
Dynamic Load Balancing on Massively Parallel
Computer Architectures

B A C H E L O R A R B E I T

zur Erlangung des akademischen Grades

Bachelor of Science (B.Sc.)
im Fach Informatik

eingereicht am Institut für
Informatik, Fachbereich Mathematik und Informatik

Freie Universität Berlin

von
Florian Wende

geboren am 06.05.1985 in Dresden

Präsident der Freie Universität Berlin:
Prof. Dr. Peter-André Alt

Dekan des Fachbereich Mathematik und Informatik:
Prof. Dr. R. Klein

Gutachter:
1. Prof. Dr. H. Alt
2. Prof. Dr. A. Reinefeld

eingereicht am: 12.04.2013
Tag der mündlichen Prüfung:

Abstract

This thesis reports on using dynamic load balancing methods on massively
parallel computers in the context of multithreaded computations. In partic-
ular we investigate the applicability of a randomized work stealing algorithm
to ray tracing and breadth-first search as representatives of real-world appli-
cations with dynamic work creation. For our considerations we made use of
current massively parallel hardware accelerators: Nvidia Tesla M2090, and
Intel XeonPhi. For both of the two we demonstrate the suitability of the
work stealing scheme for the said real-world applications. Also the necessity
of dynamic load balancing for irregular computations on such hardware is
illustrated.

Keywords:
GPGPU, CUDA, MIC, XeonPhi, Dynamic Load Balancing, Work Stealing,
Ray Tracing, Breadth-First Search

iii

Zusammenfassung

Vorliegende Bachelorarbeit befasst sich mit Methoden der dynamischen
Lastbalancierung auf massiv parallelen Computern im Rahmen von mehr-
prozess gestützten Ausführungen von Programmen. Im einzelnen wird die
Eignung eines randomisierten Work-Stealing Algorithmus für die Ausführung
realer Anwendungen mit dynamischer Arbeitserzeugung, wie Ray-Tracing
und Breitensuche, untersucht. Für die entsprechenden Betrachtungen wer-
den aktuelle massiv parallele Hardwarebeschleuniger vom Typ Nvidia Tesla
M2090 und Intel XeonPhi verwendet. Für beide Beschleunigertypen konnte
die Tauglichkeit des Work-Stealing Schemas für die genannten Anwendungen
gezeigt werden. Ebenfalls wird die Notwendigkeit der Verwendung dynami-
scher Lastausgleichsmethoden für irregulare Berechnungen auf der genannten
Hardware verdeutlicht.

Schlagwörter:
GPGPU, CUDA, MIC, XeonPhi, Dynamische Lastbalancierung, Work-Stealing,
Ray-Tracing, Breitensuche

v

Contents

1. Introduction 1
1.1. Related Work . 2
1.2. Contribution of the Thesis . 3

2. Dynamic Task Parallelism in Multithreaded Computations 5
2.1. Multithreaded Computations . 5
2.2. Dynamic Load Balancing . 6

2.2.1. Dynamic Load Balancing Methods 8
2.3. Greedy-Scheduling of Multithreaded Computations 9

2.3.1. The Busy-Leaves Algorithm . 12
2.4. A Randomized Work-Stealing Algorithm 13

3. Work Stealing on GPU and Intel XeonPhi 17
3.1. Nvidia Fermi GPU Architecture . 17
3.2. Intel Many Integrated Core (MIC) Architecture 19
3.3. Problem Description . 21
3.4. Multithreaded Data Structures . 22

3.4.1. Blocking Dequeue . 23
3.4.2. Non-Blocking Dequeue . 24
3.4.3. Performance Evaluation . 27

3.5. Scheduling Multithreaded Computations on GPU and XeonPhi 32
3.5.1. Dependency Resolution . 32
3.5.2. Evaluation of the Implementation 35

4. Application Scenarios 41
4.1. Ray Tracing . 41

4.1.1. The Ray Tracing Method . 41
4.1.2. Implementation Details . 43
4.1.3. Ray Tracing and Load Balancing 45
4.1.4. Performance Evaluation on GPU, XeonPhi, and CPU 47
4.1.5. Validation of the Implementation 55

vii

Contents

4.2. Breadth-First Search . 55
4.2.1. Parallel Implementation . 58
4.2.2. Performance Evaluation on XeonPhi and CPU 60
4.2.3. Validation of the Implementation 66
4.2.4. Scalable Work Stealing & State of the Art 66

5. Summary & Conclusion 67

A. Blocking Dequeue, Non-Blocking Dequeue, Load Balancing 69
A.1. Blocking Dequeue (GPU) . 69
A.2. Non-Blocking Dequeue (GPU)—Extended Version 71
A.3. Source Codes . 76

B. Ray Tracing 77
B.1. Work Distribution for Rendering the KingsTreasure Scene, Setup 2/3 . . . 77
B.2. Source Codes . 78

C. Breadth-First Search: Source Codes 79

viii

1. Introduction

The development of parallel computer systems and concepts of parallel programming
both have their origin in the mid-1960s. Primarily driven by the strongly increasing
demand for computational power in almost all kinds of scientific fields of research, single
processor systems rapidly evolved to those containing multiple processors. Today we are
faced with multi-core CPUs in standard consumer products, high-performance computer
systems in data centers, and vector processors and hardware accelerators in special
purpose computers. Currently, the use of massively parallel hardware accelerators drive
the raw compute performance of the fastest systems towards several PetaFLOPS1 and
beyond.
For about 5 years, programmers from different fields of research report about signif-

icant performance gains when executing adapted programs on GPUs (GPU—Graphics
Processing Unit) compared to executing them on a standard multi-core CPU. While
GPUs are well suited for data parallel applications with known launch bounds, dy-
namic task parallelism is a discipline even current GPUs seem to be at a disadvantage
to multi-core CPUs [TLO12]. The point why GPUs seem to be less suitable for such
kind of applications is irregularities in program control flows and task execution times,
and task (re)distribution at runtime when work is created dynamically. According to
Burtscher et al. [BNP12], irregularities in control flow and memory access patterns do
not necessarily result in bad performance of GPU programs. For almost all application
domains considered by the authors—graph theory, satisfiability theory, computational
geometry, to name a few—they found current GPUs be less sensitive to unfortunate
memory access patterns due to the introduction of data caches on the latest models.
The more interesting issue thus is dynamic task parallelism, which is more or less in
contrast with the functioning of the GPU hardware.
Similar issues may also apply to hardware accelerators other than GPUs, and in

particular to heterogeneous computer systems made up of different kinds of processors.

1FLOPS—Floating Point Operations Per Second. 1 PetaFLOPS = 1× 1015 FLOPS.

1

1. Introduction

1.1. Related Work

With respect to dynamic work creation, there is a broad class of algorithms that actually
develop their parallelism just at runtime—divide and conquer algorithms, for instance.
For such algorithms to execute on massively parallel computers, a mechanisms is needed
that (re)distributes newly created work to processors that are non-busy at that time.
Investigations on applying load balancing schemes, known to serve well on traditional
multiprocessor systems, to the GPU can be found in [CT08, CGSS11, TLO12], for in-
stance. While Cederman et al. [CT08] and Chatterjee et al. [CGSS11] obtain good
results with a work stealing based load balancing scheme (the authors do not handle de-
pendencies between tasks), Tzeng et al. [TLO12] have their focus on irregular workloads
with dependencies. Unfortunately, the task parallel programming model for the GPU
proposed by the authors was inferior to its CPU counterpart.
Besides using load balancing schemes on a particular kind of multiprocessor, distribut-

ing work amongst the components of a heterogeneous system is another challenging ap-
plication domain of load balancing schemes. In this field several investigations have been
done. Well known outcomes here are the StarPU [ATNW11] and the X-Kaapi [GLFR12]
programming APIs. Both of the two aim for making the heterogeneous computer’s com-
pute units—CPU cores, GPUs, and maybe other hardware accelerators—execute a mul-
tithreaded computation in cooperative manner. For that purpose X-Kaapi implements a
work stealing scheduler, whereas StarPU allows to dynamically switch between different
scheduling schemes including work stealing. The key difference to using load balancing
on the hardware accelerator itself is the abstraction of the underlying hardware. X-Kaapi
and StarPU abstract accelerators like CPU cores. Large portions of the computation
are scheduled to the accelerator in hope of fast execution (offload computation), while
small portions are assigned to the CPU core(s). Load balancing on the accelerators is
not addressed by these APIs (to our knowledge).
Other examples of using hardware accelerators for offload computations are MAGMA,

and TBLAS [SYD09, SHT+12]. Both libraries focus on solving dense linear algebra
problems. The approach is to replace BLAS (Basic Linear Algebra Subroutine) routines
by so-called task-based linear algebra subroutines that are dynamically created during
the execution of the computation, and then are distributed to available processors. The
scheduling mechanism has to respect dependencies between the tasks.
At the core of all these APIs and libraries is the integration of massively parallel

hardware accelerators. As vendors of such accelerators are going to provide their devices
with increasingly more and more processors, further investigations on load balancing
schemes seem to be crucial to make a wide range of applications, including those with
irregular workloads, benefit from the massive compute performance of the hardware.

2

1.2. Contribution of the Thesis

1.2. Contribution of the Thesis

In this thesis we extend the aforementioned investigations on load balancing using a
current Nvidia GPU and Intel’s XeonPhi hardware accelerator. We want to emphasize
that our focus will be on load balancing on the hardware accelerator itself. A combination
with StarPU or X-Kaapi might be the starting point of further investigations. Unlike in
[CT08] and [CGSS11], we also compare the performance of our implementations against
equivalent implementations on a standard x86 multi-core CPU—the functioning of the
load balancing schemes on the GPU and the XeonPhi does not mean that the overall
performance of a respective application is superior to its CPU version, as experienced for
applications with no irregular workloads. We mimic the task parallel Cilk programming
model—implementing work stealing on x86 CPUs and the XeonPhi—on both GPU
and XeonPhi, and evaluate its performance by directly comparing against Cilk (we
also address dependencies between tasks). A downgraded version of this load balancing
scheme will be applied to real-world problems, ray tracing and breadth-first search,
namely.

Chapter 2 is concerned with multithreaded computations and dynamic load balancing.
After briefly introducing the graph theoretical model of multithreaded computations,
the focus will be on scheduling aspects. We will draw on the work of D. Cederman and
P. Tsigas [CT08], and R. D. Blumofe and Ch. E. Leiserson [BL93, BL99].

In Chapter 3 we introduce the massively parallel computer hardware used in this
thesis—Nvidia Fermi GPU, and Intel XeonPhi, namely. We then are concerned with the
implementation and the evaluation of concurrent data structures—‘lock’ and ‘dequeue’.
Further, we give an implementation of the work stealing load balancing scheme that puts
the graph theoretical model of multithreaded computations into practice.

Chapter 4 applies the work stealing scheme to real-world applications, ray tracing
and breadth-first search (BFS). We evaluate the performance of the ray tracer using a
static work distribution scheme, a centralized work pool, and work stealing. For the
BFS algorithm, we restrict our considerations to the XeonPhi and the CPU.

Chapter 5 summarizes the results of this thesis. We also list some interesting issues
that might serve as a basis for further investigations.

3

2. Dynamic Task Parallelism in
Multithreaded Computations

This chapter is concerned with scheduling schemes in the context of multithreaded com-
putations. After having briefly introduced the notion of a multithreaded computation
and its graph theoretical representation, we list common approaches to handle such
computations. In particular, we amplify greedy schedules, and introduce a randomized
work stealing scheme. Throughout this chapter, we follow the work of D. Cederman and
P. Tsigas [CT08], and R. D. Blumofe and Ch. E. Leiserson [BL93, BL99].

2.1. Multithreaded Computations

A multithreaded computation is a composition of threads, which are sequential orderings
of tasks each. A task here refers to an abstract operation which in the context of the
computation is atomic, that is, for the multithreaded computation it is not split up into
subtasks. Tasks tj within a thread T are executed in a predefined order, with tasks
that are direct successors being connected by continue edges going from a task tj to its
direct successor succ(tj). Threads may create new threads during their execution, called
child threads. The thread which spawns the child thread acts as the parent of the child,
and as an ancestor of the child’s child(ren). In this way, threads are organized into an
activation tree, with parent threads and child threads connected by spawn edges going
from the parent to the child thread. If there is some kind of producer-consumer relation
between threads, say, thread T0 is the consumer and threads Ti:1≤i≤n are the producers,
then there are n data-dependency edges going from any task tji in Ti:1≤i≤n to a somehow
distinguished task t∗ in T0, where t∗ consumes the data. A multithreaded computation
can be represented by a directed graph with its nodes corresponding to tasks, and with
the different types of edges introduced above (see Fig. 2.1).
An execution schedule for a multithreaded computation is a task-processor mapping

which at each step of the schedule assigns a task to each processor of a parallel computer
for execution. The schedule depends on the multithreaded computation itself, and on
the number of processors of the parallel computer used for the execution. At every step
of the schedule each processor is assigned at most one task. For an execution schedule

5

2. Dynamic Task Parallelism in Multithreaded Computations

Thread Continue Edge Task

Spawn Edge

Data-Dependency Edge

Figure 2.1.: Representation of a multithreaded computation by means of a directed graph. Threads
are denoted by gray shaded boxes, and tasks correspond to open circles. Threads are connected by
spawn edges and data-dependency edges (if there are any), whereas successive tasks within a thread are
connected by continue edges. The image is based on similar drawing in [BL99].

to be valid, ordering constraints given by continue and data-dependency edges must be
preserved, that is, tasks can be executed if and only if all its predecessor tasks, connected
to it via continue or data-dependency edges, have been executed. The execution of the
consuming thread thus cannot continue until the respective data dependencies (if there
are any) are resolved—in the meantime the consuming thread stalls.
For subsequent considerations we assume that there is a valid execution schedule for

the multithreaded computation of interest. Then the multithreaded computation can
be represented by a directed acyclic graph (DAG).1 We further assume that for each
thread the number of data-dependency edges incident on it is bounded above, so that
the computation can be performed within a finite amount of time, and with a finite
amount of computer resources.

2.2. Dynamic Load Balancing

A general multithreaded computation consists of a certain number of threads with some
of them created (spawned) by other threads during their execution (see Fig. 2.1). Since
spawning threads from within a thread is somehow similar to a subroutine call, except
that the spawned thread can be executed concurrently to the thread that did the spawn,
a scheme is needed that presents one of the two threads to processors that are currently
non-busy, and allows any of them to start executing this thread. In this way the amount
of parallelism can be dynamically adapted to the resources provided by the computer
system. This point is addressed by dynamic load balancing schemes.
1If the graph would not be acyclic, the presence of cycles results in the computation will stall at any
step due to data dependencies that cannot be resolved.

6

2.2. Dynamic Load Balancing

At the core of load balancing in the context of multithreaded computations are con-
current data structures that on the one hand allow several competing processors each to
access the data atomically, that is, without being interrupted by other processors, and
on the other hand assure high throughput and high availability. To meet these require-
ments, several popular load balancing schemes draw on atomic hardware primitives such
as compare-and-swap and test-and-set. Whether these primitives are available or not
depends on the hardware. However, all these load balancing schemes have in common
that a shared data object—queue, dequeue, stack, or heap, for instance—is used to store
all threads that are created before and during the execution of the application. When
the data structure is ‘not empty’ processors that are ready for work repeatedly try to get
a thread from it and start executing the respective thread’s tasks until the computation
is done. Processors which spawn threads ‘add’ them to the data structure to enable
other processors to acquire these threads and so to leave their non-busy state.
At the core of accessing a shared data structure is synchronization in order to assure

atomicity in the sense described above. Synchronization schemes can be divided into
the following categories [CT08, TZ00]:

Blocking: Shared data objects are altered only within critical sections which are sur-
rounded by a pair of ‘locking’ and ‘unlocking’ functions, traditionally based on
mutexes or semaphores (‘lock’ for simplicity). A processor that enters the critical
section is said to hold the lock associated with the data structure and the critical
section, respectively. If the processor leaves the critical section the lock is released
and other processors may acquire it. Processors that try to enter the critical sec-
tion wait for the event ‘lock was released and can be acquired’ to occur. In this
way all alterations with respect to the shared object are done mutual exclusive.
Unfortunately, blocking access to shared objects suffers from contention (multiple
processors repeatedly check if a lock has been released or not, causing expensive
busy-waiting), convoying (the processor holding the lock is preempted and thus
is unable to release the lock until it is brought back for execution, causing other
processors to wait), and from the risk of deadlocks (the processor holding the lock
crashes and the shared object is locked permanently, or two or more processors
circularly wait for locks held by other processors).

Non-blocking (Optimistic Concurrency Control): Shared data objects can be accessed
by multiple processors at the same time without enforcing mutual exclusion. The
risk of deadlocks thus is eliminated. Atomicity with respect to altering the shared
object in a consistent way is guaranteed by applying changes to the object using
atomic hardware primitives only—just one processor, out of a set of concurrent
processors accessing the data object, can finish its operation(s) successfully such

7

2. Dynamic Task Parallelism in Multithreaded Computations

that the state of the object before and at the end of the operation is identical,
that is, none of the other processors has altered the object in the meantime. All
processors that failed altering the data object successfully may have a further try
if necessary.

Lock-free: As multiple processors concurrently alter a shared data object, with
just one of them achieving success while the other ones may repeatedly try
again, there is the possibility for individual processors to starve, that is, some
processors will never be successful. However, system-wide progress is guaran-
teed.

Wait-free: In addition to lock-freedom, wait-freedom guarantees for each processor
to complete its altering of the shared object within a bounded number of steps.
Wait-freedom thus guarantees starvation-freedom.

Which kind of synchronization scheme to use depends on the application and on the
particular computer system used. While for massively parallel computer systems lock-
free (and wait-free) synchronization mechanisms are the matter of choice, due to almost
linear scaling with number of processors [TZ00], lock-based synchronization schemes
might be suitable for systems with just a few processors.
Although lock- and wait-free synchronization methods are superior to blocking ones,

they are usually harder to design.

2.2.1. Dynamic Load Balancing Methods

In this subsection we summarize some load balancing methods described in [CT08].
Other than the authors we do not explicitly distinguish between thread list, thread
queue, and thread dequeue, since concrete implementations are usually array-based, and
‘list’, ‘queue’, ‘dequeue’, etc. then are just different prescriptions of which elements of
the array can be accessed next. We therefore want to refer to these data structures as
thread pools hereafter.2

In the context of multithreaded computations, we distinguish between using a single
centralized thread pool or multiple distributed thread pools, processors can get threads
from. Further we may distinguish between thread pools that use blocking and those
using non-blocking synchronization mechanisms. Also the question of whether our thread
pool(s) should allow adding newly created threads at runtime or not might be reasonable.

2In [CT08] the meaning of ‘thread’ and ‘task’ is different from what we have used so far. In the notation
of the authors tasks map onto threads, and threads executing tasks map onto processors executing
threads.

8

2.3. Greedy-Scheduling of Multithreaded Computations

With respect to these issues, the following combinations are conceivable:

Blocking centralized thread pool: A simple thread pool protected by a lock. Since only
one processor can access the pool at any time, there is huge potential for contention
and convoying. If processors frequently access the pool, the available parallelism
is limited by the thread pool itself, rendering it unsuitable for massively parallel
computer systems. Threads created at runtime can be easily added to the pool
unless its capacity is reached.

Non-blocking centralized thread pool: A pool which instead of a lock uses atomic
hardware primitives to assure mutual exclusion. Although there is no contention,
for a large number of processors trying to access the pool, the delay, due to just one
of the competing processors successfully removes or adds a thread at any time, may
become extremely large. Thus, the actual available parallelism is again limited by
the thread pool itself when used for massively parallel computers.

Blocking distributed thread pools: Compared to the blocking centralized thread pool,
the available parallelism should be measurably larger as processors may access
different pools when trying to acquire new threads. For each processor selecting a
pool for access can be done, for instance, in round robin fashion or at random.

Non-blocking distributed thread pools: Similar to the non-blocking centralized thread
pool, but with processors selecting pools for access, for instance, in round robin
fashion or at random.

For (massively) parallel computers the latter approach is the most promising. In fact,
it is the data structure used for the work stealing algorithm, with each processor being the
owner of a non-blocking (lock-free) thread pool. The owner can add and remove threads
from its pool, whereas all other processors are just allowed to remove (or steal) threads,
hence the name work stealing. Another scheduling paradigm which addresses scheduling
multithreaded computations is work sharing, where dynamically created threads are mi-
grated to other processors in hopes of distributing the work to underutilized processors.
The work stealing scheme will be described in Sec. 2.4. Beforehand, we introduce some
useful notation and amplify the greedy-scheduling theorem.

2.3. Greedy-Scheduling of Multithreaded Computations

Greedy schedules are those in which at each step of the execution p ≤ P tasks execute
on up to P processors if at the respective step p tasks are ready for execution. To get a
deeper insight into greedy schedules of multithreaded computations, we need to introduce
some notation. We again follow R. D. Blumofe and Ch. E. Leiserson [BL99, BL93].

9

2. Dynamic Task Parallelism in Multithreaded Computations

According to Sec. 2.1, a multithreaded computation can be represented by a bounded-
edge DAG, with nodes corresponding to tasks, and tasks being connected by continue,
spawn, and data-dependency edges. Tasks that are connected by continue edges belong
to the same thread, and the multithreaded computation consists of a finite number of
threads with some of them created at runtime by other threads.
Since general multithreaded computations with arbitrary data dependencies cannot

be scheduled efficiently, subsequent considerations are for the subclass of strict and fully-
strict multithreaded computations. A multithreaded computation is said to be strict if
for all threads all data-dependency edges from a thread go to an ancestor of the thread in
the activation tree. It is said to be fully-strict if for all threads all data-dependency edges
from a thread go to its parent thread. Strict and fully-strict computations correspond
to those that can be executed in a depth-first manner on a single processor system.
To quantify the space and time bounds for an execution schedule X of a multithreaded

computation, we assume a computer system with P processors. For each thread Ti that
is executed, an activation frame Fi is allocated, and the thread is said to be alive.
|Fi| refers to the amount of memory used to store all data needed for the execution
of thread Ti. The activation frame Fi of a thread Ti is deallocated if and only if Ti is
done and all its children’s activation frames have been deallocated. The thread then
dies. At a given step x of the execution schedule X , the portion of the activation tree
A consisting of those threads that are alive at that step defines the activation subtree
Ā(x) at step x. The space S(x) required for the execution schedule at step x thus is
the size of all activation frames used by all threads in the activation subtree Ā(x), that
is, S(x) = ∑

i:Ti∈Ā(x) |Fi|. The space requirement SP (X) for a P -processor execution
schedule of a multithreaded computation X is the maximum such value over the course
of the execution, that is, SP (X) = max{S(x) : x ∈ X}. We define the activation depth of
a thread to be the sum of the sizes of its own activation frame and the activation frames
of all its ancestors. The activation depth of the multithreaded computation, referred to
as S1, then is the maximum activation depth of any of its threads. It is the minimum
amount of space possible for a 1-processor execution of the computation in a depth-first
manner. In particular we have S1(X) ≤ SP (X).
For the time bound, we define the work of the computation T1 as the number of tasks

the computation is made up of. If we assume all tasks be unit-time tasks, then T1 is
the time it would take 1 processor to execute the computation, since 1 processor can
execute only 1 task per time step. If we define the DAG depth of a task as the longest
path in the DAG representation of the multithreaded computation that terminates at
that task, the DAG depth of the computation is the maximum DAG depth of any task
in the computation. It is denoted T∞, since even with an infinite number of processors
progress can always be made along the critical path of the computation—the path in the

10

2.3. Greedy-Scheduling of Multithreaded Computations

DAG with its length equal to the DAG depth. Let TP (X) be the execution time of the
computation with P processors using the execution schedule X , then TP (X) ≥ T∞(X).
Similarly, it should be clear that T1/P ≤ TP (X), since with P processors a maximum of
P tasks can be executed at any time step. An upper bound on the execution time of a
multithreaded computation using P processors can be obtained by greedy schedules.

Theorem 1: (Greedy-Scheduling Theorem) For any multithreaded computation with
work T1, DAG depth T∞, and for any number P of processors, any greedy execution
schedule X achieves TP (X) ≤ T1/P + T∞.

Proof : We draw on the work of R. P. Brent [Bre74]. Suppose that si unit-time tasks are
executed at step i = 1, . . . , T∞ of a multithreaded computation using sufficiently
many processors. Let T1 = ∑T∞

i=1 si be the total number of tasks to be executed.
Using P processors, step i can be simulated in dsi/P e steps. Since si = aiP + bi

with ai = bsi/P c and bi = (si − aiP) ∈ {0, 1, . . . , P − 1}, we obtain:

TP =
T∞∑
i=1

⌈
si

P

⌉
=

T∞∑
i=1

⌈
aiP + bi

P

⌉
=

T∞∑
i=1

⌈
aiP + P + bi − P

P

⌉

=
T∞∑
i=1

aiP + P

P
+

T∞∑
i=1

⌈
bi − P
P

⌉
=

T∞∑
n=1

1 + 1
P

T∞∑
n=1

aiP +
T∞∑
i=1

⌈
bi − P
P

⌉

= T∞ + 1
P

T∞∑
i=1

aiP +
T∞∑
i=1

⌈
bi − P
P

⌉
≤ T∞ + 1

P

T∞∑
i=1

si +
T∞∑
i=1

⌈
bi − P
P

⌉
.

From bi ∈ {0, 1, . . . , P − 1} it follows that d(bi − P)/P e ≤ 0. Using ∑T∞
i=1 si = T1,

we arrive at TP = ∑T∞
i=1dsi/P e ≤ T1/P + T∞ . �

From Theorem 1, the following two corollaries can be deduced:

Corollary 1: The execution time TP (X) for any P -processor greedy execution schedule
X of a multithreaded computation is optimal within a factor of 2.

Proof : According to Theorem 1, for any P -processor greedy execution schedule X
of a multithreaded computation, the execution time TP (X) is bounded above by
TP (X) ≤ T1/P + T∞. Then inequality TP (X) ≤ 2 max{T1/P, T∞} also holds.
TP (X) ≥ T1/P and TP (X) ≥ T∞ imply TP (X) ≥ max{T1/P, T∞}, so that finally
max{T1/P, T∞} ≤ TP (X) ≤ 2 max{T1/P, T∞}. �

Corollary 2: For any P -processor greedy execution schedule X of a multithreaded com-
putation, linear parallel speedup is achieved when the number P of processors is
no more than the average available parallelism T1/T∞.

11

2. Dynamic Task Parallelism in Multithreaded Computations

Proof : According to Corollary 1, for any P -processor greedy execution schedule X
of a multithreaded computation, the execution time TP (X) is optimal within a
factor of 2. Let the number P of processors be no more than the average available
parallelism T1/T∞, that is, P ≤ T1/T∞ or equivalently T∞ ≤ T1/P . Now consider
the proof of Corollary 1 and insert T∞ ≤ T1/P into max{T1/P, T∞} ≤ TP (X) ≤
2 max{T1/P, T∞}. Then T1/P ≤ TP (X) ≤ 2T1/P , that is, TP (X) = Θ(T1/P), and
linear parallel speedup is achieved. �

2.3.1. The Busy-Leaves Algorithm

In this subsection we consider the busy-leaves algorithm (‘BL’ for short) [BL99], the
work stealing algorithm in Sec. 2.4 is based on—making its study be worthwhile in its
own right.

Algorithm BL:
All living threads created before and during the execution of a strict multi-
threaded computation are maintained in a centralized thread pool that is uni-
formly available to all processors. Whenever a processor needs work it removes
a ready thread, say, A from the pool, if there is any, and starts executing A’s
tasks until A either spawns, stalls, or dies.

1. If thread A spawns a child thread B, then A is returned to the thread
pool, and its processor starts executing B.

2. If A stalls, then A is returned to the pool and its processor removes another
ready thread from the pool and starts executing it.

3. If thread A dies, its processor checks whether A’s parent thread, say, B
has any living children. If not so, and if no other processor is executing
B at that time step, then the processor takes B from the pool and starts
executing it. Otherwise, the processor takes any ready thread from the
pool.

If, for the sake of simplicity, we assume that processors do not contend with each
other when accessing the pool, and if we further assume that threads can be added and
removed from the pool in unit time, then the following theorem holds [BL99]:

Theorem 2: For any strict multithreaded computation with work T1, DAG depth T∞,
and activation depth S1, and for any number P of processors, algorithm BL com-
putes a P -processor execution schedule X with its execution time TP (X) satisfying
TP (X) ≤ T1/P + T∞, and with space requirement SP (X) ≤ S1P .

12

2.4. A Randomized Work-Stealing Algorithm

Proof : The bound on the execution time of the schedule X directly follows from the
fact that algorithm BL computes a greedy execution schedule. Thus, Theorem 1
can be applied, and TP (X) ≤ T1/P + T∞. The space bound is a consequence of
the fact that for strict computations, at any time during the execution, every leaf
in the activation subtree has a processor working on it—busy-leaves property. By
implication, the activation subtree has at most P leaves at any time during the
execution. For every leaf, the space used by it and its ancestors is at most S1. For
the space requirement SP (X) of the computation we then get SP (X) ≤ S1P . �

Theorem 2 states that algorithm BL can compute a strict multithreaded computation
with linear expansion of space and linear parallel speedup, provided that the average
available parallelism T1/T∞ is bounded below by the number P of processors.

2.4. A Randomized Work-Stealing Algorithm
for Fully-Strict Multithreaded Computations

In this section we describe a randomized work stealing algorithm for fully-strict multi-
threaded computations (‘WS’ for short) with space requirements linear in the number
P of processors and execution time linear in 1/P [BL99].
In algorithm WS the centralized thread pool used in algorithm BL is replaced by

P ready thread dequeues distributed to the P processors of a parallel computer. Each
processor is assigned exactly one dequeue containing threads that are ready for execution.
Each dequeue has two ends, referred to as head and tail. For each dequeue only the
processor it is assigned to (the owner) is allowed to add threads on the tail-end of the
dequeue. The owner also takes threads from the dequeue’s tail-end, using the dequeue
in a LIFO manner. Threads that are migrated to other processors are taken (or stolen)
from the head-end of the dequeue, making the dequeue appear as a FIFO for all other
processors (called thieves in this context).

Algorithm WS:
Each processor maintains a dequeue of threads it is the owner of. A processor
obtains work by removing a thread from the tail-end of its dequeue. If the
dequeue contains any thread, say, A, it starts executing A until A either re-
enables a stalled thread, spawns, dies, or stalls. The processor then proceeds as
follows:

1. If thread A re-enables a stalled thread, say, B (A’s parent), the now-ready
thread B is added to A’s processor’s (empty) dequeue—why the dequeue is

13

2. Dynamic Task Parallelism in Multithreaded Computations

empty at this time step is explained below—and the processor commences
executing A. If thread A simultaneously re-enables a stalled thread, say,
B and dies, its processor continues executing B and then A dies.

2. If A spawns a child thread B, its processor returns A on the tail-end of
its dequeue and starts executing B.

3. If A stalls or dies, its processor checks its ready dequeue. If the dequeue
is not empty the processor takes the thread on the tail-end and starts
executing it. If the dequeue is empty, the processor becomes a thief and
steals the thread on the head-end of the dequeue of another processor
(called victim in this context) chosen uniformly at random—if the victim’s
dequeue is empty, the thief repeatedly chooses a new victim and tries
again until either it successfully acquired a thread, or the computation
has finished.

Remark: Subitem 1 states that for thread A re-enabling a stalled thread B, A’s pro-
cessor’s dequeue is empty at the respective time step.
First, thread B is A’s parent due to the structure of a fully-strict multithreaded

computation, and due to the busy-leaves property (see algorithm BL), which according
to subitem 2 also applies to algorithm WS. All dependency-edges from A thus go to its
parent, which then might be re-enabled by A.
Second, since thread B is found be stalled, and A’s processor uses its dequeue in

a LIFO manner, B must have been stolen by another processor that has executed B

until it stalled. Also due to the structure of a fully-strict multithreaded computation,
re-enabling B after the stall can only be done by B’s child thread, which here is A.
According to subitem 3, B is placed in the dequeue of another processor, as it was
stolen, so that A’s processor’s dequeue must be empty at the respective time step.

Theorem 3: For any fully-strict multithreaded computation with activation depth S1,
and for any number P of processors, algorithmWS computes an execution schedule
X which uses at most SP (X) ≤ S1P space.

Proof : For the space bound we note that algorithm WS maintains the busy-leaves
property. Thus, SP (X) ≤ S1P for any P -processor execution schedule of a fully-
strict multithreaded computation. �

Theorem 4: For any fully-strict multithreaded computation with work T1, DAG depth
T∞, and for any number P of processors, algorithmWS computes a P -processor ex-
ecution schedule X with execution time TP (X) = O(T1/P+T∞) including schedul-
ing overhead.

14

2.4. A Randomized Work-Stealing Algorithm

Proof Idea : Since algorithm WS computes a greedy schedule X , the proof of The-
orem 4 is somehow similar to the proof of Theorem 2 except for the overhead
explicitly addressed by Theorem 4—due to contention and communication. The
latter point makes the proof of Theorem 4 a little more complicated. We therefore
just give a proof idea based on [BL99], with some simplifications.
For the time bound we use an accounting argument: At each step of algorithm
WS (execution schedule X), we collect P dollars, one from each processor. If the
processor executes a task at the respective step, the dollar goes to a ‘work bucket’.
If the processor initiates a steal attempt, the dollar goes to a ‘steal bucket’, and if
the processor waits for a queued steal, then the dollar goes into a ‘wait bucket’—it
is assumed that a third party serially queues the work stealing requests. The run-
ning time bound is derived by bounding the number of dollars in each bucket at
the end of the execution, summing these values up, and then dividing by P . Since
the multithreaded computation consists of T1 tasks, the work bucket contains T1

dollars at the end of the computation. An upper bound for the number of dol-
lars in the steal bucket follows from there are O(PT∞) stealing attempts over the
course of the execution—along the critical path, which has length T∞, at each
step O(P) stealing attempts may occur, so that the total number of stealing at-
tempts is O(PT∞).3 In [BL99] it is shown that the expected number of dollars in
the wait bucket is at most the number of dollars in the steal bucket. Adding up
the dollars in the three buckets and dividing by the number P of processors gives
TP (X) = (1/P) O(T1 + PT∞) = O(T1/P + T∞). 4

Cilk

The work stealing algorithm as presented in this section is at the core of the Cilk pro-
gramming language [BJK+95]—from 2006 onwards advanced by Intel. Additional key-
words like cilk_spawn and cilk_sync, to name the maybe most important ones,
extend the C/C++ programming language and allow the programmer to express po-
tential parallelism in its application. The Cilk runtime system then decides about how
the respective portions of the code (threads) are mapped onto the underlying computer
hardware, using the here considered work stealing scheme for work distribution.
Just for illustration purposes, Listing 2.1 illustrates the usage of Cilk for the recursive

computation of the n-th Fibonacci number (pseudo-code). If for the thread fib(n)

the predicate n<2 evaluates to false, a new child thread fib(n-1) is spawned, and
the respective processor commences with the execution of thread fib(n-1), possibly
3In [BL99], the authors replace the DAG D describing the multithreaded computation by an augmented
DAG D′ which has DAG depth T ′

∞ ≤ 2T∞, where T∞ is the DAG depth of D. The proof of Theorem 4
then is based on D′. However, our simplified argumentation stays the same.

15

2. Dynamic Task Parallelism in Multithreaded Computations

function int fib(int n)

if n<0 then return (−1)|n|+1fib(|n|)
if n==0 then return 0;

if n==1 then return 1;

int x=cilk_spawn fib(n−1);
int y=fib(n−2);
cilk_sync;

return x+y;

Listing 2.1: Computation of the n-th Fibonacci number using Cilk (pseudo-code)

concurrently to the execution of thread fib(n-2) by another processor. At cilk_sync
the two threads converge back to the execution of thread fib(n).
In Chapter 3 we mimic this model for the execution of multithreaded computations

(with dependencies) on the GPU and on Intel’s XeonPhi.

16

3. Work Stealing on GPU
and Intel XeonPhi

In this chapter we are concerned with the implementation and the evaluation of the
work stealing scheme described in Chapter 2 on a current Nvidia GPU, and on Intel’s
XeonPhi—for comparison with a standard x86 multi-core CPU, we also implement the
scheme on the CPU. Beforehand, we need to introduce the hardware used hereafter, as
its functioning imposes some constraints and limits on the implementation of the work
stealing scheme as well as on the applications which later should use the scheme.

3.1. Nvidia Fermi GPU Architecture

The Fermi architecture is Nvidia’s second unified shader1 GPU architecture [Nvi12,
Nvi09]. Fermi-based GPUs consist of up 16 processors (referred to as SMs), each of
which equipped with 32 unified shader processors (referred to as SPs) which execute
GPU programs, or portions of a GPU program, in SIMD (Same-Instruction Multiple-
Data) manner. Hence, there is a total of up to 512 physical execution units. On the
level of its SMs, the GPU can be thought of as MIMD machine with 16 cores and a
per-core vector unit of width 32, similar to multi-core CPUs with SSE/AVX. Each SM
is further equipped with 4 special function units for transcendentals, up to 48kB on-chip
low latency shared memory, 16 load/store units for memory transfers between the GPU
and its main memory, and 2 scheduling/dispatch units. SMs are organized into compute
clusters containing 2 SMs each. On top of these compute clusters is a thread scheduling
unit that is responsible for the creation of threads and the distribution of these threads to
the compute clusters and SMs, respectively. Also there is a unified 768kB L2 cache that
is shared by all SMs, and which is between the SMs L1 cache and the up to 6GB main
memory. The entire memory subsystem has support for Error-Correcting Code—ECC.
Figure 3.1 schematically illustrates such a GPU device.
From the programmers point of view the GPU appears as a co-processor that can

1A shader is an execution unit that executes shader programs written in an appropriate shader language.
Today’s GPUs are equipped with so-called unified shaders, which, by means of a unified instruction
set, accumulate the functioning of the vertex-, pixel-, and geometry-shader along the graphs rendering
pipeline in legacy GPUs.

17

3. Work Stealing on GPU and Intel XeonPhi

SP

SFUSFU

Shared
Memory

Texture/Load/Store

SM

Compute Cluster

SP

SP SP

SP SP

SP SP

SP

SFUSFU

Shared
Memory

SM

SP

SP SP

SP SP

SP SP

Interconnection Network / Unified L2-Cache

DRAM DRAM DRAM DRAM DRAM DRAM

Scheduling

GPU

Host/CPU

Scheduling
Dispatch

Scheduling
Dispatch

SP

SFUSFU

Shared
Memory

Texture/Load/Store

SM

Compute Cluster

SP

SP SP

SP SP

SP SP

SP

SFUSFU

Shared
Memory

SM

SP

SP SP

SP SP

SP SP

Scheduling
Dispatch

Scheduling
Dispatch

SP

SFUSFU

Shared
Memory

Texture/Load/Store

SM

Compute Cluster

SP

SP SP

SP SP

SP SP

SP

SFUSFU

Shared
Memory

SM

SP

SP SP

SP SP

SP SP

Scheduling
Dispatch

Scheduling
Dispatch

SP

SFUSFU

Shared
Memory

Texture/Load/Store

SM

Compute Cluster

SP

SP SP

SP SP

SP SP

SP

SFUSFU

Shared
Memory

SM

SP

SP SP

SP SP

SP SP

Scheduling
Dispatch

Scheduling
Dispatch

Figure 3.1.: Illustration of an Nvidia GPU based on the Fermi unified shader architecture (schemati-
cally). The image is based on illustrations found in [Nvi12, Nvi09].

be assigned work to from within adapted CPU programs (running on the host system
the GPU is connected to via PCI-Express) using, for instance, Nvidia’s CUDA API.2

The programmer is responsible for explicitly initiating data transfers between the host
system and the GPU—the host and the GPU have different physical address spaces—,
and the invocation of GPU programs, called kernels. Kernels execute asynchronously to
the host program. For an introduction to GPU computing using CUDA, the interested
reader is referred to [Nvi12].
For this thesis, the most interesting point is how the GPU schedulers create and

distribute threads to SMs and SPs, respectively. At the core of thread scheduling on
Nvidia GPUs is a hierarchy of threads, organized into an up to three-dimensional grid
of thread blocks, and up to three-dimensional thread blocks the grid is made up of.
Thread blocks contain up to 1024 threads, organized into groups of 32 threads each,
called warps. On Fermi GPUs each SM is capable of scheduling up to 1536 threads,
that is, 48 warps, where the actual number of warps that concurrently reside on an SM
depends on the resource consumption of each thread within a warp.3 These up to 48
warps are distributed over up to 8 thread blocks.
2CUDA (Compute Unified Device Architecture) is an Nvidia proprietary programming model for Nvidia
GPUs based on the unified shader architecture.

3There are 32768 registers per SM, and up to 48kB shared memory. For a total of 1536 threads to reside
on an SM at the same time, each thread is restricted to use no more than 21 registers and 32 bytes of
shared memory. If threads use more resources, the number of concurrent threads per SM goes down.

18

3.2. Intel Many Integrated Core (MIC) Architecture

For each kernel launch the programmer defines the number of threads that should
execute the kernel using an appropriate grid-block geometry. The GPU thread schedulers
then successively create threads in units of thread blocks, and distribute these blocks
to the GPU’s SMs—if assigned to an SM, a thread block is not migrated to another
SM. On the SMs the schedulers partition the blocks into warps and execute these warps
on the SM’s 32 SPs in SIMD manner (wavefront execution). The execution of the up
to 48 warps per SM is done by means of interleaved multithreading. Switching between
warps that are ready for execution is done by almost zero overhead according to some
scheduling policy, which unfortunately is not made public by Nvidia. The idea is to
hide (memory access) latencies—that may occur during thread program executions—by
switching between warps that are ready for execution. If all warps within a thread block
have finished their execution, the block as a whole is finished. For each finished thread
block, the vacated SM is assigned a new thread block, if there is any. It should be clear
that, due to the fact that usually it is not possible to schedule all threads defined by the
programmer at the same time, threads each need to execute independently of each other,
except for intra-thread-block communication and cooperation. Otherwise the behavior
of a GPU program may depend on the execution order of the thread blocks.

3.2. Intel Many Integrated Core (MIC) Architecture

With the Larrabee project, Intel started the development of a many-core computer ar-
chitecture [HKB12] that with the XeonPhi [Int12] was officially announced very recently.
While the original Larrabee architecture was designed for both graphics processing and
HPC (High-Performance Computing), the current XeonPhi MIC architecture is placed
in the HPC sector only.
The XeonPhi consists of an array of more than 50 Pentium-P5-based cores [Chr12],

each of which augmented with 64-bit support, on-chip low latency L1 and coherent
L2 cache, 32 512-bit vector registers, and 4-way interleaved multithreading. Using its
vector unit, each core is capable of processing 16 32-bit words or 8 64-bit words per clock
cycle. The cores, 16 memory controllers, and the PCI-Express client logic are connected
by a bidirectional ring bus. Each direction of the ring consist of 5 independent rings: the
data-block ring (64 bytes wide) for data transfers, 2 address rings which are used to send
read/write commands and memory addresses, and 2 acknowledgment rings used to send
flow control and coherence messages. Memory accesses first go through a tag directory
(TD) which checks the L2 caches of all cores for the word requested, and forwards the
request to the memory controllers only if the word is not present in any L2 cache.
Similar to the GPU, the XeonPhi is connected to the host system via PCI-Express.

Communication with the outside world is done using TCP/IP. The XeonPhi runs a full

19

3. Work Stealing on GPU and Intel XeonPhi

Core

L2

512-Bit
SIMD

. . . Core

L2

512-Bit
SIMD

Memory
Controller

Core

L2

512-Bit
SIMD

. . . Core

L2

512-Bit
SIMD

Memory
Controller

TDTD TD TD

Core

L2

512-Bit
SIMD

. . .Core

L2

512-Bit
SIMD

Memory
Controller

Core

L2

512-Bit
SIMD

. . .Core

L2

512-Bit
SIMD

Memory
Controller

TD TDTDTD

C
o
re

L
2

512-B
it

S
IM

D

M
em

ory
C

on
troller

T
D

C
ore

L
2

512-B
it

S
IM

D

M
em

ory
C

on
troller

T
D

Host

Tag Directory (TD): Track Cache-Lines in all L2s

XeonPhi

Data-Block Ring

Address Ring
Acknowledgement Ring

DRAMDRAM

D
R

A
M

DRAM DRAM

D
R

A
M

Figure 3.2.: Illustration of the XeonPhi based on the Intel many integrated core (MIC) architecture
(schematically). The image is based on illustrations found in [Chr12].

service Linux operating system which allows the programmer to use it as a (super-) com-
puter in a computer. Within an application it can be used the same way as the GPU, but
the XeonPhi can also execute parallel applications natively without the need of a host
program for kernel invocation. As it uses an x86 instruction set, the XeonPhi is capable
of executing (parallel) programs written for x86 CPUs, using OpenMP, pThreads, and
Cilk, for instance. When writing programs/kernels for the ’Phi, almost all developer
tools and programming languages known from x86 programming can be used. Applica-
tions that execute on the XeonPhi are scheduled by its Linux operating system.

Table. 3.1 summarizes some properties of the hardware that is used in this thesis. All
Information are either from the vendors’ product database or from [Nvi09, Int12].

Tesla M2090 Xeon E5-2670 XeonPhi (Test-sample)
Processor Count P 16 (up to 768 logical) 8 (16 logical) 61 (244 logical)
SIMD Width 32 8 16
Clock Frequency 1.3GHz 2.6GHz 1.1GHz
Memory Size 6GB - 8GB
Memory Bandwidth 177GB/s 51.2GB/s 352GB/s
Power Consumption <225 W <115W <300W

Table 3.1.: Properties of Nvidia Tesla M2090, Intel Xeon E5-2670 and Intel XeonPhi.

20

3.3. Problem Description

3.3. Problem Description

For both the GPU and the XeonPhi the common approach for executing parallel appli-
cations is to partition the problem to be solved into subproblems that for the most part
can be executed independently of each other. These subproblems then are expressed as
thread programs which are mapped onto the processors according to some scheme. On
the GPU dedicated scheduling units take on the mapping, whereas on the XeonPhi (and
the CPU) it is usually left to the programmer—iterating over the threads in chunks of
the number of processors, for instance.
For multithreaded computations with dynamic thread creation, only few information

about the work distribution at runtime are known beforehand. An obvious approach is
to statically assign the portion of the threads that are created before the computation
to the processors, and then at runtime to (re)distribute (newly created) threads to the
processors in order to achieve an even load.
The GPU’s scheduling units already implement some kind of load balancing on the

level of the thread blocks. Since thread blocks are dynamically created at runtime, and
then are assigned to available processors, even for applications with irregular workloads
the scheduling should be balanced if the problem size in terms of thread blocks exceeds
the processor count. As for a GPU program it is assumed that all work is known before-
hand, dynamic thread creation cannot be handled by the GPU scheduler(s). Further it
is assumed that on average threads behave identical so that all thread blocks created
during the execution occupy the GPU’s SMs for almost the same time. For SIMD appli-
cations this assumption applies. If threads dynamically create new threads, individual
threads may require more time for their execution than others. The time the respective
thread block resides on the SM then is possibly dominated by only a few warps in it.
As the maximum number of thread blocks per SM is restricted to 8, a performance de-
crease might be observed when the thread scheduler(s) run out of warps they can switch
between in the context of interleaved multithreading.
A viable solution to that issue is making thread blocks as small as possible, maybe

containing just 1 or 2 warps. Unfortunately, the maximum number of concurrent threads
per SM then is significantly below the maximum of 1536. Another approach is dynamic
load balancing. For that to work a certain number of persistent threads is created so that
hardware limitations are met (no more than 16 × 1536 = 24576 persistent threads on
Fermi GPUs). Persistent threads that belong to the same thread group are represented
by a master thread. Each group maintains its own work pool that is filled up with the
statically assigned threads at the beginning of the computation. Persistent threads each
execute a super thread that keeps them alive until the computation is done. The master
thread executes the work stealing scheme in order to acquire work for its thread group.

21

3. Work Stealing on GPU and Intel XeonPhi

With respect to the GPUs built-in load balancing strategy, performance improvements
are to be expected, but the amount of the performance gain will strongly depend on the
particular application. The overall performance of the application will also depend on
the overhead introduced by the work stealing scheme.
On the XeonPhi the static thread-processor assignment at the beginning of the com-

putation may also result in some processors finish their threads significantly before other
processors. The approach to handle these irregularities by means of dynamic load bal-
ancing is almost the same as for the GPU. The performance gain in so doing should be
significantly above the one obtained on the GPU. The key difference to the GPU is that
on the XeonPhi there is no implicit load balancing by the hardware itself.

3.4. Multithreaded Data Structures

In this section we describe the data structures used for work stealing—blocking and non-
blocking dequeue, in particular. We also evaluate the performance of the data structures
and estimate the overhead for accessing the data.

Lock: Our implementation of a lock uses the atomic compare-and-swap (CAS) hardware
primitive (all operations between << and >> are atomic, meaning they are executed
without interruption):

function bool atomicCAS(address,expectedValue,newValue)
bool success=false
<< if *address==expectedValue then *address=newValue,success=true >>
return success

Listing 3.1: Atomic compare-and-swap (pseudo-code). *address is the value pointed to by address.

The atomicCAS() function compares the value pointed to by address with the value
of expectedValue. If both are equal, the value pointed to by address is replaced by
the value of newValue and the function returns true (success). Otherwise, it returns
false (no success). On both Nvidia Fermi GPUs and x86-based processors an atomic
compare-and-swap primitive is available. The lock itself is implemented as follows:

function void lock(address)
while atomicCAS(address,0,1)==false do

// spin around

function bool tryLock(address)
return atomicCAS(address,0,1)

function void unlock(address)
atomicEXCH(address,0) // Perform *address=0 without interruption

Listing 3.2: Lock based on atomic compare-and-swap (pseudo-code).

22

3.4. Multithreaded Data Structures

For the lock to work properly, the value pointed to by address (the value of the lock-
variable) needs to be initialized to 0. The lock() function repeatedly compares the
value of the lock-variable against 0, using the atomicCAS() primitive, until the lock
has been acquired successfully—the value of the lock-variable then is 1. The tryLock()
function tries to acquire the lock just once. The unlock() function sets the value of
the lock-variable to 0—the lock is released.

3.4.1. Blocking Dequeue

The blocking dequeue (double-ended queue) enforces mutual exclusive access to its data
elements by means of a lock. It provides the following operations: push(), pop(),
and steal(). We assume the dequeue be array-based with array size N . Then the
status of the dequeue can be derived from its head-end index and its tail-end index (see
Fig. 3.3). The head-end index points to the next element in the dequeue that can be
stolen, whereas the tail-end index points to the next empty slot a new element can be
pushed to. The dequeue is empty if its head-end index and its tail-end index are equal.
We define the dequeue be full, if its tail-end index is equal to the array size N , and if
its head-end index is lower than its tail-end index—for the sake of simplicity, we do not
allow the head- and tail-end index to swap around, that is, the dequeue is not cyclic.

0 1 2 N-1.

head tail

pushpopsteal

empty slot occupied slot

Figure 3.3.: Illustration of a dequeue for work stealing.

The steal() operation moves the head-end index one step towards the tail-end index,
whereas the pop() operation moves the tail-end index one step towards the head-end
index. Both of the two operations return one data element unless the dequeue is empty.
If the dequeue is not full, the push() operation places a new data element into the
dequeue at the position given by the tail-end index, and the tail-end index is moved one
step towards the end of the array.
An implementation (in pseudo-code) of the blocking dequeue can be found in List-

ing 3.3. Appendix A.1 gives a concrete implementation for Nvidia GPUs. All functions
start with acquiring a lock using either lock() or tryLock(). If the lock has been
acquired, all operations until calling unlock() are done mutual exclusive. Thus, the
dequeue is transferred from a consistent state to another one. We also list the function
stealChunk(), which differs from the steal() function in that multiple elements
can be stolen. By using stealChunk() instead of steal(), the effect of contention
can be (partially) compensated.

23

3. Work Stealing on GPU and Intel XeonPhi

struct dequeue<T> // T is a dummy for an actual data type
T dq[0..N−1]
int head,tail,lockVar=0 // The dequeue initially is unlocked

function bool push(T t)
bool success=false
lock(&lockVar) // &lockVar is the address of lockVar in main memory
if tail<N then
dq[tail]=t
tail=tail+1
success=true

unlock(&lockVar)
return success

function T pop()
T t=NULL
lock(&lockVar)
if head<tail then
tail=tail−1
t=dq[tail]
if tail==head then // Reset the dequeue. There is no ABA problem (see Sec. 3.4.2)
head=0
tail=0

unlock(&lockVar)
return t

function T steal() function T[] stealChunk(int n)
T t=NULL T[] t=NULL
if tryLock(&lockVar)==true then if tryLock(&lockVar)==true then
if head<tail then if head<tail then
t=dq[head] n=n>(tail−head)?(tail−head):n
head=head+1 for i=0 to n−1 do

unlock(&lockVar) t[i]=dq[head+i]
return t head=head+n;

unlock(&lockVar)
return t

Listing 3.3: Blocking dequeue (pseudo-code). The notation c=predicate?a:b is a short form of if
predicate==true then a else b.

The correctness of the implementation follows from only one processor can hold the
lock at any time, and only this processor possibly changes the state of the dequeue. The
implementation also guarantees deadlock-freedom as the lock is released eventually, with
no side-effects affecting it.

3.4.2. Non-Blocking Dequeue

The non-blocking dequeue differs from the blocking one in that mutual exclusion is
realized by means of atomic hardware primitives instead of a lock. The implementation
given in Listing 3.4 is based on [ABP98].

24

3.4. Multithreaded Data Structures

union dqIndex
int16 i16[2] // Both i16[] and i32 refer to the same location in memory:
int32 i32 // i16[0] is the head-end index, and i16[1] addresses the ABA problem

struct dequeue<T> // T is a dummy for an actual data type
T dq[0..N−1]
dqIndex head=0
int tail=0

function bool push(T t)
if tail<N then
dq[tail]=t
tail=tail+1
return true

return false

function T pop()
T t
dqIndex oldHead,newHead
int oldTail
if tail==0 then
return NULL

1©tail=tail−1
t=dq[tail]
oldHead=head
if tail>oldHead.i16[0] then
return t

oldTail=tail
tail=0
newHead.i16[0]=0 // Reset the dequeue

2©newHead.i16[1]=oldHead.i16[1]+1 // ABA problem!
if oldTail==oldHead.i16[0] then

3© if atomicCAS(&head.i32,oldHead.i32,newHead.i32)==true then
return t

4©head=newHead
return NULL

function T steal()
T t
dqIndex oldHead,newHead

5©oldHead=head
6©if tail==oldHead.i16[0] then

return NULL
t=dq[oldHead.i16[0]]
newHead.i16[0]=oldHead.i16[0]+1
newHead.i16[1]=oldHead.i16[1]

7©if atomicCAS(&head.i32,oldHead.i32,newHead.i32)==true then
return t

return NULL

Listing 3.4: Non-blocking dequeue (pseudo-code). The dequeue index head is of type dqIndex which
is defined as a union. The reason for this is twofold: 1.) We need to address the ABA problem (see
below), and 2.) on Nvidia GPUs the atomicCAS() primitive works on 32-bit and 64-bit words only.

25

3. Work Stealing on GPU and Intel XeonPhi

A concrete implementation for Nvidia GPUs is given in Appendix A.2. We extended
the non-blocking dequeue implementation in Listing 3.4 so that it also allows to acquire
sets of elements of the warp size (32 on the Tesla M2090). Further, the implementation
is not restricted to contain at most 65535 elements, but it allows for 224 − 1 elements.

Correctness
First, the value of the tail-end index tail is altered by the owner of the dequeue only.
Since the owner either executes the push() function or the pop() function at any
time, the push() function is not critical. It might occur that the value of tail is
incremented by the owner concurrently to the execution of the steal() function by
any of the thieves, but the worst thing that may happen is that the thieves evaluate the
predicate tail==oldHead.i16[0] to true and return from steal(), even though
the predicate becomes true at this point in time.
Second, as long as there is more than one element in the dequeue, the owner of the

dequeue may execute the pop() function without using atomic primitives for the update
of the dequeue state. The reason for that is the functioning of the atomic compare-and-
swap primitive. Suppose there are n thieves that concurrently try to steal the head-end
element of the dequeue. Each of these thieves takes a ‘snapshot’ of the dequeue’s head-
end index at the beginning of the steal() function (marker aO5 in Listing 3.4). The
thieves then remove the head-end element, determine the new state, and try to update
the dequeue using the atomic compare-and-swap primitive (marker aO7). The point is that
for only one thief the head-end index of the dequeue has not changed in the meantime,
and only for this thief the update is successful. After the atomic update of the dequeue,
all other n − 1 thieves will find the dequeue with the updated head-end index, which
then does not match the snapshot taken at the beginning of the steal() function. As a
consequence, if n thieves concurrently try to steal the head-end element of the dequeue,
the head-end index of the dequeue is moved just one step towards the tail-end index
of the dequeue. Thus, if there is more than one element in the dequeue, and n thieves
and the owner concurrently execute steal() and pop(), respectively, the owner does
not contend with the thieves for the tail-end element of the dequeue, and therefore the
owner can update the dequeue state without using atomic primitives.
Third, if the dequeue contains only one element then the owner of the dequeue and

the thieves contend for this element. Before removing the element from the dequeue,
the owner decrements the value of tail (marker aO1). Suppose there are n′ ≤ n thieves
who evaluate the predicate aO6 to true. These thieves return from steal() without
success. The remaining n − n′ thieves compete with the owner, and due to the atomic
update of the dequeue state (marker aO3 and aO7) only one of them achieves success. Since
the dequeue then is empty, it is reset by the owner, either at aO3 or aO4 .

26

3.4. Multithreaded Data Structures

The ABA Problem (Non-Blocking Dequeue only)
Suppose that any of the thieves executing the steal() function takes its snapshot
of the dequeue’s head-end index and then is preempted. If this thief comes back for
execution the dequeue’s head-end index may has changed, but there is the possibility
that the thief’s snapshot still matches with the current the head-end index. If the
respective thief then has success with updating the dequeue’s head-end index, it returns
an element which previously was already returned by either the owner or another thief (in
the meantime the dequeue might be reset multiple times). This so-called ABA problem
is addressed by the introduction of a counter which is incremented each time the dequeue
is reset by the owner (marker aO2)—if head is a 32-bit word, the counter is represented
by the upper 16 bits (see the union definition of dqIndex in Listing 3.4).

3.4.3. Performance Evaluation

In this subsection we evaluate the performance of the dequeue implementations on the
GPU, the XeonPhi, and a standard x86 multi-core CPU—see Tab. 3.1 for details on the
hardware used. On the one hand we obtain information about the time it costs to access
the dequeue’s data elements, and on the other hand we can figure out what is the right
choice for the respective compute device: blocking or non-blocking dequeue.
The way of proceeding is as follows: We use the GPU, the XeonPhi, and the CPU in

MIMDmanner. For the GPU this means that thread groups (warps) each are represented
and led by a master thread, and we just consider this master thread here (subsequently
thread, for short). The benchmarking program creates n persistent threads that are
executed by n processors. The number n will be varied over a meaningful range that
is compatible with the number P of processors provided by the hardware. Each thread
maintains a dequeue. Threads execute super threads in which they repeatedly acquire
elements i) from their own dequeue only, and ii) from other thread’s dequeues after they
have finished their own dequeue. In setup iii) master threads also add new elements to
their dequeue. That is, in setup i) they repeatedly execute the pop() operation, in setup
ii) they execute the pop()and steal()operation, and in setup iii) all operations of the
dequeue (pop(), steal(), push()) are executed. At the beginning of each iteration
within the benchmark program, all dequeues are filled up with 32000 elements. In setup
iii) every thread adds additional 32000 elements to its dequeue over the course of each
iteration. When to execute push() and pop() is decided at runtime at random, with
both operations be equiprobable.4 An iteration completes when all elements from all
dequeues have been acquired by the threads. The benchmarking program stops after a
certain number of iterations.
4Each thread has its own linear congruential random number generator for that purpose.

27

3. Work Stealing on GPU and Intel XeonPhi

Throughput for Access Distribution for Non-Blocking
Non-Blocking Dequeue Dequeue: Pop vs. Steal + Push

960

×106 Tesla M2090 (GPU)
A

cq
ui

re
d

E
le

m
en

ts
pe

r
Se

co
nd

0
100
200
300
400
500
600

16 32 64 128 256 512
Number n of Processors

Pop
Pop vs. Steal

Pop vs. Steal + Push

0 128 256 384
Processor ID

10-3
10-2
10-1
1

512

Tesla M2090 (GPU), 512 Dequeues

E
le

m
en

ts
A

cq
ui

re
d

(n
or

m
al

iz
ed

)

Total
Stealing Attempts

Stolen

512

×106 XeonPhi

A
cq

ui
re

d
E

le
m

en
ts

pe
r

Se
co

nd

0
100
200
300
400
500
600

30 60 120 240 480 960
Number n of Processors

Pop
Pop vs. Steal

Pop vs. Steal + Push

0 60 120 180
Processor ID

10-3
10-2
10-1
1

240

Xeon Phi, 240 Dequeues

E
le

m
en

ts
A

cq
ui

re
d

(n
or

m
al

iz
ed

)

Total
Stealing Attempts

Stolen

×106 Xeon E5-2670 (CPU)

A
cq

ui
re

d
E

le
m

en
ts

pe
r

Se
co

nd

0
10
20
30
40
50

1 2 4 8 16 32
Number n of Processors

60
Pop

Pop vs. Steal
Pop vs. Steal + Push

0 4 8 12
Processor ID

10-3
10-2
10-1
1

16

Xeon E5-2670 (CPU), 16Dequeues

E
le

m
en

ts
A

cq
ui

re
d

(n
or

m
al

iz
ed

)

Total
Stealing Attempts

Stolen

Figure 3.4.: Benchmarking results for the non-blocking dequeue implementation on GPU, XeonPhi, and
CPU. Values illustrated are averaged over 50 iterations within the benchmarking program. Values given
in the right-hand side images are normalized to the expected number of elements per thread (50×64000).

Over the course of the benchmark we determine the overall throughput of the n

dequeues, the number of acquired elements, the number of stealing attempts, and the
number of actually stolen elements (the latter three, each per processor). Since the
benchmarking program addresses the dequeue operations only, elements taken from any
of the dequeues do not result in the execution of an associated thread. However, in a
certain sense, the incrementation of the counters for the acquired/stolen elements and
the stealing attempts can be understood as some kind of ‘unit-time’ tasks.

28

3.4. Multithreaded Data Structures

Throughput for Access Distribution for Blocking
Blocking Dequeue Dequeue: Pop vs. Steal + Push

960

×106 Tesla M2090 (GPU)

A
cq

ui
re

d
E

le
m

en
ts

pe
r

Se
co

nd

0

20

40

60

16 32 64 128 256 512
Number n of Processors

80
Pop

Pop vs. Steal
Pop vs. Steal + Push

0 64 128 192
Processor ID

10-3
10-2
10-1
1

256

Tesla M2090 (GPU), 256 Dequeues

E
le

m
en

ts
A

cq
ui

re
d

(n
or

m
al

iz
ed

)

Total
Stealing Attempts

Stolen

512

×106 XeonPhi

A
cq

ui
re

d
E

le
m

en
ts

pe
r

Se
co

nd

0
100
200
300
400
500
600

30 60 120 240 480 960
Number n of Processors

Pop
Pop vs. Steal

Pop vs. Steal + Push

0 60 120 180
Processor ID

10-3
10-2
10-1
1

240

Xeon Phi, 240 Dequeues

E
le

m
en

ts
A

cq
ui

re
d

(n
or

m
al

iz
ed

)
Total

Stealing Attempts
Stolen

×106 Xeon E5-2670 (CPU)

A
cq

ui
re

d
E

le
m

en
ts

pe
r

Se
co

nd

0
20
40
60
80

100
120

1 2 4 8 16 32
Number n of Processors

Pop
Pop vs. Steal

Pop vs. Steal + Push

0 4 8 12
Processor ID

10-3
10-2
10-1
1

16

Xeon E5-2670 (CPU), 16Dequeues

E
le

m
en

ts
A

cq
ui

re
d

(n
or

m
al

iz
ed

)

Total
Stealing Attempts

Stolen

Figure 3.5.: Benchmarking results for the blocking dequeue implementation on GPU, XeonPhi, and
CPU. Values illustrated are averaged over 50 iterations within the benchmarking program. Values given
in the right-hand side images are normalized to the expected number of elements per thread (50×64000).

We define the throughput of the n dequeues as the ratio of the overall acquired elements
per iteration and the runtime of the respective iteration. The averaged throughput per
dequeue then is the throughput divided by n. The inverse of this value gives an estimate
of the averaged latency for accessing the dequeue’s elements for each of the three setups.
Figure 3.4 and 3.5 illustrate the benchmarking results averaged over 50 iterations for
each setup and for each value of n. Error bars are included but almost always they are
not visible—for almost all measurements taken the statistical error is below 1%.

29

3. Work Stealing on GPU and Intel XeonPhi

The right-hand side images illustrate the number of elements acquired by each proces-
sor throughout 50 iterations of the benchmarking program.5 The values are normalized
to the expected number of elements per processor, which here is 50× 64000. From these
images it can be also seen that, due to the ‘indeterminism’ in the processors’ push-and-
pop behavior, some processors empty their dequeue before other processors—this models
the execution of an actual computation with dynamic thread/task creation. These pro-
cessors then become thieves and start stealing elements from the dequeues of other
processors.
On the CPU, on average about 15% of the stealing attempts are successful, indepen-

dently of whether the dequeue is blocking or non-blocking. On the XeonPhi it is also
about 15%. On the GPU only the non-blocking dequeue seems to work well. Here, on
average about 10% of the stealing attempts are successful. Due to the stealing, thief
threads acquire more elements than expected, whereas for threads from which elements
are stolen the reverse is true. The normalized number of acquired elements thus varies
around 1 for all threads.
An interesting point in this respect is that seemingly almost always the same threads

are the ones elements are stolen from. On the GPU we assume that the internal schedul-
ing of the threads (the warps) is not fair, so that some threads are preferred over others.
On the XeonPhi this argument should not apply as here the hardware performs a strict

per clock cycle round-robin switching between threads that run on the same physical
execution unit. Rather, we assume that if there is heavy traffic on the ring bus, situations
may occur where requests send over the ring bus stall. As memory is allocated at the
beginning of the benchmark program, it might be possible that a stall affects always the
same threads when trying to update their data structures concurrently to other threads.
Maybe there are also NUMA (Non-Uniform Memory Access) effects. Also consider that
the use of atomic primitives for synchronization methods results in memory bus locking
and cache invalidation, both possibly affecting individual threads more than others.
The left-hand side images confirm non-blocking synchronization be more suitable for

massively parallel computers than blocking synchronization. While on the GPU this
statement is quiet obvious, on the XeonPhi both the non-blocking and the blocking
dequeue implementation seem to work well. On the CPU the blocking dequeue is even
superior to the non-blocking dequeue. However, for all three compute devices, the overall
throughput of the dequeues scales almost linearly with number n of processors as long
as n is below or equal to the device’s processor count P (see Tab. 3.1).

5During the execution of the benchmarks, we checked the correct functioning of the implementations of
the dequeue: the number of elements put into the dequeues was exactly the number of elements that
were concurrently removed from the dequeues by the processors.

30

3.4. Multithreaded Data Structures

When comparing the throughput for the three different setups, the highest through-
put is obtained if there is no stealing and no pushing (setup i)). In setup ii), where
a certain number of pop() operations is executed concurrently to steal() opera-
tions, the throughput decreases. In the case of the non-blocking dequeue, the reason
for that is the use of atomic primitives in the steal() operation—atomic operations
enforce memory bus locking while the operation is performed, and cache invalidation
afterwards. In the case of the blocking dequeue, steal() operations make the owner of
the respective dequeue contend with thief threads for the dequeue’s lock. In both cases
the throughput goes down. In setup iii) the decrease in the throughput is due to half of
the pop() and steal() operations require the push() operation has been executed
previously—elements taken from the dequeues must have been added to them previously.
The effective costs of a pop() operation and a steal() operation, respectively, then
increase by the costs of a push() operation. Again the throughput goes down.
Table 3.2 summarizes some characteristic (averaged) per-dequeue values extracted

Characteristics for Dequeue: Non-Blocking Blocking
Setup i) Throughput in GPU: 0.95 0.17†

106 Elements/Second XeonPhi: 1.55 1.22
CPU: 2.06 4.42

Latency in GPU: 1.05 5.88†
10−6 Seconds/Element XeonPhi: 0.65 0.82

CPU: 0.49 0.23
Setup ii) Throughput in GPU: 0.82 0.13†

106 Elements/Second XeonPhi: 1.52 1.18
CPU: 1.89 4.23

Latency in GPU: 1.22 7.69†
10−6 Seconds/Element XeonPhi: 0.66 0.85

CPU: 0.53 0.24
Setup iii) Throughput in GPU: 0.31 0.09†

106 Elements/Second XeonPhi: 0.91 0.75
CPU: 1.94 4.06

Latency in GPU: 3.22 11.1†
10−6 Seconds/Element XeonPhi: 1.10 1.34

CPU: 0.52 0.25

Table 3.2.: Benchmarking result for the blocking and the non-blocking dequeue.Values listed are for
setup i), ii), and iii), where the number n equals the number of logical processors provided by the
hardware (see Tab. 3.1). Note: Values are per dequeue. Example: The throughput for setup i) on the
GPU using 512 dequeues is about 485 × 106 Elements/Second. The averaged per-dequeue throughput
then is 0.95× 106 Elements/Second. The Latency is the inverse of this value.
†We use 256 processors here.

31

3. Work Stealing on GPU and Intel XeonPhi

from the benchmarking results. On the GPU the non-blocking dequeue should be used,
whereas on the CPU the blocking dequeue is the matter of choice. On the XeonPhi
both of the two seem to be suitable. We also considered the implementation of the
blocking dequeue with the stealChunk() operation. On the GPU and the XeonPhi
there was only a small gain compared to using the steal() operation. On the CPU a
performance improvement over the blocking dequeue (using the steal() operation) of
about a factor 1.4 can be achieved.

3.5. Scheduling Multithreaded Computations
on GPU and XeonPhi

In this section we implement the work stealing scheme as detailed in Sec. 2.4. We first de-
scribe our approach to dependency resolution, and then we evaluate the implementation
using a synthetic application.

3.5.1. Dependency Resolution

A multithreaded computation consists of threads that are connected by spawn and data-
dependency edges (see Sec. 2.1). For fully-strict multithreaded computations, depen-
dency edges exist between parent and child threads only, going from the child to the
child’s parent. If both the child and the parent thread execute concurrently—the parent
thread must haven been stolen for this situation to occur—two cases can be distinguished:

1. The parent does not depend on its child thread. It then can be executed indepen-
dently of its child thread.

2. The parent depends on its child thread, that is, it contains a task with a data-
dependency edge incident on it. The parent thread stalls at this task if the depen-
dency is not resolved. Otherwise, the execution continues until either the parent
thread dies or it stalls at any of the following tasks.

Since the first case is somehow trivial, the second one is challenging as the parent thread
might stall. In this case it must be possible for the child thread to continue executing
the parent thread. Especially on the GPU we run into difficulties with making threads
stop at some point in their execution and to substitute these threads by others which
then continue the execution.
In our approach to dependency resolution we split up threads into subthreads with

dependency counters each. Figure 3.5 illustrates the splitting for a function f into f1,
f2, and f3, with a spawn and a synchronization point within. f then is the composition
of f1, f2, and f3, that is, f = f3 ◦ f2 ◦ f1. The spawn() is placed at the end of f1,

32

3.5. Scheduling Multithreaded Computations on GPU and XeonPhi

Figure 3.6.: Function f expressed as a composition of the functions f1, f2, and f3 with a spawn between
f1 and f2, and a synchronization point between f2 and f3. The right-hand side sub-image illustrates the
usage of the spawn() and sync() functions given in Listing 3.5 in this context.

and the synchronization point is placed at the end of f2 and g, respectively, where g
is the previously spawned function. The functions f1, f2, f3, and g correspond to the
aforementioned subthreads (threads hereafter, for short).
According to Algorithm WS (see Sec. 2.4), the thread containing function g is exe-

cuted by the thread that did the spawn, and the thread containing f2 is added to its
(processor’s) dequeue. The point where both threads converge back to the execution of
thread f2 is implemented by the sync() function. Listing 3.5 describes the operation
of spawn() and sync() in C pseudo-code.
The spawn() function is given a reference to the calling thread, function pointers

to the next-to-the-current function and the spawned function (f2 and g in the example
above), as well as input arguments to these functions. Within the spawn() function
threads t1 and t2 are created that encapsulate the functions given to spawn(). Thread
t1 is executed by the calling thread’s processor itself in any case, and t2 may be executed
by any other processor. For this purpose t2 is added to the calling thread’s (processor’s)
dequeue. If the dequeue is full, even t2 is executed by the calling thread’s processor right
after the execution of thread t1 (depth-first execution).
The optional sixth (dependent) and seventh parameter (abSyncFunc) are to sig-

nalize a dependency between the two threads t1 and t2. If the sixth parameter is set
to true (the default value is false), a third thread syncThread is created that
acts as synchronization object—syncThread is stored in the heap memory so that it
persists the execution of the spawn() function. Both t1 and t2 have a reference to
syncThread, so that accessing the syncThread object can be done in O(1) time.
syncThread itself has a dependency counter depCount, which is set to 2 (as there are
2 threads that synchronize to each other using syncThread), and a function pointer set
to the abSyncFunc function given to spawn() (f3 in the example above). The input

33

3. Work Stealing on GPU and Intel XeonPhi

struct thread

funcPtr func

arguments args

thread *syncThread

int depCount

int lockVar=0

function void spawn(thread *currentThread,

funcPtr aFunc,arguments aArgs,

funcPtr bFunc,arguments bArgs,

bool dependent=false,

funcPtr abSyncFunc=NULL)

thread *syncThread=NULL

if dependent==true then
syncThread=new thread // create synchronization thread visible outside the function scope
syncThread←(abSyncFunc,NULL,currentThread−>syncThread,2)

// create actual threads: t1 is the spawned thread
thread t1←(aFunc,args=aArgs,syncThread,0) // t1 can be immediately executed
thread t2←(bFunc,args=bArgs,syncThread,0) // t2 can be immediately executed
// try to add thread t2 to the dequeue
if myDequeue.push(t2)==true then
execute t1−>func

else // dequeue is full! execute both threads by myself
execute t1−>func // Depth-first execution of t1
execute t2−>func // and t2

function void sync(thread *currentThread)

if currentThread−>syncThread!=NULL then
lock(¤tThread−>syncThread−>lockVar) // acquire syncThread’s lock
currentThread−>syncThread−>args=‘some modifications’
currentThread−>syncThread−>depCount−=1
if currentThread−>syncThread−>depCount==0 then // all dependencies resolved
unlock(¤tThread−>syncThread−>lockVar) // release lock
execute currentThread−>syncThread−>func
delete currentThread−>syncThread // delete synchronization thread

else
unlock(¤tThread−>syncThread−>lockVar) // release lock

Listing 3.5: Implementation of the spawn() and sync() function (pseudo-code).

arguments to syncThread’s function are created by t1 and t2 when calling the sync()
function. If t1 and t2 do not depend on each other, the sync() function has no effect.
Otherwise, the calling threads acquire the syncThread’s lock-variable, and modify
syncThread’s state. In particular, each thread decrements the value of depCount by
one. The thread for which depCount’s value is zero after the decrementation resolves
the dependency. Its processor then starts executing the thread/function pointed to by
syncThread’s function pointer, and afterwards the syncThread object is deleted.

34

3.5. Scheduling Multithreaded Computations on GPU and XeonPhi

3.5.2. Evaluation of the Implementation

For the evaluation of the implementation of the work stealing scheme we use two syn-
thetic application scenarios. The first scenario (SC 1) models the situation of a recursive
function call. That is, a thread duplicates itself, using the spawn() function, until the
recursion stops, say, after N recursive calls. On each level of the recursion a synthetic
kernel is executed that keeps the executing processor busy for a certain amount of time.6

Figure 3.7 illustrates the procedure for a kernel that has return value 1—we imple-
mented a kernel that performs k ADD and k−1 SUB operations, using assembly language
to prevent the compiler from any optimization. Threads that synchronize add up these
return values for a final value of N + 1.

spawn

spawn

spawn

spawn

Kernel 1

Kernel 1

Kernel 1

+

+
1

1

2

1
Kernel 1 +

1

3

Kernel 1 +
1

4

5
Add to Dequeue

Figure 3.7.: Synthetic application for the evaluation of the implementation of the work stealing scheme
with dependencies. Here the number of recursive calls is N = 4.

Over the course of the recursive subroutine calls, the initial thread (the one that performs
the recursion) adds N threads into its (processor’s) dequeue. The total of N + 1 threads
is executed by 1 ≤ n ≤ N + 1 processors using the work stealing scheme. The value
of N is chosen such that the number P of processors on the device used is at least
N + 1. The device then can be thought of as being equipped with an infinite number
of processors, and we should see the execution time of the application be bounded
below by the execution time of the kernel Tkernel. This value approximates T∞, where
Tkernel ' T∞—increasing the number of processors does not speed up the application.
For values n < N + 1, the execution time Tn is Tn ' d(N + 1)/neTkernel.
Figure 3.8 shows application runtimes with recursion depth N = 29 on the XeonPhi

and N = 31 on the Tesla M2090, respectively, and with Tkernel = kTADD + (k − 1)TSUB

and k ∈ {100, 1000, 10000, 100000}. TADD and TSUB are the times it costs to perform an
ADD and a SUB operation, respectively. As TADD and TSUB vary from device to device,
we decided to normalize runtimes to the execution time of the kernel. All values given are
averaged over 6 runs of the benchmarking program. It can be seen that our measurements
6 Nvidia GPUs of device capability at least 2.0 have support for recursion on the level of __device__
functions. In the CUDA programming model GPU functions are divided into __global__ functions
(kernels) that are callable from within the host program, and __device__ functions which are per-
thread functions that are callable from within __global__ functions. The CUDA runtime system
provides the cudaDeviceSetLimit() function which allows to set the per-thread stack size.

35

3. Work Stealing on GPU and Intel XeonPhi

almost ideally match the expected values if Tkernel is sufficiently large (k � 10000). If
Tkernel becomes too small, the overhead for the creation of the synchronization threads,
and the synchronizations themselves overcompensate the performance increase obtained
with the load balancing scheme.
For all benchmarks we checked the correctness of the output. We found no discrep-

ancies.
In the second application scenario (SC 2) each processor initially is assigned one thread.

During the execution of this thread new threads are created in the same way as in scenario
SC 1 with the recursion depth N given by the processor ID, ranging from 0 to n − 1.
The total amount of work W1(n) (in terms of threads) then is W1(n) = ∑n−1

i=0 T1,i =∑n−1
i=0 (i+1) = n(n+1)/2, where T1,i is the amount of work (in terms of threads) assigned

to processor i. When using the work stealing scheme (WS),W1(n) should be distributed
across the n processors such that the maximum number of threads executed by each
processor is dn(n + 1)/(2n)e = d(n + 1)/2e. The execution time Tn of the program
then is Tn = d(n + 1)/2eTkernel, and the speedup Sn over the execution not using work
stealing (noWS) is Sn = max{T1,i : i ∈ {0, 1, . . . , n − 1}}Tkernel/(d(n + 1)/2eTkernel) =
nTkernel/(d(n+ 1)/2eTkernel) = n/d(n+ 1)/2e.
Figure 3.9 shows application runtimes on the GPU and the XeonPhi, with Tkernel =

kTADD + (k − 1)TSUB and k ∈ {100, 1000, 10000, 100000}. Again, all values given are
averaged over 6 runs of the benchmarking program. The number n of processors was
varied over {1, 2, . . . , 64} on the GPU—we had 4 threads (warps) per thread block, so
that up to 16 thread blocks are scheduled, matching the number of processors on the
GPU—, and {1, 2, . . . , 60} on the XeonPhi, where threads were pinned to processors.
The expected execution times are met for sufficiently large k.

Comparison against Cilk

In order to compare our implementation of the work stealing scheme with Cilk [BJK+95],
the spawn() and the sync() function are replaced by their Cilk pendants. For the
runtime measurements to be reliable and reproducible, we execute the entire computation
twice, for one thing before starting the timer, and for another thing after having started
the timer—in this way we found the overhead due to thread creation become negligible,
as all threads are already created during the first run and then can be immediately used
in the second run. Similar to the benchmarking procedure of our implementation of the
work stealing scheme, for setups SC1 and SC2 execution times are averaged over 6 runs
of the benchmarking program.
Figure 3.10 illustrates the benchmarking results. The execution times for the ‘no-

work-stealing’ runs of our implementation are taken as reference. Seemingly, something
goes terribly wrong. For small kernels with k < 100000 there is almost no speedup over

36

3.5. Scheduling Multithreaded Computations on GPU and XeonPhi

XeonPhi, SC 1 (N = 29) Tesla M2090, SC 1 (N = 31)
Non-Blocking Dequeue Non-Blocking Dequeue

0.1

1

10

100

1 2 4 8 16 32 64

.
k = 100

E
xe

cu
ti
on

T
im

e
(n

or
m

al
iz

ed
)

T1/n

T∞

Measurement Data
T1/n+ T∞

0.1

1

10

100

1 2 4 8 16 32 64

.
k = 100

E
xe

cu
ti
on

T
im

e
(n

or
m

al
iz

ed
)

T1/n

T∞

Measurement Data

T1/n+ T∞

0.1

1

10

100

1 2 4 8 16 32 64

.
k = 1000

E
xe

cu
ti
on

T
im

e
(n

or
m

al
iz

ed
)

T1/n

T∞

Measurement Data
T1/n+ T∞

0.1

1

10

100

1 2 4 8 16 32 64

.
k = 1000

E
xe

cu
ti
on

T
im

e
(n

or
m

al
iz

ed
)

T1/n

T∞

Measurement Data
T1/n+ T∞

0.1

1

10

100

1 2 4 8 16 32 64

.
k = 10000

E
xe

cu
ti
on

T
im

e
(n

or
m

al
iz

ed
)

T1/n

T∞

Measurement Data
T1/n+ T∞

0.1

1

10

100

1 2 4 8 16 32 64

.
k = 10000

E
xe

cu
ti
on

T
im

e
(n

or
m

al
iz

ed
)

T1/n

T∞

Measurement Data
T1/n+ T∞

0.1

1

10

100

1 2 4 8 16 32 64
Number n of Processors

.
k = 100000

E
xe

cu
ti
on

T
im

e
(n

or
m

al
iz

ed
)

T1/n

T∞

Measurement Data
T1/n+ T∞

0.1

1

10

100

1 2 4 8 16 32 64
Number n of Processors

.
k = 100000

E
xe

cu
ti
on

T
im

e
(n

or
m

al
iz

ed
)

T1/n

T∞

Measurement Data
T1/n+ T∞

Figure 3.8.: Runtimes of an application (SC 1) modeling recursive subroutine calls with recursion depth
N = 29 on the XeonPhi, and N = 31 on the Tesla M2090, respectively. The processor that executes the
recursive thread adds N threads to its dequeue during the execution. All N + 1 threads are executed
by up to 60 (XeonPhi) and 64 (Tesla M2090) processors, respectively. Runtimes are normalized to the
execution time Tkernel of the kernel that is executed on each level of the recursion. Each kernel performs k
ADD operations and k−1 SUB operations. The value of k was chosen to k ∈ {100, 1000, 10000, 100000}.

37

3. Work Stealing on GPU and Intel XeonPhi

XeonPhi, SC 2 Tesla M2090, SC 2
Non-Blocking Dequeue Non-Blocking Dequeue

0

1

2

3

10 20 30 40 50 60

.
k = 100

Sp
ee

du
p

(W
S

vs
.

no
W

S)
Measurement Data

n/⌈(n+ 1)/2⌉

0

1

2

3

10 20 30 40 50 60

.
k = 100

Sp
ee

du
p

(W
S

vs
.

no
W

S)

Measurement Data
n/⌈(n+ 1)/2⌉

0

1

2

3

10 20 30 40 50 60

.
k = 1000

Sp
ee

du
p

(W
S

vs
.

no
W

S)

Measurement Data
n/⌈(n+ 1)/2⌉

0

1

2

3

10 20 30 40 50 60

.
k = 1000

Sp
ee

du
p

(W
S

vs
.

no
W

S)

Measurement Data
n/⌈(n+ 1)/2⌉

0

1

2

3

10 20 30 40 50 60

.
k = 10000

Sp
ee

du
p

(W
S

vs
.

no
W

S)

Measurement Data
n/⌈(n+ 1)/2⌉

0

1

2

3

10 20 30 40 50 60

.
k = 10000

Sp
ee

du
p

(W
S

vs
.

no
W

S)

Measurement Data
n/⌈(n+ 1)/2⌉

0

1

2

3

10 20 30 40 50 60
Number n of Processors

.
k = 100000

Sp
ee

du
p

(W
S

vs
.

no
W

S)

Measurement Data
n/⌈(n+ 1)/2⌉

0

1

2

3

10 20 30 40 50 60
Number n of Processors

.
k = 100000

Sp
ee

du
p

(W
S

vs
.

no
W

S)

Measurement Data
n/⌈(n+ 1)/2⌉

Figure 3.9.: Speedup ‘work-stealing (WS) vs. no-work-stealing (noWS)’ for application scenario SC 2.
Each of the n processors executes a thread running the application described above (SC 1) with recursion
depth n − 1. The expected speedup when using the work stealing scheme is n/d(n + 1)/2e—the gray
solid line in the plots. On each level of the recursion a kernel is executed performing k ADD operations
and k − 1 SUB operations. The value of k was chosen to k ∈ {100, 1000, 10000, 100000}.

38

3.5. Scheduling Multithreaded Computations on GPU and XeonPhi

XeonPhi, SC 1 (N = 29), Cilk XeonPhi, SC 2, Cilk

0.1

1

10

100

1 2 4 8 16 32 64

.
k = 100

E
xe

cu
ti
on

T
im

e
(n

or
m

.)

T1/n

T∞

Measurement Data
T1/n+ T∞

0

1

2

3

10 20 30 40 50 60

.
k = 100

Sp
ee

du
p

(C
ilk

vs
.

no
W

S) Measurement Data
n/⌈(n+ 1)/2⌉

0.1

1

10

100

1 2 4 8 16 32 64

.
k = 1000

E
xe

cu
ti
on

T
im

e
(n

or
m

al
iz

ed
)

T1/n

T∞

Measurement Data
T1/n+ T∞

0

1

2

3

10 20 30 40 50 60

.
k = 1000

Sp
ee

du
p

(C
ilk

vs
.

no
W

S) Measurement Data
n/⌈(n+ 1)/2⌉

0.1

1

10

100

1 2 4 8 16 32 64

.
k = 10000

E
xe

cu
ti
on

T
im

e
(n

or
m

al
iz

ed
)

T1/n

T∞ Measurement Data
T1/n+ T∞

0

1

2

3

10 20 30 40 50 60

.
k = 10000

Sp
ee

du
p

(C
ilk

vs
.

no
W

S) Measurement Data
n/⌈(n+ 1)/2⌉

0.1

1

10

100

1 2 4 8 16 32 64
Number n of Processors

.
k = 100000

E
xe

cu
ti
on

T
im

e
(n

or
m

al
iz

ed
)

T1/n

T∞ Measurement Data
T1/n+ T∞

0

1

2

3

10 20 30 40 50 60
Number n of Processors

.
k = 100000

Sp
ee

du
p

(C
ilk

vs
.

no
W

S) Measurement Data
n/⌈(n+ 1)/2⌉

Figure 3.10.: Runtimes for application scenario SC 1 on the XeonPhi using Cilk, and speedups ‘Cilk vs.
no-work-stealing (noWS)’ for application scenario SC 2. For further details, see Fig. 3.8 and Fig. 3.9.

the 1-processor execution of SC 1, and also for SC 2 execution times are far away from
what is expected. We told the Cilk runtime system to use no more than n workers
—we called __cilkrts_set_param("nworkers", NUM_PROCESSORS) before any

39

3. Work Stealing on GPU and Intel XeonPhi

computation. Only for k > 100000 the Cilk implementation seems to yield the expected
runtimes.
Since we are not the experienced Cilk programmers, it might be possible that some

modifications of the benchmarking program will increase its performance.

40

4. Application Scenarios

In this chapter we apply the work stealing scheme to real-world problems. By comparing
execution times of programs using work stealing against those not using this scheme,
we illustrate the necessity of dynamic load balancing on (massively) parallel computers
when computations become irregular in workload.
In the first section we therefore take up the ray tracing method for image creation, and

in the second section we focus on the breadth-first search algorithm. While for ray tracing
there is already sufficient potential for parallelism at the beginning of the computation,
breadth-first search starts up with work for one processor only and develops (massive)
parallelism during the execution.

4.1. Ray Tracing

In this section the work stealing scheme is merged together with an already existing
implementation of a ray tracer on the GPU that was developed within the scope of a
software project course on parallel algorithms on GPUs at Freie Universität Berlin. At
first, we give a brief overview on ray tracing and summarize our contribution to the
course. Then we move on to the integration of load balancing into the ray tracer.

4.1.1. The Ray Tracing Method

The ray tracing method aims for the production of realistic high-quality images of a
scene described by geometric primitives such as triangles, spheres, etc. The image is
created pixel by pixel. For each pixel a ray of light, leading from the observer’s eye to
that pixel, is traced through the scene. The most portion of the work is in the detection
of possible intersection points between the rays and the geometric primitives that are the
closest ones with respect to the pixels the rays are associated with. For these intersection
points, the evaluation of the Phong lighting equation (we do not introduce to computer
graphics; see [SM03, SAG+05], for instance) allows for the determination of the color
values of the respective pixels in the first order. Figure 4.1 illustrates the procedure.
In order to incorporate reflectivity and refraction, higher-order rays (secondary rays,

for short) need to be considered. These rays have their origin in the aforementioned in-
tersection points, and their direction result from the laws of geometric optics. Secondary

41

4. Application Scenarios

Image/Screen

u

w

v

o 1st Order

Scene

Camera

Pixel

(Eye)

Ray

2nd Order
Ray

Figure 4.1.: Tracing a ray through a scene. The geometric primitive (here a triangle) which is the closest
one determines the color of the respective pixel. The image originates from a drawing in [SAG+05].

rays are traced through the scene in the same way as first-order rays, yielding a hierarchy
of rays for each pixel. On each level of this hierarchy the color value conveyed by the
ray on that level can be determined by evaluating Phong’s lighting equation. The color
value of a pixel is computed as the sum of the color values of all its contributing rays.
Listing 4.1 illustrates the per-ray execution in pseudo-code, with some annotations

with respect to Sec. 4.1.3 in lines 12 and 16. The scene is considered to be made up of
triangles only. The interested reader is referred to [SM03, SAG+05, WF12].

function rgb rayColor(ray r,rgb weight,int recursionDepth)

if weight<Wcutoff or recursionDepth==maxRecursionDepth then

return black // RGB representation: (0,0,0)
// Initialize color value
rgb color=ambientColor

// Determine intersection point with any of the scene’s triangles
triangle t=intersectionRoutine(r)

if t!=NULL then // If there is an intersection point then...
if t.reflectivity!=0 then // Reflexion
rRefl← ‘create reflexion ray’
color+=rayColor(rRefl,t.reflectivity,recursionDepth+1)

12: // MTC: color+=spawn rayColor(rRefl,weight*t.reflectivity,...+1)

if t.refractivity!=0 then // Refraction
rRefr← ‘create refraction ray’
color+=rayColor(rRefr,t.refractivity,recursionDepth+1)

16: // MTC: color+=spawn rayColor(rRefr,weight*t.refractivity,...+1)

for light∈ {visible light sources} do

color+=‘evaluate Phong’s lighting equation (see [SAG+05], for instance)’
return weight*color

Listing 4.1: Per-ray execution in the context of ray tracing (pseudo-code). rgb, ray, and triangle
refer to complex data types representing RGB color values, rays, and triangles, respectively. Lines 12
and 16 contain annotations for the execution within a multithreaded computation (MTC). Since threads
are independent of each other, there are no synchronization points.

42

4.1. Ray Tracing

4.1.2. Implementation Details

The implementation of the ray tracing method and its parallelization is straightforward
for the most part as there are no dependencies between the rays (this allows a trivial
parallelization). One of the challenging parts of the implementation is the representation
of the scene that should be rendered. Usually, there are thousands of triangles, with every
one of them being a potential candidate for having an intersection point in common with
any of the rays. Testing the triangles for intersection in brute force manner, that is, for
each ray all triangles are considered, then would take T (nr, nt) = Θ(nrnt) time for nr

rays and nt triangles.
A better way is to partition the volume occupied by the scene into disjoint subvolumes

containing a subset of the scene’s triangles each, and to repeat this procedure within
these subvolumes recursively until, for instance, the number of triangles in the subvolume
is below a cutoff value, say, n∗. In this way, a hierarchy of subvolumes (bounding boxes)
is created. The Θ(nrnt) brute force runtime reduces to O

(
nrh(nt)

)
ray-bounding-box

intersection tests, and possibly some ray-triangle intersection tests within subvolumes for
which the ray hits the subvolume’s bounding box. h(nt) is the height of the tree given by
the bounding box hierarchy. The number of ray-triangle intersection tests within any of
the bounding boxes is bounded above by n∗. Since n∗ does not depend on nr nor on nt,
the per-box ray-triangle intersection tests are in O(1). Hence, T (nr, nt) = O

(
nrh(nt)

)
.

For our implementation we use an octree data structure with axis-aligned bounding
boxes for the partitioning of the scene [SM03].

GPU Implementation

On the GPU the octree data structure in its explicit recursive definition is unsuitable for
the scene traversal. Although current Nvidia GPUs of the Fermi architecture (and later)
have support for recursion, a transformation of the data structure into a non-recursive
one seems to be meaningful. We therefore replace the octree data structure by a pre-
ordered linked list [WF12]. Figure 4.2 illustrates our approach for a binary tree (the
procedure is similar for the octree).

0

1 2

3 4 5 6

0

1 2

3 4 5 6

FIN

FIN

FIN

0 1 3 4 2 5 6 FIN

FINFIN

skip (no ray-box intersection)
child (ray-box intersection)

Tree-Based Data Structure: Pre-Ordered Linked List:

Figure 4.2.: Schematically illustration of translating a binary tree into a pre-ordered linked list. The
image is from [WF12].

43

4. Application Scenarios

The idea is quite simple: each vertex of the tree has a pointer to one of its children,
and a second pointer to its sibling vertex. With respect to ray-box intersection testing,
the traversal is along a pointer to the child box (child-edge) if there is an intersection
point, and otherwise it is along the pointer to the sibling vertex (skip-edge). Each vertex
has out-degree 2 and in-degree ≥ 1, except the root. If there is no ray-box intersection,
moving along the skip-edge allows to skip the entire subtree the current vertex would
have been the root for. The traversal finishes if either the child-edge or the skip-edge
brings us to a somehow distinguished vertex signaling the finish status (‘FIN’ in Fig. 4.2).
Although the linked list data structure is non-recursive, it remains unsuitable for the

GPU for two reasons. First, moving along a skip-edge translates to an unordered access
to the GPU’s main memory. Second, moving along a skip-edge or a child-edge introduces
branches in the execution of the active threads. If we use the GPU’s processors such
that every thread in a group (warp) executes the ray tracing program independently,
branching leads to partial serialization of the execution within thread groups, resulting
in significantly longer runtimes. Both of the two issues are in contrast to using the GPU
in SIMD manner. However, we found using the GPU not in pure SIMD manner, but in
MIMD manner, give notably performance improvements over a comparable vectorized
and multithreaded CPU version of the ray tracer.
A point that was not addressed during the above mentioned software project course

was work (re)distribution in the case of dynamic creation of secondary rays. Since
secondary rays can extend the execution time of a thread, the entire thread group with
that thread within has extended runtime. In the worst case the execution of the group
is dominated by just one thread, and the group as a whole waits for one thread to
finish. The same issue applies to thread blocks. If one thread group within a thread
block has extended execution time due to secondary rays, the entire thread block cannot
complete. If multiple thread blocks are affected by such irregular workloads, the GPU
scheduler runs out of thread groups that can be scheduled. An important point to
note is that each SIMD processor’s thread scheduler(s) can manage up to 8 concurrent
thread blocks only, so that in the worst case 8 thread groups in 8 different thread blocks
have extended runtime, and instead of the maximum of 48 thread groups per processor
only 8 are available for execution. The minimum number of thread blocks for the GPU
scheduler(s) to use the GPU’s compute units efficiently is about 20 per processor.

XeonPhi and CPU Implementation

The implementation on the XeonPhi and the CPU is almost identical to the GPU im-
plementation. We also translate the octree into a pre-ordered linked list data structure,
and we also use the processors in MIMD manner. Unlike the GPU, our implementation
uses the XeonPhi’s and the CPU’s SIMD units for a fast ray-triangle intersection test-

44

4.1. Ray Tracing

ing during the scene traversal. For that purpose the number of triangles per bounding
box is adapted to be a multiple of the SIMD width on the XeonPhi and the CPU,
respectively—some boxes are filled up with dummy triangles.
The reason why we did not implement this SIMD traversal on the GPU is that for

the programmer the GPU appears as a multi-core processor with 16×32 processor cores
and with no SIMD units. For a typical GPU program that exploits data parallelism
this view is correct as the program implicitly addresses SIMD parallelism. For a GPU
program not written in data parallel manner it comes out that the GPU actually has
just 16 physical processors (see Tab. 3.1). Fortunately, its interleaved multithreading
concept allows to hide this circumstance to a certain extent (there are up to 768 logical
processors). Further, there is always hope that not all threads in a thread group are
serialized when not executing in SIMD manner. However, by using the GPU’s SIMD
processors in the same way as on the CPU, one would waste some performance as for a
single ray only the ray-triangle intersection testing during the scene traversal provides
enough potential for SIMD parallelism.

4.1.3. Ray Tracing and Load Balancing

With respect to the previous chapter, the determination of the color value of a pixel
describes a multithreaded computation with the thread programs given by the ‘MTC’-
version of Listing 4.1. Rendering the entire image, there are as many independent multi-
threaded computations as there are pixels. For each pixel the computation starts with
tracing the first-order ray associated with that pixel through the scene. If the ray hits
a reflective/refractive triangle, secondary rays are created. The computational cost per
pixel then increase.
Since the number of secondary rays per pixel is usually unknown, the best one can

do is to partition the image into subimages and to distribute them across the processors
available for execution (static processor-thread assignment). If the partitioning is fine
enough—maybe at pixel level—, it should be unlikely that individual processors are
given significantly more costly pixels than others, but it is not guaranteed. On the other
hand, if we start up with a static assignment between processors and pixels (and hence
threads), and if we allow processors that already finished their computations to acquire
new work from processors that still execute, even workloads should be possible.
There are two essential criteria for such a load balancing scheme: It should be possible

1. to achieve at least the performance that can be obtained with an ‘optimal’ static
assignment, and

2. to achieve a higher performance than the static assignment if the latter is not
‘optimal’.

45

4. Application Scenarios

The evaluation of these two criteria is addressed in Sec. 4.1.4.
Subsequently, we use the work stealing scheme, as described in Chapter 3, except that

for ray tracing there are no dependencies to be resolved. On the XeonPhi and the CPU
the non-blocking dequeue and the blocking dequeue, respectively, are utilized for thread
sharing among the processors.
On the GPU, we use the non-blocking dequeue, too, but there are two additional

challenges in adding dynamically created threads to the dequeue. Since threads within
the same thread group do not execute independently of each other, but in wavefront
manner, it does not make any sense to assign a dequeue to each processor that executes
a thread. Rather we define a master thread for each thread group, and assign a per-
thread-group dequeue to the processor that executes the master thread. While acquiring
new threads for the group poses no difficulties, adding dynamically created threads to the
thread group’s dequeue is much more involved as there are up to 32 processors per thread
group that may spawn multiple threads during their execution. A possible solution to
this problem is as follows: since for ray tracing threads do not dependent on each other,
the spawned thread is not distinguished from its parent thread, so that the execution
order of the two is arbitrary. For each thread group we define a local buffer in the shared
memory (low-latency on-chip memory that can be directly addressed) that contains up
to twice the number of elements as there are threads per thread group. The elements
that are stored in the local buffer are the child threads that may be spawned during
the execution of the (parent) threads. The elements of the local buffer are accessible
by the entire group. By putting the child threads instead of the parent threads into
the local buffer, the thread group can continue executing the current wavefront without
possible branches due to the depth-first execution of the child threads. In this way
the recursive execution of the ray tracing function can be translated into an iterative
wavefront execution. The size of the local buffer results from there are up to two spawns
per thread in the case of refraction. For the wavefront execution to be efficient, the local
buffer should hold one thread per group member in each step of the iteration. If the
number of spawned threads is below the group size, additional threads can be acquired
from the thread group’s dequeue or the dequeue of other thread groups. Excess threads
can be passed back to the thread group’s dequeue. In our implementation for the GPU,
we skip the last step, that is, we do not add threads to the dequeue.1

The procedure of filling up thread groups with threads is illustrated in Fig. 4.3, where
16 processors are considered. Figure 4.3 also assumes that there is at most one spawn
per thread.

1The net effect of this approach is the same as adding threads to the dequeue, and then acquiring these
threads in the next step of the execution.

46

4.1. Ray Tracing

pop/steal

1 0 3 3 3 4 4 5 5 5 3 3 2 1 0 1

0 2 2 2 3 3 4 4 4 2 2 1 0 0

1 1 1 2 2 3 2 2 1 1 0 2 2

0 2 2 2 3 3 4 3 3 2 2 1 0 0

pop/steal

3 3

n
-t

h
It

er
a
ti

o
n

pop/steal

1 1 1 2 2 3 2 2 1 1 0 2 2 5 5 4

n
+

1
-t

h
It

er
a
ti

on
n
+

2
-t

h
It

er
at

io
n

P
ro

ce
ss

o
r

0

P
ro

ce
ss

o
r

1

P
ro

ce
ss

o
r

2 Master (Processor 0)

Continue-Edge:
Execute current

Spawn-Edge:
Insert child into the

Continue and finish
the current execution.

Execute, spawn and
finish the current

buffer and decrement
recursion counter.

thread.

execution.

r

The thread maintains
a recursion counter r.

n
-1

-t
h

It
er

a
ti

o
n

. . . Slot of the local buffer
containing a thread
ready for execution.

If r = 0, the thread
does not spawn.

Local Buffer in Shared Memory

Figure 4.3.: Schematically illustration of filling up thread groups with threads during the execution of
the ray tracing program. Thread groups here have size 16.

4.1.4. Performance Evaluation on GPU, XeonPhi, and CPU

For the evaluation of the work stealing scheme we consider three different views on a
scene that offer sufficient potential for dynamic thread creation during the rendering
process. The scene that we use can be obtained from [dRu12]. The different view setups
are summarized in Tab. 4.1.
For each setup we determined the work distribution per pixel by adding up the number

Scene: KingsTreasure [dRu12]
Triangles: 278230
Spot Light 1: RGB Color (1.0, 0.9, 0.8), Position (−40.0, 30.0, 40.0)
Spot Light 2: RGB Color (0.6, 0.4, 0.2), Position (20.0, 20.0,−20.0)
Ambient Light: RGB Color (0.3, 0.3, 0.3)

Setup 1 Setup 2 Setup 3

Camera Position (2.0, 6.0, 16.0) (14.0, 15.0, 20.0) (14.0, 20.0, 20.0)
Viewing Direction (−1.0,−0.5,−2.0) (−3.0,−0.5,−4.0) (4.0,−0.5,−4.0)
Viewing Angle 60◦ 60◦ 60◦

Max. Recursion Depth 8 8 8
Image Resolution 1024× 1024 on Tesla M2090 and XeonE5-2670

960× 960 on XeonPhi

Table 4.1.: Benchmarking setups for rendering the KingsTreasure scene. The setups differ in the camera
position and the viewing direction. For all devices the image resolution was chosen to be a multiple of the
number of (logical) processors. On the Tesla M2090 we use 256 (logical) processors for the benchmark.

47

4. Application Scenarios

Scene: KingsTreasure, Setup 1
Recursion

Depth

0

1

2

3

4

5

6

7

8

Figure 4.4.: Work distribution for rendering the KingsTreasure scene using setup 1. Color values towards
‘red’ correspond to a lot of work, whereas values towards ‘blue’ correspond to little work.

of recursive ray tracing function calls (see Listing 4.1). The distribution is shown in
Fig. 4.4 for setup 1. It can be seen that some areas in the image are almost for free,
whereas other ones are very costly. The distribution for setup 2 and 3 is illustrated in
Appendix B.1, Fig. B.1.
Possible schemes for the partitioning of the image into subimages (tiles) are depicted

in Fig. 4.5, where a 4-processor system is assumed. Obviously, the finer the grid the
smaller the imbalance in the per-tile workloads. However, if the assignment of subimages
to processors is static, the overall workload may differ from one processor to another.
We consider the following work distribution schemes:

Static Processor-Thread Assignment: The image is divided into subimages which then
are assigned to a fixed number of processors. During the program run, all spawned
threads are executed by their respective processors, resulting in no work sharing.

8× 8 Grid
Recursion

Depth

0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3
0 · · ·

0
1
2
3
4
5
6
7
8

16× 16 Grid
Recursion

Depth
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 ···

0
1
2
3
4
5
6
7
8

Figure 4.5.: Partitioning of the image of the KingsTreasure scene (setup 1) into an 8×8 and a 16×16 grid
of subimages (tiles). Tiles are statically assigned to processors, where a 4-processor system is assumed.
The number within the tiles refers to the ID of the processor the subimage is assigned to.

48

4.1. Ray Tracing

Processor-Thread Assignment using a Centralized Thread-Pool: The image is divided
into subimages. The threads associated with these subimages are placed into a
shared thread pool that is available to all processors. Processors (on the GPU the
ones that execute the master threads) repeatedly acquire sets of threads (subim-
ages) from the pool for execution. Our implementation of the pool is based on a
counter variable that numbers the subimages, and that is atomically incremented
by the processors when acquiring new work. Even for fine-grained grids, accessing
the thread pool introduces almost no overhead as the execution of the threads
within each subimage is more costly than incrementing the counter. Note: there
is no work sharing when work once was acquired.

Processor-Thread Assignment using Work Stealing: The image is divided into subim-
ages which are placed into the processors’ dequeues (on the GPU the per-thread-
group dequeues), resulting in a static assignment of work to processors. The (mas-
ter) threads then execute the work stealing scheme.

CUDA-Managed Processor-Thread Assignment (GPU-only): The distribution of the
subimages to the GPU’s execution units is done by the GPU hardware scheduler.
Principally, this scheme implements a centralized work pool in hardware. In this
setting the GPU scheduler acts as an independent third party that assigns thread
blocks and hence the subimages to the GPU’s processors. Every time a thread
block completes its execution, a new one, if there is any, is scheduled to the va-
cated processor.
The key difference to our centralized thread pool is in the granularity of the schedul-
ing. While our scheme schedules subimages to thread groups, the GPU scheduler
is only capable of scheduling subimages to groups of thread groups (thread blocks).
A thread block completes its execution if and only if all thread groups within that
block have finished their execution, potentially making some thread groups wait for
others. Our scheme uses persistent threads which acquire new work by themselves
The GPU scheduler only switches between the thread groups (interleaved multi-
threading), but none of the thread blocks is replaced by others, as all thread blocks
finish their execution at almost the same time—this is when the computation as a
whole is over.

On the XeonPhi and the CPU we create as many persistent threads as there are
logical processors (the persistent threads then encapsulate the execution of the threads
that correspond to the subimages’ pixels; see Sec. 3.3 for what is meant by ‘persistent
thread’); 240 on the XeonPhi, and 16 on the CPU.
On the GPU we use only 256 of the possible 768 logical processors since our ray

tracing kernel uses almost 3 times the amount of registers that is usually assigned to

49

4. Application Scenarios

XeonPhi, Setup 1 Tesla M2090, Setup 1

2 4 8 16 32

2
4

8
16

32

2

4

6

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Static
Processor-Thread Assignment

1
2
3
4
5
6

2.42µs

2 4 8 16 32

2
4

8
16

32

2

4

6

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Static
Processor-Thread Assignment

1
2
3
4
5
6

2.16µs

2 4 8 16 32

2
4

8
16

32

2

4

6

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Processor-Thread Assignment
using a Centralized Thread Pool

1
2
3
4
5
6

2.32µs

2 4 8 16 32

2
4

8
16

32

2

4

6

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Processor-Thread Assignment
using a Centralized Thread Pool

1
2
3
4
5
6

1.94µs

2 4 8 16 32

2
4

8
16

32

2

4

6

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Processor-Thread Assignment
using Work Stealing

1
2
3
4
5
6

2.28µs

2 4 8 16 32

2
4

8
16

32

2

4

6

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Processor-Thread Assignment
using Work Stealing

1
2
3
4
5
6

1.77µs

2 4 8 16 32

2
4

8
16

32

2

4

6

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

CUDA-Managed
Processor-Thread Assignment

1
2
3
4
5
6

2.04µs

Figure 4.6.: Execution times (on XeonPhi and
Tesla M2090) for rendering the KingsTreasure
scene using i) a static processor-thread assign-
ment, ii) a centralized thread pool, and iii) the
work stealing scheme. On the Tesla M2090 we
also consider the CUDA-managed execution of
the threads.

50

4.1. Ray Tracing

XeonE5-2670, Setup 1

2 4 8 16 32

2
4

8
16

32

14.0

14.5

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Static
Processor-Thread Assignment

13.5

14.0

14.5

15.0
14.1µs

2 4 8 16 32

2
4

8
16

32

14.0

14.5

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Processor-Thread Assignment
using a Centralized Thread Pool

13.5

14.0

14.5

15.0

14.0µs

2 4 8 16 32

2
4

8
16

32

14.0

14.5

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Processor-Thread Assignment
using Work Stealing

13.5

14.0

14.5

15.0

14.0µs

Figure 4.7.: Execution times (on the Xeon E5-2670) for rendering the KingsTreasure scene using i) a
static processor-thread assignment, ii) a centralized thread pool, and iii) the work stealing scheme.

the processors. If we would use more than 256 logical processors the program would
stall as the GPU scheduler then considers only a subset of the logical processors for
the scheduling. The portion of the logical processors that are not considered would
never execute as their execution can start if and only if other processors finish their
execution—and these processors in turn finish their execution if and only if all work is
done. This would cause a deadlock.
For each of the setups listed in Tab. 4.1, and for different tile sizes, rendering the

image was done 6 times in succession (for statistics). The averaged execution times per
pixel (in micro-seconds) are illustrated in Fig. 4.6 for the XeonPhi and the Tesla M2090,
and in Fig. 4.7 for the CPU. Error bars on the measurement data are not given as they
are too small (so we simply excluded them). Fig. 4.8 and 4.9 illustrate the results for
setup 2 and 3. Note that on the GPU the minimum tile size is given by the size of a
thread group, which is 32 for the Tesla M2090.
For all setups it is recognizable that decreasing the tile size reduces the execution time

per pixel, and hence the overall execution time for the image. Tile size reduction leads

51

4. Application Scenarios

to an implicit load balancing, since nearly the same amount of work is assigned to all
processors on average. The larger the tiles the more potential for workload imbalances
exists. Only in the case of the work stealing scheme imbalances can be compensated.
The other schemes suffer from work once acquired cannot be redistributed to other
processors if necessary. Since on the GPU there is also potential for irregularities in the
workload on the level of the thread groups, due to the wavefront execution model, the
GPU is particularly sensitive to workload imbalances. If we can avoid these imbalances
the GPU performs good as can be seen from the execution times of the setups using the
work stealing scheme. All setups confirm the work stealing scheme be superior to any
other scheme in the tests.
On the CPU the implicit load balancing, due to the small number of processors (and

the large number of tiles), results in all schemes perform almost equally well. For 32×32
subimages there are still 1024 tiles that are statically assigned to 16 processors, that is,
64 tiles per processor. On the GPU these 1024 tiles are distributed to 256 processors,
so that 4 tiles are assigned to each of them. For the latter irregularities in the per-tile
workload can affect the overall execution to a large extent. For that reason it should
be obvious that the work stealing scheme on the CPU is less effective than on the GPU
and the XeonPhi. However, on the CPU the work stealing scheme lies at level with the
centralized thread pool scheme so that using it does not slow down the execution.
When comparing execution times in Fig. 4.6 and Fig. 4.7, it can be seen that our

CPU version of the ray tracer performs about a factor 6-8 below its GPU and XeonPhi
pendant, showing that in particular on the GPU the MIMD approach does not break
down the performance. However, we assume that a SIMD version of the ray tracer would
outperform our implementation.
Setup 3 was chosen as an example of a scene with almost no potential for irregularities

in the workload (see Fig. B.1 for the work distribution of setup 3). The work stealing
scheme performs on par with the other approaches for small tiles, and is superior to
them when tile sizes become large.
The execution times for setup 3 suggest the assumption that the performance break-

down on the GPU, due to thread serialization within thread groups, is about a factor
2-3 for our ray tracing program. In setup 3 the linked list traversal should be similar
for all threads so that the influence of the branching on the execution time can be ne-
glected. According to Fig. 4.9, the performance of the ray tracer on the GPU is about
three times the performance on the XeonPhi. In setup 1 and 2, on the other hand, there
is significantly more potential for thread serialization due to branches. For both of the
two setups the GPU is faster than the XeonPhi by about a factor 1.2 only. Thread
serialization within thread groups thus seems to lower the performance on the GPU by
about a factor 2-3.

52

4.1. Ray Tracing

Tesla M2090, Setup 2 XeonPhi, Setup 2

2 4 8 16 32

2
4

8
16

32

2

4

6

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Static
Processor-Thread Assignment

1
2
3
4
5
6

1.78µs

2 4 8 16 32

2
4

8
16

32

2

4

6

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Static
Processor-Thread Assignment

1
2
3
4
5
6

1.91µs

2 4 8 16 32

2
4

8
16

32

2

4

6

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Processor-Thread Assignment
using a Centralized Thread Pool

1
2
3
4
5
6

1.60µs

2 4 8 16 32

2
4

8
16

32

2

4

6

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Processor-Thread Assignment
using a Centralized Thread Pool

1
2
3
4
5
6

1.80µs

2 4 8 16 32

2
4

8
16

32

2

4

6

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Processor-Thread Assignment
using Work Stealing

1
2
3
4
5
6

1.46µs

2 4 8 16 32

2
4

8
16

32

2

4

6

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Processor-Thread Assignment
using Work Stealing

1
2
3
4
5
6

1.76µs

2 4 8 16 32

2
4

8
16

32

2

4

6

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

CUDA-Managed
Processor-Thread Assignment

1
2
3
4
5
6

1.65µs

Figure 4.8.: Execution times (on XeonPhi and
Tesla M2090) for rendering the KingsTreasure
scene using i) a static processor-thread assign-
ment, ii) a centralized thread pool, and iii) the
work stealing scheme. On the Tesla M2090 we
also consider the CUDA-managed execution of
the threads.

53

4. Application Scenarios

XeonPhi, Setup 3 Tesla M2090, Setup 3

2 4 8 16 32

2
4

8
16

32

0.5

1.0

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Static
Processor-Thread Assignment

0.0

0.5

1.0

1.5

0.90µs

2 4 8 16 32

2
4

8
16

32

0.5

1.0

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Static
Processor-Thread Assignment

0.0

0.5

1.0

1.5

0.29µs

2 4 8 16 32

2
4

8
16

32

0.5

1.0

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Processor-Thread Assignment
using a Centralized Thread Pool

0.0

0.5

1.0

1.50.88µs

2 4 8 16 32

2
4

8
16

32

0.5

1.0

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Processor-Thread Assignment
using a Centralized Thread Pool

0.0

0.5

1.0

1.5

0.27µs

2 4 8 16 32

2
4

8
16

32

0.5

1.0

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Processor-Thread Assignment
using Work Stealing

0.0

0.5

1.0

1.5

0.87µs

2 4 8 16 32

2
4

8
16

32

0.5

1.0

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

Processor-Thread Assignment
using Work Stealing

0.0

0.5

1.0

1.5

0.29µs

2 4 8 16 32

2
4

8
16

32

0.5

1.0

1 x-Tile-S
izey-Tile-Size

E
xe

c.
T

im
e
pe

r
P

ix
el

in
µ
s

CUDA-Managed
Processor-Thread Assignment

0.0

0.5

1.0

1.5

0.27µs

Figure 4.9.: Execution times (on XeonPhi and
Tesla M2090) for rendering the KingsTreasure
scene using i) a static processor-thread assign-
ment, ii) a centralized thread pool, and iii) the
work stealing scheme. On the Tesla M2090 we
also consider the CUDA-managed execution of
the threads.

54

4.2. Breadth-First Search

4.1.5. Validation of the Implementation

The implementations was validated by comparing images byte by byte. A program for
that purpose can be found in rayTracing/compareImages on the CD. Images that
were rendered using the same setup were identical across the different thread-processor
assignment schemes considered in this section, except for work stealing. For all schemes
other than work stealing the color values per pixel are summed up according to the depth-
first execution of the threads, whereas for work stealing the order of the summation is the
inverse. Since floating point addition is not associative, that is, a+ (b+ c) 6= (a+ b) + c,
images created with the work stealing scheme can be slightly different from those created
using the other schemes.2 However, we found all images created by different program
runs (using the same setup) using the work stealing scheme be identical in every byte.
We also did not found any visual deviations to images created using the other schemes.

4.2. Breadth-First Search

Breadth-first search (BFS) is a simple search algorithm in graph theory. Given a graph
G(E, V), where E is a set of edges and V a set of vertices, and a source vertex s ∈ V ,
the BFS algorithm systematically explores all vertices reachable from s in a wavefront
manner. A vertex u ∈ V is said to be reachable from s, if and only if there is a path
〈v0, v1, . . . , vk−1, vk〉 with (vi, vi+1) ∈ E for all i ∈ {0, 1, . . . , k − 1}, v0 = s, and vk = u.
Each wavefront is associated with a distance δ ∈ N0 to s. We define the δ = k wavefront
Wk ⊆ V to contain all vertices u ∈ V with d[u] = k, where d[u] is the distance (fewest
number of edges) from s to u. BFS starts with the wavefront W0 (containing the source
vertex only), and then repeatedly explores Wk+1 across the ‘breadth’ of Wk until all
vertices reachable from s are discovered—hence the name breadth-first search. The
exploration of Wk+1 is along the edges (u, v) ∈ E with u ∈ Wk and v ∈ V adjacent to u.
When discovered, vertices change their ‘state’ from undiscovered to discovered. Every
vertex can be discovered at most once [CRL90].
During its execution BFS constructs a ‘breadth-first tree’ rooted at s. The BFS tree

contains all vertices reachable from s. BFS also computes the shortest paths from s to
all vertices u ∈ V reachable from s—in terms of the fewest number of edges from s to u.
The height of the BFS tree then corresponds to the diameter of the graph (the longest
shortest path).
Adapted versions of the BFS algorithm are utilized in graph theory itself (Dijkstra’s

single-source shortest path (SSSP) algorithm, and connected component labeling, for
2As in parallel programming there is always potential for races when words are concurrently accessed
by multiple processors, a modification of the code so that the order of the summation is the same for
all schemes is not necessary in our opinion.

55

4. Application Scenarios

function bfs(G(E, V),s)// Algorithm BFS
02: for each u ∈ V do

color[u]=WHITE // Color of vertex u: WHITE (undiscovered)
d[u]=INFINITY // Distance to s: INFINITY =̂ 0xFFFFFFFF when 32-bit words are used

05: p[u]=NULL // Predecessor of u: NULL =̂ 0xFFFFFFFF when 32-bit words are used
06: color[s]=GRAY // Change color of source vertex s to GRAY (discovered)

d[s]=0

08: Q.enqueue(s) // Previously, the queue was empty
09: while Q 6= ∅ do

u=Q.head() // Acquire head element of the queue, but do not remove
for each v adjacent to u do
if color[v]==WHITE then

color[v]=GRAY // Change color of vertex v to GRAY (discovered)
d[v]=d[u]+1

p[v]=u

Q.enqueue(v)

Q.dequeue() // Remove head element of the queue
18: color[u]=BLACK // Change color of vertex u to BLACK (discovered+done)

Listing 4.2: Breadth-first search algorithm (pseudo-code) [CRL90].

instance), circuit design, and cluster search algorithms in computational physics/chem-
istry, to name a few.
The BFS algorithm is illustrated in Listing 4.2 [CRL90], where

• Q refers to a (de)queue data structure, and
• vertex states are represented by colors:

white (undiscovered),
gray (discovered),
black (discovered+done).

When vertices are discovered they change their color from white to gray. Vertices that
belong to the current wavefront change their color from gray to black after all their
adjacent vertices have been explored. As a consequence, gray vertices may have adjacent
vertices that are white, whereas black vertices do not. The distinction between gray and
black represents the progress in the wavefront exploration.
The execution of the BFS algorithm is illustrated in Fig. 4.10 using a random graph.

The BFS algorithm applied to such graphs is at the core of cluster algorithms in statisti-
cal/computational physics. The simulation of the d-dimensional Ising model by means of
the Swendsen-Wang multi-cluster algorithm [SW87], for instance, uses an intermediate
representation of a spin system (a system made up of n spins placed onto n sites of a
d-dimensional lattice), where spins that share a certain property and are in a somehow
defined neighboring relation are organized into so-called ‘clusters’. The clusters corre-
spond to connected components in graph theory. The Swendsen-Wang cluster algorithm

56

4.2. Breadth-First Search

Undiscovered

Discovered

Discovered + Done

: Wavefront

Done

Figure 4.10.: Execution of the BFS algorithm using a random graph mapped onto a two-dimensional
regular lattice. Colors correspond to the state of the vertices during the execution. Gray colored vertices
all have the same distance to the source vertex (the gray vertex in the upper left subimage) and form a
wavefront.

for the Ising model determines these clusters and applies modifications to them in order
to move the spin system from one state to another one (within a Monte Carlo simula-
tion). The clustering itself and the modifications of the clusters are done according to
probabilities which incorporate simulation parameters.

Analysis

In Listing 4.2 algorithm BFS maintains three additional fields/arrays color[], d[],
and p[] of size |V | each. Since each vertex is discovered at most once, the queue also
contains at most |V | elements. Thus, the additional space SBFS required by algorithm
BFS is SBFS(G(E, V)) = O(|V |) .
The execution of lines 2 to 5 is in O(|V |) . Lines 6 to 8 are O(1) operations each—all

queue operations (enqueue(), head(), dequeue()) can be implemented as O(1)
operations. The while loop from line 9 to 18 is executed n ≤ |V | times, because there

57

4. Application Scenarios

are at most |V | vertices to discover. For every vertex u taken from the queue, all its
adjacent vertices v, with (u, v) ∈ E, are considered for possible inclusion into the next
wavefront. If we assume that an adjacency-list3 is used, at most O(|E|) time is spend
in scanning the list. Thus, the total running time TBFS(G(E, V)) of algorithm BFS is
TBFS(G(E, V)) = O(|E|+ |V |) .

4.2.1. Parallel Implementation

In this subsection we focus on the parallelization of the BFS algorithm. With respect
to multithreaded computations, the actual computation starts in line 9 in Listing 4.2.
Threads correspond to the body of the while loop. For each vertex u taken from the
queue, a thread program is executed with the number of spawns given by the number
of undiscovered vertices v adjacent to u. Similar to ray tracing, thread programs can
be executed independently. The only point in the execution where multiple concurrent
threads might interfere with each other is the change of the color value of the vertices,
possibly causing race conditions. How to solve this issue is described below in the text.
Other than ray tracing, the computation starts with just one processor being involved

in the exploration of theW1 wavefront starting fromW0 (the source vertex). Depending
on the graph, wavefronts Wk relatively fast can contain a sufficiently large number of
vertices so that more than one processor can be used for the parallel exploration of
Wk+1. Here, the work stealing scheme can serve as a mechanism for the redistribution
of Wk’s vertices across multiple processors at runtime. Each processor maintains two
(de)queues. One of them contains the vertices of Wk, whereas the other one contains
the newly discovered vertices which in the next iteration form the wavefront Wk+1.
When finished all elements in all Wk-(de)queues, the processors synchronize, change
their (de)queues, and start with the exploration of Wk+2 across the breadth of Wk+1.
The iteration continues until all vertices reachable from the source vertex are discovered.
Since thread executions are independent of each other, and also due to using two

(de)queues for the current and the next-to-current wavefront, the data structure used for
taking up vertices does not necessarily need to be a dequeue. For our implementation(s)
we consider both queue and dequeue—therefore the (de)queue notation.
Listing 4.3 contains the pseudo-code for the parallel execution of the BFS algo-

rithm—explanations are given subsequently.

3The information on whether two vertices are adjacent or not can be stored in an adjacency-matrix or an
adjacency-list. The space requirements S for these representations are as follows: SMatrix(E, V) = |V |2,
SList(E, V) = |V | + |E| for directed graphs, and SList(E, V) = |V | + 2|E| for undirected graphs,
respectively. If the graph is sparse, that is, if |E| � |V |2, the adjacency-list is the preferred choice.

58

4.2. Breadth-First Search

function parallelBfs(G(E, V),s)
PARALLEL for each u ∈ V do
|| color[u]=WHITE
|| d[u]=INFINITY
|| p[u]=NULL
color[s]=GRAY
d[s]=0
Q[0].push(s) // The source vertex is placed into the (de)queue of processor 0
numVertices[2]={1,0} // W0 contains 1 vertex, and W1 is empty so far
finished=false // There is work to do
k=0 // Start with δ = 0 wavefront W0

12: PARALLEL region:numProcessors=n

|| id=self() // Get processor id: id∈ {0,1, . . . ,n−1}
14: || while !finished do // As long as there is work to do continue
15: || while numVertices[k%2]>0 do // Current wavefront still contains vertices

|| if Q[id].empty() then // If own (de)queue is empty then
|| goto L1 // go to label L1 and become a thief
|| if (u=Q[id].pop())!=NULL then // Otherwise, try to acquire a vertex

19: || for each v adjacent to u do // and explore its adjacent vertices
20: || if atomicCAS(&color[v],WHITE,GRAY) then

|| d[v]=d[u]+1 // This clause is executed if and only if the processor success-
|| p[v]=u // fully changed v’s color from white to gray. If so then push
|| Q[id].push(v) // v into the (de)queue and note that there is a further vertex

24: || atomicINC(numVertices[(k+1)%2]) // in the next wavefront
|| color[u]=BLACK

26: || atomicDEC(numVertices[k%2]) // Cancel u from current wavefront
27: ||L1: while numVertices[k%2]>0 do // Become a thief

|| victim=‘draw a random number uniform on {0,1, . . . ,n−1}’ // Select a victim processor
|| if (u=Q[victim].steal())!=NULL then
|| ‘execute the code between lines 19 and 26’

31: || BARRIER // Wait for all processors
|| if id==0 then // Processor 0 always exists
|| k++ // Move on to the next wavefront
|| if numVertices[k%2]==0 then // If the current wavefront does not

35: || finished=true // contain any vertices the search completes
36: || Q[id].switch() // All processors change their (de)queues
37: || BARRIER // Wait for all processors

Listing 4.3: Parallel breadth-first search algorithm using work stealing (pseudo-code).

Termination and Break Conditions

The actual computation is in the parallel region from line 12 to 37. Here, n processors
execute the BFS algorithm in wavefront manner in parallel. The exploration of Wk+1

starting from Wk is between line 14 and 37. The array entry numVertices[k%2]

holds the number of vertices in Wk, and numVertices[(k+1)%2]4 the number of

4The indices k%2 and (k+1)%2 map the current wavefront index k onto the two per-processor
(de)queue(s) respecting the consecutive change of the two.

59

4. Application Scenarios

vertices in Wk+1. Both of the two values match with the number of elements in the
(de)queues associated with the respective wavefronts. For every element successfully
removed from any of theWk-(de)queues, the value numVertices[k%2] is decremented
by 1 atomically using the atomicDEC()5 primitive. For every vertex that is discovered
during the exploration, the value of numVertices[(k+1)%2] is incremented by 1
atomically using the atomicINC()5 primitive. The respective lines are 24 and 26. All
vertices of the current wavefront are done if and only if the value of numVertices[k%2]
becomes zero. Then all processors leave their loop (line 15 for non-thief processors, and
line 27 for thieves) and synchronize (line 31). Between line 31 and 37 processor 0 moves
the wavefront one step forward and checks if the now-current wavefront contains any
vertices. If not so, the variable finished is set to true (line 35). All processors
then change their (de)queues (line 36), synchronize (line 37), and continue with the
next wavefront unless finished is set to true. The execution then terminates—the
termination is guaranteed as after a finite number of iterations, all reachable vertices are
discovered and all (de)queues (and thus wavefronts) are empty.

Concurrent Change of Vertex Colors

The color of the vertices, when discovered, are changed from white to gray by means of
the atomicCAS() primitive. Since the update of a certain vertex state is successful for
only one out of 0 < n′ ≤ n processors, the clause between line 20 and 24 is executed
exactly once for the respective vertex. As a consequence, every vertex v reachable from
the source vertex s is discovered only once, and the vertex then is contained in one of
the n (de)queues at any time until it becomes black.
The fact that every reachable vertex is discovered by exactly one processor (in the

sense of changing its color from white to gray), and that it is acquired also by ex-
actly one processor in the next iteration of the wavefront execution, guarantees that the
numVertices[] entries alternately take on value zero. The inner loops in line 15 and
27 thus are guaranteed to terminate for every processor—the presence of the BARRIERs
(line 31 and 37) enforce waiting for all n processors before starting the next iteration.

4.2.2. Performance Evaluation on XeonPhi and CPU

For the evaluation of the performance of the parallel BFS algorithm, we generate a
random graph that maps onto a three-dimensional periodic regular lattice with extents
L1, L2, L3 ∈ N. Periodic means that lattice site (x1, x2, x3) coincides with the site
(x1 + n1L1, x2 + n2L2, x3 + n3L3) for every (x1, x2, x3) with xi ∈ {0, 1, . . . , Li − 1} and
5We use the __sync_fetch_and_add(address,1) and __sync_fetch_and_sub(address,1)
compiler built-ins of the GNU and the Intel compiler for our x86 CPU and XeonPhi implementation.

60

4.2. Breadth-First Search

1

Periodic Lattice p = 1 p < 1

2

3

L2

L3

L1

Figure 4.11.: Illustration of a random graph (mapped onto a three-dimensional periodic regular lattice)
used for the evaluation of the parallel BFS algorithm. Vertices correspond to the lattice sites (x1, x2, x3)
with xi ∈ {0, 1, . . . , Li − 1} for i = 1, 2, 3. Edges are established with probability 0 ≤ p ≤ 1.

ni ∈ Z (for i = 1, 2, 3). The vertices of the graph correspond to lattice sites, and edges are
established between (x1, x2, x3) and (x1 +∆1, x2 +∆2, x3 +∆3)∆1,2,3=−1,0,1 6= (x1, x2, x3)
with probability 0 ≤ p ≤ 1. Thus, the graph G(E, V) has |V | = L1×L2×L3 vertices and
0 ≤ |E| ≤ 13|V | edges. If p = 1, the graph is 26-regular. A possible graph is illustrated
in Fig. 4.11 (such graphs can be found in computational physics/chemistry).
For the graph representation we use an adjacency-list.6 Its implementation uses the

vector<T> data type of the C++ standard template library (STL). Vertices are rep-
resented as a C/C++ struct/record containing the vertex itself and a list of its adjacent
vertices (see Listing 4.4). The latter is sorted in ascending order to reduce unfortunate
memory accesses when scanning the adjacency-list.

typedef struct{

int id;

std::vector<int> adj; // List of adjacent vertices
} vertex;

class graph{

public:

// Constructor
graph(int n,float p){

‘create random graph with n vertices and with probability p for edge creation’
}

// Attributes: List of vertices accessable through vertices.at(v.id), for instance
std::vector<vertex> vertices;

};

Listing 4.4: Graph representation (pseudo-code).

6In our implementation we do not use any special kind of graph representation so that it should be
possible to easily import kinds of graphs other than the one chosen here. We therefore assume that
there is no loss of generality with the kind of graph chosen for the evaluation of the BFS algorithm.

61

4. Application Scenarios

XeonPhi Xeon E5-2670

4
16

60
240

40
120

200
280

1

10

100

1 Proce
ssors

nExtent L

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Random Graph with p = 0.25

2
4

8
16

40
120

200
280

1

10

1 Proce
ssors

nExtent L

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Random Graph with p = 0.25

4
16

60
240

40
120

200
280

1

10

100

1 Proce
ssors

nExtent L

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Random Graph with p = 0.5

2
4

8
16

40
120

200
280

1

10

1 Proce
ssors

nExtent L

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Random Graph with p = 0.5

4
16

60
240

40
120

200
280

1

10

100

1 Proce
ssors

nExtent L

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Random Graph with p = 1.0

2
4

8
16

40
120

200
280

1

10

1 Proce
ssors

nExtent L

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Random Graph with p = 1.0

Figure 4.12.: Speedup of the parallel BFS algorithm over sequential BFS on XeonPhi and CPU for a
random graph with |V | = L × L × L vertices, and 0 ≤ |E| ≤ 13|V | edges established with probability
p ∈ {0.25, 0.5, 1.0}.

The parallel region in Listing 4.3 is realized by means of OpenMP. OpenMP threads
correspond to persistent threads introduced in the previous sections/chapters, and are
assigned to (logical) processors. In particular they encapsulate the operations between
line 12 and 37 in Listing 4.3. Barriers are also realized by means of OpenMP (#pragma
omp barrier).

62

4.2. Breadth-First Search

XeonPhi (selected configurations)

1

10

100

1 4 15 60

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

240

Extent L = 40

p = 0.25

Ideal
Measured

1

10

100

1 4 15 60

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

240

Extent L = 40

p = 0.5

Ideal
Measured

1

10

100

1 4 15 60

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

240

Extent L = 40

p = 1.0

Ideal
Measured

1

10

100

1 4 15 60

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

240

Extent L = 180

p = 0.25

Ideal
Measured

1

10

100

1 4 15 60

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

240

Extent L = 180

p = 0.5

Ideal
Measured

1

10

100

1 4 15 60

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

240

Extent L = 180

p = 1.0

Ideal
Measured

1

10

100

1 4 15 60

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

240

Extent L = 320

p = 0.25

Ideal
Measured

1

10

100

1 4 15 60

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

240

Extent L = 320

p = 0.5

Ideal
Measured

1

10

100

1 4 15 60

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

240

Extent L = 320

p = 1.0

Ideal
Measured

Figure 4.13.: Speedup of the parallel BFS algorithm over sequential BFS on XeonPhi for a random graph
with |V | = L×L×L vertices, and 0 ≤ |E| ≤ 13|V | edges established with probability p ∈ {0.25, 0.5, 1.0}.

On the XeonPhi the non-blocking dequeue data structure is used (see Sec. 3.4.2, and
Appendix A.2), whereas on the CPU we use a blocking queue. Vertices of the current
wavefront are acquired chunk-wise with the chunk size being equal to 8 on the XeonPhi

63

4. Application Scenarios

Xeon E5-2670 (selected configurations)

1

1 2 4 8

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

16

Extent L = 40

10

p = 0.25

Ideal
Measured

1

1 2 4 8

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

16

Extent L = 40

10

p = 0.5

Ideal
Measured

1

1 2 4 8

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

16

Extent L = 40

10

p = 1.0

Ideal
Measured

1

1 2 4 8

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

16

Extent L = 180

10

p = 0.25

Ideal
Measured

1

1 2 4 8

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

16

Extent L = 180

10

p = 0.5

Ideal
Measured

1

1 2 4 8
Sp

ee
du

p
ov

er
Se

qu
en

ti
al

Processors n

16

Extent L = 180

10

p = 1.0

Ideal
Measured

1

1 2 4 8

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

16

Extent L = 320

10

p = 0.25

Ideal
Measured

1

1 2 4 8

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

16

Extent L = 320

10

p = 0.5

Ideal
Measured

1

1 2 4 8

Sp
ee

du
p

ov
er

Se
qu

en
ti
al

Processors n

16

Extent L = 320

10

p = 1.0

Ideal
Measured

Figure 4.14.: Speedup of the parallel BFS algorithm over sequential BFS on CPU for a random graph
with |V | = L×L×L vertices, and 0 ≤ |E| ≤ 13|V | edges established with probability p ∈ {0.25, 0.5, 1.0}.

and 32 on the CPU—with these values we achieved the best performance. Similar to ray
tracing the number n of processors used for the execution is varied over a meaningful
range matching the number P of processors on the device (see Tab. 3.1). Benchmarks

64

4.2. Breadth-First Search

XeonPhi 0 Xeon E5-2670
n Exec. Time [s] Speedup n Exec. Time [s] Speedup

L = 40 1 000.220(3) 001.0 1 0.015(8) 1.0
15 000.031(5) 007.1(1.1) 2 0.00781(19) 1.9(1.0)
30 000.020(5) 011(3) 4 0.0038(4) 4(2)
60 000.0092(10) 024(3) 8 0.0041(7) 4(2)
120 000.0080(13) 028(5) 16 0.0048(6) 3(2)
240 000.0068(4) 032(19)

L = 180 1 020.9(3) 001.0 1 1.180(3) 1.0
15 001.642(10) 012.73(19) 2 0.603(5) 1.957(17)
30 000.824(3) 025.4(4) 4 0.319(8) 3.70(9)
60 000.4425(9) 047.2(7) 8 0.177(7) 6.7(3)
120 000.2461(18) 085(6) 16 0.11922(11) 9.90(3)
240 000.21(2) 100(10)

L = 320 1 151.0(6) 001.0 1 7.91(5) 1.0
15 011.52(6) 013.11(9) 2 3.91(2) 2.023(16)
30 005.462(17) 027.65(14) 4 1.93(22) 4.1(5)
60 002.650(6) 057.0(3) 8 1.033(17) 7.66(13)
120 001.388(8) 108.8(8) 16 0.80(5) 9.9(6)
240 000.87(5) 174(10)

Table 4.2.: Execution times of the BFS algorithm for a random graph with L×L×L vertices and edges
established with probability p = 1.0. Statistical errors are given in brackets: 6.7(3) means 6.7 ± 0.3;
1.957(17) means 1.957± 0.017.

were done for different sized graphs with L × L × L vertices and L ∈ {40, 80, . . . , 320},
and with edges established with probability p ∈ {0.25, 0.5, 1.0}. The source vertex is
chosen at random, and for each such configuration the execution is repeated 6 times in
succession for statistics.7 For the speedup calculation the 1-processor execution uses an
optimized BFS code without the overhead (atomic operations and (de)queue operations)
of the parallelized version. The benchmarking results are illustrated in Fig. 4.12 - 4.14.
As can be seen from these images, for ‘large’ graphs and p not too small, the perfor-

mance gain over the 1-processor execution increases almost linearly with the number n of
processors. For ‘small’ graphs and/or ‘small’ p, the size of the wavefronts decreases and
hence the potential for massive parallelism, as shown in the L = 40 images in Fig. 4.13
and Fig. 4.14.
Table. 4.2 lists the p = 1.0 execution times the speedups in Fig. 4.13 and Fig. 4.14 are

calculated from. For ‘large’ graphs with p = 1.0 the parallel BFS algorithm completes
after almost the same amount of time on both the XeonPhi and the CPU when all

7For L = 40 on the CPU we averaged over 20 executions for reasonable measurement data.

65

4. Application Scenarios

logical processors are used. The reason why the XeonPhi lies at level with the CPU is
that the code is not vectorized. As the XeonPhi draws its compute performance from a
combination of massive parallelism and vectorization, it is at a disadvantage compared
to the CPU which here can come up with a strong per-core compute performance even
without vectorization. A vectorized version of the code might perform twice as fast
on the XeonPhi as on the CPU due to the ’Phi’s 512-bit vector units—current x86
CPUs have 128-bit or 256-bit vector units. However, the measurement data confirm the
functioning of the work stealing scheme for the BFS algorithm.

4.2.3. Validation of the Implementation

The implementation was validated as follows: For any source vertex s =̂ (x1, x2, x3) with
xi ∈ {0, 1, . . . , Li − 1} (for i = 1, 2, 3), and for p = 1.0, the diameter of the graph is
bmax{L1, L2, L3}/2c. This value could be confirmed for different s and Li values. For
p = 1.0 we also checked that all vertices of the graph have been actually discovered after
the execution of BFS. We further compared the entries of the array d[] (containing the
distances to s) produced by the non-parallelized BFS code with entries produced by the
parallelized version. For different values of p and Li we found them be the same for all
vertices, that is, both implementations produce the same d[] array.

4.2.4. Scalable Work Stealing & State of the Art

Although using the work stealing scheme for dynamic work (re)distribution during the
execution of the BFS algorithm seems to result in an acceptable utilization of the under-
lying parallel computer hardware, our approach is primarily designed for shared memory
machines. As (really) large graphs (usually) do not fit into the main memory of a shared
memory system, our implementation needs to be adjusted to run on cluster computers
or even supercomputers—the work stealing scheme as presented in this thesis also needs
to be adapted. In [DLS+09] the scalability of the work stealing scheme is investigated.
The authors found randomized work stealing to also work for cluster computers with
thousands of processors—their benchmarks include unbalanced tree search.
Another approach to massively parallel tree search on cluster computers (and super-

computers) is described by T. Schütt, A. Reinefeld, and R. Maier [SRM13]. The authors
utilize the MapReduce programming model—inspired by the ‘map’ and ‘reduce’ func-
tions commonly used in functional programming. Their approach is to put the parallel
wavefront exploration into the map-phase, and then to (re)distribute newly created work
over the processors of the system in the reduce-phase, to put it simple. The scalability
of MR-search, as referred to by the authors, is shown in their paper.

66

5. Summary & Conclusion

In this thesis we evaluated dynamic load balancing schemes on (massively) parallel com-
puter architectures with the focus on work stealing. After having introduced the theoret-
ical background of multithreaded computations in Chapter 2, we moved on to dynamic
load balancing. Following the work of R. D. Blumofe and Ch. E. Leiserson [BL99], and
D. Cederman and P. Tsigas [CT08], we introduced greedy schedules, and took up a
randomized work stealing algorithm for fully-strict multithreaded computations.

In Chapter 3 we introduced the computer hardware used in this thesis: Nvidia Tesla
M2090 GPU, Intel XeonPhi, and Intel Xeon E5-2670 x86 octa-core CPU. In particular
we briefly described Nvidia’s Fermi GPU architecture, and Intel’s Many Integrated Core
(MIC) architecture. We gave implementations of multithreaded data structures—‘lock’
and (non-)blocking ‘dequeue’, namely—for the realization of load balancing on these
device. On the GPU we found non-blocking implementations be essential for good per-
formance and scalability. On the XeonPhi and the CPU also blocking versions of these
data structures give acceptable performance. Our results on the GPU are compatible
with results presented in [CT08]. We were also concerned with the implementation of the
randomized work stealing algorithm described in Chapter 2. We described an approach
for dependency resolution, and we demonstrated the functioning of a respective imple-
mentation on both XeonPhi and GPU. A direct comparison with the Cilk programming
language was somehow confusing as the Cilk version of our code did not show the ex-
pected scaling behavior. It is still an open question for us whether we made unfortunate
use of Cilk, or whether it is on Cilk itself.

In Chapter 4 we put the work stealing scheme into practice by applying it to real-world
applications—ray tracing and breadth-first search (BFS). For both kinds of applications
we were able to demonstrate the suitability of the work stealing scheme. While our
ray tracer on the GPU and the XeonPhi gives measurable performance gains over a
parallelized CPU implementation (also using work stealing), in the case of the BFS
algorithm the XeonPhi and the CPU lie at level (for sufficiently ‘large’ graphs) with
respect to program execution times—our parallel implementation of the BFS algorithm
does not make use of vector operations, resulting in the XeonPhi performs below its
limits.

67

5. Summary & Conclusion

For our GPU ray tracing code using work stealing we additionally introduced an
effective mechanism of work (re)distribution within thread groups described in Sec. 4.1.3.
Since GPUs are commonly used for the execution of massively parallel SIMD programs,
the execution of non-SIMD programs on the GPU suffers from partial serialization of
these programs on the level of the GPU’s ‘vector units’ thread groups are mapped onto
dynamically at runtime. Our scheme helps reducing the effects of the serialization within
thread groups in the context of multithreaded computations with dynamic work creation.
In particular, the topic of handling thread serialization within thread groups, when
computations become irregular, can serve as a starting point for further investigations
in the field of GPU programming.
Due to the timeout of this thesis, we did not give an implementation of the parallel

BFS algorithm using the GPU. The paper of [LWH10] here might serve as a basis for a
GPU implementation.
Also the vectorization of the BFS algorithm for a fast execution on the XeonPhi seems

to be possible with its gather and scatter vector operations—these operations will be
also available with the AVX2 vector extension of upcoming CPU generations.

In Summary we found the work stealing scheme be suitable for the kinds of applications
considered in this thesis. With respect to its implementation, the most challenging part
was on the design of the shared data structures that are at the core of work stealing.
Especially on the GPU, writing PTX code (similar to inline assembly code) for cache-
volatile memory loads/stores was necessary to make the concurrent data structures do
not stuck at any time. Merging the work stealing scheme with the ray tracer and the
BFS code, respectively, then was quite easy.
Since the integration of the work stealing scheme requires only little modification of

the data structures, we assume that a much wider class of applications with irregular
workloads can benefit from it.
On the other hand, we found the work stealing scheme perform well only if the task

sizes are sufficiently large so that the overhead of the scheduling can be neglected. For
the ray tracing procedure and the BFS algorithm this was the case. For applications
with a much finer granularity of the parallelism and/or with small-sized tasks work
stealing might not be the preferred choice. Especially on large-scale cluster computers
the communication overhead for the work (re)distribution is much more costly than
on shared memory machines (as considered in this thesis). Although in [DLS+09] the
suitability of the work stealing scheme for irregular computations on cluster computers
is demonstrated, however, state of the art techniques like MapReduce might be more
appropriate.

68

A. Blocking Dequeue, Non-Blocking
Dequeue, Load Balancing

In this chapter we give concrete implementations of the blocking and non-blocking de-
queue for Nvidia GPUs of compute capability at least 1.1.

A.1. Blocking Dequeue (GPU)

///

// blockingDequeue.cuh

///

#include <stdint.h>

// Implementation of the lock
__device__ void lock(uint32_t *lock){while(atomicCAS(lock,0,1)){;}}

__device__ bool tryLock(uint32_t *lock){return !atomicCAS(lock,0,1);}

__device__ void unlock(uint32_t *lock){atomicExch(lock,0);}

// A simple thread definition
typedef struct {uint32_t x;} thread;

__host__ __device__ thread makeThread(const uint32_t x=0){

thread temp;

temp.x=x;

return temp;}

class dequeue{

public:

// The dequeue is initialized by the host
__host__ dequeue(const uint32_t size = 0){dq=NULL;init(size);}

__host__ void init(const uint32_t size){

if(dq!=NULL||size==0||size>0xFFFFFFFE)

return;

cudaMalloc((void **)&dq,size*sizeof(thread));

this−>size=size;tail=0;head=0;lockVar=0;}

69

A. Blocking Dequeue, Non-Blocking Dequeue, Load Balancing

// The dequeue is deleted by the host
__host__ ~dequeue(){

if(dq!=NULL)

cudaFree(dq);

dq=NULL;}

// The host may insert threads into the dequeue
__host__ void insert(const thread *t=NULL,const uint32_t numThreads=0){

if(dq==NULL||t==NULL||numThreads==0||numThreads>size)

return;

cudaMemcpy(dq,t,numThreads*sizeof(thread),cudaMemcpyHostToDevice);

tail=numThreads;}

__host__ __device__ bool empty(){return head==tail;}

__host__ __device__ bool full(){return tail==size&&tail>head;}

__device__ bool push(const thread t){

if(dq==NULL||tail==size)

return false;

lock(&lockVar);

dq[tail++]=t;

unlock(&lockVar);

return true;}

__device__ bool steal(thread *t=NULL){

if(dq==NULL||t==NULL||tail==head)

return false;

bool success=false;

if(tryLock(&lockVar)){

if(head<tail){

(*t)=dq[head++];

success=true;}

unlock(&lockVar);}

return success;}

__device__ uint32_t stealChunk(thread *t=NULL,const uint32_t chkSize=1){

if(dq==NULL||t==NULL||tail==head)

return 0;

uint32_t threadsStolen=0;

if(tryLock(&lockVar)){

if(head<tail){

threadsStolen=(tail−head)<chkSize?tail−head:chkSize;
for(uint32_t i=0;i<threadsStolen;i++)

t[i]=dq[head+i];

70

A.2. Non-Blocking Dequeue (GPU)—Extended Version

head+=threadsStolen;}

unlock(&lockVar);}

return threadsStolen;}

__device__ bool pop(thread *t=NULL){

if(dq==NULL||tail==0)

return false;

bool success=false;

lock(&lockVar);

if(head<tail){

(*t)=q[−−tail];
success=true;

if(tail==head){

tail=0;head=0;}}

unlock(&lockVar);

return success;}

private:

uint32_t size,lockVar;

volatile uint32_t head,tail;

thread *dq;

};

Listing A.1: Blocking dequeue implementation for Nvidia GPUs of compute capability at least 1.1.

For the source code, see Sec. A.3.

A.2. Non-Blocking Dequeue (GPU)—Extended Version

This implementation of the non-blocking dequeue for Nvidia GPUs of compute capa-
bility at least 1.1 is based on Listing 3.4. It extends the said implementation by the
popWarp() and stealWarp() operations which allow to acquire sets of elements of
the warp size (32 on the Tesla M2090). Further, this implementation is not restricted to
contain at most 65535 elements, but it allows for 224 − 1 elements.
We use inline PTX code (Parallel Thread Execution; assembly like programming lan-

guage) to explicitly make reads and writes from/to critical variables be cache-volatile.
We do not use the -Xptxas -dlcm=cv compile option since the CUDA 4.0 and 4.1
compiler somehow produces code that is significantly slower than the one given in List-
ing A.2. Our implementation should run with CUDA 4.0, 4.1, and 5.0.
The implementation was tested by means of the test program testDequeue in

threadsafeDataStructures/dequeue/gpu on the CD.
For the source code, see Sec. A.3.

71

A. Blocking Dequeue, Non-Blocking Dequeue, Load Balancing

///

// nonBlockingDequeue.cuh

///

#include <stdint.h>

// Cache volatile read
__device__ uint32_t volatileRead(uint32_t *address){

uint32_t temp;

__asm__ __volatile__("ld.volatile.global.u32 %0,[%1];"

:"=r"(temp):"l"(address));return temp;}

// Write through the cache
__device__ void volatileWrite(uint32_t *address,const uint32_t value){

__asm__ __volatile__("st.volatile.global.u32 [%0],%1;"

::"l"(address),"r"(value));}

// Dequeue index: 48 bits for the dequeue, 8 bits to address the ABA problem
typedef union {uint8_t u8[4];uint32_t u32;} queueIdx;

// A simple thread definition
typedef struct{uint32_t x;} thread;

__host__ __device__ thread makeThread(const uint32_t x=0){

thread temp;temp.x=x;

return temp;}

#define WARP_SIZE (32)

#define MIN(X,Y) (X<Y?X:Y) // Meaning: if X<Y then X else Y

class dequeue {

public:

// The dequeue is initialized by the host
__host__ dequeue(const uint32_t size=0){dq=NULL;init(size);}

__host__ void init(const uint32_t size){

if(dq!=NULL||size==0||size>0xFFFFFF) // Maximum number of elements is 224-1
return;

cudaMalloc((void **)&dq,size*sizeof(thread));

this−>size=size;tail=0;head.u32=0;}

// The dequeue is deleted by the host
__host__ ~dequeue(){

if(dq!=NULL)

cudaFree(dq);

dq=NULL;}

72

A.2. Non-Blocking Dequeue (GPU)—Extended Version

// The host may insert threads into the dequeue
__host__ void insert(const thread *t=NULL,const uint32_t numThreads=0){

if(dq==NULL||t==NULL||numThreads==0||numThreads>size)

return;

cudaMemcpy(dq,t,numThreads*sizeof(thread),cudaMemcpyHostToDevice);

tail=numThreads;}

// Logical AND with 0xFFFFFF extracts the lower 24 bits
__device__ bool empty(){return ((head.u32)&0xFFFFFF)>=tail;}

__device__ bool full(){return tail==size&&tail>((head.u32)&0xFFFFFF);}

__device__ bool push(const thread t){ // See Listing 3.4
if(dq==NULL)

return false;

uint32_t oldTail;

oldTail=volatileRead(&tail);

if(oldTail==size)

return false;

dq[oldTail++]=t;

volatileWrite(&tail,oldTail);

return true;}

__device__ bool steal(thread *t=NULL){ // See Listing 3.4
if(dq==NULL||t==NULL)

return false;

queueIdx oldHead,newHead;

uint32_t oldTail;

oldTail=volatileRead(&tail);

oldHead.u32=volatileRead(&head.u32);

if(oldTail<=((oldHead.u32)&0xFFFFFF))

return false;

(*t)=dq[(oldHead.u32)&0xFFFFFF];

newHead=oldHead;

newHead.u32++;

if(atomicCAS(&head.u32,oldHead.u32,newHead.u32)==oldHead.u32)

return true;

return false;}

__device__ uint32_t stealWarp(thread **tailPtr=NULL){

if(dq==NULL||tailPtr==NULL)

return 0;

queueIdx oldHead,newHead;

uint32_t oldTail;

(*tailPtr)=NULL;

oldTail=volatileRead(&tail);

73

A. Blocking Dequeue, Non-Blocking Dequeue, Load Balancing

oldHead.u32=volatileRead(&head.u32);

// The last 2*WARP_SIZE elements are left to the owner
if(oldTail<=(((oldHead.u32)&0xFFFFFF)+2*WARP_SIZE))

return 0;

// The thief gets a pointer to the dequeue position from where elements can be taken
(*tailPtr)=&dq[(oldHead.u32)&0xFFFFFF];

newHead=oldHead;

newHead.u32+=WARP_SIZE;

if(atomicCAS(&head.u32,oldHead.u32,newHead.u32)==oldHead.u32)

return WARP_SIZE;

(*tailPtr)=NULL;

return 0;}

__device__ bool pop(thread *t=NULL){ // See Listing 3.4
if(dq==NULL||t==NULL)

return false;

queueIdx oldHead,newHead;

uint32_t oldTail;

oldTail=volatileRead(&tail);

if(oldTail==0)

return false;

volatileWrite(&tail,−−oldTail);
(*t)=dq[oldTail];

oldHead.u32=olatileRead(&head.u32);

if(oldTail>((oldHead.u32)&0xFFFFFF))

return true;

volatileWrite(&tail,0);

newHead.u32=0;

newHead.u8[3]=oldHead.u8[3]+1; // ABA problem
if(oldTail==((oldHead.u32)&0xFFFFFF))

if(atomicCAS(&head.u32,oldHead.u32,newHead.u32)==oldHead.u32)

return true;

volatileWrite(&head.u32,newHead.u32);

return false;}

__device__ uint32_t popWarp(thread **tailPtr){

if(dq==NULL||tailPtr==NULL)

return 0;

queueIdx oldHead,newHead;

uint32_t oldTail,newTail;

(*tailPtr)=NULL;

oldTail=volatileRead(&tail);

if(oldTail==0)

return 0;

oldHead.u32=volatileRead(&head.u32);

74

A.2. Non-Blocking Dequeue (GPU)—Extended Version

// Determine the actual number of elements that can be acquired
uint32_t popped=MIN(WARP_SIZE,oldTail−((oldHead.u32)&0xFFFFFF));
newTail=oldTail−popped;
volatileWrite(&tail,newTail);

// The owner gets a pointer to the dequeue position from where elements can be taken
(*tailPtr)=&dq[newTail];

oldHead.u32=volatileRead(&head.u32);

// Thieves always leave the last 2*WARP_SIZE elements to the owner
if(newTail>=(((oldHead.u32)&0xFFFFFF)+WARP_SIZE))

return popped;

// Thieves already started stealing and do not know about concurrent pop operations
if(newTail>((oldHead.u32)&0xFFFFFF)){

newHead=oldHead;

newHead.u8[3]++;

if(atomicCAS(&head.u32,oldHead.u32,newHead.u32)==oldHead.u32)

return popped;

// The owner is the loser: recover the old tail-end index of the dequeue
(*tailPtr)=NULL;

volatileWrite(&tail,oldTail);

return 0;}

// Acquire the last element(s), and reset the dequeue
(*tailPtr)=&dq[(oldHead.u32)&0xFFFFFF];

volatileWrite(&tail,0);

newHead.u32=0;

newHead.u8[3]=oldHead.u8[3]+1;

if(oldTail>=((oldHead.u32)&0xFFFFFF))

if(atomicCAS(&head.u32,oldHead.u32,newHead.u32)==oldHead.u32)

return oldTail−((oldHead.u32)&0xFFFFFF);
volatileWrite(&head.u32,newHead.u32);

(*tailPtr)=NULL;

return 0;}}

private:

uint32_t size,tail;

queueIdx head;

thread *dq;

};

Listing A.2: Non-blocking dequeue implementation for Nvidia GPUs of compute capability at least 1.1.

On the CPU and the XeonPhi we also extended the non-blocking dequeue implemen-
tation. It is used for the breadth-first search algorithm in Sec. 4.2.

75

A. Blocking Dequeue, Non-Blocking Dequeue, Load Balancing

A.3. Source Codes

Implementations of the data structures presented in this chapter (and in Chapter 3)
can be found on the CD in threadsafeDataStructures/[cpu,gpu,mic] and
loadBalancing/[cpu, gpu,mic]. On the top-level of each of the two directories
is a Makefile that can be used for the execution of the test programs. Information
on how to use these makefiles can be obtained with make help. Our makefiles do not
handle all configuration setups. Switching between the setups using work stealing and
the ones not using work stealing, for instance, must be adjusted in the source code. The
source files contain many more #defines that can be set/unset or re-parametrized.

Example: Enter directory loadBalancing. Type in

make run TARGET=gpu DEVICE=0 SCENARIO=sc1 THREADS=32

The test program for the load balancing scheme using scenario SC 1 + work stealing will
start (see Sec. 3.5.1 and 3.5.2 for explanation). The test program is executed on GPU
0 (if present) with 32 threads (warps).

Note 1: The Makefile (most probably) needs to be adjusted to match the local
installation of the libraries and SDKs.

Note 2: For all GPU benchmarks in Chapter 3 we have used Intel’s icpc 13.0.0

and Nvidia’s nvcc 4.1 (CUDA 4.1). For CPU and XeonPhi benchmarks we have used
Intel’s icpc 13.0.0.

76

B. Ray Tracing

B.1. Work Distribution for Rendering the KingsTreasure Scene

Work distribution for rendering the KingsTreasure scene using setup 2 and 3, respec-
tively. The description of the setups is given in Tab. 4.1.

Scene: KingsTreasure, Setup 2
Recursion

Depth

0

1

2

3

4

5

6

7

8

Scene: KingsTreasure, Setup 3
Recursion

Depth

0

1

2

3

4

5

6

7

8

Figure B.1.: Work distribution for rendering the KingsTreasure scene using setup 2 and 3. Color values
towards ‘red’ correspond to a lot of work, and values towards ‘blue’ correspond to little work.

77

B. Ray Tracing

B.2. Source Codes

All source codes used for benchmarking in Sec. 4.1.4 can be found on the CD in directory
rayTracing. The Makefile placed in this directory can be used for building and
executing the ray tracer. Type in make help for information on how to use the makefile.
make show outputs the current configuration.

Example: Enter directory rayTracing. Type in

make run TARGET=gpu DEVICE=0\
ARGS="CONFIG=‘pwd‘/cfgFiles/setup_kingsTreasure_2.cfg"

The ray tracer should start rendering (on the GPU using device 0) the image defined in
setup_kingsTreasure_2.cfg. We provide configuration setups for the KingsTrea-
sure scene in subdirectory rayTracing/cfgFiles.

Note 1: We found the GNU compilers g++4.4 to g++4.7 produce somehow faulty
executables of the ray tracing program when given the host code by Nvidia’s nvcc
compiler wrapper. We therefore provide a Makefile in rayTracer/gpu/src which
compiles the entire code using Intel’s icpc (a non-commercial version of this compiler
is provided by Intel) except for the *.cu files. We did not have any trouble with the
code generated in this way.

Note 2: The Makefile(s) (most probably) need(s) to be adjusted to match the local
installation of the libraries and SDKs. Attend to not compile the ray tracer with the
GNU compiler.

Note 3: For all GPU benchmarks in Sec. 4.1.4 we have used Intel’s icpc 13.0.0 and
Nvidia’s nvcc 4.1 (CUDA 4.1)—for the ray tracer only the *.cu files were compiled
with nvcc. For CPU and XeonPhi benchmarks we have used Intel’s icpc 13.0.0.

78

C. Breadth-First Search: Source Codes

Source codes implementing the BFS algorithm can be found in directory bfs on the
CD. The Makefile placed in this directory can be used for building and executing our
BFS programs. Type in make help for information on how to use the makefile.

Example: Enter directory bfs. Type in

make run TARGET=xeonphi DEVICE=0\
NX=100 NY=100 NZ=74 P=0.7 THREADS=120

The execution of the BFS algorithm should start on the XeonPhi (device 0, if present)
for a random graph with 100 × 100 × 74 vertices, and edges between neighboring ver-
tices established with probability p = 0.7 (see Sec. 4.2.2 for explanations). There are
additional #defines in the codes that can be modified.

Note 1: The Makefile (most probably) needs to be adjusted to match the local
installation of the libraries and SDKs.

Note 2: For all benchmarks in Sec. 4.2.2 we have used Intel’s icpc 13.0.0.

79

Bibliography

[ABP98] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread Scheduling for
Multiprogrammed Multiprocessors. pages 119–129, 1998.

[ATNW11] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André
Wacrenier. StarPU: A Unified Platform for Task Scheduling on Heteroge-
neous Multicore Architectures. Concurrency and Computation: Practice and
Experience, 23(2):187–198, 2011.

[BJK+95] R. D. Blumofe, Ch. F. Joerg, B. C. Kuszmaul, Ch. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient Multithreaded Runtime System.
SIGPLAN Not., 30(8):207–216, August 1995.

[BL93] R. D. Blumofe and Ch. E. Leiserson. Space-efficient Scheduling of Multi-
threaded Computations. pages 362–371, 1993.

[BL99] R. D. Blumofe and Ch. E. Leiserson. Scheduling Multithreaded Computa-
tions by Work Stealing. J. ACM, 46(5):720–748, 1999.

[BNP12] M. Burtscher, R. Nasre, and K. Pingali. A Quantitative Study of Irregular
Programs on GPUs. pages 141–151, 2012.

[Bre74] R. P. Brent. The Parallel Evaluation of General Arithmetic Expressions. J.
ACM, 21(2):201–206, 1974.

[CGSS11] S. Chatterjee, M. Grossman, A. Sbirlea, and V. Sarkar. Dynamic Task
Parallelism with a GPU Work-Stealing Runtime System. 2011.

[Chr12] G. Chrysos. Intel XeonPhi Coprocessor (Codename Knights Corner). 2012.

[CRL90] Th. H. Cormen, R. L. Rivest, and Ch. E. Leiserson. Introduction to Algo-
rithms. McGraw-Hill Higher Education, 1st edition, 1990.

[CT08] D. Cederman and P. Tsigas. On Dynamic Load Balancing on Graphics
Processors. pages 57–64, 2008.

[DLS+09] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and
J. Nieplocha. Scalable Work Stealing. pages 53:1–53:11, 2009.

81

Bibliography

[dRu12] 3d Renderer. http://www.3drender.com/challenges/index.htm, 2012.

[GLFR12] T. Gautier, F. Lementec, V. Faucher, and B. Raffin. X-Kaapi: A Multi
Paradigm Runtime for Multicore Architectures. (RR-8058):16, February
2012.

[HKB12] A. Heinecke, M. Klemm, and H. J. Bungartz. From GPGPU to Many-Core:
Nvidia Fermi and Intel Many Integrated Core Architecture. Computing in
Science and Engineering, 14:78–83, 2012.

[Int12] Intel. Intel Xeon Phi Coprocessor 5110P, Prodct Brief, 2012.

[LWH10] L. Luo, M. Wong, and W. Hwu. An Effective GPU Implementation of
Breadth-First Search. pages 52–55, 2010.

[Nvi09] Nvidia. Fermi Compute Architecture Whitepaper, v1.1. October 2009.

[Nvi12] Nvidia. Nvidia CUDA C Programming Guide, v5.0. July 2012.

[SAG+05] P. Shirley, M. Ashikhmin, M. Gleicher, S. Marschner, E. Reinhard, K. Sung,
W. Thompson, and P. Willemsen. Fundamentals of Computer Graphics,
Second Ed. A. K. Peters, Ltd., 2005.

[SHT+12] R. Solcà, A. Haidar, S. Tomov, J. Dongarra, and T. Schulthess. A Novel
Hybrid CPU-GPU Generalized Eigensolver for Electronic Structure Calcu-
lations Based on Fine Grained Memory Aware Tasks. Supercomputing ’12
(poster), November 2012.

[SM03] P. Shirley and R. K. Morley. Realistic Ray Tracing. A. K. Peters, Ltd., 2003.

[SRM13] T. Schütt, A. Reinefeld, and R. Maier. MR-Search: Massively Parallel
Heuristic Search. Concurr. Comput.: Pract. Exper., 25(1):40–54, January
2013.

[SW87] R. H. Swendsen and J. Wang. Non-Universal Critical Dynamics in Monte
Carlo Simulations. Phys. Rev. Lett., 58:86–88, Jan 1987.

[SYD09] F. Song, A. YarKhan, and J. Dongarra. Dynamic Task Scheduling for Linear
Algebra Algorithms on Distributed-Memory Multicore Systems. pages 19:1–
19:11, 2009.

[TLO12] S. Tzeng, B. Lloyd, and J. D. Owens. A GPU Task-Parallel Model with
Dependency Resolution. Computer, 45(8):34–41, 2012.

82

http://www.3drender.com/challenges/index.htm

Bibliography

[TZ00] P. Tsigas and Y. Zhang. Evaluating the Performance of Non-Blocking Syn-
chronisation on Modern Shared-Memory Multiprocessors. 2000.

[WF12] F. Wende and T. M. Feist. Ray Tracing on GPUs.
http://www.inf.fu-berlin.de/lehre/SS12/SP-Par/download/

FeistWende.pdf. 2012.

83

http://www.inf.fu-berlin.de/lehre/SS12/SP-Par/download/FeistWende.pdf
http://www.inf.fu-berlin.de/lehre/SS12/SP-Par/download/FeistWende.pdf

List of Figures

2.1. Graph representation of a multithreaded computation 6

3.1. Nvidia GPU based on the Fermi unified shader architecture 18
3.2. Intel many integrated core (MIC) architecture 20
3.3. Illustration of a dequeue for work stealing . 23
3.4. Benchmarking results for the non-blocking dequeue implementation on

GPU, XeonPhi, and CPU . 28
3.5. Benchmarking results for the blocking dequeue implementation on

GPU, XeonPhi, and CPU . 29
3.6. Dependency resolution . 33
3.7. Synthetic application for the evaluation of the implementation

of the work stealing scheme with dependencies 35
3.8. Runtimes of an application modeling recursive subroutine calls

using the work stealing scheme . 37
3.9. Speedup ‘work-stealing (WS) vs. no-work-stealing (noWS)’

for a synthetic application . 38
3.10. Runtimes of an application modeling recursive subroutine calls using Cilk,

and speedups ‘Cilk vs. no-work-stealing (noWS)’ for a synthetic application 39

4.1. Tracing a ray through a scene made up of triangles 42
4.2. Schematically illustration of translating a binary tree

into a pre-ordered linked list . 43
4.3. Schematically illustration of filling up thread groups with threads during the

execution of the ray tracing program . 47
4.4. Work distribution for rendering the KingsTreasure scene. Setup 1 48
4.5. Partitioning of an image of the KingsTreasure scene

into an 8×8 and a 16×16 grid of subimages 48
4.6. XeonPhi, Tesla M2090 (setup 1): Execution times for rendering the KingsTrea-

sure scene using i) a static processor-thread assignment, ii) a centralized
thread pool, and iii) the work stealing scheme 50

85

List of Figures

4.7. XeonE5-2670 (setup 1): Execution times for rendering the KingsTreasure
scene using i) a static processor-thread assignment, ii) a centralized thread
pool, and iii) the work stealing scheme . 51

4.8. XeonPhi, Tesla M2090 (setup 2): Execution times for rendering the KingsTrea-
sure scene using i) a static processor-thread assignment, ii) a centralized
thread pool, and iii) the work stealing scheme 53

4.9. XeonPhi, Tesla M2090 (setup 3): Execution times for rendering the KingsTrea-
sure scene using i) a static processor-thread assignment, ii) a centralized
thread pool, and iii) the work stealing scheme 54

4.10. Execution of the BFS algorithm . 57
4.11. Illustration of a random graph G(E, V) used for the evaluation of the

parallel BFS algorithm . 61
4.12. Speedup of the parallel BFS algorithm over sequential BFS

on XeonPhi and CPU . 62
4.13. Speedup of the parallel BFS algorithm over sequential BFS on XeonPhi . . . 63
4.14. Speedup of the parallel BFS algorithm over sequential BFS on CPU 64

B.1. Work distribution for rendering the KingsTreasure scene. Setup 2/3 77

86

List of Tables

3.1. Properties of Nvidia Tesla M2090, Intel Xeon E5-2670 and Intel XeonPhi . . 20
3.2. Benchmarking results for the blocking and the non-blocking dequeue 31

4.1. Benchmarking setups for ray tracing . 47
4.2. Execution times of the BFS algorithm for a random graph 65

87

Acknowledgment

I thank Prof. Dr. Helmut Alt (FU-Berlin) and Prof. Dr. Alexander Reinefeld (HU-Berlin,
Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)) for enabling me to work on
this topic, for having been there for questions, and for having given valuable suggestions
to this thesis.
Special thanks go to Dr. Thomas Steinke (ZIB) who was intensively involved in the

supervision of this thesis. I also want to give thanks to him for interesting discussions
and for proofreading of many parts of this document.
Further thanks go to Mr. Igor Merkulow for proofreading and for some interesting

ideas that had some influence on this work.
I also give thanks to Dr. Ludmila Scharf and Mr. Paul Seiferth for proofreading and

discussion.

89

Selbständigkeitserklärung

Ich erkläre, dass ich die vorliegende Arbeit selbständig und nur unter Verwendung der
angegebenen Literatur und Hilfsmittel angefertigt habe.

Ort, Datum Unterschrift

91

	Introduction
	Related Work
	Contribution of the Thesis

	Dynamic Task Parallelism in Multithreaded Computations
	Multithreaded Computations
	Dynamic Load Balancing
	Dynamic Load Balancing Methods

	Greedy-Scheduling of Multithreaded Computations
	The Busy-Leaves Algorithm

	A Randomized Work-Stealing Algorithm

	Work Stealing on GPU and Intel XeonPhi
	Nvidia Fermi GPU Architecture
	Intel Many Integrated Core (MIC) Architecture
	Problem Description
	Multithreaded Data Structures
	Blocking Dequeue
	Non-Blocking Dequeue
	Performance Evaluation

	Scheduling Multithreaded Computations on GPU and XeonPhi
	Dependency Resolution
	Evaluation of the Implementation

	Application Scenarios
	Ray Tracing
	The Ray Tracing Method
	Implementation Details
	Ray Tracing and Load Balancing
	Performance Evaluation on GPU, XeonPhi, and CPU
	Validation of the Implementation

	Breadth-First Search
	Parallel Implementation
	Performance Evaluation on XeonPhi and CPU
	Validation of the Implementation
	Scalable Work Stealing & State of the Art

	Summary & Conclusion
	Blocking Dequeue, Non-Blocking Dequeue, Load Balancing
	Blocking Dequeue (GPU)
	Non-Blocking Dequeue (GPU)—Extended Version
	Source Codes

	Ray Tracing
	Work Distribution for Rendering the KingsTreasure Scene, Setup 2/3
	Source Codes

	Breadth-First Search: Source Codes

