
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

KARIN GATERMANN1 AND BIRKETT HUBER2

A family of sparse polynomial systems arising in
chemical reaction systems

�FU Berlin
�Wolfram Research

Preprint SC 99-27 (August 1999)



� ������ �� 	
��	� 
���
����� 	�	���	 ���	�
� �


�������� �������
 	�	���	

Karin Gatermann‡and Birkett Huber§

September 19, 1999

Abstract: A class of sparse polynomial systems is investigated which is defined by a
weighted directed graph and a weighted bipartite graph. They arise in the model of
mass action kinetics for chemical reaction systems. In this application the number of
real positive solutions within a certain affine subspace is of particular interest. We show
that the simplest cases are equivalent to binomial systems while in general the solution
structure is highly determined by the properties of the two graphs. First we recall results
by Feinberg and give rigorous proofs. Secondly, we explain how the graphs determine the
Newton polytopes of the system of sparse polynomials and thus determine the solution
structure. The results on positive solutions from real algebraic geometry are applied to
this particular situation. Examples illustrate the theoretical results.

1 Introduction

We investigate a class of sparse polynomial systems which arise in applications. These
systems arise in the modelling of chemical reaction systems by the so-called mass action
kinetics. The polynomials in the system are defined by two graphs, a weighted directed
graph for the chemical reactions and a weighted bipartite graph for the involved chemicals.

In the chemical engineering literature [3, 8, 9, 10, 11, 14, 16, 23] there have been several
attempts to study the number of real positive solutions depending on the structure of the
graphs.

The investigation of real positive solutions of the sparse polynomial system f(x) = 0 is
very important for the application since this are the steady state solutions of a dynamical
system ẋ = f(x) which in turn is just the reaction part of a partial differential equation
of reaction-diffusion type. The dependence of the steady states on the parameter e.g. a
coefficient of a monomial influences the existence of time- and space-dependent solutions
of the reaction diffusion system. Secondly, singular perturbation theory of ẋ = f(x)
exploits the knowledge of the real variety for the investigation of properties of periodic
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orbits. The decomposition into slow and fast variables is done in cases where a periodic
orbit is close to the real variety. Dynamic phenomena of systems of mass action type have
been studied a lot by numerical mathematicians, see e.g. [6].

The studies by engineers are completely independent of the literature on sparse poly-
nomial systems in algebraic geometry. There are at least four methods for dealing with
sparse polynomial systems, Gröbner bases, characteristic sets, sparse resultants, and ho-
motopy methods. In [21] Gröbner basis computation for systems of mass action type
have been performed. We do not follow this approach. The homotopy method [18] is
a mixed discrete-numeric algorithm in order to find all complex solutions of the sparse
polynomial system. It is based on subdivisions of the Newton polytopes associated to the
sparse equations. Based on this a wide range of articles appeared e.g. [19, 30, 31]. Other
homotopy methods are suggested in [17].

Related to this approach there are results on the number of real and of positive real
solutions [20, 27, 28]. In [29] Sturmfels gives an easy to read summary of these approaches.
In the last section we apply these results to our particular application.

The aim of this paper is to build a bridge between the two areas, the chemical engi-
neering literature and the algebraic literature on sparse polynomial systems. We give a
mathematical introduction into the model and rigorous proofs of the results in the en-
gineering literature. The application of the results of sparse polynomial systems gives a
deeper understanding and transparence. Our main result is that cycles and paths in the
directed graph are closely related to the existence of positive solutions.

The outline of the paper is as follows. In Section 2 we give a detailed description of the
problem, the sparse polynomial system Y AΨ(x) = 0. Since the coefficients are heavily
determined by the structure of the kinetic matrix A this is investigated in Section 3. In
Sections 4, 5, and 6 the simple cases with rank(A) = rank(Y A) or rank(A) = rank(Y A)+1
are treated. The previous results by Feinberg1 are proved rigorously. The binomial
systems are solved with Smith normal form or Hermite normal form while the dimension
of the generated lattice and toric varieties are exploited in other cases.

Finally, the last section applies the theory of sparse polynomial systems.
Examples illustrating the theoretical results have been computed with the help of Maple.

2 The model of mass action kinetics

Chemical reactions are determined by the reacting chemicals and some rules for possible
reactions which transfer one group of chemicals into another group of chemicals.

The data are given by two graphs. First there is a weighted directed graph R with
oriented edges Cj → Ci for some i, j ∈ {1, . . . , n} linking the complexes Ci. Each oriented
edge Cj → Ci has a weight kCj→Ci

= kij ∈ R+. This defines the weighted adjacency
matrix K = (kij) ∈ (R≥0)

n,n with kij = 0 if Cj → Ci is not an arrow. The second graph

�Feinberg writes in [11]: Charlie Conley was very enthusiastic about chemical reaction network theory,
and, for me, his enthusiasm was a source of encouragement when encouragement was very much needed.
At the time, I did not know that Charlie was enthusiastic about everything.
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Figure 1: A reaction network with six complexes as a weighted directed graph and a
weighted bipartite graph for the composition of complexes as sums of species.

is a weighted bipartite graph encoding the occurence of species in the complexes. The two
sets consists of the chemical species Si, i = 1, . . . , m and the complexes Cj, j = 1, . . . , n.
Each edge {Cj Si} has a weight yij ∈ N. This defines the weighted adjacency matrix
whose relevat part is Y = (yij)i=1,...,m,j=1,...,n. It is called stoichiometric matrix since the
complexes are given as Cj =

∑m
i=1 yijSi, j = 1, . . . , n with stoichiometric coefficients yij.

We call the columns of Y by y1, . . . , yn ∈ (Z≥0)
m.

There are some restrictions on the directed graph R in order to be non-degenerate.
For example each Ci appears at least once on the left or the right of an oriented edge.
But a forward reaction Cj → Ci and an anti-reaction Ci → Cj with two different associ-
ated constants are simultaneously possible. But there are no parallel edges. Also some
complexes only appear as results and thus are called product complexes. The number of
the reactant complexes is denoted by r. Obviously, r ≤ n. In the bipartite graph it may
happen that one complex Cj is not linked to the species Si and thus the associated column
is yj = 0 since this corresponds to the fact that a chemical substance is constantly poured
into the chemical reactor. But we assume that every vertex Si is linked to a complex Cj.

The model of mass action kinetics is built from three mappings resulting in a system of
differential equations consisting of sparse polynomials.
1.) The directed graph R defines a linear mapping A which encodes the information
about the reaction probabilities. The amout of reaction Cj → Ci taking place depends
on the presence of the species in Cj . This is measured by the quantity uj. Then the
chance that the reaction Cj → Ci actually happens is kijuj where kij is the associated
positive constant. The reaction will decrease the amount of all species in C j and increase
the species in Ci. So let the unit vectors of Rn denote by ω1, . . . , ωn. Then

A : Cn → Cn, u �→
∑

(Cj→Ci)∈R
kijuj(ωi − ωj) ,
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is a linear mapping measuring the changes. Since

Au =
∑

(Cj→Ci)∈R
kij uj ωi −

∑
(Ci→Cj)∈R

kji ui ωi = Ku−
n∑

i=1

(
n∑

j=1

kji)ui ωi,

the representing matrix of the mapping A with respect to the standard basis ω1, . . . , ωn of
Cn is the kinetic matrix A = (K − diag(K te)), where e = (1, . . . , 1)t ∈ Rn. Observe that
n − r columns of A corresponding to product complexes are zero. Often we will restrict
to the non-negative orthant (R≥0)

n or to the positive orthant (R+)
n where R+ denotes

the positive real numbers and R≥0 denotes the non-negative real numbers. The rank of
the linear mapping A depends of course on the values of kij. But it strongly depends on
the structure of the graph as the following example shows.

Example 2.1 The network in Figure 1 contains n = r = 6 complexes. The mapping
A : C6 → C6 is given by

A(u) = k21u1(ω2 − ω1) + k32u2(ω3 − ω2) + k23u3(ω2 − ω3)
+k41u1(ω4 − ω1) + k54u4(ω5 − ω4) + k65u5(ω6 − ω5) + k46u6(ω4 − ω6)

= k21u1(ω2 − ω1) + (k32u2 − k23u3)(ω3 − ω2) + k41u1(ω4 − ω1)+
(k54u4 − k46u6)(ω5 − ω4) + (k65u5 − k46u6)(ω6 − ω5)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−k21 − k41)u1
k21u1 − k32u2 + k23u3

k32u2 − k23u3
k41u1 − k54u4 + k46u6

k54u4 − k65u5
k65u5 − k46u6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(k21 + k41)
k21 −k32 +k23

k32 −k23
k41 −k54 k46

k54 −k65
k65 −k46

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
u.

The rank of the matrix is 4 for generic choice of kij since (0, 1, 1, 0, 0, 0)A = 0 and
(0, 0, 0, 1, 1, 1)A = 0. In Section 3 it will be explained that this is due to the special
structure of the directed graph.

2.) For each complex there is a monomial in the variables x1, . . . , xm which are the
concentrations of the species. Then

Ψ : Cm → Cn, Ψ(x) =

⎛⎜⎜⎝
xy1
...
xyn

⎞⎟⎟⎠ ,
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comes in whenever something depends on the concentrations x of the species.
Since concentrations are non-negative one often restricts Ψ to (R+)

m or (R≥0)
m. Ob-

viously, im(Ψ|(R≥0)m) ⊂ (R≥0)
n and im(Ψ|(R+)m) ⊂ (R+)

n.
3.) The third mapping is the linear mapping

Y : Cn → Cm, z →
n∑

i=1

yizi ,

associated to the relevant part Y = (y1, . . . , yn) ∈ (Z≥0)
m,n of the weighted adjacency

matrix of the bipartite graph. zi = (Au)i means the change of the i-th complex. The
chemical substance Sj appears in some of these complexes with quantity (yj)i = yij.
Thus (Y z)j gives the change of species Sj according to the changes of the complexes. The
composition is

Y A(u) =
∑

(yj→yi)∈R
kijuj(yi − yj) .

Altogether we get the differential equations

ẋ = Y AΨ(x). (1)

An obvious property is that the monomials corresponding to pure product complexes do
not appear in (1) because of the structure of A.

Example 2.2 (Example 2.1 continued). From Figure 1 we read from the bipartite graph
the stoichiometric matrix

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 1 0 0
0 0 2 0 0 0
0 0 0 0 1 0
0 0 0 0 3 2
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This gives the following differential equations

ẋ1 = k2,1 − k3,2x1 + k2,3x3
2,

ẋ2 = k4,1 − k5,4x2 + k4,6x5
2x6,

ẋ3 = 2 k3,2x1 − 2 k2,3x3
2,

ẋ4 = k5,4x2 − k6,5x4x5
3,

ẋ5 = 3 k5,4x2 − k6,5x4x5
3 − 2 k4,6x5

2x6,

ẋ6 = k6,5x4x5
3 − k4,6x5

2x6

Problem: For a given directed graph R with non-negative constant weights k ij ∈
R≥0, i, j = 1, . . . , n and complexes yi ∈ (Z≥0)

m, i = 1, . . . , n we have the sparse polyno-
mial equations

Y AΨ(x) =
∑

(Cj→Ci)∈R
kijx

yj (yi − yj) = 0 . (2)
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The task is to discuss the structure of the solutions in (R+)
m and (R≥0)

m.

Due to the structure arising from chemical reactions the systems often will be un-
derdetermined. Thus one is allowed to add additional linear restrictions and still gets a
solvable system. A natural choice are the affine linear subspaces x0 + im(Y A) since they
are flow-invariant by the following lemma.

Lemma 2.3 A trajectory x : R → Rm of the differential equations

ẋ = Y AΨ(x)

starting at x(t0) = x0 ∈ (R≥0)
m for t = t0 stays for all t > t0 within the affine space

x0 + im(Y A). If the trajectory x(t) stays within (R≥0)
m for all t ∈ [t0, t1] then it stays in

the cone x0 + {∑j αjY aj |αj ≥ 0, j = 1, . . . , n} where aj denote the columns of A.

Proof: The first statement is equivalent to the fact that for any t1 < t2 the vector
x(t1)−x(t2) is an element of the image of Y A. Simple integration along the solution x(t)
yields

x(t2) = x(t1) +
∫ t2

t1
Y AΨ(x(t))dt.

This is equivalent to

x(t2)− x(t1) = Y A
∫ t2

t1
Ψ(x(t))dt,

which shows that the difference x(t2) − x(t1) is a linear combination of the columns of
Y A with coefficients αj =

∫ t2
t1
Ψj(x(t))dt =

∫ t2
t1
xyj (t)dt.

If x(t) is non-negative then the monomials xyj are non-negative and so are the coeffi-
cients αj . �

A trajectory staying in (R≥0)
m and in the cone x0 +

∑
j αjY aj stays in particular in

(x0 + im(Y A)) ∩ (R≥0)
m. In [9] im(Y A) is called kinetic subspace.

Since the columns of A are linear combinations of ω i−ωj where Cj → Ci are elements
of the directed graph R Feinberg [8] p. 2-15 defines the so-called stoichiometric space

S = span({yi − yj | (Cj → Ci) ∈ R}).

In [8] the space S is a natural choice since more general models which are not given by
polynomial functions are considered. Obviously, im(Y A) ⊆ S. In Section 3 we will give
a sufficient condition for im(Y A) = S. Choosing different sets of constants {k ij | (Cj −
Ci) ∈ R} in general the linear space im(Y A) will vary with the choices of k ij since the
matrix A depends on these constants. But it is clear that the variation is a variation of
subvector spaces of the stoichiometric space S. In the engineering literature Lemma 2.3
is formulated with S instead of im(Y A). Additionally, one finds conditions under which
(x0 +S)∩ (R≥0)

m is a bounded region. Observe that S is related to the incidence matrix
W = (wμk) ∈ {−1, 0, 1}n,a of the directed graph with

wμk =

⎧⎪⎨⎪⎩
1 μ = i,
−1 μ = j,
0 else

6



Figure 2: A trajectory within an affine subspace.

where Cj → Ci is the oriented edge (arrow) of index k and a is the number of arrows.
Then S = im(YW ).

It should be understood that the weighted directed graph and the weighted bipartite
graph are often the result of modifications of the original chemical reaction system.

- The edge 0 → Si modells pouring liquid into the reactor and Sj → 0 taking some
substance out: A steady state of the equations corresponds to a constant flow of
the actual system where each chemical species given into the reactor immediately
reacts to something else.

- Several oriented edges are often summarized as one edge by experience by insight
into the chemical process by chemical engineers. In the elementary reactions the
complexes consists most of the time of two species only.

- Often the model of mass action kinetics is modified by taking more general functions
into account.

- A special modelling of the graphs is necessary for catalytic surface reactions where
the chemical reaction only happens on the surface of a catalyst.

The main properties of the system of sparse polynomial equations are summarized as
follows.

- The coefficients of the system are determined by the sparse structure of the directed
graph by the mapping A and by the bipartite graph by its stoichiometric matrix Y .

- The coeficients yij of the complexes enter twice, as exponents in the monomials and
in the coefficients.

- The system is a sparse system, but moreover sparse monomials appear only since
the yi have sparse support.
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- Last not least the signs of the coefficients are (partially) restricted since k ij ≥ 0 and
(yi)l ≥ 0.

There are two tasks: studying the coefficient matrix and secondly to study the lattice
generated by the exponents of the monomials. Since the coefficient matrix Y A determines
how the monomials are distributed over the polynomials both tasks are closely related.
The first distinction is made whether the property rank(Y a) = rank(A) is satisfied.
Obviously, one first needs to investigate the non-genericity of the coefficients. This is
simply linear algebra. One has to distinguish the two cases
a.) Rank(Y|im(A)) = Rank(A) or

b.) Rank(Y|im(A)) < Rank(A).

In the engineering literature [8, 14] either case a.) is assumed where solving Y AΨ(x) = 0
is equivalent to solving AΨ(x) = 0 or other conditions hold which imply case b.). In many
situations these assumptions are well justified by the application.

3 The structure of the kinetic matrix A

Since the kinetic matrix A depends on the structure of the directed graph the basic
properties of a directed graph are recalled first.

Ignoring the orientation of the edges we have a multigraph. A standard notion of a
graph is that of its connected components which are called in the engineering literature
linkage classes. We refer to them as Lλ ⊂ {1, . . . , n}, λ = 1, . . . , l collecting the indices
of connected vertices. Thus {1, . . . , n} = L1∪̇L2∪̇ · · · ∪̇ Ll. Since the graph R is directed
the connected components may be even further decomposed.

Definition 3.1 ([8] p. 4-7) Two complexes Ci, Cj are called strongly linked, if a sequence
of complexes exists such that Ci → Cν1 → Cν2 → · · · → Cj and a path exists with
Cj → Cμ1 → Cμ2 → · · · → Ci. This equivalence relations decomposes the set of complexes
into the strong connected components or strong linkage classes. If no complex in a strong
linkage class reacts to a complex not in this class, this class is called terminal strong
linkage class or terminal strong connected component. We denote these terminal classes
by T λ

ν ⊂ {1, . . . , r}, ν = 1, . . . , tλ where t1 + · · ·+ tl = t is their total number.

These definitions are illustrated in the following example. It shows the consequences
for their structure of the mapping A.

Example 3.2 The chemical reaction in Figure 3 includes n = r = 12 complexes.
There are three connected components L1 = {1, 2, 3},L2 = {4, 5, 6, 7, 8, 9},L3 =

{10, 11, 12}. The first class L1 includes the strong linkage class {1, 2} and the terminal
strong linkage class T 1

1 = {3} while the second class subdivides into two terminal strong
linkage classes, T 2

1 = {5, 6, 7}, T 2
2 = {8, 9} and one strong linkage class equal to {4}. The

fourth terminal strong linkage class is T 3
1 = L3. The rests R1 = L1 \ T 1

1 = {1, 2} and

8
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Figure 3: A reaction network with three connected components (linkage classes), four
terminal strong linkage classes and two strong linkage classes which are not terminal.

R2 = L2 \ (T 2
1 ∪T 2

2 ) = {4} are strong linkage classes. In general the rest (connected com-
ponent minus terminal strong linkage classes) may decompose into several strong linkage
classes.

It is worth to look at the kinetic matrix A since it has a particular structure.

A =

⎛⎜⎝ A1 0 0
0 A2 0
0 0 A3

⎞⎟⎠ with A1 =

⎛⎜⎝ −k21 k12 0
k21 −k12 − k32 0
0 k32 0

⎞⎟⎠ and

A� =

⎛⎜⎜⎜⎜⎜⎜⎝
−k�� − k�� 0 0 0 0 0

k�� −k�� 0 k�� 0 0
0 k�� −k�� 0 0 0
0 0 k�� −k�� 0 0

k�� 0 0 0 −k�� k��
0 0 0 0 k�� −k��

⎞⎟⎟⎟⎟⎟⎟⎠ , A	 =

⎛⎝ −k��,�
 0 k��,�

k��,�
 −k��,�� 0

0 k��,�� −k��,�


⎞⎠ .

Each connected component corresponds to an invariant subspace of A which further de-
composes into invariant subspaces corresponding to terminal strong linkage classes and
a non-invariant rest. Observe that the four submatrices corresponding to the terminal
strong linkage classes have rank defect one each.

Lemma 3.3 The vector space Cn decomposes into vector spaces according to the con-
nected components which are invariant under A, i.e. ∃ Lλ = span({ωλ |μ ∈ Lλ}) with

Cn = L1 ⊕ · · · ⊕ Ll and ALλ ⊂ Lλ, λ = 1, . . . , l.

Each Lλ further decomposes according to the terminal strong linkage classes, i.e. for each
λ = 1, . . . , l one defines T λ

ν := span({ωi | i ∈ T λ
ν }) for ν = 1, . . . , tλ and the rest Rλ :=

span({ωi | i ∈ Rλ = Lλ \
⋃tλ

ν=1 T λ
ν }). Then for all λ = 1, . . . , l

Lλ = T λ
1 ⊕ · · · ⊕ T λ

tλ
⊕ Rλ with AT λ

ν ⊂ T λ
ν , ν = 1, . . . , tλ .
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Especially, each pure product complex forms one terminal strong linkage class. Thus
each index i corresponding to a pure product complex gives a unit vector ωi in the kernel
of A and consequently an invariant space T λ

ν =span(ωi).

Theorem 3.4 ([14], Prop. 4.1 in [8]) The kernel of the kinetic mapping A decomposes
as

ker(A) =
l⊕

λ=1

tλ⊕
ν=1

(
ker(A) ∩ T λ

ν

)
.

Moreover, dim(ker(A) ∩ T λ
ν ) = 1, ν = 1, . . . , tλ, λ = 1, . . . , l and the generating vectors

vλν ∈ (R)n are non-negative and have support T λ
ν , that means

(vλν )i > 0 for i ∈ T λ
ν ,

(vλν )i = 0 for i ∈ {1, . . . , n} \ T λ
ν .

Remark 3.5 This theorem is heavily based on the fact that the rate constants kij associ-
ated to an oriented edge in the directed graph R are positive.

For convenience we recall the proof in the Appendix.

Decomposing the kinetic matrix A according to the connected components and termi-
nal strong linkage classes by

A =

⎛⎜⎜⎝
A1

. . .

Al

⎞⎟⎟⎠ , Aλ =

⎛⎜⎜⎜⎜⎝
B 0 · · · 0
B1 Aλ1 0
...

. . .

Btλ 0 Aλtλ

⎞⎟⎟⎟⎟⎠ , λ = 1, . . . , l ,

the theorem states that each block Aλν has rank defect one and each block Aλ has rank
defect tλ, the number of terminal strong linkage classes within the connected component λ.
Thus rank(A) = n− t where t is the total number of terminal strong linkage classes.

The following defines a case with the most simplest structure of A.

Definition 3.6 ([8]) The directed graph R is called weakly reversible, if for each path
Cj → Cν1 → Cν2 → · · · → Ci there is a path Ci → Cμ1 → Cμ2 → · · · → Cj.

In a weakly reversible graph each connected component equals its terminal strong
linkage class. Chemists report that almost all relevant chemical reaction systems have
this property. For weakly reversible graphs we have rank(A) = n − l where l is the
number of connected components. But rank(A) = n− l may be true for graphs which are
not weakly reversible. It is sufficient that each connected component contains precisely
one terminal strong linkage class (tλ = 1, λ = 1, . . . , l).

Now we return to the coefficient matrix Y A of our sparse polynomial system. im(Y A)
equals span(Y a1, . . . , Y an) where the aj are the columns of A. On the other hand each
aj is a vector in W = span(ωi − ωj |Cj → Ci ∈ R), the image of the incidence matrix

10



of the directed graph. If the graph is weakly reversible then im(A) = W . The relation
of the stoichiometric space S = YW = span(yi − yj |Cj → Ci ∈ R) to W is analogous
to the relation of im(Y A) to span(a1, . . . , an) = im(A). Since im(A) ⊆ W it follows
im(Y A) ⊆ S. If dim(S) = dim(W ) then dim(im(Y A)) = dim(im(A)) by the same
argumentation. Secondly,

dim(W )− dim(S) ≥ dim(im(A))− dim(im(Y A)).

Feinberg [8] shows that dim(W ) = n − l where l is the number of connected compo-
nents. Then he calls δ = dim(W )− dim(S) = n− l − dim(S) the deficiency. It is simply
the rank defect between W and YW = S. But we need to know the rank defect between
im(A) and im(Y A). If the graph is weakly reversible then im(Y A) = S and the deficiency
measures the correct rank defect. Analogously, if each connected component contains
precisely one terminal strong linkage class only then im(A) = W implies im(Y A) = S
and the deficiency is useful.

4 A first result

We give results for a special class of chemical reaction systems of mass action type. The
first is our version of the deficiency zero theorem ([9]). The theorem uses the Smith
normal form which may be found in the text books [1] p. 307 and [22] Section 1.4. For
efficient computations of Smith normal forms for sparse integer matrices see [24]. For
practical computations one often uses the Hermite normal form, see [1] p. 301. For its
efficient implementation see [25, 26].

Theorem 4.1 Consider the system Y AΨ(x) = 0 with A = K − diag(K te) with e =
(1, . . . , 1) defined by the weighted adjacency matrix K of a directed graph and the relevant
part Y of an adjacency matrix of a weighted bipartite graph. If the directed graph is weakly
reversible and

rank(A) = rank(Y A),

then each space (x0 + im(Y A)) ∩ (R+)
m with x0 ∈ (R+)

m contains precisely one real
positive solution of Y AΨ(x) = 0.

Proof: Since rank(A) = rank(Y A) solving Y AΨ(x) = 0 is equivalent to solving
AΨ(x) = 0. Since the directed graph is weakly reversible the kinetic matrix A has block
diagonal form where each block has rank defect 1. Since the graph is weakly reversible
im(Y A) equals the stoichiometric space S. Its dimension is rank(Y A) = rank(A) =
dim(S) and we denote it by s. By linear algebra and Theorem 3.4 the system AΨ(X) = 0
is equivalent to solving a system of s binomial equations

xyi − c1x
yj = 0, . . . , xyk − csx

yl = 0.

In each equation the exponents of the two binomials correspond to two complexes in the
same connected component. Moreover, the constants c1, . . . , cs are positive since the diag-
onal elements of A are negative dominant (ajj ≤ −∑

i �=j aij, j = 1, . . . , n). This property
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is preserved under Gaussian elimination. Since only positive solutions are interesting we
may divide by one monomial

xyi−yj = c1, . . . , xyk−yl = cs.

we receive exponents which generate the stoichiometric space S. Systems of binomial type
may be solved by Smith normal form. The exponent vectors y i − yj form the columns of
a matrix Π ∈ Zm,s. There exists invertible integer matrices U ∈ GL(m,Z), V ∈ GL(s,Z)
and d1, . . . , ds ∈ N with dj|dj+1, j = 1, . . . , s− 1 such that

U ΠV =

⎛⎜⎜⎜⎜⎝
d1 0

...
0 ds

0

⎞⎟⎟⎟⎟⎠ .

All invariant factors dj are unequal zero since span(Π) = S. The nonlinear change of
coordinates

x1 = zu11
1 zu21

2 · · · zum1
m , . . . , xm = zu1m

1 zu2m
2 · · · zumm

m ,

and exponentiation with entries of V and multiplication of equations yields

zd11 = c′1, . . . , zdss = c′s ,

with c′i =
∏s

j=1 c
vji
j > 0, i = 1, . . . , s. Since the constants c′i are positive there is pre-

cisely one positive solution (z̃1, . . . , z̃s). Positive values z correspond to positive x. For
zs+1, . . . , zm there is no restriction giving a parametrization x(zs+1, . . . , zm) of the solution
variety. The linearization d

dz
x(zs+1, . . . , zm) is given by

∂xj
∂zi

= uijz
u1j

1 z
u2j

2 · · · zuij−1
i · · · zumj

m = uij
1

zi
xj j = 1, . . . , m, i = s + 1, . . . , m.

∂x
∂zi

is a modification of the i-th row of U which for i = s + 1, . . . , m is orthogonal to
im(Y A) = S = span(Π). If x is positive diag(1/x1, . . . , 1/xm) defines a weighted inner
product. With respect to this locally defined inner product ∂x

∂zi
is orthogonal to S. This

shows that the real positive variety is always transversal to the affine spaces x0+im(Y A).
�

Remark: Let the graph R be weakly reversible so that S = im(Y A) and assume
rank(Y A) = rank(A). For positive solutions x, x̃ ∈ (R+)

m we have

ln(x)− ln(x̃) = U t(ln(z)− ln(z̃)) = (U t
1, U

t
2)

((
ln(z1)
ln(z2)

)
−

(
ln(z1)
ln(z̃2)

))
= U t

2 (ln(z2)− ln(z̃2)) .

Here the logarithm of a vector is meant to be taken for each component and the indices
1 and 2 refer to two blocks of components corresponding to free and fixed variables. The

12



x0+im(YA)

zs+1...zmz1...zs

Figure 4: Nonlinear parametrization derived from Smith normal form.

last expression shows that the difference ln(x)− ln(x̃) is a linear combination of the last
rows of U which in turn is a basis of S⊥. In other words the free variables zs+1, . . . , zm
give a nonlinear parametrization of im(Y A)⊥. This agrees with the results in [8] p. 5-6
Prop. 5.3.

The technique using the logarithm in [8] is closely related to the techniques used in
the algebraic geometry literature, especially [20] where the logarithm is used to solve a
binomial system instead of using the Smith normal form as above.

Example 4.2 (simple cycle) Consider the chemical reaction system in Figure 5. The
matrix A is given by ⎛⎜⎜⎜⎝

−k21 0 0 k14
k21 −k32 − k42 0 k24
0 k32 −k43 0
0 k42 k43 −k14 − k24

⎞⎟⎟⎟⎠ .

Assume Y A has the same rank than A then we only need to consider Aψ(x) = 0 which is
by Gaussian elimination equivalent to the binomial system

xy1 −k1,4
k2,1

xy4 = 0 ,

xy2 + k1,4+k2,4
−k3,2−k4,2

xy4 = 0 ,

xy3 + (k1,4+k2,4)k3,2
(−k3,2−k4,2)k4,3

xy4 = 0 .

This is equivalent to
xy1−y4 = k1,4

k2,1
,

xy2−y4 = k1,4+k2,4
k3,2+k4,2

,

xy3−y4 = (k1,4+k2,4)k3,2
(k3,2+k4,2)k4,3

.
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3

3

Figure 5: A Simple cycle with four complexes.

Choosing the bipartite graph as in Figure 5 with

y1 =

⎡⎢⎢⎢⎣
1
3
0
0

⎤⎥⎥⎥⎦ , y2 =

⎡⎢⎢⎢⎣
0
0
1
0

⎤⎥⎥⎥⎦ , y3 =

⎡⎢⎢⎢⎣
1
0
0
3

⎤⎥⎥⎥⎦ , y4 =

⎡⎢⎢⎢⎣
0
1
0
1

⎤⎥⎥⎥⎦
we have rank(Y A) =rank(A) = 3. Thus Π = (y4− y1, y2− y3, y4− y2) has maximal rank 3
and its Smith norm form is

UΠV =

⎡⎢⎢⎢⎣
1 0 0 0
0 0 1 0
2 −1 −1 0
−1 1 2 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 1
2 −1 −1
0 1 0
−1 −1 2

⎤⎥⎥⎥⎦
⎡⎢⎣ 1 0 −1
0 1 0
0 0 1

⎤⎥⎦ =

⎡⎢⎢⎢⎣
1 0 0
0 1 0
0 0 3
0 0 0

⎤⎥⎥⎥⎦ .
Using the nonlinear change of coordinates x1 = z1z

2
3z

−1
4 , x2 = z−1

3 z4, x3 = z2z
−1
3 z24 and

x4 = z4 defined by U implies z1 =
k1,4
k2,1

, z2 = − k1,4+k2,4
−k3,2−k4,2

, z3 =
(
(k1,4+k2,4)k3,2k2,1
(k3,2+k4,2)k4,3k1,4

) 1
3 and thus

the solution

x1 = z4
−1 k1,4

k2,1

(
(k1,4+k2,4)k3,2k2,1
(k3,2+k4,2)k4,3k1,4

) 2
3

x2 = z4
(
(k1,4+k2,4)k3,2k2,1
(k3,2+k4,2)k4,3k1,4

)− 1
3

x3 = z4
2 (k1,4+k2,4)
(k3,2+k4,2)

(
(k1,4+k2,4)k3,2k2,1
(k3,2+k4,2)k4,3k1,4

)− 1
3

x4 = z4

is obtained where z4 is an arbitrary complex number. The parametrization is in the direc-
tion of the last row of U being (−1, 1, 2, 1) which is orthogonal to im(Y A) = S = im(Π).
Precisely one of the three roots is real and positive since all constants kij are positive.
Choosing z4 = x4 ∈ R+ gives a family of positive solutions which intersects each space
(x0 + im(Y A)) ∩ (R+)

4 once.

The following proposition uses the sparseness of the bipartite graph. For a vector
y ∈ Rm we define the support supp(y) = {i ∈ {1, . . . , m} | yi 
= 0}.
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Proposition 4.3 Let a chemical reaction system be given by its directed graph R, the
weighted adjacency matrix K and the complexes y1, . . . , yn ∈ (Z≥0)

m as vertices forming
the stoichiometric matrix Y ∈ (Z≥0)

m,n. The kinetic matrix A = K − diag(Kte) to-
gether with the monomial mapping Ψ : Cm → Cn, x �→ (xy1 , . . . , xyn) defines the system
Y AΨ(x) = 0. Let Lλ ⊂ {1, . . . , n}, λ = 1, . . . , l be the connected components of R and
T λ
ν , ν = 1, . . . , tλ, t1+· · ·+tl = t its terminal strong linkage classes. Let T =

⋃l
λ=1

⋃tλ
ν=1 T λ

ν

be the terminal part and R = {1, . . . , n} \ T the rest. Assume

rank(Y A) = rank(A).

If yi 
= 0 for all i ∈ R then the complex solutions x ∈ Cm of Y AΨ(x) = 0 are of the
following form

a.) There exists an index set I with xi 
= 0 for i ∈ {1, . . . , m} \ I and xi = 0 for all
i ∈ I and an index set A = {(λ, ν) | λ ∈ {1, . . . , l}, ν ∈ {1, . . . , tλ}, } such that

i.) supp(yj) ∩ I 
= ∅ for all j ∈ R,

ii.) supp(yj) ∩ I = ∅ for all j ∈ T λ
ν for all (λ, ν) ∈ A,

iii.) supp(yj) ∩ I 
= ∅ for all j ∈ T λ
ν for all (λ, ν) 
∈ A.

b.) The solutions with m−|I| remaining coordinates xi come in families, each depending
on m − |I| − q free parameters where q = |B| − |A| is the rank of the matrix
(aμσ), μ, σ ∈ B where B =

⋃
(λ,ν)∈A T λ

ν .

c.) Define J = span(ωi, i 
∈ I) ⊂ Cm, P̃P : Cm → Cm, (P̃Py)i = 0, i ∈ I, (P̃Py)i =
yi, i 
∈ I, and V = span({P̃P (yi − yj) | i, j ∈ T λ

ν , (λ, ν) ∈ A}). Each family
intersects within J ∩ (R≥0)

m for each x0 ∈ J the space (x0 + V )∩ (R≥0)
m except of

some coordinate hyperplanes. The intersection is transversal.

In particular, if the graph is not weakly reversible then there are no positive solutions.

Proof: Because rank(Y A) =rank(A) it is sufficient to solve AΨ(x) = 0. By Theorem 3.4
rank(A) = n − t which yields m ≥ n − t. The linear mapping A : Cn → Cn splits into
A|R : R → Cn and A|T : T → Cn (with R = span({ωi, i ∈ R}), T = span({ωi, i ∈ T }) )
since Cn = R⊕ T . Demanding A|Ru = 0 is equivalent to demanding uj = 0 for all j ∈ R
since A|R has maximal rank due to the positivity of the constants k ij . This shows that
the solutions have necessarily the property described in i.). We start with a minimal set I
of indices with this property. Of course there may be several choices. By the minimality
we have |I| ≤ |R|. Define A = {(λ, ν) | λ ∈ {1, . . . , l}, ν ∈ {1, . . . , tλ}}. For the m − |I|
remaining variables Xi = xji , ji ∈ {1, . . . , m} \ I the system AΨ(P̃X) = 0 is a smaller
system of equations where X = (xi1 , . . . , xim−|I|), i1, . . . , im−|I| ∈ {1, . . . , m} \ I and P̃

fills up with zeros. Here X = Px and P denotes the projection from Cm to Cm−|I|

while P̃ is the embedding of Cm−|I| into Cm. Since the monomials xyj for j ∈ R and for
j ∈ T with supp(yj) ∩ I 
= ∅ are zero the equations are restricted to QA|BΨ̃(P̃X) = 0
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with B = {i ∈ T | supp(yi) ∩ I = ∅} and B = span({ωi, i ∈ B}) and Q : Cm → T
a projection onto T and Ψ̃ : Cm → C|B| the collection of monomials associated to B.
Recall from Lemma 3.3 that A is invariant on each terminal strong linkage class T λ

ν or
its corresponding vector space T λ

ν , respectively. Moreover, by Theorem 3.4 we deduce
that xyj = 0 for all j ∈ T λ

ν or supp(yj) ∩ I = ∅ for all j ∈ T λ
ν . In order to satisfy

the first condition one might need to enlarge I. Redefine A,B, P, P̃ , Q, Ψ̃ and consider
QA|BΨ̃(P̃X) = 0 again. After a finite number of repetitions this process terminates. This
gives the index sets A and I such that xi = 0, ∀ i ∈ I, xyj = 0, j ∈ T λ

ν , (λ, ν) ∈ A. It
remains to solve ⎛⎜⎜⎝

Aij 0
. . .

Akl

⎞⎟⎟⎠ Ψ̃(PX) = 0,

where only block Aλν with (λ, ν) ∈ A appear. By Theorem 3.4 linear transformation gives
a system

Xπ1 = c1, . . . , Xπq = cq, (3)

with constants ci ∈ R+ and πk = P (yi−yj) for some oriented edge Cj → Ci in a terminal
strong linkage class T λ

ν with (λ, ν) ∈ A and thus supp(yj) ∩ I = ∅, supp(yi) ∩ I = ∅.
As in the proof of Theorem 4.1 we use the Smith normal form. A matrix Π ∈ (Z)p,q is
formed by the πk as columns where p := m − |I| and q is the rank of Π. Observe that q
is as well the rank of the remaining coefficient matrix (aμσ)μσ∈B. We know p = m− |I| ≥
n− t− |R| −∑

(λ,ν)�∈A(|T λ
ν | − 1) = |B| − |A| = q. Thus all invariant factors sj ∈ N in the

Smith normal form

U ΠV =

⎛⎜⎜⎜⎜⎝
s1 0

. . .

0 sq
0 0 0

⎞⎟⎟⎟⎟⎠ , U ∈ GL(p,Z), V ∈ GL(q,Z) sj |sj+1, j = 1, . . . , q − 1 ,

are non-zero. System (3) is then solved by a nonlinear change of coordinates

X1 = zu11
1 · · · zup,1

p , . . . , Xp = z
u1,p

1 · · · zup,p
p . (4)

Substitution into (3) and manipulation involving V results in a system

zs11 = c′1, . . . , zsqq = c′q . (5)

The constants c′i ∈ R+ are positive since c′i =
∏q

j=1 c
vji
j . This determines z1, . . . , zq

and zq+1, . . . , zp remain arbitrary complex numbers. The number of solution families is∏q
i=1 si = det(Π).
Now we proof part c.). Since s1, . . . , sq are the invariant factors the variables z1, . . . , zq

form a nonlinear parametrization of im(Π). Given a solution z ∈ (R+)
p the perturbation

(z1, . . . , zq, zq+1 + δzq+1, . . . , zp + δzp)
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Figure 6: Enzyme synthesis in a bacteriell cell (Heinmets).

is in a direction transversal to X0 + im(Π). The corresponding families within (R≥0)
m

are transversal to (P̃X0 + P̃ im(Π))∩ (R≥0)
m. The number of parameters equals p− q =

m−|I|−|B|+ |A|. All classes are intersected except of some coordinate hyperplanes. The
exception is due to the fact that some exponents in (4) are positive and some are negative
such that a limit zi → 0 for some i ∈ {q + 1, . . . , p} results in some limit Xj → ∞ and
some Xk → 0 . �

Part of the statement of Proposition 4.3 can be formulated more general.

Lemma 4.4 Consider the system Y AΨ(x) = 0 as in Proposition 4.3 and the notations
therein. Assume that the directed graph is not weakly reversible and there exist an index
i ∈ R such that Y ai is linear independent of the other columns Y aj , j ∈ {1, . . . , m} \ {i}.
If yi 
= 0 then the system Y AΨ(x) = 0 has no solutions in (C∗)m. Especially, it has no
positive real solutions. If yi = 0 then Y AΨ(x) = 0 has no solution at all.

Proof: The assumptions are such that an equation xyi = 0 has to be satisfied. If yi 
= 0
this can be only satisfied if some component xj = 0 where j ∈ supp(yi). The case yi = 0
yields the unsolvable equation 1 = 0. �

Example 4.5 A model introduced by Heinmets (see also [2] and [21]) describes the syn-
thesis of an enzyme in a bacterial cell. Here S10 denotes the enzyme and S3 is a regulator
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gene. In the beginning of the reaction only this inducer S3 and a functional gene S7 and a
ribosome S8 are present. Since in [2] and [21] only the differential equations are given we
constructed a directed graph and a bipartite graph as in Figure 6 such that these equations
result. The stoichiometric matrix is

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the kinetic matrix is

A =

⎛⎜⎜⎜⎝
A1 0

A2

A3

0 A4

⎞⎟⎟⎟⎠ with

A1 =

⎡⎢⎢⎢⎢⎢⎢⎣
−p2 − p3 0 p1 0

0 −p4 p15 0

p2 p4 −p1 − p15 0

p3 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−p12 0 0 0 0

p12 −p7 0 0 0

0 p7 −p6 0 0

0 0 p6 −p8 0

0 0 0 p8 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−p13 0 0 0 0

0 −p11 p10 0 0

p13 0 −p10 − p14 0 0

0 p11 0 0 0

0 0 p14 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A4 =

⎡⎢⎢⎣
−p5 0 0

0 −p9 0

p5 p9 0

⎤⎥⎥⎦ .

The index sets are of the connected components and the terminal strong linkage classes of
the weighted directed graph R are

L1 = {1, 2, 3, 4}, T 1
1 = {4}, L2 = {5, 6, 7, 8, 9}, T 2

1 = {9},
L3 = {10, 11, 12, 13, 14}, T 3

1 = {13}, T 3
2 = {14}, L4 = {15, 16, 17}, T 4

1 = {17}.
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The described differential equations are

ẋ1 = (−p2 − p3)x1 + p1x3
ẋ2 = −p4x2 + p15x3
ẋ3 = (p2 + p3) x1 + p4x2 + (−p1 − p15)x3
ẋ4 = p12x6x7 − p7x4
ẋ5 = p6x7 − p8x5
ẋ6 = p3x1 − p12x6x7 − p5x6
ẋ7 = −p12x6x7 + p7x4 − p6x7 + p8x5
ẋ8 = −p13x8x9 + p14x12
ẋ9 = p8x5 − p13x8x9 − p9x9
ẋ10 = p11x11
ẋ11 = −p11x11 + p10x12
ẋ12 = p13x8x9 + p11x11 + (−p10 − p14)x12 .

Since rank(A3) = rank(Y 3A3) = 3 and rank(Y A) = 9, but rank(Y 1A1, Y2A2, Y4A4)) = 6
with Y = (Y1, Y2, Y3, Y4) we deduce that A3Ψ̃(x) = 0 must be satisfied. This is equivalent
to the equations

xy10 = x8 x9 = 0, xy11 = x11 = 0, xy12 = x12 = 0.

Obviously, we need to consider two cases.
1. Case (x8 = x11 = x12 = 0): Substitution gives the remaining equations

(−p2 − p3)x1 + p1x3 = 0
−p4x2 + p15x3 = 0

(p2 + p3) x1 + p4x2 + (−p1 − p15) x3 = 0
p12x6x7 − p7x4 = 0

p6x7 − p8x5 = 0
p3x1 − p12x6x7 − p5x6 = 0

−p12x6x7 + p7x4 − p6x7 + p8x5 = 0
p8x5 − p9x9 = 0

This are 7 linear equations in 9 monomials. A solution is obviously

x1 =
x6(p12x7+p5)

p3
, x3 =

x6(p2p12x7+p5p2+p12x7p3+p5p3)
p3p1

, x5 =
p6x7

p8
,

x2 =
p15x6(p2p12x7+p5p2+p12x7p3+p5p3)

p4p1p3
, x4 =

p12x6x7

p7
, x9 =

p6x7

p9
.

2. Case (x9 = x11 = x12 = 0): Substituting this restriction into the polynomial equations
yields the equations p8x5 = 0. Subsitution of x5 = 0 gives the equation x7 = 0 and then
x4 = 0. The remaining equations are

(−p2 − p3) x1 + p1x3 = 0
−p4x2 + p15x3 = 0

(p2 + p3) x1 + p4x2 + (−p1 − p15)x3 = 0
p3x1 − p5x6 = 0.
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A solutions is obviously

x1 =
p5x6
p3

, x2 =
p15p5x6 (p2 + p3)

p4p1p3
, x3 =

p5x6 (p2 + p3)

p3p1
.

These solutions have been computed in [21] using Göbner bases in the ring Q(p)[x]. But
this derivation shows that nothing complicated is necessary. Already pour linear algebra
gives the result.

5 Exploiting the sublattice

The result of the last section heavily depends on the fact that the exponents of the
monomials are yi − yj with i, j ∈ Lλ in the same connected component. The following
lemma is similiarly based on the structure of the sublattice induced by the two graphs.
A hint to this lemma may be found in [9] p. 2262.

Lemma 5.1 Consider the system Y AΨ(x) = 0 induced by the two graphs. Assume that
the directed graph is weakly reversible and

rank(Y A) =
l∑

λ=1

rank(YλAλ) , (6)

where l denotes the number of connected components, A = (aij)i,j=1,...,n and

Aλ = (aij)i=1,j∈Lλ
, Yλ = (yij)i=1,...,m,j∈Lλ

are collection of columns and rows corresponding to connected components, respectively.
Then each (x0 + im(Y A))∩ (R+)

m contains the same number of real positive solutions of
Y AΨ(x) = 0.

Proof: Because of (6) the system Y AΨ(x) = 0 is equivalent to∑
j∈Lλ

aij x
yj = 0, i ∈ Iλ ⊂ Lλ, λ = 1, . . . , l ,

for some index set Iλ ⊂ Lλ with cardinality rank(YλAλ). In order to see this build for
each λ = 1, . . . , l the orthogonal complement of span(Y1A1 · · · ̂YλAλ · · ·YlAl)) in im(Y A)
and multiply a vector space basis of the complement with Y A. Here ̂YλAλ means to leave
out this matrix.

For each equation with index i we choose a monomial y ν(i) and get∑
j∈Lλ\{ν(i)}

aij x
yj−yν(i) = −aiν(i), i ∈ Iλ, λ = 1, . . . , l .

Since yj−yν(i) are generators of the stoichiometric space S and S = im(Y A) because of the
weak reversibility of the directed graph the lattice generated by the monomials in the equa-
tions has dimension rank(Y A) = dim(S) = s. By Smith normal form (see [1] p. 325) we
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may find generators xα1 , . . . , xαs and xγ1 , . . . , xγm−s such that α1, . . . , αs, γ1, . . . , γm−s are
linear independent over C and such that α1, . . . , αs generate a lattice of dimension s and
γ1, . . . , γm−s give transversal directions. A coordinate transformation z1 = xα1 , . . . , zs =
xαs , v1 = xγ1 , . . . , vm−s = xγm−s results in a polynomial system∑

j∈Lλ\{ν(i)}
aij z

δj = −aiν(i), i ∈ Iλ, λ = 1, . . . , l,

with some δj ∈ (Z≥0)
s. Also the number of equations equals the number of variables s.

The polynomial system is independent of the variables v1, . . . , vm−s which gives a nonlinear
parametrization of the space transversal to im(Y A).

This transformation is performed in the following way: Collect the y j−yν(i) as columns
of a matrix B and compute the Smith normal form UBV .

Then U−1 = (α1, . . . , αs, γ1, . . . , γm−s) and

UB =

⎛⎜⎜⎜⎜⎝
∗ · · · ∗ · · · ∗

. . . ∗ ... ∗
0 ∗ · · · ∗

0 · · · 0

⎞⎟⎟⎟⎟⎠
contains the exponents δj as columns plus additional zeros.

A solution x is positive if and only if z, v are positive. An argumentation analogous to
the proof of the deficiency zero theorem yields that each affine space x0+im(Y A) contains
exactly the same number of real positive solutions. �

In the lemma the sublattice has a very nice property. If the directed graph is not
weakly reversible or the rank condition (6) is violated then the sublattice has dimension
larger than dim(im(Y A)). Most likely the dimension is m. But in some special cases it is
still possible to make statements about directions transversal to the variety.

Lemma 5.2 Let the connected component Lλ equal its terminal strong linkage class for
some λ ∈ {1, . . . , l} and assume rank(Aλ) = rank(YλAλ), rank(Y A) = rank(YλAλ) +
rank(Y1A1 · · · ̂YλAλ · · ·YlAl)). If the variety of Y AΨ(x) = 0 intersects (x0 + im(YλAλ)) ∩
(R+)

m for some x0 ∈ Rm then it intersects transversally. Each (x0 + im(YλAλ))∩ (R+)
m

contains at most one positive solution.

Proof: YλAλΨ(x) = 0 is equivalent to a binomial system xyi−yν(j) = cj, j = 1, . . . , |Lλ|−1
with positive constants cj and i, ν(j) ∈ Lλ. The exponents yj − yν(j) are elements of
im(YλAλ). Then the argumentation is analogous to the deficiency zero theorem. �

Lemma 5.3 Let the connected component Lλ equal its terminal strong linkage class for
one λ ∈ {1, . . . , l} and assume

rank(Y A) = rank(YλAλ) + rank((Y1A1 · · · ̂YλAλ · · ·YlAl)).
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Then the system Y AΨ(x) = 0 decouples into two polynomial systems. If the variety of so-
lutions of Y AΨ(x) = 0 intersects (x0+ im(YλAλ))∩(R+)

m then it intersects transversally.
Each solution in

(x0 +M1 +M2 + im(Y A)) ∩ (R+)
m where

M1 = span{yi − yj | i ∈ Lμ j ∈ Lν , μ 
= λ, ν 
= λ, μ 
= ν,

rank(YμAμ, YνAν)) < rank(YμAμ) + rank(YνAν) },

M2 = span{yi − yj | i ∈ Lμ j ∈ Lν , μ 
= λ, ν 
= λ, μ 
= ν,

rank(YμAμ, YνAν)) = rank(YμAμ) + rank(YνAν)

rank(Y A) < rank((Y1A1, . . . , ̂YμAμ, . . . , ŶνAν , . . . , YlAl))+

rank(YμAμ) + rank(YνAν) }
belongs to a family of positive solutions of Y AΨ(x) = 0 which intersects transversally
x0+M1+M2+ im(Y A). Each family intersects each (x0+M1+M2+ im(Y A))∩ (R+)

m.

Proof: Because of the rank condition Y AΨ(x) = 0 is equivalent to YλAλΨ̃(x) = 0 and
Y1A1 · · ·0 · · ·YlAl)Ψ(x) = 0. The first is equivalent to∑

j∈Lλ\{ν(i)}
aijx

yj−yν(i) = aiν(i), i ∈ Iλ ⊂ Lλ,

for some index set Iλ ⊂ Lλ with cardinality |Iλ| = rank(YλAλ) and some ν(i) ∈ Iλ.
Since the connected component is a terminal strong linkage class the occuring exponents
generate a lattice of dimension rank(YλAλ) = |Iλ| = r. Let’s assume that the sublattice
is generated by α1, . . . , αr ∈ Zm. The second group of equations give raise to a lattice
genrated by vectorsM1,M2 and im(Y A). So complete the αi by β1, . . . , βd to a basis of this
second lattice of dimension d = dim(M1+M2+im(Y A). Then γ1 . . . , γm−r−d complete to a
basis of Zm. A change of coordinates z1 = xα1 , . . . , zr = xαr , u1 = xβ1 , . . . , ud = xβd, v1 =
xγ1 , . . . , vm−r = xγm−r−d gives r polynomials in r variables z1, . . . , zr only. Additionally,
there are rank(Y A) − r polynomials in r + d variables z1, . . . , ud. For each solution z
of the first system there may be several families of solutions of the second system. The
remaing statements of the theorem follow analogous to the argumentation in the proof of
the deficiency zero theorem. �

6 More binomial cases

Feinberg formulates in [8, 9, 10] a theorem which he calls the deficiency one theorem. The
assumptions in [10] are more restrictive then in [8]. We give here our version.

Theorem 6.1 Consider the system Y AΨ(x) = 0 of polynomial equations defined by a
directed graph with weighted adjacency matrix K and a bipartite graph with relevant part
Y of the weighted adjacency matrix and A = K− diag(Kte). Assume that each connected
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components Lλ of the directed graph contains only one terminal strong linkage class T λ
1 .

Assume

rank(Y A) =
l∑

λ=1

rank(YλAλ),

where A = (aij), Aλ = (aij)i=1,j∈Lλ
, Yλ = (yij)i=1,...,n,j∈Lλ

. Assume rank(span(Y ai, i ∈
T λ
1 )) = |T λ

1 | − 1 for each λ ∈ {1, . . . , l} and for the rests Rλ = Lλ \ T λ
1 either Y ai ∈

span(Y aj, j ∈ T λ
1 ) for all i ∈ Rλ or rank(Y ai, i ∈ Rλ) = |Rλ| − 1 and none of the Y ai is

linear independent of the other Y aj , j ∈ Rλ \{i}. Then each class (x0+ im(Y A))∩(R+)
m

contains precisely one positive real solution.

Proof: The conditions on the ranks and components assure that Y AΨ(x) = 0 is equiv-
alent to a binomial system. Since each component contains only one terminal strong
linkage class this yields im(Y A) = S. Using the Smith normal form the argumentation is
analogous to the deficiency zero theorem. �

Theorem 6.2 (Deficiency One Theorem, Feinberg [9] p. 2259, proof in [12]) Let the
graph be weakly reversible and rank(YλAλ) ≥ |Lλ| − 2 for each connected component for
λ = 1, . . . , l. Moreover, assume

rank(Y A) =
l∑

λ=1

rank(YλAλ). (7)

Then each space (x0 + S) ∩ (R+)
m contains precisely one real positive solution.

Proof: Because of the assumption (7) on the rank the polynomial system decouples as
stated in Lemma 5.3. Thus we may assume that the graph has one connected component
only with rank(Y A) = rank(A) − 1 = n − 2. By Lemma 5.1 it is clear that each space
x0 + im(Y A) contains the same number of positive solutions. It remains to show the
existence of precisely one solution.

First we consider the Hermite normal form of Y . Since rank(Y A) = rank(A) − 1 we
may assume the shape

H := U Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1,1 · · · h1,i−1 h1,i h1,i+1 · · · h1,n
0 h2,2 · · · h2,i−1 h2,i h2,i+1 · · · h2,n

0 0 h3,3
...

...
...

...
. . .

...
...

...
...

hi−1,i−1 hi−1,i
... 0 0 hi,i+1

...
. . .

0 · · · 0 hn−1,n

0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where U ∈ GL(n,Z) and diagonal elements h11, h22, . . . , hi−1,i−1, hi,i+1, . . . , hn−1,n ∈ N
are integer numbers and hkl ∈ Z≥0, hkl < hll for l = 2, . . . , i − 1, 1 ≤ k < l or hkl+1 ∈
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Z≥0, hkl+1 < hl,l+1 for l = i, . . . , n − 1, 1 ≤ k < l. The i-th column simply consists of
integer numbers. We may perform a nonlinear change of coordinates x = zU such that
the exponents of the monomials are Uy1, Uy2, . . . , Uyn. Then the system reads

HAm(z) = HA

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z
h1,1

1

z
h1,2

1 z
h2,2

2

z
h1,3

1 z
h2,3

2 · z
h3,3

3
...

z
h1,i−1

1 z
h2,i−1

2 z
h3,i−1

3 · · · z
hi−1,i−1

i−1

z
h1,i

1 z
h2,i

2 z
h3,i

3 z
h4,i

4 · · · zhi−1,i

i−1

z
h1,i+1

1 z
h2,i+1

2 z
h3,i+1

3 · · · z
hi,i+1

i
...

z
h1,n−1

1 z
h2,n

2 z
h3,n

3 · · · zhn−2,n

n−2 z
hn−1,n

n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

We have n−1 variables z1, . . . , zn−1, but n monomials. The monomials satisfy the relation

(m1(z))
g1(m2(x))

g2 · · · (mi(x))
gi = 1,

with an element g = (g1, . . . , gi, 0) ∈ kernel(Y ) ∩ Zn. So each u ∈ kernel(Y A) with
ug11 u

g2
2 · · ·ugii = 1 gives a solution since m(z) = u is easily solved by backward substitution.

If u is positiv this gives a positiv solution z which is equivalent to a positiv x in the original
coordinates.

Thus we study positive kernel vectors of HA. The first part is kernel(A) which is gen-
erated by one a ∈ (R+)

n because of the special structure of A. Since dim(kernel(Y A)) = 2
we choose a second linear independent vector b in kernel(Y A). Since a is strictly positiv
we choose one b ∈ (R≥0)

n such that at least one component bj is zero. Secondly, we may
find a vector c ∈ (R≥0)

n in the kernel of kernel(Y A) with at least one component ck = 0.
Now we study all λb+ μc with λ > 0, μ > 0 which satisfy

(λb1 + μc1)
g1(λb2 + μc2)

g2 · · · (λbi + μci)
gi − 1 = 0.

The goal is to show that for each given positiv λ there exists precisely one positiv μ
fullfilling the equation. In order to do so we investigate the degrees in λ and μ of the
Laurent polynomial (λb+μc)g. For this we need take into account that some components
of b, c are zero. Let ωsupp(b) =

∑
i∈supp(b) ωi and ωsupp(c) =

∑
i∈supp(c) ωi be vectors with

entry one for each index of the support. Then

degλ((λb+ μc)g) = ωsupp(b) · g,
degμ((λb+ μc)g) = ωsupp(c) · g.

On the other hand there exist ξb, ξc with ξbg = Ab and ξcg = Ac. By construction of c
the values ξb and ξc have opposite sign. Now

ξb degλ((λb+ μc)g) = ξb ωsupp(b) · g = ωsupp(b)Ab,
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which yields
ωsupp(b)Ab = (− · · · − ∗j − · · · −) b < 0,

because A is negativ diagonal dominant. Analogously,

ξc degμ((λb+ μc)g) < 0,

which shows that λ and μ have different degrees in (λb + μc)g of opposite sign (see [12]
Lemma 8.1.4).

It is convenient to collect the positiv and negativ parts of g and to investigate the
equivalent polynomial equation

f(λ, μ) = (λb+ μc)g+ − (λb+ μc)g− = 0, (8)

where supp(g+)∪̇ supp(g−) ⊆ {1, . . . , i}. By the previous considerations we may assume

degλ((λb+ μc)g+) > degλ((λb+ μc)g−),

degμ((λb+ μc)g+) < degμ((λb+ μc)g−).

For given λ0 > 0, μ0 > 0 with f(λ0, μ0) > 0 we may find a large μ1 with f(λ0, μ1) < 0
because of the degree in the second monomial is larger. Obviously, there exists μ2 ∈
(μ0, μ1) with f(λ0, μ2) = 0. If we start with f(λ0, μ0) < 0 we find a large λ1 with
f(λ1, μ0) > 0 since the degree of the first monomial in λ is larger. Then λ2 ∈ (λ0, λ1) with
f(λ1, μ0) = 0 exists. The real variety also passes through (0, 0). Since the derivatives
∂f
∂λ
f(λ, μ), ∂f

∂μ
f(λ, μ)are nonzero there exists a solution for each λ. Because f consists of

two monoton functions there is precisely one component of solutions.
If et = (1, . . . , 1) is a linear combination of the rows of Y , then etg = 0. Then f is

homogeneous and the solutions λb+ μc form half of a line. �

This proof reflects nicely the standard techniques for investigation of sparse polynomial
systems. Usually, a system of linear equations is investigated on a toric variety. Our case
is especially simple since the toric variety is defined by one polynomial u g+ − ug−.

Example 6.3 In [8] Feinberg illustrates the theorem with Example 3D1 on page 3-29.
We recall the directed graph and the complexes in Figure 7. The equations are

ẋ1 = −2 k2,1x1
2 + (2 k1,2 + k3,2)x2 + (−k2,3 − k4,3) x1x3 + k3,4x3

2

+ (−k7,6 − k8,6) x1x4 + k6,7x5 + k6,8x6

ẋ2 = k2,1x1
2 + (−k1,2 − k3,2 − k4,2) x2 + k2,3x1x3 + k2,4x3

2

ẋ3 = (k3,2 + 2 k4,2) x2 + (−k2,3 + k4,3) x1x3 + (−k3,4 − 2 k2,4 − 2 k5,4)x3
2

+2 k4,5x4 − k10,9x3x5 + k9,10x7
2

ẋ4 = k5,4x3
2 − k4,5x4 + (−k7,6 − k8,6) x1x4 + k6,7x5 + k6,8x6

ẋ5 = k7,6x1x4 + (−k6,7 − k8,7)x5 + k7,8x6 − k10,9x3x5 + k9,10x7
2

ẋ6 = k8,6x1x4 + k8,7x5 + (−k6,8 − k7,8) x6

ẋ7 = 2 k10,9x3x5 − 2 k9,10x7
2.
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Figure 7: Example by Feinberg illustrating the assumptions in the Deciciency One The-
orem.

The weakly reversible graph has three connected components such that the blocks of Y A do
not interact and rank(Y1A1) = 3 < 4 = rank(A1), rank(Y2A2) = 2, and rank(Y3A3) = 1.

After computing the Hermite normal form of Y and some linear algebra on HA we
receive the polynomial system⎛⎜⎝ H1A1 0

H2A2

0 H3A3

⎞⎟⎠
⎛⎜⎝ Ψ̃1(x)

Ψ̃2(x)

Ψ̃3(x)

⎞⎟⎠ = 0, with

H1A1 =

⎡⎢⎢⎢⎢⎢⎢⎣
2 0 0 −2 0

0 1 0 0 0

0 0 1 2 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k2,1 k1,2 0 0 0

k2,1 −k1,2 − k4,2 0 k2,4 0

0 0 −k4,3 k3,4 0

0 k4,2 k4,3 −k2,4 − k3,4 − k5,4 k4,5

0 0 0 k5,4 −k4,5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ψ̃1 =
[
x1

2, x2, x1x3, x3
2, x4

]
,

H2A2 =

⎡⎣ k7,6 −k6,7 − k8,7 k7,8

k8,6 k8,7 −k6,8 − k7,8

⎤⎦ , Ψ̃2 =

⎡⎢⎣ x1x4
x5
x6

⎤⎥⎦ ,
H3A3 =

[
2 k10,9 −2 k9,10

]
, Ψ̃3 =

[
x3x5
x7

2

]
.
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The Hermite normal form suggests the change of coordinates yielding the new monomials

m(z) = (z1
2, z2, z3,

z3
2

z12
, z4, z1z4, z5, z6,

z3z5
z1

, z7
2).

The last equation H3A3m3(z) = 0 gives

z7 = ±

√
k9,10z1z3z5k10,9

k9,10z1
.

The second block is easily solved as well

z5 =
z1z4 (k6,8k7,6 + k7,8k7,6 + k8,6k7,8)

k6,8k6,7 + k6,8k8,7 + k7,8k6,7
, z6 =

z1z4 (k6,7k8,6 + k8,7k7,6 + k8,7k8,6)

k6,8k6,7 + k6,8k8,7 + k7,8k6,7
.

The last equation of H1A1m1(z) = 0 gives

z4 =
k5,4z3

2

z12k4,5
.

Now we proceed analogous to the proof of the deficiency one theorem. The kernels of H1

and A1 are generated by

g = [1, 0,−2, 1, 0], a = [1,
k2,1
k1,2

,
k3,4k2,1k4,2
k4,3k2,4k1,2

,
k2,1k4,2
k2,4k1,2

,
k5,4k2,1k4,2
k4,5k2,4k1,2

],

respectively. Of course the monomials satisfy the relation

mg = (z21)
1(z2)

0(z3)
−2(z−2

1 z23)
1(z4)

0 − 1 = 0.

A second kernel vector of H1A1 is given by

b = [0, 1,
k3,4k1,2 + k3,4k4,2 + 2 k2,4k1,2

k2,4k4,3
,
k1,2 + k4,2

k2,4
,
k5,4 (k1,2 + k4,2)

k2,4k4,5
],

which has positive components, too. The system λa + μb = m̃1(z) has a positive solution
z(λ, μ) for each positive λ if the equation

f(λ, μ) = (a1λ+ μb1) · (a4λ+ μb4)− (a3λ+ μb3)
2

= λ · (a4λ+ μb4)− (a3λ+ μb3)
2 = 0,

has a solution μ ∈ R such that all components of λa + μb are positive. For positive μ
all components of λa + μb are positive. For μ = −a3λ/b3 we have f(λ, μ) > 0. Since
limμ→±∞ = −∞ there are two real solutions μ. But they are distinguished by the sign
of a3λ + μb3. The solution with negative sign is not valid. For the other solution also
a4λ+μb4 > 0 since f(λ, μ) = 0 implies a4λ+μb4 = (a3λ+μb3)

2/λ. Symbolic manipolation
with Maple has shown that a2λ+ μb2 > 0 and a5λ+ μb5 > 0 as well.

Finally, we receive

z1 =
√
λ, z2 = λa2 + μ, z3 = λa3 + μb3.
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7 The general case

In this section we will attack the system Y AΨ(x) = 0 in general form in contrast to the
previous sections where we made restrictive assumptions. In order to do so we will make
use of the theory based on Newton polytopes. Consequently, we suggest to transform by
linear algebra to an equivalent system such that the Newton polytopes of the equations
are as simple as possible.

We restrict to directed graphs which are weakly reversible and as in the previous
sections we use the decompositions Yλ = (yij)i=1,...,m,j∈Lλ

and Aλ = (aij)i,j∈Lλ
. If the

conditions of Lemma 5.3 are fulfilled the system decouples. So we may assume we already
have performed the decoupling and assume

rank(YλAλ) < rank(Y A)− rank(Y1A1 · · · ̂YλAλ · · ·YlAl)),

for all λ = 1, . . . , l. For each connected component Lλ, λ = 1, . . . , l we may choose kλ
equations ∑

j∈Lλ

cij x
yj = 0, i = 1, . . . , kλ, λ = 1, . . . , l , (9)

where kλ < rank(YλAλ) is the maximal number of columns of YλAλ which are linear
independent of im(Y1A1, . . . , ̂YλAλ, . . . , YlAl). The coefficients cij are given by some linear
independent rows of YλAλ.

By linear algebra we obtain from Y AΨ(x) = 0 the mixed equations containing all
monomials

n∑
j=1

cij x
yj = 0, i = 1, . . . , kl+1, (10)

where kl+1 = rank(Y A) − ∑l
λ=1 kλ. The coefficients (cij)j∈Lλ

are linear combinations of
rows of YλAλ which are linear independent of the rows appearing as coefficients in (9).

Additionally, the restrictions to (x0 + im(Y A)) ∩ (R+)
m

vti x− ai = 0, i = 1, . . . , kl+2 (11)

where kl+2 = m − rank(Y A) and the vectors vi ∈ Rm form an orthonormal basis of the
orthogonal complement of im(Y A) in Rm. The vtix0 = ai ∈ R are arbitrary but fixed
numbers, such that (x0 + im(Y A)) ∩ (R+)

m 
= ∅. We may even assume that the first
v1, . . . , vl form an orthogonal basis of S⊥ and vl+1, . . . , vkl+2

∈ S ∩ (im(Y A))⊥.

Studying the solutions of Y AΨ(x) = 0 in x0 + im(Y A) is equivalent to studying the
system (9,10,11).

Remark 7.1 i.) The number of equations in the secondary group (10) is usually small,
just 1, 2 or 3. The support is the collection of supports in (9). Sometimes one may
even further distinguish the supports of the kl+1 equations in (10). ii.) The Newton
polytopes are of particular structure. Partially, they are simplices. But the Minkowski
sum can not be expected to have full dimension m. If the graph is weakly reversible the
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dimension of the Newton polytope associated to Lλ is dim(im(YλAλ)). There is a chance
that |Lλ|−rank(YλAλ)−1 points are inner points. But most likely all points yi with i ∈ Lλ

are vertices since the points yi lie on coordinate hyperplanes. iii.) The supports of (11)
are the vertices of simplices of dimension m or less.

The results on the number of complex or real solutions of a sparse polynomial system
are based on a homotopy H(t, x).

H(t, x)λ,i =
∑
j∈Lλ

cij t
ωλ
j xyj = 0, i = 1, . . . , kλ, λ = 1, . . . , l , (12)

H(t, x)l+1,i =
n∑

j=1

cij t
ωl+1
j xyj = 0, i = 1, . . . , kl+1, (13)

H(t, x)l+2,i =
m∑
j=1

(vi)j t
ωl+2
j xj − ait

ωl+2
0 = 0. i = 1, . . . , kl+2 (14)

The exponents ωλ
j are randomly chosen integer numbers. By this construction the sup-

ports of the original polynomials A = (A1, . . . ,Al+2), Aλ = {yj, j ∈ Lλ}, λ = 1, . . . , l,
Al+1 = {y1, . . . , yn},Al+2 = {0, e1, . . . , em} are lifted in one additional direction giving
the new supports of H

Âλ =

{(
yj
ωλ
j

)
, j ∈ Lλ

}
, λ = 1, . . . , l,

Âl+1 =

{(
yj
ωl+1
j

)
, j = 1, . . . , n

}
, Âl+2 =

{(
0

ωl+2
0

)
,

(
ej
ωl+2
j

)
, j = 1, . . . , m

}
.

The lower facets of the Minkowski sum of the lifted Newton polytopes have a special
meaning. They give raise to a mixed subdivision.

Definition 7.2 ([18], [30], [31]) A subdivision of A is a collection S = {C1, . . . , Cr} of r

cells Cj = (C
(1)
j , . . . , C

(l+2)
j ) such that

(a) dim(conv(Cj)) = m for j = 1, . . . , r,

(b) Cj ∩ Ck is a common face of Cj and of Ck for all pairs Cj , Ck ∈ S,

(c) ∪r
j=1conv(Cj) = conv(A).

The subdivision is called mixed if the additional property

(d)
∑l+2

λ=1 dim(conv(C
(λ)
j )) = m for all cells Cj ∈ S holds.

The subdivision is called fine mixed if

(e)
∑l+2

λ=1(#(C
(λ)
j )− 1) = m for all cells Cj ∈ S.

A mixed subdivision is called simple mixed, if all mixed cells Cj, i.e. dim(conv(C
(λ)
j )) = kλ

(f)
∑l+2

λ=1(#(C
(λ)
j )− 1) = m

holds.

The definition of mixed subdivision is important since
∑

j vol(Cj) is the BKK bound
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Figure 8: Example of a chemical reaction network by Feinberg due to Edelstein.

for the number of complex solutions in (C∗)m (Theorem by Bernstein, see [4]). The proof
in [18] gives some insight into the number of real solutions. But first we need another
definition.

Definition 7.3 A cell C is called alternating if the associated small initial system∑
y∈C(λ)

cijx
y = 0, λ = 1, . . . , l + 2, i = 1, . . . , kλ,

has exactly one positive solution.

This definition was introduced in [20] and [29] in the case that each equation has
different support since then the small initial systems consists of binomials which obviously
have one real solution if the signs of the coefficients are alternating in each equation.

Theorem 7.4 [29] There is a polynomial P (t) ∈ R[t] with the following property: if P (t)
has no solution in [0, 1] and the initial systems associated to the facets F of the Newton
polytopes have not infinitely many solutions for some t ∈ [0, 1] then the number of solutions
of Y AΨ(x) = 0 in (

∑
i aivi + im(Y A)) ∩ (R+)

m equals the number of alternating cells in
a mixed subdivision.

The theoretical background may be found in [27], [29].

Remark 7.5 i.) The polynomial P (t) is the sparse resultant ResB(t; k, a) where B is
given by the supports A1, . . . ,Al+2 and the support of the determinant of the toric Jaco-
bian. ii.) The second assumption on infinitely many solutions of the small initial system
associated to a facet is the condition from toric geometry that the original system has
a solution at infinity or with zero components. Here it guarantees that no real negative
solution turns positive along the path. iii.) The condition whether a cell is alternating is
easily chequed with Smith normal form or Hermite normal form for the mixed cells in a
simple mixed subdivision. iv.) One expects that for generic lifting values ωλ

j the induced
subdivision is simple mixed. Since the Newton polytopes are not in general position in our
particular application this cannot be expected for the chemical reaction systems.
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Figure 9: Newton Polytopes of system by Edelstein.

Example 7.6 We illustrate Theorem 7.4 with the example by Edelstein presented in Fein-
berg [8] p.2-26 with 3 variables, 5 complexes and two connected components, see Figure 8.

Y =

⎡⎢⎢⎢⎣
1 2 1 0 0

0 0 1 0 1

0 0 0 1 0

⎤⎥⎥⎥⎦ ,
is the stoichiometric matrix and the kinetic matrix is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k2,1 k1,2 0 0 0

k2,1 −k1,2 0 0 0

0 0 −k4,3 k3,4 0

0 0 k4,3 −k3,4 − k5,4 k4,5

0 0 0 k5,4 −k4,5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The differential equations are

ẋ1 = k2,1x1 − k1,2x1
2 − k4,3x1x2 + k3,4x3,

ẋ2 = −k4,3x1x2 + (k3,4 + k5,4) x3 − k4,5x2,

ẋ3 = k4,3x1x2 + (−k3,4 − k5,4) x3 + k4,5x2.

The polynomial system ẋ = 0 on a subspace is equivalent to

0 = −k4,3x1x2 + (k3,4 + k5,4)x3 − k4,5x2, (λ = 2, i = 1)

0 = k2,1x1 − k1,2x1
2 − k4,3x1x2 + k3,4x3 + 0 · x2, (λ = l + 1 = 3, i = 1)

0 = 0 · x1 + x2 + x3 − a, (λ = l + 2 = 4, i = 1)

with v1 = (0, 1, 1). For positive a the space (av1 + im(Y A)) ∩R3 is nonempty.
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Figure 10: Mixed subdivision of Newton Polytopes of system by Edelstein.

The lifting

Â1 = {},
Â2 = {(1, 1, 0, 8), (0, 0, 1, 0), (0, 1, 0, 2)},
Â3 = {(1, 0, 0, 0), (2, 0, 0, 5), (1, 1, 0, 4), (0, 0, 1, 0), (0, 1, 0, 9)},
Â4 = {(0, 0, 0, 5), (1, 0, 0, 20), (0, 1, 0, 0), (0, 0, 1,−1)},

gives a mixed subdivision with three cells

C(2) = {ŷ3, ŷ4}, C(3) = {ŷ2, ŷ3}, C(4) = {ê2, ê3}, γ = (−7,−6,−5, 1),

C(2) = {ŷ4, ŷ5}, C(3) = {ŷ1, ŷ2}, C(4) = {ê1, ê3}, γ = (7, 5,−5, 1),

C(2) = {ŷ4, ŷ5}, C(3) = {ŷ1, ŷ4}, C(4) = {ê1, ê2}, γ = (5, 7, 7, 1),

as shown in Figure 10. Obviously, there is one alternating cell for a > 0 and none for
a < 0. So we expect for some region of the parameters kij one positive solution within a
space (av1 + im(Y A)) ∩ R3. The alternating cell is part of the Newton polytopes which
in turn are given by the directed graph and the bipartite graph. Figure 11 shows the parts
of the graphs which correspond to the alternating cell and thus to the positive solution.
There might be the chance for a subdivision with three cells as well. This example has
1− 3 positive solutions.

The condition in Theorem 7.4 tells us that we have to expect as many real positive
solutions as there are alternating cells in the subdivision if the coefficients of the alter-
nating cells are dominat against the rest of the coefficients. In this context of chemical
reaction systems the coefficients are of very different magnitude since the rate constant
of a forward reaction is much larger than the rate constant of the associated backward
reaction. We conclude that for chemical reaction systems Theorem 7.4 gives a realistic
estimate for the number of positive solutions. The alternating cells as parts of the Newton
polytopes correspond to
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Figure 11: Parts of the directed graph of the example by Edelstein which corresponds to
the alternating cell which is responsible for the positive solution.

parts of the directed graph. We conclude that we can identify parts of the directed
graph or chemical reaction network which are responsible for positive solutions for some
parameter region.
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Appendix

Proof of Theorem 3.4: The classification into connected components yields a decom-
position Cn = L1 ⊕ · · · ⊕ Ll into invariant subspaces. Thus

ker(A) =
l⊕

λ=1

(Lλ ∩ ker(A)).

Also T λ
ν corresponding to terminal strong linkage classes are invariant. Thus

ker(A) ⊂
l⊕

λ=1

tλ⊕
ν=1

(T λ
ν ∩ ker(A)).

In order to show equality one needs to show that A|Rλ
has full rank for all λ = 1, . . . , l.

This is equivalent to the following: if v ∈ ker(A) \ {0} then v i = 0 for all i ∈ ⋃l
λ=1Rλ

corresponding to rests Rλ := Lλ \ (
⋃

ν T λ
ν ). This is shown in three steps.

First we need to show that with v ∈ ker(A) also ṽ ∈ ker(A) where ṽi := |vi| for
i = 1, . . . , n. Recall

Av =
n∑

i=1

∑
yj→yi∈R

kijvj −
⎛⎝ ∑

yi→yj∈R
kij

⎞⎠ vi = Kv − diag(K te)v .
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The components of Av are (Av)i =
∑

j kijvj −
(∑

j kji
)
vi, i = 1, . . . , n. This yields

v ∈ ker(A) ⇒ ∀ i (Av)i = 0 ⇒ ∀ i
∣∣∣∣∣∣

n∑
j=1

kijvj

∣∣∣∣∣∣ =
∣∣∣∣∣∣
⎛⎝( n∑

j=1

kji

⎞⎠ vi
∣∣∣∣∣∣ .

Summation over all indices and the rules for norms give

n∑
i=1

n∑
j=1

kij|vj| ≥
n∑

i=1

⎛⎝ n∑
j=1

kji

⎞⎠ |vi|.

Since both sides are equal we must have

n∑
j=1

kij |vj| =
⎛⎝ n∑

j=1

kji

⎞⎠ |vi| , i = 1, . . . , n . (15)

With |vi| = ṽi this means Aṽ = 0.
Secondly, if v ∈ ker(A) with vi = 0 and (Cj → Ci) ∈ R then vj = 0. This is an

immediate consequence of
∑

j kij |vj| = (
∑

j kji)|vi| as in the previous part of the proof.
Consequently, if Cj → Cν1 → Cν2 → · · · → Ci and vi = 0 then vj = 0.

The third statement is that

vi = 0, ∀ i ∈ R1 ∪ . . . ∪ Rl ,

for all v ∈ker(A). Since the connected components are invariant it suffices to consider one
connected component Lλ. Then the summation in (15) is over j ∈ Lλ only. Summation
over i ∈ Tλ := T λ

1 ∪ . . . ∪ T λ
tλ

yields∑
i∈Tλ

∑
j∈Lλ

kij|vj | =
∑
i∈Tλ

∑
j∈Lλ

kji|vi| .

The sum in the left hand side is decomposed by Lλ = Tλ ∪ Rλ and the right hand is
simplified since kji = kCi→Cj

= 0 for j ∈ Rλ and i ∈ Tλ because members of terminal
strong linkage classes do not react to the rest:∑

i∈Tλ

∑
j∈Tλ

kij|vj|+
∑
i∈Tλ

∑
j∈Rλ

kij|vj| =
∑
i∈Tλ

∑
j∈Tλ

kji|vi| .

Thus the second sum on the left is zero. This implies vj = 0 for all j ∈ Rλ such that
Cj → Ci for some i ∈ Tλ. Since Lλ is a connected component all other μ ∈ Rλ are
strongly linked by some path Cμ → · · · → Cj. By the previous argument vj = 0 implies
vμ = 0. Altogether vi = 0 for all i ∈ Rλ. This means ker(A) ⊆ ⊕

λ

⊕
ν T

λ
ν .

Since the T λ
ν are invariant under A this yields the first statement

ker(A) =
l⊕

λ=1

tλ⊕
ν=1

ker(A) ∩ T λ
ν .
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Obviously, ker(A) ∩ T λ
ν 
= {0} since im(A|T j

ν
) is generated by differences ωi − ωj.

The last statement dim(ker(A) ∩ T λ
ν ) = 1 is shown by contradiction.

Assume dim(ker(A) ∩ T λ
ν ) ≥ 2 and let v and w be two linear independent vectors in

ker(A) ∩ T λ
ν . Then there is a nontrivial linear combination αv + βw and i ∈ T λ

ν such
that (αv + βw)i = 0. By the considerations above this implies αv + βw = 0 which is a
contradiction. �
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