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Abstract

Markov Decision Processes (MDP) or Partially Observable MDPs (POMDP) are
used for modelling situations in which the evolution of a process is partly random and
partly controllable. These MDP theories allow for computing the optimal control policy
for processes that can continuously or frequently be observed, even if only partially.
However, they cannot be applied if state observation is very costly and therefore rare
(in time). We present a novel MDP theory for rare, costly observations and derive the
corresponding Bellman equation. In the new theory, state information can be derived
for a particular cost after certain, rather long time intervals. The resulting information
costs enter into the total cost and thus into the optimization criterion. This approach
applies to many real world problems, particularly in the medical context, where the
medical condition is examined rather rarely because examination costs are high. At the
same time, the approach allows for efficient numerical realization. We demonstrate the
usefulness of the novel theory by determining, from the national economic perspective,
optimal therapeutic policies for the treatment of the human immunodeficiency virus
(HIV) in resource-rich and resource-poor settings. Based on the developed theory and
models, we discover that available drugs may not be utilized efficiently in resource-poor
settings due to exorbitant diagnostic costs.

Keywords. information costs, hidden state, bellman equation, optimal
therapeutic policies, diagnostic frequency, resource-poor, resource-rich

AMS subject classifications. 49N30, 60J27, 60J28, 93B07, 90C40, 93E20

1 Introduction

Many natural phenomena are intrinsically stochastic and can be accurately described in
terms of continuous-time Markov processes [1]. Controlling such processes is of fundamental
interest [2]. This is also the case for many medical applications where the medical condition
of the patient is governed by a stochastic process, and medical treatment can be interpreted
as controlling the medical condition.

The theory of Markov Decision Processes (MDP) is naturally designed to find optimal
controls for Markov processes. The standard theory of MDPs, however, relies on several
assumptions that restrict their practical use in medical applications. The main restriction
results from the fundamental assumption in standard MDP theory that the process is fully
observed and that an action can immediately be adapted based on the state observation.
In the medical context, however, the state of the system, i.e., the medical condition of the
respective patient, cannot be observed at all times but only at a very limited number of
time points where the (costly) medical examinations happen. That is, observations are rare
and the observation time points cannot be chosen arbitrarily because the related observation
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costs are part of the total costs that we want to minimize. Moreover, the respective con-
trol action, i.e., the medication, can only be adapted at these rare examination time points.
Partially Observable MDPs (POMDPs) have been designed for cases in which the process
is not fully observed and the uncertainty of a measurement has to be taken into account.
The theory of POMDPs, however, does not cover the case of rare (and costly) observations.
Therefore, we present a novel theory for MDPs with rare observations: State ”examinations”
are separated by lag times τ of blind progress and decisions can only be taken when the state
of the system has been determined (at t+ τ). Furthermore, each observation produces costs
which enter the cost functional, determining a trade-off between frequent examination and
increasing costs. The new MDP theory can describe many situations. In the medical context,
for example, an attending physician makes a patient-specific decision (e.g. medication/drug
prescription; next examination time) based on the state of health of the patient that he/she
encounters upon examination. Examples include dose adaptation to anti-coagulants, -or di-
abetic treatment and the treatment of many infectious diseases. One particular example is
the treatment of human immunodeficiency virus (HIV) infection. HIV-1, if untreated, results
in the life-threatening acquired immunodeficiency syndrome (AIDS). Several treatment lines
are available, which can suppress the virus and relieve from the symptoms of AIDS. However,
there is no cure and the treatment ’drives’ the development of drug resistance, which ren-
ders it inefficient. While each treatment line is effective against particular patterns of viral
strains, therapy must be adapted to counter-act drug-resistance development and to enhance
long-term control of the virus.
In this work we apply the new MDP theory to find optimal treatment-switching and patient
monitoring policies for HIV-1. We aim to find patient-specific examination times and se-
quences of treatments, thus aiming at optimal individualized therapy. Our approach is based
on a detailed Markov jump process modelling of the virus infection kinetics that captures
the intrinsic stochastic nature of HIV drug resistance development.
Optimal control methods have previously been applied by other research groups in the con-
text of HIV-therapy: Luo et al. [3] and Vargas et al. [4] however treated the underlying system
deterministically, which fails to capture the intrinsic stochastic nature of HIV drug resistance
development [5] and the time-scales on which drug resistance develops. Furthermore, it does
not allow for individualized (patient-specific) treatment optimization. Shechter et al. [6]
used MDPs (machine maintenance approaches) to maximize expected residual lifetime under
treatment, which allows for patient-specific treatment optimization, but unfortunately does
not take into account the ”cost of observation” and neither the virological state in a patient.
In the manuscript, we will first introduce the new MDP theory for rare state observation,
followed by the derivation of a model of viral adaptation to treatment. We assess optimal
therapeutic policies for HIV-1 in resource-rich vs. resource-poor countries by taking actual
cost-parameters for the respective settings into account. The derived optimal policies are
compared with current standard-of-care treatment. Finally, we evaluate parameter sensitiv-
ities with respect to patient survival during cost-optimal policies.

2 Markov Control Processes with rare state observation

In many applications, particularly in a medical context, the state of a system (i.e. health
status) cannot be observed at all times and therefore remains hidden to the controller, which
contradicts the fundamental assumption of conventional MDPs. Moreover, observation (ex-
amination) itself may produce costs and likewise, the action (medication) can only be adapted
at a very limited number of time points.

In our example we assume that the action can only be changed when the state has been
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examined. However, each observation of the systems produces “information costs“ kinfo. As
a consequence, finding the optimal control policy includes finding optimal examination times.
We will specify an appropriate cost criterion, comprising process costs and information costs,
and formulate the corresponding Bellman equation. Motivated by our medical application
(HIV treatment scheduling), we will in the following derive the novel theory for ”Markov
Control Processes with rare State Observation” and apply it in the subsequent sections.

2.1 The Control Model

As in a conventional Markov Control Model we consider a set S of states which, in our
application, describe the health status of a patient, as well as a set A of actions referring to
the treatments (drug combinations) that are available in order to control the disease process.
We assume both S and A to be finite sets. For each action a ∈ A there is a generator La
specifying the dynamics of the process based on action a. More precisely, La(x, y) ≥ 0 is
the transition rate for a transition from x ∈ S to y ∈ S, y 6= x, given action a, and it holds
La(x, x) = −

∑
y 6=x

La(x, y). Furthermore, there is a cost function c : S × A → [0,∞) denoting

the costs produced by the process per unit of time depending on the actual state and the
chosen action. In the medical context, the cost function comprises both the direct costs of
the treatment and the indirect costs produced by the health damage of a patient.

Now we assume that the corresponding Markov Control process (Xt)t≥0, which is itself
continuous in time, may only be observed at discrete (but variable) time points and that
each observation produces costs. In this regard, we introduce the novel parameter

kinfo ≥ 0

which we will call cost of information. This constant fee has to be paid each time that the
state of the process is determined, e.g. by a medical examination. As explained in Section 2.2,
the total observation costs enter the considered cost criterion such that the frequency of ob-
servations cannot be arbitrary. Consequently, finding an optimal control policy means not
only finding the optimal action (as in the conventional Markov Control Theory) but also the
optimal examination lag time τ(x) > 0 for each state (i.e. the amount of time before the
next examination takes place).

Since an optimal policy is generally stationary and deterministic in conventional Markov
Control Theory [7], we restrict ourselves to stationary and deterministic policies herein.

Controlling the process proceeds according to the following structure: Starting with some
known state X0 ∈ S at some examination time t0 ≥ 0 one chooses an action a ∈ A as well as
an examination lag time τ(X0) > 0 defining the next examination time t1 = t0 + τ(X0) > t0.
During the time interval (t0, t1] the (random) behavior of the process (Xt) is fully described
by the infinitesimal generator La and produces costs according to the cost function c(·, a).
We do not observe this behavior but only determine the state Xt1 of the process at time t1.
For this information expenses kinfo accrue. Knowing the new state Xt1 at time t1, we choose
again an action and a lag time and the procedure restarts.
This is exactly the structure of a medical therapy: By examining the health status of a pa-
tient, an appropriate medication is chosen and an appointment for the next examination is
arranged.

The described procedure motivates the following definition of the term policy. In the
definition, we allow the lag time τ to be infinite, which means that there will be no further
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examinations.

Definition 2.1 (Policy). A policy is a function

u : S → A× (0,∞], x 7→ u(x) =
(
a(x), τ(x)

)
giving for each state x ∈ S both an action a ∈ A and an examination lag time τ > 0.
The set of all such policies is denoted by U .

Remark 2.2. In our setting, the action is fixed for the whole time interval [t0, t0 + τ) and
cannot be changed blindly, i.e. without determining the state. This way, the controlled process
can be turned into a completely observable discrete Markov Decision Process with random time
steps.

Although the policy is deterministic, the actual examination times (tk)k∈N are random
variables: They are determined by the succession of lag times τ , which by themselves depend
on the random states of the process (Xtk)k∈N0 . I.e., the points in time where the process
is observed are not fixed in advance but vary with the stochastic evolution of the control
process.

The procedure is schematically illustrated in Fig. 1: Initially, an optimal (stationary,
deterministic) control policy has been derived, which assigns an action a(x) and an examina-
tion lag time τ(x) to each state x. The derived optimal policy is then applied to a stochastic
realization of the disease process, e.g., the virus kinetics of an individual patient. Thus, an
individualized therapy is implemented in which the examination times tj are patient-specific
while the policy is gobal, i.e., identical for all patients. The dashed blue lines in Fig. 1 depict
the individual, stochastic disease process. The solid dots denote the examination times tj .
As can be seen, at each examination time tj , a treatment a(xtj ) (arrows depicted above the
figure) and an examination time lag τ(xtj ) (depicted on the x-axis) is assigned according to
the optimal (stationary, deterministic) control law. The treatment is maintained at least for
the period tj + τ(xtj ), irrespective of the (hidden) dynamics in between.

2.2 Cost Criterion

The considered time horizon of the cost criteria depends on the particular application at
hand. We decided to consider discounted costs on an infinite time horizon. In this setting,
the costs arising at time t > 0 are weighted by a discount factor 0 < e−λt < 1, where λ > 0 is
a given constant. The discount factor thus guarantees convergence of the cost functional. For
the intended medical treatment application this criterion is suitable because the therapy of a
chronic disease does not have a previously known endpoint (i.e. time of death). At the same
time, a differentiated weighting of immediate and later costs is reasonable due to an upper
limitation of life expectancy and aspects of inflation. In this regard, the concrete choice of
the constant λ will depend on the presumed annual inflation in the considered countries, see
Table 2.

Definition 2.3 (Expected Discounted Cost Criterion). Given a policy u ∈ U , an initial state
x ∈ S and a discount factor λ > 0, the expected discounted cost is defined by

J(x, u) := Eux

 ∞∑
j=0

(∫ tj+1

tj

e−λsc
(
Xs, a(Xtj )

)
ds+ e−λtj+1kinfo

)
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Figure 1: Schematic illustration of the presented control model. The graphic highlights that the
examination times tj and sequence of actions are random variables because the underlying process is a
random realization: The solid blue line indicates the disease process within an individual patient (a stochastic
realization of the process), while the solid black dots indicate the examination times tj for this particular
stochastic realization, which depend on the observed state from the last examination time and the stationary
deterministic decision rule.

where Eux stands for the expectation value with respect to the measure determined by x and
u. The corresponding value function is

V (x) := inf
u∈U

J(x, u).

Remark 2.4. Note that in the cost functional J(x, u), the function c is evaluated in the
first argument at Xs with s running in time, while in the second argument it is evaluated at
a(Xtj ) with tj fixed for each interval. This follows from the fact that the state, which we do
not observe during such an interval, may change, while the action stays the same.

In order to simplify the notation and to discover the structure of the given control process
we define a new cost function C : S ×A× [0,∞]→ [0,∞) by

C
(
x, a, τ

)
:= Eax

(∫ τ

0

e−λsc(Xs, a)ds
)
. (2.1)

These are the expected discounted costs for the time interval (0, τ ] when starting in state
x ∈ S and choosing action a ∈ A.

Now, the cost criterion can be written as

J(x, u) = Eux

 ∞∑
j=0

e−λtj
(
C
(
Xtj , a(Xtj ), τ(Xtj )

)
+e−λτ(Xtj

)kinfo

)
This notation shows the discrete nature of the system: The process is evaluated only at
the evaluation times t0, t1, t2, .... However, as mentioned above, these points are random
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variables. They depend on the behavior of the process and on the chosen policy. Hence, the
process is not equivalent to a usual discrete time control process.

Furthermore, we introduce the operator

Ta,τ : R|S| → R|S|, Ta,τv := eLaτ · v

which is the transition matrix on S for some fixed time τ and action a. This operator is
relevant for the Bellman equation which will be derived in the following section. Together
with the cost function C defined in (2.1), the operator Taτ will permit a clear and compact
notation.

2.3 The Bellman Equation

Given the cost criterion J we will now formulate a Bellman equation for the corresponding
value function V (·) = inf

u∈U
J(·, u). This is the basic step for all numerical computations which

follow. We will proceed as follows: Instead of starting with the given optimal control problem
and deducing the correct Bellman equation, we formulate a (reasonable) Bellman equation
and show that its solution coincides with the value function of our optimal control problem
and that the control policy obtained from this Bellman equation is indeed optimal. This
approach is common practice, see e.g. [7, 8], and called verification.

Theorem 2.5 (Verification: Bellman Equation for Discounted Costs). Assume that V : S →
R satisfies the Bellman equation1

V (x) = min
a∈A,τ∈[0,∞]

(
C(x, a, τ) + e−λτ

(
kinfo + Ta,τV (x)

))
(2.2)

and define
(
a∗(x), τ∗(x)

)
= arg min

a,τ

(
C(x, a, τ) + e−λτ

(
kinfo + Ta,τV (x)

))
. Then the policy

u∗ given by u∗(x) =
(
a∗(x), τ∗(x)

)
fulfills J(x, u∗) ≤ J(x, u) for all policies u, and it holds

J(x, u∗) = V (x). (2.3)

The proof can be found in appendix A.

In many situations (as in our application), the cost function c : S × A → [0,∞) is of the
form

c(x, a) = cS(x) + cA(a)

with cS : S → [0,∞) giving the costs produced by the state, e.g. indirect costs produced by
the health status of a patient, and cA : A → [0,∞) denoting the costs produced by the action,
e.g. treatment costs. This means that state and action costs are independent of each other
which, especially in our application, is a reasonable assumption. Now, by the linearity of the
expectation value, also the valuefunction V (x) = J(x, u∗) may be decomposed by writing

V (x) = VA(x) + VS(x) + Vinfo(x)

1For τ =∞ the right hand side of eq. (2.2) is given by C(x, a,∞) (see eq. (2.1)), which is consistent with

the fact that e−λτ
τ→∞−→ 0 while kinfo + Ta,τV (x) is bounded.
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with

VA(x) = Eu
∗

x

 ∞∑
j=0

∫ tj+1

tj

e−λscA
(
a(Xtj )

)
ds

 ,

VS(x) = Eu
∗

x

 ∞∑
j=0

∫ tj+1

tj

e−λscS
(
Xs

)
ds


and

Vinfo(x) = Eu
∗

x

 ∞∑
j=0

e−λtj+1kinfo

 .

For the purpose of interpretation it will be interesting to compute such a cost-splitting, see
Table 4 and its interpretation in Section 4.

Remark 2.6. For the numerical computation of an optimal policy we will use an adapted
standard policy iteration algorithm [9]. Compared to the case of full information our setting
leads to an extension of the action space while the state space is untouched. The ”new” action
space is given by

A× [0,∞]

where the part [0,∞] needs to be discretized and limited in order to get a numerically feasible
set. As for real world applications this is a justifiable step: Depending on the specific ap-
plication there may be a lower- and upper examination lag time τmin and τmax, respectively.
In our application, we set τmin = 1 days and τmax = 5000 days in order to numerically
compute the optimal policy via the policy iteration algorithm. As the runtime of the policy
iteration algorithm grows strongly with an increasing number of states [10], we will formu-
late a lumped HIV-Model with a relatively small number of states, that is able to capture the
essential features of antiviral therapy and drug resistance development.

3 HIV Dynamics Model

In the following, we introduce the HIV-model, for which we will apply the previously devel-
oped theory.

In Section 3.1 the state space S and the action space A of the HIV-model are introduced
and in Section 3.2 it is explained how distinct treatments a ∈ A manipulate the entries of
the generators La. In Section 3.3, we will parametrize the corresponding cost functions c for
the HIV-model.

3.1 State & Action Space

HIV dynamics and -drug resistance development can accurately be described by stochastic
reaction kinetics [5, 11, 12]. The fundamental evolution equation for stochastic kinetics is
the chemical master equation (CME), for which each state comprises a combination of dis-
crete numbers of individuals of the respective species (e.g. viral strains), resulting in state
space dimensions N0×N0×...×N0, which is numerically infeasible in terms of a direct solution.
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In order to reduce the state-space dimensionality, we introduce a model with a lim-
ited number of so-called lumped states, that is motivated by a mechanistic HIV dynamic
model [11]: Our model contains four of these lumped states for each virus type: If the re-
spective virus type is absent we denote the respective state by 0, if it is present in low copy
numbers, i.e., for < 50 virus copies/mL blood (detection limit of assays used in the clinic),
the respective state is denoted by `, for medium copy numbers between 50 and 4000 virus
copies/mL blood we denote the lumped states by m and for high copy numbers with more
than 4000 virus copies/mL blood, it is h. This coarse graining is in line with the levels
of virus produced in the distinct cellular reservoirs of HIV, see e.g. [12]. The `-states are
reflecting states, which are justified by inability to eradicate HIV (the persistence of virus in
reservoirs [13,14]) and the h-states are reflecting states, because there is a maximum carrying
capacity of the system ( i.e. virus does not grow indefinitely). Further, the `-states do not
affect patient health (thus not producing costs) as the virus is essentially suppressed [15].
Costs are produced by the h-states and the m-states, respectively, but the h-states produce
more costs than the m-states (denoted later in Table 2).

According to their treatment susceptibility, our model distinguishes 4 viral strains M
(”mutants”): a strain WT (wild type) that is susceptible to all treatment lines, a strain R1
which is susceptible to treatment 2 (a2), but unaffected by (resistant to) treatment 1 (a1),
a strain R2 that is susceptible to a1, but unaffected by a2 and a highly resistant strain HR
which is resistant to all treatments (a1&a2).

Considering all permutations of viral strains M ∈ {WT,R1,R2,HR} and respective copy
numbers nC(M) ∈ {0, `,m, h} and patient death z, the state space of the corresponding
Markov Control Model turns out to be S = {0, `,m, h}4 ∪z with |S| = 44 + 1 = 257 states
in total.

In order to describe a state x ∈ S we choose a compact vector notation of the form

x =
[
nC(WT) , nC(R1) , nC(R2) , nC(HR)

]
.

For example, the state x =
[
h , ` , m , 0

]
describes the situation of a high number of wild

type strains, a `ow number of R1-mutants, a medium number of R2-mutants and the absence
of highly resistant mutants. We use this notation as well for sets of states by writing,
e.g.,

[
{m,h} , ∗ , 0 , 0

]
, which stands for a medium or high number of wild type strains, an

arbitrary number of R1-mutants and the absence of R1-mutants and highly resistant mutants.
For the action space we choose the set of treatments A = {a∅, a1, a2}, where a∅ denotes

the absence of medical intervention, while a1 and a2 denote the application of two distinct
treatment lines.

3.2 Generator Entries

The basic transitions between copy number states nC(M) for a particular viral strain M
(here exemplified for the the wild type strain WT) of our continuous-time Markov model are
shown below. [

` , ∗ , ∗ , ∗
] k`,a−→

[
m, ∗ , ∗ , ∗

]
,

[
m, ∗ , ∗ , ∗

] km,a−→
[
h , ∗ , ∗ , ∗

]
, (3.4)[

m, ∗ , ∗ , ∗
] δm−→

[
` , ∗ , ∗ , ∗

]
,

[
h , ∗ , ∗ , ∗

] δh−→
[
m, ∗ , ∗ , ∗

]
, (3.5)[

h , ∗ , ∗ , ∗
] dh−→ z,

[
m, ∗ , ∗ , ∗

] dm−→ z, (3.6)[
` , ∗ , ∗ , ∗

] d`−→ z. (3.7)
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The parameters k`,a and km,a denote the reaction propensities of going from copy number `
to copy number m and from copy number m to copy number h, respectively (viral growth),
which depend on the treatment a ∈ {a∅, a1, a2}. The parameters δm and δh are independent
of the treatment and denote the reaction propensities for going from copy number m to
copy number ` and from copy number h to copy number m, respectively (virus elimination).
The parameters dh > dm > d` denote the propensity for the death of the patient. These
parameters are unaffected by the treatments, as well. We assume that high viral burden
(states h and m respectively) increases the risk of death, whereas d` equals the propensity
for ”natural death”. The propensity for natural death was computed according to d` =
1/(residual life expectancy healthy), and is exemplified in the caption of Table 2. Analogous,
dh and dm were computed using the average residual life expectancy in states h and m. The
following transitions between viral strains M were considered:[

h , 0 , ∗ , ∗
] µh,R1,a−→

[
h , ` , ∗ , ∗

]
,

[
m, 0 , ∗ , ∗

] µm,R1,a−→
[
m, ` , ∗ , ∗

]
, (3.8)[

h , ∗ , 0 , ∗
] µh,R2,a−→

[
h , ∗ , ` , ∗

]
,

[
m, ∗ , 0 , ∗

] µm,R2,a−→
[
m, ∗ , ` , ∗

]
, (3.9)[

0 , h , ∗ , ∗
] µh,R1,a−→

[
` , h , ∗ , ∗

]
,

[
0 , m , ∗ , ∗

] µm,R1,a−→
[
` , m , ∗ , ∗

]
, (3.10)[

0 , ∗ , h , ∗
] µh,R2,a−→

[
` , ∗ , h , ∗

]
,

[
0 , ∗ , m , ∗

] µm,R2,a−→
[
` , ∗ , m , ∗

]
, (3.11)[

∗ , h , ∗ , 0
] µh,R2,a−→

[
∗ , h , ∗ , `

]
,

[
∗ , m , ∗ , 0

] µm,R2,a−→
[
∗ , m , ∗ , `

]
, (3.12)[

∗ , ∗ , h , 0
] µh,R1,a−→

[
∗ , ∗ , h , `

]
,

[
∗ , ∗ , m , 0

] µm,R1,a−→
[
∗ , ∗ , m , `

]
, (3.13)[

∗ , ∗ , 0 , h
] µh,R1,a−→

[
∗ , ∗ , ` , h

]
,

[
∗ , ∗ , 0 , m

] µm,R1,a−→
[
∗ , ∗ , ` , m

]
, (3.14)[

∗ , 0 , ∗ , h
] µh,R2,a−→

[
∗ , ` , ∗ , h

]
,

[
∗ , 0 , ∗ , m

] µm,R2,a−→
[
∗ , ` , ∗ , m

]
. (3.15)

The parameters µh,R1,a and µh,R2,a denote the propensity for the emergence and disappear-
ance of a mutation that confers drug resistance to treatment 1 or 2 (a1, a2), respectively,
emanating from copy number state h. Analogously, µm,R1,a and µm,R2,a denote the propen-
sity for the emergence- and disappearance of a mutation emanating from copy number states
m. Note, that we consider only the following mutations: WT ↔ R1, WT ↔ R2, R1 ↔ HR
and R2 ↔ HR, which is motivated by the fact, that a direct transition from WT ↔ HR is
very unlikely, because the genetic distance between the two viral strains is too large to be
overcome at once. The model is graphically illustrated in Fig. 2.

Figure 2: Simplified HIV Model A: Transitions between copy number states nC . B: Transitions in between
viral strains M .

The effect of the treatments a1 and a2 on the growth and mutation rates is considered in
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the following way:

k`,a =
(

1− η(a,M)
)
k`,∅, km,a =

(
1− η(a,M)

)
km,∅, (3.16)

µh,M̃,a =
(

1− η(a,M)
)
µh,M̃,∅, µm,M̃,a =

(
1− η(a,M)

)
µm,M̃,∅, (3.17)

where M ∈ {WT,R1,R2,HR} denotes the strain of the reactant virus.The parameter η(a,M)
denotes the efficacy of treatment a on this viral strain M ; i.e. if strain M is susceptible to
treatment a ∈ {a1, a2}, then 0 < η(a,M) ≤ 1, and if the viral strain M is insusceptible to
treatment a ∈ {a1, a2} then η(a,M) = 0. In the absence of medical intervention a = a∅,
η(a,M) = 0. Therefore, the parameters k`,∅, km,∅, µh,M̃,∅ and µm,M̃,∅ denote the growth
rates and respective mutation rates in copy number states m and h in the absence of inter-
vention, i.e. for a = a∅ (see Table 1).

We estimated all parameters by fitting the presented model to clinical data of virus decay-
and rebound dynamics as exemplified in appendix B.

param. value param. value param. value
δh 6.13 · 10−2 µh,R1,∅ 1.24 η(a1, {WT,R2}) 0.979
δm 5.1 · 10−2 µm,R1,∅ 4.34 · 10−2 η(a1, {R1,HR}) 0
k`,∅ 0.13 µh,R2,∅ 2.41 · 10−4 η(a2, {WT,R1}) 0.966
km,∅ 0.13 µm,R2,∅ 2.33 · 10−2 η(a2, {R2,HR}) 0

Table 1: General Model parameters. All parameters in units [1/day] except η [unit less].

3.3 Cost Parameters

Our analysis is conducted from a countries’s or a public health-care/monetary perspective.
The costs cS(x) of being in the respective states x ∈ S were computed based on the av-
erage productivity loss pL(nC) times the average daily monetary contribution of one in-
dividual (assessed in terms of daily per capita GDP), i.e. cS(x) = pL(x) · GDP, with
pL(x) = max

nC

pL(nC) where death is interpreted in terms of a complete loss in produc-

tivity. All other productivity measures were adapted from [16]. We want to assess optimal
policies in the case where two treatment lines (a1 and a2 respectively) were available in (i)
developed countries, with Germany as a representative, and (ii) in resource-constrained set-
tings, exemplified for South Africa, because of the extraordinary high prevalence (17.8%) of
HIV in this country [17]. The daily costs cA of treatment in Germany and in resource- con-
strained settings were derived from [18,19]. In resource-constrained settings, the William J.
Clinton Foundation has negotiated prices for antivirals, which are highly subsidized, allowing
access to antivirals in these settings. The respective parameters are displayed in Table 2.
The costs kinfo for drug resistance testing are ≈ 400 US$ per test in the western world [16].
In resource-constrained settings, these tests are not subsidized. Furthermore, because of the
often undeveloped infrastructure tests may be even more expensive (we used the value of
kinfo = 500 US$ per test). All parameters related to costs are displayed in Table 2.
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Germany S. Africa
param. value value unit ref.
cA(a∅) 0 0 - -
cA(a1) 48.5 0.3 US$/d [18,19]
cA(a2) 58.8 1.08 US$/d [18,19]
kinfo 400 500 US$/d [16]
d` 6.2 · 10−5 9.4 · 10−5 1/d \
dm 2.7 · 10−4 2.7 · 10−4 1/d †
dh 5.5 · 10−4 5.5 · 10−4 1/d †
GDP 43,742 8,066 US$/p.p./y [20]
pL(`) 0 0 - [16]
pL(m) 0.1 0.1 - [16]
pL(h) 0.4 0.4 - [16]
pL(z) 1 1 - -
λ 1 · 10−4 1.75 · 10−4 1/d ‡

Table 2: Country specific model paramters. kinfo refers to the price for a drug resistance test. The
GDP refers to the estimation for the recent year 2011 by the International Monetary Fund. \ Computed
from the overall residual life expectancy (overall residual life expectancy = overall life expectancy - age of

HIV detection), normalized by AIDS related death
“

residual life expectancy healthy = (overall residual life

expectancy - prevalence*residual life expectancy AIDS)/(1-prevalence)
”

; with d` = (residual life expectancy

healthy)−1. The overall life expectancy in Germany and South Africa is 79.4 and 49.3 years, respectively,
with an average age of HIV detection of 35 and 25 years and respective HIV prevalence of 0.1% and 17.8%,
respectively. † For states m and h we assumed a respective residual life expectancy of 10 and 5 years.
‡ Assuming an annual inflation of 3.5% and 6.2% for Germany and South Africa, respectively.constrained
settings, the William J. Clinton Foundation (named after the ex-president) has negotiated prices for antivirals,
which are highly subsidized, allowing access to antivirals in these settings.

4 Application to Treatment Scheduling in HIV-1

In the following, we will apply the developed Markov control theory of Section 2 to treatment
scheduling and diagnostic testing in HIV-1 using the model presented in Section 3. We will
first analyze the computed optimal control policy and compare it with current standard-
of-care treatment in Section 4.1, before evaluating parameter sensitivities for the optimal
control policy with regard to improved patient survival in Section 4.2.

4.1 Action Rules & Cost Allocation

Table 3 displays the resulting optimal control policy for the resource-rich and the resource-
poor setting given the cost parameters of Table 2. The composition of the valuefunction and
an analysis of its dependence on the cost parameters is computed subsequently.

It can be seen from Table 3 that treatment 1 (a1) is chosen whenever (i) only wild type
(WT) virus is present, or (ii) when wild type (WT) and strains resistant to treatment 2 (R2)
coincide. Treatment 2 (a2) is only chosen, when drug resistance to treatment 1 has emerged
(R1), while the virus is still susceptible to treatment 2. Interestingly, there is a difference in
the handling of the other states (i.e. highly resistant strains HR, or the concurrence of R1
and R2): While in the context of Germany, no treatment (a∅) is given, treatment 1 (a1) is
applied in the resource-poor setting. This result is due to the fact that the use of treatment
in patients that carry drug resistant viruses may provide limited benefit in comparison to the
treatment costs for Germany, whereas costs for treatment in resource-constrained settings are
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states action τ action τ
Germany South Africa[

` , 0 , 0 , 0
]

a1 155 a1 ≥ τmax[
{m,h} , 0 , 0 , 0

]
a1 6− 24 a1 11− 45[

∗ , 0 , {`,m, h} , 0
]

a1 20− 554 a1 ≥ τmax[
∗ , {`,m, h} , 0 , 0

]
a2 159− 567 a2 ≥ τmax

otherwise a∅ ≥ τmax a1 ≥ τmax

Table 3: Optimal policy. Calculated optimal policy for the resource-rich (Germany) and resource-poor
settings (South Africa) giving the treatment and the examination lag time τ (in days) depending on the state
of the patient. For clarity reasons, states are merged according to their related treatment choice. The values
given for τ refer to the respective minimum and maximum value of τ(x) for the states x indicated in the first
column; e.g. for the second row it holds τ(

ˆ
h , 0 , 0 , 0

˜
) = 6 and τ(

ˆ
m, 0 , 0 , 0

˜
) = 24 for Germany.

in fact so low that their application in the case of drug-resistant virus is still cost-optimal.
This assumption is also supported by the cost-splitting in Table 4 (baseline parameters in first
row): For Germany, treatment cost cA produce > 20% of the total costs, whereas they only
produce about 2.5% of the total costs in South Africa. In fact, Stoll et al. [18] argued that
treatment may be too expensive in Germany, because of the use of original manufacturer’s
drugs instead of generic drugs.

As can be seen in Table 3, much longer periods between tests are proposed in the resource-
constrained setting in comparison to the resource-rich setting. In fact, drug-resistance test-
ing (and thus the ability to adapt one’s individual therapy) is only recommended in states[
{m,h} , 0 , 0 , 0

]
in the resource-poor setting. It may therefore be indicated for resource-

constrained settings, that despite the availability of subsidized treatment, their optimal use
may not be feasible because informed decision making is not possible as a consequence of
unaffordable diagnostics (kinfo is too high). In the resource-rich setting (Germany) infor-
mation costs produce 1.1% of the total costs, whereas they produce 3.3% of total costs in
the resource-poor setting (South Africa), see Table 4. Finally, it can be seen that the total
expected costs (last rows in Table 4) are disproportionately higher in Germany than in South
Africa (i.e. compare their differences with the differences in GDP in Table 2).

In order to quantify expected improvements when implementing the proposed policy, we
compared the expected costs and probability of AIDS-related death with the standard-of-
care treatment. Standard-of-care in Germany involves routine virological monitoring every
6 months. Upon detection of a viral rebound (any copy number state nC(M) = h or two
consecutive nC(M) = m), treatment is changed. In the resource-poor setting (South Africa),
drug resistance tests are currently not part of the standard-of-care. Instead, treatment is
changed if symptoms of immunodeficiency appear while the patient is under treatment with
first line therapy a1. We assumed that symptoms appear 6 month after a viral rebound.
The predicted costs from standard-of-care therapies are shown in Table 4, indicating that
an overall improvement of the optimal policy vs. standard-of-care therapy is achieved, in
particular in terms of state costs VS(x).

The differences in diagnostic testing as well as the different treatment policies in the
presence of highly resistant strains motivated us to assess whether cost-optimal policies may
yield better outcomes in terms of patient life-expectancy if a) the costs for diagnostic tests
kinfo are reduced and b) if the costs of treatment are reduced.
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kinfo

s-o-c§ basel.? 200 100 50 5
G

er
m

an
y Vinfo(x) 7, 816 10, 502 7, 681 5, 393 3, 684 950

VA(x) 195, 534 208, 100 211, 150 212, 950 214, 030 215, 510
VS(x) 794, 857 705, 380 698, 180 693, 710 690, 900 686, 880∑

998, 207 923, 982 917, 011 912, 053 908, 624 903, 340

S.
A

fr
ic

a Vinfo(x) 0 2, 294 2, 467 1, 838 1, 314 369
VA(x) 1, 880 1, 739 1, 899 1, 965 1, 909 1, 842
VS(x) 74, 014 65, 116 62, 408 60, 928 60, 928 60, 104∑

75, 894 69, 149 66, 774 64, 731 64, 151 62, 315

Table 4: Cost splitting. Calculated cost splitting (in US$) for state x =
ˆ
h , 0 , 0 , 0

˜
in the resource-rich

and resource-poor settings, respectively. § ’s-o-c’ denotes standard-of-care treatment. ? Baseline costs for
resistance tests were 400 and 500 US$ in Germany and South Africa, respectively.

4.2 Parameter Sensitivity with Regard to Survival

The probability of AIDS-related death was computed using a well-known Monte-Carlo method
[21]. In the standard-of-care simulations, the probability of AIDS-related death for the
resource-rich setting after 1000-, 3000- and 5000 days of treatment were 11.7%, 28.9% and
42.1%, see also Fig. 3A (open cyan circles), and 12.0%, 28.4% and 41.7% in the resource-poor
setting, respectively (see Fig. 3C, open cyan circles).

When applying the optimal policy with baseline parameters to the HIV dynamics model,
a survival improvement in comparison to standard-of-care was achieved. In the resource-rich
setting the probability of AIDS-related death was 5.0%, 15.5% and 25.2% after 1000-, 3000-
and 5000 days of treatment, see also Fig. 3A (blue circles). In the resource-poor setting, the
risk of AIDS-related death was 5.1%, 16.3% and 31.0%, respectively (see Fig. 3C, blue circles).
The slightly higher death probability under an optimal treatment policy in the resource-poor
setting, in comparison to the resource-rich setting, may be a result of the inability to change
treatment in time (τ ≥ τmax for many states in Table 3). In the sequel, we evaluated
whether reduced costs for diagnostic test may further improve survival. In Fig. 3A&C,
we show the probability of AIDS-related death for reduced prices of drug resistance tests
kinfo = 200, 100, 50, 5 US$ (green squares, red downward-pointing triangles, black upward-
pointing triangles and magenta diamonds). It can be seen that a reduction in diagnostic
test prices may significantly improve patient survival in resource-poor settings and that the
difference becomes more evident, if later time points are evaluated (panel C). For resource-
rich countries, patient survival is only insignificantly altered (panel A). To visualize the
benefit of reduced diagnostic test prices, we show the 5000 days probability of AIDS-related
death as a function of the price reduction factor for drug resistance tests in Figure 3B & D.
It can be seen that a price reduction of factor 2.5 (200 US$ per test) in the resource-poor
setting may already enable a level of death prevention similar to the resource-rich setting.
In the resource-poor setting (panel D) the probability of AIDS-related deaths 13.7 years
(5000 days) after treatment initiation were 31%, 24.2%, 21.8%, 19.2% and 17.6% for test
costs kinfo = 500, 200, 100, 50, 5 US$ per test, respectively. The probability of AIDS-related
deaths 13.7 years (5000 days) after treatment initiation in the resource-rich setting were
25.2%, 24.1%, 22.7%, 21.4% and 20.1% for test costs kinfo = 400, 200, 100, 50, 5 US$ per test,
respectively.

Despite the (anticipated) reduction of information costs Vinfo, Table 4 also reveals that
the costs for the states VS are reduced in the two settings (indicating a treatment benefit).

13



Figure 3: Effect of resistance test kinfo cost reduction on AIDS survival A: Probability of AIDS-
related death 1000-, 3000- and 5000 days after treatment initiation under application of a standard-of-
care treatment (open cyan circles) vs. a cost-optimal policy with drug resistance test costs kinfo =
400, 200, 100, 50, 5 US$ per test (blue dots, green squares, red downward-pointing triangles, black upward-
pointing triangles and magenta diamonds) in a resource-rich setting (Germany). B: Probability of AIDS-
related death 5000 days after treatment initiation as a function of resistance test price reduction in a resource-
rich setting (Germany). C: Probability of AIDS-related death 1000-, 3000- and 5000 days after treatment
initiation under application of a standard-of-care treatment (open cyan circles) vs. a cost-optimal policy with
drug resistance test costs kinfo = 500, 200, 100, 50, 5 US$ per test (blue dots, green squares, red downward-
pointing triangles, black upward-pointing triangles and magenta diamonds) in a resource-constrained setting
(South Africa). D: Probability of AIDS-related death 5000 days after treatment initiation as a function of
resistance test price reduction in a resource-constrained setting (South Africa).

For Germany VS is reduced by 2.6% when comparing the baseline parameters with kinfo = 5
US$ per test, whereas it is 7.7% for South Africa. Interestingly, the cost of information (Vinfo

in Table 4) is not reduced for South Africa, when the price for diagnostics is reduced from
kinfo = 500 to kinfo = 200 US$, while at the same time the total costs are reduced, which can
be fully attributed to a state cost reduction VS . This indicates that the price reduction for
diagnostics enables their more frequent use (thus no Vinfo reduction), which seems to fully
benefit the patient (lower VS).

For the resource-rich setting, we also evaluated whether treatment cost reduction would
improve patient survival. We found that there was only a small effect of treatment cost
reduction on patient survival. The probability of AIDS-related death 13.7 years (5000 days)
after treatment initiation were 23.8%, 23.5%, 23.6% and 21.3% if treatment cost were reduced
2-, 4-, 10-, and 20-fold, respectively.

In conclusion, it may be said that prices for diagnostic test costs are too high in resource-
poor settings. A small price reduction on the other hand may significantly improve patient
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survival in a cost-optimal way. For the resource-rich setting it is not indicated that price-
reduction for either diagnostics, or treatment would further improve patient survival in a
cost-optimal way. The simultaneous price reduction of treatment and diagnostics, however,
may do so.

5 Discussion & Conclusions

We have presented a novel Markov Control Model which requires full observability of the
Markov Process at certain rare observation times tj , whereas the process is unobserved
between two of these observation times. The process is therefore different to a Partially Ob-
servable Markov Decision Processes (POMDP), which usually assumes that the state cannot
be determined explicitly and which takes a propagation of this uncertainty into account.
Moreover, we assume that each observation produces costs, precluding frequent testing.
Therefore, one central challenge is to determine the (rare) observation times. The prob-
lem of finding an optimal balance between information and cost reduction is a new aspect
regarding Markov Control Theory.

Our approach is motivated by the fact that in many applications (in particular medical),
continuous observation and interaction is rarely feasible. Likewise, information is usually not
freely available in real world situations.
Of course, the exactness of information is not self-evident either. However, in the presented
application (as well as in many other applications), sufficient accuracy of the measurements
can be justified by the coarse-grained representation of the underlying dynamics (the simpli-
fied HIV model in Fig. 2).

We applied the novel method to determine optimal HIV treatment switching and mon-
itoring policies. We found distinct cost-optimal treatment policies for the case when two
treatment lines a1 and a2 are available in (i) resource-rich (Germany) and (ii) resource-poor
(South Africa) settings. For the resource-rich setting, we found that diagnostic testing should
be performed more frequently in the case where high virus copy numbers are observed and
less frequently when low numbers are encountered. Note, that currently virologic testing is
recommended every 6 month, irrespective of the number of viruses present. Secondly, for
resource-poor countries, we found that drug resistance testing may not be cost-optimal in
most disease states when taking the current prices of diagnostics into account. Currently,
drug resistance test are not part of the standard-of-care in resource-poor settings. Although
the computed optimal policy may already improve survival (see Figure 3C) , small subsidy
for resistance tests (2.5 fold reduction) may further improve patient survival by enabling
informed decision making.

The presented work has also some limitations in application to real-world examples: In
resource-rich countries like Germany, more sophisticated treatment changes may be imple-
mented. Thus, more than two treatment options may be available. In the third world,
however, this is not the case. Usually, a certain first-line treatment (a1) and a second line
treatment (a2) are available (like in our application).

For logistic reasons, diagnostic assessment may be performed in a cross-sectional way in
resource-constrained settings, i.e. all patients in a district are initiated and monitored at the
same time. For this type of treatment practice, the herein derived approach may indicate
when the initial assessments should occur. After a short while however, individualization as
a result of the stochastic nature of the process would be required.
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Although treatment has become available and affordable in resource-constrained setting
through subsidy, clinical testing remains costly. Thus, the effective use of the available drugs
may not be granted, as the prices for laboratory testing and thus informed decision making
are too high to be mastered by the national economies. Our results support recent appeals for
affordable drug resistance tests in the public sectors of resource-constrained settings [22]. We
showed that price reductions for drug resistance tests may in fact improve patient survival
in a cost-optimal way. Furthermore, sub-optimal treatment scheduling drives the emergence
of drug resistance, which is a major problem in long-term epidemiologic control and could
potentially be avoided if clinical testing was subsidized similarly to the treatment itself.

In the complete absence of drug resistance tools to guide informed decision making in
resource-constrained settings, it may be beneficial to implement population-based treatment
switching policies, i.e. treating all individuals for a certain period with treatment a1 and than
to switch to a2, without having detailed knowledge about the actual state of the patient, e.g.
[12]. Mathematically, the optimal (population-based) switching rule could be computed by
interpreting the system as a ”switched system”, where the probability flux is deterministically
steered according to the infinitesimal generators of respective treatments. This work will,
however, be left for the future.

A Bellman Equation: Proof

Introduce, for a given policy u : S → A × [0,∞), the short notations Xj := Xtj , aj :=
a(Xtj ), τj := τ(Xtj ), j = 0, 1, 2, .... I.e., we consider the discrete time stochastic processes
(Xj)j=0,1,2,..., (aj)j=0,1,2,..., (τj)j=0,1,2,... of states, actions and time intervals determined at
each observation point. Note that these processes highly depend on each other. We make
the following observations.
(i) By the short notation we can write

J(x, u) = Eux

 ∞∑
j=0

e−λtj
(
C(Xj , aj , τj) + e−λτjkinfo

) .

(ii) For any function V : S → R and any policy u : S → A× [0,∞) it holds

V (x)− Eux
(
e−λtn+1Tan,τnV (Xn)

)
= Eux

 n∑
j=0

e−λtj
(
V (Xj)− e−λτjTaj ,τjV (Xj)

) .
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To see this, we start from the right:

Eux

 n∑
j=0

e−λtj
(
V (Xj)− e−λτjTaj ,τjV (Xj)

)
(a)
=

n∑
j=0

(
Eux
(
e−λtjV (Xj)

)
−Eux

(
e−λtje−λτjTaj ,τj

V (Xj)
))

(b)
=

n∑
j=0

(
Eux
(
e−λtjV (Xj)

)
−Eux

(
e−λtj+1Eu

(
V (Xj+1)|Xj

)))
(c)
= V (x) +

n−1∑
j=0

(
Eux
(
e−λtj+1V (Xj+1)

)
−Eux

(
e−λtj+1Eu

(
V (Xj+1)|Xj

)))
−Eux

(
e−λtn+1Eu

(
V (Xn+1|Xn)

))
(d)
= V (x)− Eux

(
e−λtn+1Tan,τn

V (Xn)
)
.

In (a) we used the linearity of the expectation value. (b) follows from the fact that Taj ,τj
V (Xj) =

Eu(V (Xj+1)|Xj) and e−λtje−λτj = e−λtj+1 by definition. Step (c) is a rearrangement of the
sum and the replacement Eux

(
e−λt0V (X0)

)
= V (x) (using t0 = 0 and X0 = x). In (d) the

whole sum disappears due to the law of total expectation in the sense of

Eux
(
e−λtj+1V (Xj+1)

)
= Eux

(
E
(
e−λtj+1V (Xj+1)|Xj , tj

))
= Eux

(
e−λtj+1E

(
V (Xj+1)|Xj , tj

))
= Eux

(
e−λtj+1E

(
V (Xj+1)|Xj

))
.

Here we used first that, given Xj and tj , tj+1 is a deterministic quantity such that e−λtj+1

can be taken out of the expectation value like a scalar factor, and second that Xj+1 only
depends on Xj but not on tj as our dynamics are assumed to be time homogeneous.
(iii) If a function V satisfies the given Bellman equation, it fulfills

V (X) ≤ C(x, a, τ) + e−λτkinfo + e−λτTa,τV (x)

for any a ∈ A, τ ≥ 0. That is,

V (X)− e−λτTa,τV (x) ≤ C(x, (a, τ)) + e−λτkinfo.

Putting 2. and 3. together one gets

V (x)− Eux
(
e−λtn+1Tan,τn

V (Xn)
)
≤ Eux

 n∑
j=0

e−λtj
(
C(Xj , aj , τj) + e−λτjkinfo

) .

Now taking n→∞ we get
V (x) ≤ J(x, u)

where u was any given policy. In this last step we used on the left hand side the fact, that
Tan,τn

V (Xn) is bounded while e−λtn+1 converges to zero (as tn+1 → ∞), and on the right
hand side we used monotone convergence and observation 1.
We obtain equality when choosing u = u∗.
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B Parameter Estimation for the HIV-Model

We estimated all parameters p by fitting the presented model to clinical data of virus decay-
and rebound dynamics [23–26] as well as clinically observed probabilities of virologic sup-
pression during first-line a1 and second-line a2 therapy in treatment naive- and experienced
patients [27–30] by minimizing the following weighted least-square criterion:

arg min
p

∑
i

∑
j

∑
x∈S

((
P̃i
(
x, tj |π0, t0, p

)
− Pi

(
x, tj |π0, t0

)
Pi
(
x, tj |π0, t0

) )
·Nij

)2

,

where p =
(
δh, δm, k`,∅, km,∅, µh,R1,∅, µm,R1,∅, µh,R2,∅, µm,R2,∅, η(a1), η(a2)

)
denotes the set

of parameters to be estimated and P̃i
(
x, tj |π0, t0, p

)
denotes the model predicted probability

that the population vector is x at time tj for clinical/experimental condition i, given parame-
ters p. Pi

(
x, tj |π0, t0

)
denotes the corresponding clinically observed probability (in the sense

of frequency). The initial distribution π0 at the time of treatment initiation t0 were either es-
timated from the data [23–26] or set to π0(

[
h , 0 , 0 , 0

]
) = 1 in treatment naive-patients and

to π0(
[
` , h , 0 , 0

]
) = 1 in treatment-experienced patients. The parameter Nij denotes the

number of individuals that gave rise to the clinically observed probabilities Pi
(
x, tj |π0, t0

)
for

clinical condition i at time tj . We constrained the parameter space to non-negative numbers
and bounded the values for the efficacy of the drugs to 0 ≤ η(a1) ≤ 1 and 0 ≤ η(a2) ≤ 1,
respectively. The following inequalities had to be fulfilled: (i) k`,∅ ≤ km,∅ and (ii) δm ≤ k`,∅,
which is motivated by population dependent virus growth (inequality (i)) and the fact that
the virus should rather grow than decline in the absence of treatment (inequality (ii)).
The agreement between the model-predicted probabilities P̃i

(
x, tj |π0, t0, p

)
and clinically ob-

served probabilities Pi
(
x, tj |π0, t0

)
was generally good, although we observed deviations in

the short-term dynamics of viral decay and rebound that can be attributed to the coarse-
graining of the underlying viral kinetics (its representation in terms of only four copy number
states 0, `,m, h). The agreement with experimental data could, however, be further improved
if more copy number states were utilized (less coarse graining of the underlying dynamics).
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