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ABSTRACT 

In continuation of part I this paper develops a variable-order time 
discretization in Hilbert space based on a multiplicative error correc
tion. Matching of time and space errors as explained in part I allows to 
construct an adaptive multilevel discretization of the parabolic prob
lem. In contrast to the extrapolation method in time, which has been 
used in part I, the new time discretization allows to separate space 
and time errors and further to solve fewer elliptic subproblems with 
less effort - a feature, which is essential in view of the application 
to space dimension greater than one. Numerical examples for space 
dimension one are included which clearly indicate the improvement. 
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INTRODUCTION 

In part I. of this paper [2] the author developed an adaptive approach to 
parabolic equations by constructing a variable-order and time-step control 
mechanism in function space, viewing the parabolic initial boundary-value 
problem as an abstract Cauchy problem in that function space. Discretiza
tion of the arising spatial partial differential equations is viewed as a per
turbation of the discrete orbit in the function space, which has to be pushed 
below a level not touching the accuracy of the parabolic problem. The author 
developed to some extent a theory of single-step methods in Hubert space 
applicable to abstract Cauchy problems which involve an m-sectorial opera
tor. Within the scope of that theory the use of extrapolation techniques has 
been justified. 

For one space dimension the author implemented an extrapolated implicit 
Euler scheme together with an adaptive multilevel FEM solver, which handles 
the arising singularly perturbed elliptic subproblems. Very promising results 
were obtained [2], which led the author to try the same approach in two space 
dimensions since the theory developed is independent of space dimension. 

However, several structural drawbacks of extrapolation methods showed up: 

1. In order to keep the perturbations of the function space orbit small, the 
elliptic subproblems have to be solved the more accurate, the higher the 
suggested order of the time discretization is. This yields increasingly 
higher computational effort for the spatial part if the order of the time 
discretization is increased. That increase is such high in the framework 
of extrapolation methods that for the 2D case an unreasonable amount 
of work occurs, which in turn restricts the order to the lowest possible 
one — thus killing the variable order device as a whole. 

The reason: Extrapolation creates higher order approximations through 
higher order differences. But iterated higher differences amplify the 
spatial perturbations. 

2. Extrapolation imposes elliptic subproblems for different time steps. In 
order to make the algebraic operation of extrapolation possible we have 
to use an algorithm as explained in [2], Section 4.3. This yields a final 
triangulation which has to be good for all the time steps which have 
been used. In the 2D case this final triangulation contains far too many 
nodal points, which gives rise to far too much work. 

3. Since we get the time-error estimate as a difference of two entities 
attached with a spatial error, we can only detect whether the time 

1 



error is below the given tolerance, but we are not able to get the order 
of magnitude of the time error if the error is below the given tolerance. 
Therefore the algorithm is not able to detect stationary phases. 

The first two drawbacks are not serious in the ID case or for ODE's, which 
explains why they have first been observed in the 2D case. The third one is 
intimately connected to the first one. 

The present paper tries to avoid these drawbacks by constructing a variable-
order time discretization with the features 

• Avoiding of differences for higher order approximations. 

• Only one kind of elliptic problem at each time step — at the most with 
different right hand sides. 

In Section 1 we give a formulation of the continuous problem which allows 
to consider arbitrary domains £1. This is important for the 2D case. Further
more we give a short draft of the algorithm together with its requirements. 

Section 2 is the core of the paper, where the variable-order time discretiza
tion is derived, which corrects error approximations by multiplication in order 
to avoid differences, thus leading to the title of this paper. The application 
to the abstract Cauchy problem is explained and the structure of the arising 
elliptic subproblems is analyzed. 

Section 3 is devoted to the control of the perturbations arising from spatial 
discretization. Some details for the implementation are given. 

In Section 4 we give numerical results for one space dimension — in spite 
of the fact that the author has already computed successfully examples in 
two space dimensions; since these results need a careful explanation of error-
estimation and preconditioning of the singularly perturbed elliptic subprob
lems, they are subject of a forthcoming part III. of the paper. In Section 
4 special attention is paid to enlighten the improvement which has been 
achieved in comparison with extrapolation methods. It turns out that we 
end up with multigrid complexity, i.e. the computing time is proportional to 
the number of introduced unknowns. 

1 PRELIMINARY CONSIDERATIONS 

1.1 T H E PROBLEM 

Throughout this paper we are concerned with temporally homogeneous 
parabolic initial-boundary value problems: 
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Given a domain ti C \Rd, a time T > 0 and functions f,u0 <E L2(Cl), solve 

i) - ^ ^ - + A(x,d)u(t,x) = f(x), xeü, te]0,T]; 

(L1) ii) «(«,.)lsn = 0, *€]0,r]; 

iii) u(0,-) = uo; 

where A(x,d) denotes a strongly elliptic formally selfadjoint operator of sec
ond order: 

A(x,d)= £ (-l)Md°(ar(x)d°), 
o<|e|,M<i 

where aea € £°°(fJ)> ae<7 = a"e in the usual multiindex notation. Thus the 
induced continuous bilinear form a(-, •) on HQ(Ü) X HQ(Q.) given by 

a(u,v)= J2 I a-d'u&'vdx, u,v € H*(tt), 
o<kl,kl<i n 

is symmetric. 
We will further assume the Hl{Vt)-ellipticity of the form a(-, •): There is a 

constant C\ > 0 such that 

(Al) a ( u , u ) > ci||u||? for all u € ^ (11) . 

NOTATION. The norms of the Sobolev spaces H"(ti) will be denoted by 
|| • \\3 and the inner product of L2(Cl) will be denoted by (•, •). 

The following considerations mainly serve the purpose to develop a concept 
of solution of the parabolic problem, which justifies our approach without 
additional regularity assumptions. 

THEOREM 1.1. Suppose that assumption (Al) is satisfied, the following 
holds: 

a) There is exactly one positive selfadjoint operator 

A:DAC L2(Ü) -> L2(fi) 

satisfying 

i) DAcm(n), 
ii) a(u,v) = (Au,v) for all u G DA, v € HQ(Ü). 
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Furthermore we have: 

b) The domain of definition DA is dense in H\{£l) with respect to the 
Hubert space topology of Hl(Vt). 

c) For every f € L2(Q) the solution u € HQ(Ü) of the variational problem 

a(u, v) = (/, v) for all v <E Hffl) 

exists and satisfies in addition: 

u € DA, AU = / . 

d) The square root A1^2 of A exists with DAi/2 = HQ(Q) and satisfies 

a(u, v) = (Alftu, A1/2v) for all u, v € ffj(ft). 

Proof. The assertions a) & b) are essentially the Friedrichs representation 
theorem of semibounded symmetric bilinear forms in Hubert space, consult 
e.g., KATO [5, pp. 322f.]. The solution u € HQ(Ü) of the variational problem 
exists by the Lax-Milgram Lemma and the rest of assertion c) holds again by 
the Friedrichs representation theorem. For assertion d) consult e.g., KATO 
[5, pp. 331f.]. • 

REMARK 1.2. Let / € £2(fi). By means of the above theorem we observe 
that the weak solution u of the elliptic boundary-value problem 

i) A{x,d)u{x) = f{x)t x e f t , 

u) u | a n = 0, 

exists and is given as 

u = A~xf €DAC Hl{Sl). 

Therefore we call A the weak representation of the differential operator A(x, d) 
imposed with homogeneous Dirichlet boundary conditions. 

Since the weak representation operator A is positive selfadjoint the frac
tional powers Aa, a > 0, exist and the corresponding domains of definition 

H2a = DA* 
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equipped with the inner product 

(u, v)fra = (Aau, Aav) for all u,v e H2a, 

define a scale of Hilbert spaces for which the embeddings 

Ha ^Hß, a> ß, 

are continuous. Hence Theorem 1.1 states that 

DA = H2 ^ H1 = DAlft = Hfäl). 

In some sense the space H2 fully describes the regularity of weak solutions of 
the problem (1.3) since 

\\U\\H* = ll/llo-

The term of if1+Ä(0)-regularity, s > 0, may now be expressed as the exis
tence of a continuous embedding 

H2^H1+s(n)r\H^(Ü). 

EXAMPLE 1.3. By making the weak assumptions 

(A2) Ü 6 C 0 ' 1 , 

which states that 0 has Lipschitz boundary, and 

(A3) aea € C°''(fj) for some 0 < t < 1 whenever \g\ = 1, 

we gain the following regularity result due to NEC AS [6]: 

H2 «-> H1+3{Q) n H%(Sl) for all 0 < s < min(t, - ) . 

Imposing in addition 

(A4) Q is convex, t = 1, 

yields full regularity 

a result due to KADLEC [4]. 
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With the help of the weak representation operator A we may restate our 
parabolic problem (1.1) as the following abstract Cauchy problem in L2(tt): 

i) u' + Au = / , 
( 1 ' 4 ) ii) u{Q) = u0. 

If we denote the holomorphic semigroup of contractions generated by the 
negative self ad joint operator (—A) as 

U{t) = exp(-tA), 

the solution u <E C°°(]0,T],i/2) of (1.4) is given by 

i) u(t) = [w — U{t)w] + U(t)u0, where 
(1.5) 

ii) w^A^feH2. 
Exactly this solution will be approximated by our algorithm. 

1.2 T H E ALGORITHM 

As mentioned in the introduction and discussed in [2], the initial-value 
character of the abstract Cauchy problem requires the discretization in time 
first. The principle of a variable-step, variable-order discretization in time 
will be explained first assuming that the spatial subproblems can be solved 
exactly. Thereafter discretization in the spatial variables will be viewed as a 
perturbation of this semi discrete orbit. 

1.2.1 Semidiscretization in Time 

As discussed in [2] a single step method 

Uj+i = $ ( « J , T ) , i = 0 , 1 , . . . 

is applicable to the abstract Cauchy problem (1.4) whenever the correspond
ing rational approximation r$(z) to exp(—z) is AQ-accept able, which means 
that 

i) |r»(*)| < 1 for z > 0, 
(l.o) 

ii) | r * ( o o ) | < l . 

The rational approximation is called to be of order p > 1 whenever 

rtiz) = e~z + 0{zp+1) for « - • ( ) . 
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THEOREM 1.4. Given an A0-acceptable rational approximation r(z) to 
exp(—z) of order p, the single step method 

(1.7) $P(u, r) = r(rA)u + (i - r(rA) ) A " 1 / 

is well defined for r > 0 and the sequence u J + 1 = $(u,-,r), j = 0 , 1 , . . . , 
approximates the solution of the abstract Cauchy problem (1-4) at t = jr 
with an error of 

(1.8) \\Uj - u(«)||o < Crn^^-^WuoW^. 

Proof. This is the case N = p — 1 of Theorem 2.7 of [2]. • 

Consider now a sequence rj(z), j = 1,2,. . . , of Ao-acceptable rational ap
proximations to exp(—z) of increasing order j together with the correspond
ing single step methods <&j = $ r y . A variable-step variable-order method 
for the abstract Cauchy problem can be described as the following device: 

Given an initial approximation u° = ü(t) at time t, a tolerance TOL, time 
step T and suggested order k, the method computes the sequence 

^ ^ • ( l i V ) , j = l , . . . , fc + l, 

which approximates with successive higher order the solution u(t + r ) of the 
Cauchy problem with initial data ü(t) at time r. 

As in [3] we get the error estimates 

^Hk+'-uio^lK' + T ) - ^ , 
such that further the approximation uk+1 is accepted if 

ek < TOL. 

Comparison of the Cj with the a priori estimate (1.8) gives new time steps 

(1.9) Ti = _ i+i 

' " \ 

TOL 
T 

for the orders j = 1 , . . . , k. As new order k* together with r* = r̂ » as new 
time step we take that order, which minimizes the amount of work per unit 
step, i.e. 

(1.10) ^ ± i = min £ ± i . 

Here Aj measures the amount of work for computing the sequence u1,..., uJ. 
Repeatedly application of this procedure yields the approximate orbit in 

Hilbert space. 
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1.2.2 Perturbations through Spatial Discretization 

Computation of u3 = $ _,•(&(<), r) requires the weak solution of several el
liptic problems due to the denominator of the rational functions Vj(z). In 
general we cannot get the exact functions u3 but perturbed functions 

u> = u3 + 6j j = 1 , . . . , k + 1, 

with perturbations 8j € L2(Q,). The following requirements are reasonable: 

Keep the perturbations Sj below a certain level such that 

• the approximation uk+1 is good enough with respect to TOL, 

• the generated time-step sequence is nearly the same as in the case of 
no perturbations. 

These requirements ensure that the problem dependent time-stepping in 
Hilbert space is preserved. 

It can be met if we assume that we are able to compute time-error esti
mates 

ej = ej + 9j j = l , . . . , fc , 

as well as estimates [8j], [Sj] of the spatial perturbations \0j\, \\Sj\\o-
We then proceed as follows: Compute time steps with respect to ^TOL 

instead of TOL, where 0 < Q < 1. The approximation {tfc+1 is accepted if 

i) h + [&k+i] < TOL, 
(1.11) ! 

ü) [6i\<l^ j = l,...,k. 

Implementing this computable control criterion (1.11) yields uk+1 accurate 
enough and time steps 

Ti = _ i+i 
TOL 

- T , 

varying in comparison to the corresponding exact time steps T,- as 

Y£Tj<tj< 1.3 Tj, 

provided that [9j] = 1^1, ft] = ||^| |0. 
In order to make a passing through the criterion (1.11) possible we have 

to impose accuracies 

(1.12) ePsj=x(j,k)(l-g)TOl 

to the elliptic problems arising in the computation of uJ. 



EXAMPLE 1.5. The extrapolated implicit Euler scheme yields as shown 
in [2] 

x(i,*) = i«J+1, 
3 

with coefficients a1- quite small for higher k, for instance al = 6.5i0 —3. Thus 
extrapolation amplifies spatial perturbations. This amplification is due to the 
fact that we build higher and higher order differences whose perturbations 
stay in the order of magnitude of the initial perturbation — but do not 
decrease like the differences. 

2 VARIABLE-ORDER TIME DISCRETIZATION BASED ON A 

MULTIPLICATIVE ERROR CORRECTION 

In this section we will derive the new time discretization and apply it to 
the abstract Cauchy problem. 

2.1 A FAMILY OF RATIONAL APPROXIMATIONS TO exp(-z) 

The drawbacks, which have been mentioned in the introduction as well as 
in Example 1.5, of extrapolation methods or related methods like deferred 
corrections are a result of the fact that the error estimation is built as a 
difference of two approximations of different order: 

— a fact which is very similar to the "cancellation effect". 
On the contrary, we are searching for a method which computes T]J directly 

in such a way that the higher order approximation is given as 

U J + 1 = U3 + T)j, 

in order to avoid any cancellation. Thus the corresponding rational approx
imation rj(z) to e~z can be written as 

rj+i(z) = rj(z) + Pjiz)-

We require several features for the rational functions TJ(Z) and Pj(z): 

(Rl) rj should be an jL0
_acceptable approximation to e~z of order j > 0. 

(R2) The corrections pj+i should be obtained multiplicatively 

Pj+i(z) = ~fj+ip(z)Pjiz), J = 1,2,... 

with a rational function p and coefficients jj. 
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L0-acceptability denotes in addition to A0-acceptability that 

rj(oo) = 0. 

Discussion of the requirements. Requirement (Rl) yields the existence 
and continuity of the mappings 

rj(TA) : Ha - • Ha+2 for a > 0. 

Thus we have modeled the effect of parabolic smoothing. The multiplicative 
error correction (R2) is motivated by the aims of the least possible need of 
memory and the least possible effort of work, since it means that: 

1. We only need to memorize the actual approximation rj(rA) and the 
last correction PJ_I(TA) in order to get a new correction pj{rA) and 
thereafter a new approximation r J + 1(rA); 

2. We always have to perform the same type of elliptic problem, that is the 
evaluation of p(rA), in contrast to extrapolation methods which have 
to compute the different elliptic problems (J + r/j A ) - 1 for varying j . 

Derivation of the approximations. Up to now we have constructed our 
rational approximations in the following way: 

i - i 
rj+1(z) = ri{z) + ^2ökp

k(z)pi(z), j = 1,2, . . . , 
k=o 

with äjt = nf=i 1l+i for fc > 1, öo = 1. By choosing 

P\{z) = 1\pv{z)n{z), 

where 71 and the integer v > 1 will be specified later on, and 

i) <**+„ = 7iäfc, k > 0, 
(2.1) ii) a0 = 1, 

iii) a,- = 0, 2 = 1 , . . . , / / — 1, 

we gain the relation 

(2.2) rj(z) = r1(z)1~^akp
k(z), j = 1,2,... . 

k=0 
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Thus the approximation r,- is a refinement of rx. Since we want to refine the 
implicit Euler, which belongs to parabolic problems [1], we choose 

n(z) = 
l + z 

Now the rational function p should have the same denominator as r\, which 
means that we have to solve the same elliptic problem as in r\(rA) in order 
to evaluate p{rA). Thus we get 

with 7r(z) a polynomial in z. Because of a 0 = l,^*j(0) = ̂ (0) = 1 we have 

7r(0) = 0. Moreover the L0-acceptability of the r,- yields 

\p(z)\ < M for z —*• +oo, 

with a certain M > 0. Hence we get deg7r = 1. Since we have not yet 
specified the coefficients {ctk}k>o, we get 

l + z 

Our considerations led so far to the following problem: Find coefficients 

{ctk}k>o such that 

e = > et). -
l + zto U + * 

Upon introducing 
(2.3) w= Z 

l + z 

we observe that the {ctk}k>o should be generated by the function 

1 ( w 
exp 1 — w \w — 1, 

This function is intimately connected with the Laguerre polynomials, since 

(2.4) - i - exp ( - 2 L - ) = £ Lk{x)w\ \w\ < 1 , 
1 — w \w — 1/ f-t k=0 

where Lk{-) denotes the Laguerre polynomial of degree k. Thus we have 

k 

+ zf~"y~'\l + ~ 
(2-5) e-^gMl)^)*, *>-i 
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and get 
ak = Lk{l), fc = 0, l , . . . 

Since aa = Lx(l) = 0 and a2 = L2(l) = - 1 / 2 we obtain by (2.1) that v = 2 
and 7i = —1/2. By (2.2) our rational approximation r,(z) is given as 

(2.6) r'w-rbSwl)(rh)'-
To end up with a recurrence formula for the rational functions rj in con

nection with requirement (R2), we trace the derivation backward: 

(2.7) in 

iv 

rx(z) 
1 + 2 

rJ+i(z) = rAz) + Pi(z), i = l , 2 , . . . 

Pj+i(z) = 7j+iT—-Pj(z), J = 1,2,... 
i. + z 

7j+i = i = 1,2, 

LEMMA 2.1. The rational approximation rj(z) to e z defined by (2.6) is 
of order at least j . Furthermore we have 

a) rj(z) is Lo-acceptable whenever |Z,fc(l)| < 1 for 0 < k < j . 

b) rj(z) can be computed by means of the recurrence formula (2.1) when
ever I f c(l) ^ 0 for 2 < fc < j - 1. 

Proof. The first assertion can be seen by comparison of (2.6) with (2.5). 
Part b) follows from (2.7.v). The remaining part a) can be proved as follows: 
By using the transformation (2.3) we have 

rÄz) = TTlSit(1)(lTl)' 
= (l-w)-£Lk(l)w

k. 
k=0 
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The interval z € ]0, oo[ is mapped to w € ]0,1[ which yields 

kiCOl < (l-v)i:\Lk(l)\wk 

*=0 

< ( 1 -

< 1, 

3 

k=0 

whenever z > 0 and |£fc(l)| < 1 for 0 < k < j . u 

Next we show that our approximations are in fact special cases of the so 
called RD-Pade approximations to e - 2 introduced by N0RSETT [7]. (RD = 
restricted denominator). 

DEFINITION 2.2. A rational approximation to c~z of the form 

RU z) = ^k=°akzk 

of order at least j < p is called a (j,p)-RD-Pade approximation. 

LEMMA 2.3. (NORSETT [7]). The (j,p)-RD-Pade approximation is uniquely 
given by 

Hi*) = 
Eto(-i)p+fc4p-fc)(i/g)Mfe 

pV ' (1 + o-z)? 

Proof. Corollary 2.1 of [7]. • 

COROLLARY 2.4. The approximation rj(z) is the (j,j + 1)-RD-Pade 
approximation R3j+1(z) with a — 1 and given as 

(2.8) rj(z) = ELo(-i) i+1- f e^+
+i1" f c )(i)^ 

(1 + *} 3+1 

Proof. Lemma 2.1 states that the rational function rj(z) is of order j at 
least. Furthermore it is clearly of the same form as R]+i{z) with (7 = 1, 
which is by Lemma 2.3 uniquely given as (2.8). • 
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REMARK 2.5. A direct proof of equation (2.8) is possible by using (2.6) 
and the relation 

t(P7!fc1)^w=(-i)p+i4p"j)(a;)' 

which can be obtained by differentiating p — j times with respect to x in the 
generating function formula (2.4). 

The characterization of r,(z) as an RD-Pade approximation yields some 
consequences which are listed below. 

COROLLARY 2.6. The error ofrj(z) as an approximation to e z is ex
plicitly given as 

(2.9) rj(z) - e- = - J ^ — e - (* £ e*Lj+1(t)dt - e2Z, j+1(l)) . 

Proof. The assertion follows from Corollary 2.4 together with Theorem 
4.2 of [7]. • 

COROLLARY 2.7. The order ofrj(z) is j if Lj+i(l) ^ 0, otherwise the 
order is j + 1. 

Proof. Follows directly from Corollary 2.6. • 

We have seen in Lemma 2.1 and Corollary 2.7 that many of the properties 
of the approximations r,(z) depend on the values of the Laguerre polynomials 
Irfc(x) at x = 1. Investigation of these values yields our main result: 

THEOREM 2.8. The rational functions rj(z) given by (2.6) are Lo-acceptable 
approximations to e~z of order j at least for 1 < j < 100. For these j the 
functions rj(z) can be computed by means of the recurrence (2.7). 

Proof. Examination of the values of Lj(l) for 1 < j ' < 101 shows that 
the assumptions of Lemma 2.1 and Corollary 2.7 are valid for those j . This 
can be done for instance by means of the formula-manipulating language 
REDUCE. • 
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REMARK 2.9. The author conjectures that Theorem 2.8 is valid for all 
j > 1, but has found no better estimate than |£j(l) | < \ /e for all j > 1 in 
the literature. 

REMARK 2.10. In his paper [7], N0RSETT is mainly interested in opti
mizing the order of RD-Pade approximations by choosing special values of a. 
However, these values of a depend on the chosen order, thus making a recur
rence like (2.7) impossible. Because (2.7) is essential for a cheap realization 
of rj(rA) with the possibility of varying order, we have chosen a = 1. 

We close this paragraph by listing the first coefficients jj of the recurrence 
(2.7). 

TABLE I 
THE COEFFICIENTS jj FOR j = 2 , . . . , 9. 

j numerator of fj denominator of jj 
4 3 
15 16 
56 75 
185 336 
204 1295 

-6209 1632 
112400 55881 
1520271 1124000 

2.2 T H E V A R I A B L E - O R D E R SINGLE S T E P METHOD IN HILBERT SPACE 

Here we will explain the single step methods corresponding to the just 
derived family of rational approximations. Given 

u° = u(t) 

and a time step r > 0 the recurrence (2.7) yields 

i) u1=r1{TA)u0+(l-r1(rA))A-1f 

(2.10) H ) Vi = -\(rA(I + rAr)2(^-A-'f) 

iii) uj+1 = uj + j\j i = 1,2,.. . 

iv) T]j+1 = 1J+ITA(I + TA)-XT)J j = 1,2,... 

if we remember the construction (1.7) of single step methods from the rational 
function. The update relation (iv) specifies the meaning of what we called a 
direct computation of the error corrections rjj. 

15 



If we make use of the relation 

I - i l + rA)-1 =TA(I + TA)-\ 

we are able to find a simpler expression for the terms u1,771: 

i) U1={I + TA)-1{u° + Tf) 

(2.11) ") ^o = u1 - u° 

iii) 77! = -TA{I + TA)-2TJ0 

REMARK 2.11. Another version of representing ul,rj0 would be 

i) ^ J = T ( / + T A ) - 1 ( / - A U 0 ) 

ii) u1 = u° + T/O, 

which puts the difference at a more desirable place. However, this is only 
possible if u° € H2. 

By means of the representation (2.10) we observe that for 

u°,feL2(U) 

the approximations and corrections possess the necessary regularity: 

uj,r)j € H2 for j > 1. 

Since A is the weak representation of the elliptic operator A(x, d), problems 
of the kind 

U = (I + TA)-1W, weL2(Ü) 

are equivalent to the variational problem 

(u,u) + Ta(u, v) = (w, v) for all v €. HQ(Ü); 

whereas problems of the kind 

TI = TA{I + TA)-1C, CeH2 

are equivalent to the variational problem 

(77, v) + Ta(r},v) = ra((,v) for all v € Hl(Q). 

The equivalence is backed by Theorem 1.1. 
Finally the time-error estimators are 

(2.12) e i = ItoHo for j > 1. 
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3 T H E MATCHING OF SPATIAL ERRORS AND ALGORITH

MIC DETAILS 

In this section we will specify the perturbation concept introduced in the 
preliminary draft of Section 1. For that purpose we derive expressions for 
the estimators [8j], [Sj] as well as for the accuracy function x- Finally we 
discuss some algorithmic details. 

3.1 T H E PERTURBATION ESTIMATORS [fy], [8j] 

In order to realize (2.10) we have to approximate the arising (weak) elliptic 
problems. Since we have seen that they are equivalent to the variational 
forms, an adaptive FEM method is ideally suited for our purposes. However, 
it has to fulfill certain requirements already discussed in [2], Section 4. For 
the following the main point of interest is that the elliptic solver may solve 
within a given accuracy eps and delivers an error estimate. Then we can 
proceed as follows: 

By using the elliptic solver within the given accuracy eps we first get an 
approximation of u1 

Ü1 = u1 + 6x € L2(Sl), 

together with an estimate [<$i] < eps of ||<$i||o-
Next we fix the triangulation chosen by the elliptic solver in order to com

pute ti1 and compute 

fk = IrAil + TA^itf-u^+h + ^TAil + TA)-1^ 
Z £ 

= rji + ui 

on that triangulation. Here u0 is the error of the approximation fji of 

(7 + r A ) - 1 ( Ä 1 - u ° ) , 

and Ciii denotes the error made while solving the second elliptic problem 

-TA(I + TA)-%. 

Hence the elliptic solver provides estimates [u?0],[&i] of the norms of the 
corresponding errors. We gain the representation 

wi = \T A(I + TA)-28X + -TA(I + TA)-1CJQ + dx 
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REMARK 3.1. The question of the "correct" value for the elliptic ac
curacy eps is not a question of guaranteeing the pass through the control 
criterion (1.11) for all possible situations, which yields far too pessimistic 
values and in turn much more effort than needed. However, it is a question 
of making the pass through possible for a large class of realistic, i.e. quite 
probable, situations. This yields more optimistic accuracies, and it is in
tended by some heuristic considerations as well as experience that it is not 
too optimistic. Such unreasonable optimistic accuracies would cause that too 
much time-step and order suggestions are withdrawn, which in turn leads 
to more work than needed. Looking at the elliptic accuracy (3.5) and the 
assumptions leading to it, we should bear in mind that balance. 

3.3 ALGORITHMIC DETAILS 

3.3.1 Information Theoretic Standard Model 

As discussed in DEUFLHARD [3] for ODE's and by the author in [1] for 
parabolic equations, time-step and order control along the draft of Section 
1 becomes a reliable device if we supplement it by an information theoretic 
standard model as introduced in [3]. By comparing the computed time-error 
estimates e,- with the standard behavior predicted by that model we can 
implement three devices: 

• convergence monitor 

• order window 

• device for possible increase of order greater than the computed k 

For the meaning of these terms we refer to [3]. 
In [1, 3] the information theoretic standard model is derived for extrapola

tion methods, but it needs only little change for our new time-discretization: 
Just replace the coefficients ct(k,q) of formula (3.8) in [3] by 

(3.7) a(M)= f c + \ 

3.3.2 Consistency Estimator 

(gTOL)T^ 
0TOL 

To avoid step-size reductions in transient phases we can use a consistency 
estimator as introduced by the author in [2]. We estimate the maximal value 
of a, such that 

u° € H2a. 
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In view of Theorem 1.4 we can use exactly the same consistency estimator 
as in [2]. 

3.3.3 Optimal Choice of the Factor g 

We want to optimize the factor g with respect to the expected work. This 
can be done at least locally in time direction as follows: The local amount of 
work to realize our algorithm depends on g roughly by means of the factor 

1 

(1 - Q)d'2^ 

where d denotes the dimension of the spatial part. This factor may be ob
tained if we assume the lowest order in time and if we model the work, that 
the elliptic solver needs to achieve a certain accuracy in the Z2-norm, as in 
the case of quasi-uniform triangulations. Minimizing that factor gives the 
optimal value 

(3.8) „•= jL.. 

3.3.4 Details for the ID Case 

We use the same elliptic solver as explained in [2], Section 4. The measures 
for the amount of work as introduced in Section 1.2 should be chosen as 

(3.9) Aj= / + 3 j = 2 , 3 , . . . . 

Herein we assumed that creating the final mesh and solving for u° is twice as 
expensive as the computation of one correction fjj. Furthermore the amount 
of work principle stated in [2] has been used. 

Knowing the amount of work in advance we are able to study the order 
control qualitatively in dependence of the imposed accuracy TOL - by using 
the information theoretic standard model. This study shows that the minimal 
value of (1.10), that determines the optimal order, lies between neighbors 
which are nearly of the same size. In order to avoid a nasty oscillation 
between such neighboring orders we require that 

Ak+2 . ^ifc+l 
<. cr  

TJH-i Tk 

before taking the order k + 1 into account. The value 

cr = 0.9 
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has turned out to be a good choice. Making this choice we gain the following 
nice result: The maximal possible order suggestion which we expect then is 

(3.10) fcmax=Ll-log10TOLJ, 

at least for tolerances TOL € [10~6,10-1]. The numerical examples of the 
next section confirm this a priori result. 

4 NUMERICAL EXAMPLES IN ONE SPACE DIMENSION 

In this section we will demonstrate the efficiency of the new time discretiza
tion by means of two ID examples. The new algorithm is implemented in 
the program KASTIOl, where the number 1 indicates the space dimension. 
It uses the same elliptic solver as the program KASTIX1 of the author [2], 
which is a realization of the extrapolated implicit Euler scheme as discretiza
tion in time. The advantages of the new discretization are enlightened by 
comparison of the behavior of KASTIOl and KASTIX1. 

NOTATION. In the tables of this section we make use of the following — 
beside the notation introduced earlier in this paper: 

Max. order k: During a run the program has computed a sequence 
Mi, . . . , Ufc+i of approximations at ieast for one time layer. Thus the maximal 
given order of approximation is k + 1 whereas the maximal order, for which 
an error estimation has been performed, is k. 

[N] = (Hj>i No. of nodal points of time step j)/No. of time steps, 

CPU = computing time in seconds on a SPARC-stationl+, 

Ntot — total No. of points over all time layers divided by 1000, 

K = CPU/iV<ot. 

For the meaning of the mean value [N] see [1]. Since it indicates the effort 
for every nodal point, K is something like a complexity index. 

EXAMPLE 4.1.Point-source. This model problem has been proposed by 
the author in [1] to test the time-stepping procedure. We solve the homoge
neous heat equation on the spatial interval J = [—10,10] with the following 
approximate ^-function as initial data: 

u0(x) = 250exp(-250x2) . 
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The Dirichlet boundary conditions can be considered as zero for t < 1 to 
model the evolution of u0 on the whole real axis, the solution computed by 
KASTIOl can be seen in Fig. 1. 

FIG. 1. Evolution of point-source, time in log-scale (Example 1). 

Because of the exponential decay of the solution as shown in Fig. 1 we 
expect an increase of the time step according to a power law, which really 
occurs automatically in the performance of KASTIOl as shown in Fig. 2; the 
corresponding development of the space mesh is shown in Fig. 3. 

time 

FIG. 2. Automatic increase of the time step (Example 1). 
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FlG. 3. Mesh development for the point-source (Example 1). 

TABLE III 
NEW(KASTIOI): PERFORMANCE FOR VARIABLE ORDER (EXAMPLE 1) 

Time Max. Z~([0,T],L2(/)) 
TOL steps order [N] norm of true error CPU Ntot K 

•IO"1 55 2 147 4.90io - 2 13 8 1.6 
io-2 66 3 513 2.73io - 3 61 34 1.8 
io-3 79 4 1748 1.67io-4 289 138 2.1 
IO"4 87 5 5632 8.87io - 6 1145 490 2.3 

* run represented in Figs. 1-3. 

TABLE IV 
OLD(KASTIXI): PERFORMANCE FOR VARIABLE ORDER (EXAMPLE 1) 

Time Max. Loo([0,riJL
2(7)) 

TOL steps order [N] norm of true error CPU Ntot K 

io-1 55 1 186 3.96io - 2 28 10 2.8 
IO"2 118 1 634 4.76io - 3 286 75 3.8 
io-3 99 2 3758 4.36io - 4 2115 372 5.7 

*10~4 — - — — — — — 

* run exceeds storage capabilities of the workstation used. 

Comparison of Table III with Table IV clearly shows the first drawback 
of extrapolation, mentioned in the introduction: Increasing of cost while in
creasing the order. KASTIXl needs more accurate TOL for increasing the 
order, and drops tha t order more quickly than KASTIOl. T h e slow increase 
of t ime steps as shown in Table III for KASTIOl means tha t the new t ime 
discretization is able to use the higher orders quite long — a feature, which 
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had to be expected in view of the low cost of the higher orders. The maximal 
orders occurring in the runs of KASTI01 nicely confirm the theoretical pre
diction (3.10) of Section 3. Moreover the complexity index K behaves nearly 
constant for KASTIOl, thus we can speak of multigrid complexity of that 
program. 

2 10-'-

lb-1 

order-awltch 

FIG. 4. Estimated vs. true error; KASTIOl for TOL = 10_1 (Example 1). 

Fig. 4 shows that the error estimation of KASTIOl is very reliable. In the 
run the chosen order is 2 for t < 0.2 and 1 for t > 0.2. The jump of the 
error at this switching time nicely reflects the whole behavior of time-step 
and order control. Moreover it shows the quality of the error prediction for 
the next step, since the estimated error is just below the given tolerance. 
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TIME 
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time 

FIG. 5. The estimators ij, [Sx] and [6j+1]; KASTIOl for TOL = 10"2 (Ex. 1). 
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Fig. 5 shows the error estimators in more detail: 

ij = TIME, 

[Sj+1] = STAT-TOT, 

[Sx] = STAT1. 

Herein j denotes the actually chosen order. As expected we observe that the 
jump of the estimated error at t = 0.2 is due to ij. As long as the order 
remains constant the time-stepping procedure leaves the time-error compo
nent of the whole error nearly constant. The equal shape of the behavior of 
[Si] and [Sj+i] backs the assertion that Si dominates all other spatial pertur
bations — a feature detailly discussed in Section 3.2. This feature is shown 
more quantitatively in Fig. 6: 

Herein the quotient [<5j+i]/[<5i] is shown together with the corresponding 
propagation function x ( j ) - 1 (dotted line). It shows that our model of Section 
3.2 slightly underestimates the error propagation. 

2.5H 

3 2H 
IT 

1.3-

10-* 10-" 10-' 
ntime 

FIG. 6. The quotient [fy+i]/[$i]; KASTI01 for TOL = 10~3 (Example 1). 

EXAMPLE 4.2. Inconsistent initial data. This example is very challenging 
for the order and time-step control mechanism because of its transient phase. 
Moreover the solution runs into a stationary one. Thus we are able to study 
the third drawback of the extrapolation method KASTIX1 as mentioned in 
the introduction: KASTIX1 is not able to detect stationary phases. 

The problem consists of the simple heat equation on the spatial interval I = 
[0,1] with a simple time independent source term. We impose homogeneous 
Dirichlet boundary conditions and choose 
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Because u0 does not satisfy the Dirichlet condition, the initial data are in
consistent. The source is chosen in order to get a stationary solution which 
is linear in [0,0.5] and a parabola in [0.5,1]. The solution computed by 
KASTIOl can be seen in Fig. 7. 

FIG. 7: Evolution of a boundary-inconsistency into a stationary solution, 
time in log-scale (Example 2). 

Again we expect an increase of the time step according to a power law, 
which really occurs automatically in the performance of KASTIOl as shown 
in Fig. 8. The corresponding development of the space mesh is shown in Fig. 
9. 
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FIG. 8. Automatic increase of the time step (Example 2). 
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FIG. 9. Mesh development for the boundary-inconsistency (Example 2). 

TABLE V 

NEW(KASTIOI): PERFORMANCE FOR VARIABLE ORDER (EXAMPLE 2) 

Time Max. L~( [0 , rU 2 ( J ) ) 
TOL steps order [N] norm of est. error CPU Ntot K 

io-1 18 1 13 2.49io - 2 0.4 0.2 2.1 
io-2 25 2 31 9.21io - 3 1.1 0.8 1.4 

*io-3 52 3 89 9.88io-4 5.9 4.6 1.3 
io-4 83 4 282 9.93io-5 35.6 23.4 1.5 
IO"5 79 6 1002 9.81io-6 147.3 79.1 1.9 

* run represented in Figs. 7-10. 

TABLE VI 

OLD(KASTDCI): PERFORMANCE FOR VARIABLE ORDER (EXAMPLE 2) 

Time Max. L°°([0,T],£2(/)) 
TOL steps order [TV] norm of est. error CPU Ntot K 

10-1 141 1 15 8.03io - 2 4.2 2.1 2.0 
10-2 131 1 33 6.18io-3 8.9 4.2 2.1 
IO"3 55 2 169 9.851 0-4 33.6 9.3 3.6 
IO"4 164 2 483 9.711 0-5 524.1 79.0 6.6 

*10~5 — - — — — — — 

* run exceeds storage capabilities of the workstation used. 

Comparison of Table V and Table VI shows that KASTIX1 chooses lower 
orders than KASTIOl like in Example 1 and needs far more time steps. The 
latter observation can be explained by the above mentioned third drawback 
since the solution becomes stationary roughly at t = 1. For all tolerances 
KASTIOl needs only 3 time steps to come from t = 1 to t = 1000, whereas 
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KASTIXl spends about 35 time steps for the same task (TOL = 10 -1 ,10~2). 
Moreover the need of computing time and of storage is much higher in case 
of the extrapolation method than in the case of the new time discretization. 
Finally the complexity index K shows for KASTIOl multigrid complexity in 
contrast to KASTIXl. 

1 0 ^ 
•5 

•or 
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10-' \ i'o 10* 1b» 

ESTIMATED 

FIG. 10. Error behavior of KASTIOl for TOL = 10~3 (Example 2). 

Figure 10, where the estimated time-error component is plotted in addition 
to the estimated total error, nicely shows how KASTIOl is able to detect 
stationary phases. 
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