ranks

0.1

1

L=1024,
960

Lower
update times
are better

20 21 22 23 24 25

L=1536,
1440

20 21 22 23 24 25

L=2048,
1920

20 21 22 23 24 25

L=2560,
2400

Figure 9: Update times per spin in nano-seconds (MPI version
of the SW algorithm). For some setups the available amount of
main memory restricts the minimum number of ranks.

connection our implementations’ efficiencies become larger than
75% on the Xeon Phi.

7. SUMMARY AND CONCLUSION
In this paper we present parallel implementations of Swendsen and
Wang’s multi-cluster algorithm for the Ising model using current
parallel processor platforms—Intel Xeon Phi coprocessor 5110P,
Nvidia Tesla M2090 GPU, and Intel octa-core Xeon E5-2680.

Our approach for shared memory machines draws on a decom-
position of the lattice containing the Ising spins into sub-lattices,
and parallel cluster labeling within these sub-lattices by means of
C. F. Coddington and P. D. Baillie’s [1] cluster self-labeling method.
The label reduction across sub-clusters is novel in that atomic hard-
ware primitives are used to resolve label equivalences. The reduc-
tion process is improved by providing information about label equi-
valences to all concurrent threads during the merging by means of
‘path compression.’

Our codes have been validated by comparing Monte Carlo esti-
mates of selected observables against exact calculations [6] in two
dimensions, and against literature values in three dimensions [2].
Agreement within statistical errors could be noticed.

We found both the Xeon Phi and the GPU give measurable per-
formance gains over comparable parallel implementations executed
on the CPU. Speedups up to a factor 3 can be observed. For simu-
lation setups with sufficiently large lattices, the Xeon Phi lies level
with the GPU.

A direct comparison with known implementations of the Swend-
sen-Wang algorithm for the two-dimensional Ising model on GPU
[13, 23] and multi-GPU [14] setups demonstrates our codes are
more than a factor 2 faster. In three dimensions, no references using
current computer hardware could be found.

Our MPI version of the Swendsen-Wang algorithm abstracts the
shared memory version by dividing the lattice into slices which are
assigned to MPI ranks and then are labeled using our shared mem-
ory approach. Afterwards we perform an intermediate step that
minimizes the total number of labels used across all slices—this
way, the simulation of lattices with more than 232 − 1 sites be-

comes possible despite 32-bit words are used for the labeling. La-
bel equivalences on the level of the slices are resolved by exchang-
ing borders between ranks that work on neighboring slices as long
as labels change. Hereby, each rank is the owner of a subset of the
labels, and for these labels it establishes label references which fi-
nally allow for each site to find the cluster it belongs to. The border
exchange is improved by actually sending information about label
changes instead of entire borders.

The integration of MPI functionalities into our codes was exactly
the same for both Xeon Phi and CPU. We thus had to implement it
just once. On both the Phi and the CPU we achieve almost lin-
ear scaling with the number of MPI ranks if lattices are sufficiently
large. The 32-rank Phi execution using 240 threads per rank gives
performance gains more than a factor 2.5 over a 32-rank CPU exe-
cution using 16 threads per rank (Hyper-Threading enabled).

A valuable feature of our implementations using MPI is that lat-
tices with more than 232−1 sites can be simulated with 32-bit words
used for the labeling—we found our implementations be suitable
for lattices even larger than 131072×131072 respectively 2560×
2560×2560.

We experienced programming the Xeon Phi to be straightfor-
ward. Many programming techniques, especially vectorization by
means of intrinsics, could be adopted from x86 CPU programming.
The development of the codes took us a few days, starting with the
CPU codes and then by applying changes to make them run on the
Xeon Phi. For the Xeon Phi the integration of SIMD intrinsics con-
sumed the major portion of the time.

As our GPU codes are quite similar to the Xeon Phi codes, except
for replacing SIMD operations by SIMT operations (on the level of
the warps), the development here also took us a few days only.

Acknowledgment
This work is partially funded by the German BMBF project EN-
HANCE, grant no. 01IH11004G. We thank Intel for generously
providing us Xeon Phi hardware accelerators for code development,
and for access to a Xeon Phi cluster for benchmarking. In partic-
ular, in-depth discussions with Dr. Michael Klemm shed light on
details of the Intel MIC architecture.

8. REFERENCES
[1] C. F. Baillie and P. D. Coddington. Cluster identification

algorithms for spin models - sequential and parallel, 1991.
[2] M. N. Barber, R. B. Pearson, D. Toussaint, and J. L.

Richardson. Finite-size scaling in the three-dimensional
Ising model. Phys. Rev. B, 32:1720–1730, Aug 1985.

[3] K. P. Belkhale and P. Banerjee. Parallel algorithms for
geometric connected component labeling on a hypercube
multiprocessor. IEEE Transactions on Computers,
41:699–709, 1992.

[4] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education,
2nd edition, 2001.

[5] Y. Deng and H. W. J. Blöte. Simultaneous analysis of several
models in the three-dimensional Ising universality class.
Phys Rev E Stat Nonlin Soft Matter Phys, 68(3 Pt 2):036125,
2003.

[6] A. E. Ferdinand and M. E. Fisher. Bounded and
inhomogeneous Ising models. I. Specific-heat anomaly of a
finite lattice. Phys. Rev., 185(2):832–846, Sept. 1969.

[7] A. M. Ferrenberg, D. P. Landau, and Y. J. Wong. Monte
Carlo simulations: Hidden errors from ‘good’ random

number generators. Physical Review Letters, 69(23):3382+,
1992.

[8] A. Heinecke, M. Klemm, and H. J. Bungartz. From GPGPU
to many-core: Nvidia Fermi and Intel Many Integrated Core
architecture. Computing in Science and Engineering,
14:78–83, 2012.

[9] Intel. Intel Xeon Phi coprocessor 5110P, product brief, 2012.
[10] E. Ising. Beitrag zur Theorie des Ferromagnetismus.

Zeitschrift für Physik A Hadrons and Nuclei, 31(1):253–258,
Feb. 1925.

[11] J. Jeffers, J. R. Jeffers, and J. Reinders. Intel Xeon Phi
Coprocessor High Performance Programming. Elsevier
Science & Technology Books, 2013.

[12] Y. Komura and Y. Okabe. GPU-based single-cluster
algorithm for the simulation of the Ising model. J. Comput.
Phys., 231(4):1209–1215, Feb. 2012.

[13] Y. Komura and Y. Okabe. GPU-based Swendsen-Wang
multi-cluster algorithm for the simulation of
two-dimensional classical spin systems. Computer Physics
Communications, 183(6):1155–1161, 2012.

[14] Y. Komura and Y. Okabe. Multi-GPU-based
Swendsen-Wang multi-cluster algorithm for the simulation
of two-dimensional q-state potts model. Computer Physics
Communications, 184(1):40 – 44, 2013.

[15] M. Lüscher. A portable high quality random number
generator for lattice field theory simulations. Comput. Phys.
Commun., 79:100–110, 1994.

[16] M. Manssen, M. Weigel, and A. K. Hartmann. Random
number generators for massively parallel simulations on
GPU. (arXiv:1204.6193), Apr 2012.

[17] M. Matsumoto and T. Nishimura. Dynamic creation of
pseudorandom number generators. pages 56–69, June 1998.

[18] M. Matsumoto and T. Nishimura. Mersenne twister: A
623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Trans. Model. Comput. Simul.,
8(1):3–30, Jan. 1998.

[19] E. J. Newman and G. T. Barkema. Monte Carlo Methods in
Statistical Physics. Clarendon Press, 1999.

[20] Nvidia. Fermi compute architecture whitepaper, v1.1, 2009.
[21] Nvidia. Nvidia CUDA C programming guide, v4.0. 2011.
[22] R. H. Swendsen and J.-S. Wang. Nonuniversal critical

dynamics in Monte Carlo simulations. Phys. Rev. Lett.,
58:86–88, Jan 1987.

[23] M. Weigel. Connected component identification and cluster
update on GPU. (arXiv:1105.5804), May 2011.

[24] M. Weigel. Simulating spin models on GPU. Computer
Physics Communications, 182(9):1833–1836, 2011.

[25] M. Weigel. Performance potential for simulating spin models
on GPU. J. Comput. Physics, 231(8):3064–3082, 2012.

[26] F. Wende. Master thesis: Simulation of spin models on
Nvidia graphics cards using CUDA, 2010.

[27] U. Wolff. Comparison between cluster Monte Carlo
algorithms in the Ising model. 1989.

[28] U. Wolff. Monte Carlo errors with less errors. Comput. Phys.
Commun., 156:143–153, 2004.

