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A b s t r a c t 

We derive and analyze the hierarchical basis-multigrid method for solving 
discretizations of self-adjoint, elliptic boundary value problems using piece-
wise linear triangular finite elements. The method is analyzed as a block 
symmetric Gauß-Seidel iteration with inner iterations, but it is strongly re­
lated to 2-level methods, to the standard multigrid V-cycle, and to earlier 
Jacobi-like hierarchical basis methods. The method is very robust, and has 
a nearly optimal convergence rate and work estimate. It is especially well 
suited to difficult problems with rough solutions, discretized using highly 
nonuniform, adaptively refined meshes. 
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1. Introduction 
In this work we describe and analyse the hierarchical basis multigrid method 
for solving selfadjoint, positive definite, elliptic boundary value problems. 
This method is related to standard multigrid methods [5,9], to the 2-level 
scheme of [1,3,6,11], and the hierarchical basis method in [14,15,16,17]. 

The method can be formulated as a standard multi-grid V-cycle [9], 
' except that a smaller than normal subset of unknowns are updated during 
the smoothing phase at a given level. In particular, each unknown on the 
given finest level is uniquely associated with exactly one level, not several, 
and is updated only at that level. This formulation of the hierarchical basis 
method is especially useful when considering questions of implementation, 
since these aspects of multigrid methods are now well understood. 

Although the multigrid-like viewpoint gives the appearance of a recur­
sively defined algorithm, the hierarchical basis method can be mathemati­
cally formulated as a standard block iteration, albeit using the somewhat 
nonstandard hierarchical basis. In this respect, it resembles the 2-level 
scheme. The algebraic theory of block iteration, and in particular, the block 
symmetric Gauß-Seidel iteration considered here, is relatively straightfor­
ward. One interesting feature is that we allow for "inner" iterations to 
solve linear systems involving the diagonal blocks. In any event, a fairly 
complete algebraic analysis can be developed using only the assumptions 
that the matrix is symmetric and positive definite. 

While we ultimately return to and use the properties of the finite el­
ement subspaces, in order to make our final estimates, the assumptions 
we need are all very weak and are almost always satisfied in practice. In 
particular, we assume shape regularity (e.g. a small angle condition) for 
each element but do not assume quasiuniformity of the global mesh. Our 
estimates involve only local ellipticity; we use no global regularity for the 
solution beyond the minimal if ^regularity required for the standard weak 
formulation. Finally, we use local properties of piecewise polynomials. 

Within this framework, we are able to show the hierarchical basis meth­
ods used as preconditioners have generalized condition numbers which grow 
like y2, where j is the number of levels. This is slightly suboptimal in com­
parison with standard multigrid methods, where the condition numbers 
are uniformly bounded, and it introduces a logarithmic-like factor into the 
overall work estimate. 

The hierarchical basis method requires 0(n) operations per iteration, 
where n is the number of unknowns on the finest level. This is the same as 
for standard multigrid methods. However, because of their recursive nature, 
one often requires geometric growth in the dimensions of the subspaces to 
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insure that the work on coarse levels will not dominate the overall work 
per cycle. Because our hierarchical basis method is just a symmetric block 
Gauß-Seidel iteration, its work estimate remains valid for any allowable 
distribution of unknowns among the levels? it relies only on the usual' and 
normal sparsity of the global stiffness matrix for the nodal basis, (i?e. O(l) 
nonzeroes per row). ' • . . 

The overall complexity of the hierarchical basis multigrid method^ used 
as a preconditioner for the conjugate gradient iteration, is-thus 0(nj\ log e|) 
operations required to reduce the initial error by the factor1 e. In the realm 
of smooth model problems on rectangular regions, solved using'a sequence 
of uniform and uniformly refined meshes, it is fair to say that the hier­
archical basis method is just another pretty face in a big crowd of very 
good optimal or nearly optimal methods [1,9]. On the other hand, for ge­
ometrically complex regions, involving highly nonuniform and adaptively 
refined meshes, and/or problems with rough coefficients and solutions, there 
are far fewer good candidates for a simple but effective iterative method 
[7,8,14,15,16,17]. It is in this regime that the hierarchical basis multigrid 
method looks very attractive. Since its theory is based-on only .weak as­
sumptions, its performance and work estimate remain1 essentially stable 
over an extremely broad range of problems. We remark that <the theory 
developed here can be extended in straightforward fashion to: other finite 
elements (e.g. quadrilaterals as well as triangles), other types of refine­
ments procedures (e.g. [12]) and to higher degree polynomial spaces. We 
also mention that the method works well for many strongly indefinite and 
highly norisymmetric problems (e.g. singular perturbation problems) but 
our theory does not cover such cases. Thus, as a general purpose^ robust, 
elliptic solver, the hierarchical basis multigrid method has a lot to recom­
mend it, and we believe its future is bright. / 

The remainder of this paper is organized as followsi In Section 2, we 
discuss the finite element discretization, introduce the nodal, and hierarchi­
cal bases and derive the linear algebra problem to be'solved.! In.Section 
3, we present and analyze the block symmetric Gauß-Seidel iteration for a 
general symmetric, positive definite matrix. We analyze three possibilities 
for solving linear systems involving the diagonal blocks: direct solution, 
and point Gauß-Seidel and point symmetric Gauß-Seidel inner iterations. 
The theory developed here is strictly algebraic; the generalized condition 
numbers for the three cases are estimated in terms of a few constants, which 
ultimately are bounded, in Section 4, using the properties of the: finite ele­
ment space. In Section 5, we outline the precise relationship between the 
hierarchical basis method and the standard multigrid V-cycle, and present 
some numericalillustrations. ' ' ' \ ••:•..,. 
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2. The Finite Element Discretization 
We assume that fi C R2 is a bounded polygonal domain. As a model 
problem we consider the differential equation 

2 

- £ DjioiiDiv) = f (2.1) 

on Q with Dirichlet boundary conditions 

u = 0 (2.2) 

oh the boundary piece T and natural boundary conditions 

£(X>;»I;) A" = 0 (2.3) 
i = i j = i 

on the remaining part dü\T of the boundary of Ü. ft denotes the outward 
Unit normal vector. The appropriate solution space of this boundary value 
problem is 

H(Ü) = {u € Wl>\ü) | u = 0 on T} (2.4) 

where T is assumed to be composed of some or all edges of the polygonal 
domain fl and the zero boundary conditions have to be understood in the 
sense of the trace operator. The seminorm 

K2;n = £/j(A<0(*)|2<*z (2.5) 

is a norm on H(U). The weak formulation of our boundary value problem 
is to find a function u £ H(Cl) satisfying 

J3(tt,i>) = / • («) , v&H(ü), (2.6) 

where /* is a given bounded linear functional on H(Q) and the bilinear 
form B is defined by 

. 2 

B(u,v) = / ]T aijDiuDjvdx . (2.7) 

We assume that the a,y are measurable and bounded functions satisfying 

aij = aji, i,j = 1,2 (2.8) 
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a n d ;•" * 
2 2 2 

t=i t,y=i »=i 

for almost all x G H and all TJ G R2 . 6 and M are positive constants 
independent of x and »7. 

By (2.8) and (2.9) B is a symmetric bounded and coercive bilinear form 
on H{n). 

H I 2 = B(u,u) (2A10) 

defines a norm on H(ü), the energy norm. This norm is equivalent to 
the norm (2.5). Since H(Q) is a Hubert space under this norm, the Riesz 
representation theorem guarantees that the boundary value problem (2.6) 
has a unique solution. In this paper we consider only the weak formulation 
(2.6) and not the classical formulation given above. 

By a triangulation T of the polygonal domain n we mean a set of trian­
gles such that the union of these triangles is Ö and such that the intersection 
of two triangles of T either consists of a common side or a common vertex 
of both triangles or is empty. Here we start with an intentionally coarse 
initial triangulation T\ of n . For every triangle T G T\ let 6(T) and M(T) 
be positive constants with 

*V)X>.? < £ «*(*)wy < M(T)£T,} (2.11) 
i = i t j = i t= i 

for almost all x G T and all 77 G R2 . Let 

This constant a and not the global ratio M/8 with the constants M and 8 
from (2.9) enters into our estimates. 

To produce a sufficiently accurate solution we refine T\ several times, 
giving a family of nested triangulations 7 i , T 2 , 7 3 , — A triangle of 7i+ i 
is either a triangle of the triangulation 71 to be refined or is generated by 
subdividing a triangle of 7jt into four congruent subtriangles as shown in 
Fig. la or into two triangles as shown in Fig. l b . The two triangles in 
Fig. lb are obtained by connecting a given vertex of the original triangle 
with the midpoint of the opposite side. The situation described by Fig. 
l a we call a regular refinement, and the resulting triangles as well as the 
triangles .of the initial triangulation are regular triangles. A refinement as 
in Fig. lb is an irregular refinement and results in two irregular triangles. 

The irregular refinement is potentially dangerous because interior angles 
of the resulting irregular elements might be reduced. Therefore we add the 
rule that irregular triangles may not be further refined. This rule insures 
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Figure 1 a,b 

that every triangle of any triangulation 7* is geometrically similar to a 
triangle of the initial triangulation 71 or an irregular refinement of a triangle 
of Ti. 

The triangles of 71 are called level 1 elements, and the regular and 
irregular triangles created by the refinement of level A; — 1 triangles are 
called level k elements. The vertices of the mesh 71 are the level 1 vertices 
or nodes and those vertices created by the refinement of a level k — 1 element 
are level k vertices. It is important to recognize that not all elements in 
Tfc-i need to be refined in creating Tk- In particular, the mesh Tk may 
contain unrefined elements from all lower levels, and thus it may be a 
highly nonuniform mesh. 

Algorithms for adaptively generating meshes 71 satisfying the rules 
given here are described in [5] and have been implemented in the finite 
element package PLTMG [2]. The details are unimportant for our consider­
ations but one should note that the levels introduced here do not necessarily 
reflect the dynamic refinement process. 

Corresponding to the triangulations 7jt we have finite element spaces 
Sk- Sk consists of all functions which are continous on Q and linear on the 
triangles T G Tk and which vanish on the boundary piece T. Clearly Sk is 
a subspace of Si for I > k. 

For each space Sk there are two sets of basis functions which play im­
portant roles in our discussion: the nodal basis ij)\ , i — 1 , . . . , n*, and the 
hierarchical basis r/\-, t = 1 , . . . ,n^. The nodal basis is the standard basis 
used in practical computation. The basis function rj)\ ' G Sk is defined by 

$k){xl) = 6il (2.13) 

where the x\ runs over the vertices of the triangles of Tk not lying on T. 
The hierarchical basis, on the other hand is defined as follows: 

1. The hierarchical basis of Si is fa := Vv , t = 1 , . . . , n i . 

2. For k = 2 , 3 , . . . the hierarchical basis of Sk consists of the hierarchical 
basis functions 

fa, * = l . - . - . n ^ i . 
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of Sk-i and the nodal basis functions 

V . - : = $ * \ » = »*-i + l , . . . ,njk. 

In other words the hierarchical basis for Sk is built from that of £*_! by 
adding the nodal basis functions of Sk associated with the level k nodes not 
lying on T, namely with £,-, i = nk^ + l,...,nk. The hierarchical basis of 
Sk induces a natural partitioning of the finite element space. Let 

VA = span {ipi | £,• is a level k vertex} (2-14) 

Then one has the decomposition 

5* = V i © V 3 © " - © V * (2.15) 

For convenience we fix a finite element space S = Sj. Every function u €E S 
can uniquely be written as 

i 
u = J2ui> UieVi (2.16) 

We now define the interpolation operators 

Jk:S->Sk, k = l,...,j (2.17) 

by 

J*u = X>,- • (2-18) 
t = i 

JfcU is the uniquely given function of Sk interpolating u G S at the vertices 
of the triangles of Tk. The finite element space Sk is the range of Jk and for 
k = 2,..., j the space Vk is the range of Jk — Jk-\. 

Our final aim is to solve the linear system 

Ax = b (2.19) 

corresponding to the boundary value problem (2.6) and the discrete solution 
space S represented in terms of the nodal basis. The components of the 
solution vector x are the values of the discrete solution at the nodal points. 
To solve (2.19) we implicitly switch to the hierarchical basis formulation 

Ax = b (2.20) 

of the system (2.19). This system is solved by a preconditioned conjugate 
gradient method. As preconditioners We use relaxation procedures associ­
ated with the blocking of the matrix A induced by the splitting (2.15) of the 
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finite element space Sj = S. A complete description of the preconditioning 
procedures is given in the next section. 

Algorithmically the preconditioned are realized exactly as V-cycle multi-
grid methods with Gauß-Seidel smoothers, except that only unknowns cor­
responding to "Vjfc (and not to St) are smoothed at level k, Therefore the 
amount of work per iteration step is proportional to the number of un­
knowns, but unlike standard multigrid methods, it is unnecessary to as­
sume geometrically increasing dimensions of the subspaces St to achieve 
this bound. This feature makes the method especially attractive for adap-
tively refined grids. 

In the next two sections we show that the growth of the condition num­
ber of the preconditioned matrices is bounded by 0(j2), with j the number 
of levels. This is slightly suboptimal and leads to an 0(jn) algorithm. 
Practically this represents logarithmic growth in the number of iterations 
as a function of n, but contrary to usual multigrid methods this estimate 
does not require the usual strong elliptic regularity assumptions or the qua-
siuniformity of the family of triangulations. 
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3. The Block Gauß-Seidel Iteration 
Let A be arbitrary symmetric positive definite (n X n) -matrix written in 
block form as 

An • • • Ax. 

A = 

A,-, 

• : ( 3 . i ) 

iyi • • • Jijj 

with the An square matrices, remaining fixed in this section. We use the 
decomposition 

A = L + D + LT (3.2) 

of A into its block lower triangular part 

L = 

0 

An 0 

0 

(3.3) 

An ••' Ais-i ° 
its symmetric, positive definite block diagonal part 

D = 
i n 

0 XJ: J 

(3.4) 

and its corresponding upper triangular part LT. 
We consider the solution of 

(3.5) 

(3.6) 

(3.7) 

Ax = b 

by the symmetric block Gauß-Seidel iteration 

x(.+i/2) = X<fi) + (L + D)-T{b-Ax®) 

x{i+i) = xQ+W + (L + D)-l{b-Axli+1M) 

In each step (3.6), (3.7) one must solve 2j linear systems with the coefficient 
matrices A}j,..., An and An,..., Ajj. In many applications, such as ours, 
the cost of direct solution is prohibitively large. Therefore we replace the 
block diagonal matrix D in (3.6) and (3.7) by another nonsingular, but 
not necessarily symmetric, block diagonal matrix D obtaining the modified 
iteration 

x(,+i/2) = XM + (L + i))-T{b- Ax®) 
^i+l) = *('+V2)+ (£ + £ ) - ! ( & _ ^('+1/2)) 

We begin our analysis with: 

(3.8) 

(3.9) 
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T h e o r e m 3.1 Let the symmetric matrix 

X = D + DT-D (3.10) 

be positive definite. Then the iteration (3.8), (3.9) can be written as 

x«+i) = x® + B^ib - Ax®) (3.11) 

with the symmetric and positive definite matrix 

B = {L + D)TX-1{L + D) (3.12) 

Proof: Let 
r® = b - Ax®, Ai+1M = b - Ax**™ 

The definition of z(t-+1/2) leads to 

r(.-+i/2) _ r(<) _ ^(2(«'+i/2) _ x ( 0 ) 

= r « - (L + Z> + L r)(x('+1/2) - x®) 

= rW - ' ( L + £)T(x(«'+1/2) - x(0) + (i)T - D - L)(x('+1/2) - x®) 

= {DT-D-L){xli+1M-x®). 

Using the definitions of x(,+1) and x^,+1/2^ we obtain 

{L + D){xW - x®) 

= (L + D) (x(,+1) - x(,+1/2)) + (L + D) (x(i+1/2) - x(0) 

= Ai+1M + {L + £))(x('+1/2) - x®) 

= {DT-D- L)(x('+1/2) _ x(0) + (L + £))(x('+1/2) - x(0) 

= {£> ± DT - £>)(x(«"+1/2) - x®) 

= (Z) + DT - D){L + D)-T{b - Ax®) 

As D + DT — D = X is positive definite this is the proposition. • 

The matrix B'1 can be regarded as an approximate inverse of A. The 
efficiency of the positive definite matrix B as a preconditioner for A is 
largely described by the generalized condition number 

K = ^ (3.13) 
Mi 

where ^ and ß2 are defined by 

1 (x,Bx) 
— = max ) ' ( (3.14) 
ßi x^io (x,Ax) v ' 
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and 

[i2 max 
(x,Ax) 

xjto (x,Bx) 

The brackets denote the Euclidean inner product. 
We consider three different choices for D. The first one is 

Case 1: D = D 

(3.15) 

(3.16) 

which corresponds to the original block Gauß-Seidel method (3.6), (3.7). 
The other two choices are described in terms of the decomposition 

D = I + d + lT 

of the block diagonal matrix (3.4). Here 

(3.17) 

d = 
diag (^22) 

diag (Ajj) 

(3.18) 

is a pointwise diagonal matrix except for the (1, l)-block and / is a strictly 
lower-triangular matrix. Now we can define 

Case 2: D = l + d 

Case 3: D = (/ + dfd'^l + d) 

(3.19) 

(3.20) 

Case 2 corresponds to using one Gauß-Seidel step for all diagonal blocks 
except for the first one where the corresponding system is solved exactly. 
In Case 3 each of the diagonal blocks with exception of the first one is 
treated by one symmetric Gauß-Seidel step; compare Theorem 3.1. In all 
three cases the matrix (3.10) is positive definite: We have for 

Case 1: X= D (3.21) 

Case 2: X = d (3.22) 

Case 3: X= D + 2lTd~H (3.23) 

Therefore Theorem 3.1 applies. 
For all three cases the constant /z2 in (3.15) is explicitly known: 

T h e o r e m 3.2 For all three cases defined above 

(x, Ax) 
ß2 = max XJLO (x,Bx) = 1 (3.24) 
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Proof: The proof that \i?, is bounded by 1 requires only the hypothesis 
of Theorem 3.1. Let Y = D - D. Because D = X - YT we have 

B = {L + X - YT)TX~X{L + X - YT) 

Using the identities XT = X and D = X — Y — YT we obtain 

B = {{L-YT)T + X)X~1{{L-YT) + X) 

= L+{X-Y-YT) + LT + {L- YT)TX-l{L - YT) 

= A + F 

where F is the symmetric, positive semidefinite matrix 

F = (L + D - DT)TX-l{L + D-DT) 

An immediate consequence of this representation is 

(x,Ax) _ (x, Ax) (g, Ax) _ 
(x, Bx) (x, Ax) + (x, Fx) ~~ (x, Ax) 

for all vectors i ^ 0 or ^ 2 < 1. 
Therefore the proof is completed by showing that for each choice of D 

there exists a vector x* ^ 0 satisfying 

Fx* = 0 

or equivalently 
(L + D- DT)x* = 0 

We have for ' 

Case 1: L + D - DT = L 

Case 2: L + D-DT = L + l 

Case 3: L + D - DT = L-lTd~H 

The last column x* = ( 0 , . . . , 0,1)T of the identity matrix satisfies 

Lx* = 0, Ix* = 0 

and therefore in all three cases Fx* = 0 . • 

By Theorem 3.2 for all three choices of D, the generalized condition number 
(3.13) is given by 

/c = m a x f e 4 4 (3.25) 
**o (x,Ax) 
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In the following we use the Euclidean norm 

\x\ = {x,x)V2 (3.26) 

its associated matrix norm 

|M| = m a x L £ i >3.27) 

which is the spectral norm, the energy norm 

\\x\\ = {x,Ax)x'2 (3.28) 

and its associated matrix norm 

| |M| |= max H ^ l ! (3.29) 
" " *#o ||x|| v ' 

which is given by 
||M|| = \AXI2MA~X'2\ (3.30) 

The rate of convergence of a stationary iterative method 

X(«+D = X W + M - i ( 6 _ Aa.(0) (3.31) 

with respect to the energy norm is 

\\E-M-lA\\ = \E-Al'2M-lAll*\ (3.32) 

E denotes the identiy matrix. 

Theorem 3.3 For all three choices of the block diagonal matrix D the mod­
ified symmetric block Gauß-Seidel iteration (3.8), (3.9) has the convergence 
rate 

i - i 
K 

Proof: By definition fii is the smallest and jtf2 the largest eigenvalue of the 
matrix B~XI2AB~XI2 which is similar to the symmetric matrix AXI2B~XAXI2. 
Using Theorem 3.2, (3.14) and (3.25), we obtain 

\E-AXI2B~XAXI2\ = \ - -

• 

We note that the convergence rates of the modified forward block Gauß-
Seidel iteration 

z(*+») = XW + {L + D)-X{b - Ax®) (3.33) 

and the corresponding backward iteration 

xl
i+V=xW + {L + D)-T{b-AxW) (3.34) 

can be expressed in terms of the generalized condition number (3.13). This 
is shown following [13]. 
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T h e o r e m 3.4 For all three choices of D the rate of convergence of the 
iterations (3.33), (3.34) with respect to the energy norm is 

(1 " V 
K 

Thus two steps of the iterations (S.SS) or (8.84) have approximately the 
same effect as one step of the symmetrized iteration (8.8), (8.9). 

Proof: The convergence rate of the first method is 

lE-A^iL + DyA1^ 

and the convergence rate of the second iteration 

\E-All\L + b)-TAll2\ 

As the spectral norm of a matrix and its transpose coincide both norms are 
equal and given by the squareroot of the largest eigenvalue of the matrix 

[E - AXI\L + D)-TA^2][E - A^2(L + by1 A1'2) = E- A^B^A1'2 

As we have stated in the proof of Theorem 3.3 this eigenvalue is 
1 

1 - -
K. 

• 
We are left with the problem of bounding the constant (3.14). This cannot 
be done without using further properties of the matrix A. In the remainder 
of this section we develop some estimates that can be applied to our finite 
element equations. 

We define the following constants: 

= ^ML + DrP-HL + Bto 
0 «*o (x,Ax) v ' 
, (x.Dx) 

a\ = m a x ) ' A ! (3.36) 
«/o (x,Ax) K ' 

o2 (x,lTd-Hx) , , 
ß = W (MS) (3'37) 

^ = wftS (3-38) 
-7? = max \ ' , ' (3.39) 

2 **o (x.dx) v ; 

The constants a0 and cti are invariant under any block diagonal scaling of 
A and ß,^ and -72 under any diagonal scaling of A. 
L e m m a 3.5 For the block Gauß-Seidel method (8.6), (8.7) (Case 1), 

±- = a2
0 (3.40) 

Mi 
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Proof: The matrix (3.12) of Theorem 3.1 is given by 

B = {L + D)TD-\L + D) 

• 

By Theorem 3.2 and Lemma 3.5 

«l = a2 (3.41) 

is the generalized condition number corresponding to Case 1. 
l/a\ is the smallest eigenvalue of the symmetric matrix 

D-i/2AD-iß (3.42) 

This corresponds to the original matrix A preconditioned by its block di­
agonal part D. Note that the maximum eigenvalue 

aa = m a x J £ l M (3.43) 
2 **o (x,Dx) v ' 

of the matrix (3.42) does not enter into our estimates. 
I/7J is the minimum and 7* the maximum eigenvalue of the scaled block 

diagonal part 
d-ißDd-iß .(3.44) 

of the matrix A. 
Using the spectral norm the constants can be written as follows: 

a0 = \D-1'2(L + D)A-1'2\ (3.45) 

a i = \Dll2A~ll2\ (3.46) 

ß = \d-xl2ld-ll2\ (3.47) 

71 = \d^2D^2\ (3.48) 

72 = \D^2d-^2\ (3.49) 

As the spectral norm of a matrix and of its transpose coincide in addition 
we have 

ß = \d-^2lTd-^2\ (3.50) 

71 = \D-l'2dll2\ (3.51) 

72 = \d-V2DV2\ (3.52) 

L e m m a 3.6 For Case 2 the constant (S.14) satisfies 

— < {12OC0 + / ?7 i« i ) 2 (3-53) 
Ml 
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Proof: The matrix B is given by 

B = {L + I + dfd-^L + I + d) 

and therefore we have 

— =\d-1'2(L + l + d)A-1/2\2 

Using (3.45), (3.46), (3.48), (3.50) and (3.52) we obtain 

\d-V\L + l + d)A-1l2\ 

= \d~ll2{L + D)A~1I2 - d-V2/rA- i /2 | 

< {d-^D^l \D-1'2{L + D)A-1/2\+ 

+ \d-1/2lTd~1'2\ |rfV2£>-l/2| 1^1/2^-1/21 

< 72«0 + ßllOti 

L e m m a 3.7 For Case S the constant (8.14) satisfies 

— <{<xo + 4=ßli«i)2 (3.54) 
Pi V2 

Proof: For this calculation only, let 

z = iTd~H 

Then the matrix B has the representation 

B = (L + D + Z)T{D + 2Z)~1{L + D + Z), 

and therefore we have 

(J-)V2 = \(D + 2Z)-l'2{L + D + Z)A-1/2\ 
Pi 

< \{D + 2Z)-ll2D1l2\ \D-V2{L + D)A-XI2\ + 

+\{D + 2Z)-1/2ZD-1'2\ \D^2A-^2\ 

Using the positive semidefinite symmetric matrix 

Q = D~1/2ZD-^2 

one obtains 

{(D + 2Z)-1/2D1'2}T[{D + 2Z)-l/2D1/2} = DXI2{D + 2Z)~lDll2 

= {E + 2Q)-1 
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and 
[{D + 2Z)-1I2ZD-XI2\T[{D + 2Z)~1ZD-1/2} 

= D-XI2Z{D + 2Z)-1ZD~1I2 

= Q(E + 2Q)'1Q 

If A denotes the set of eigenvalues of Q, 

1 
1 + 2A' 

A e A , 

is the set of eigenvalues of (E + 2Q)~l. As Q is a positive semidefinite and 
singular matrix this means 

\{D + 2Z)~ll2Dll2\ = l. 

The set of eigenvalues of the matrix Q(E + 2Q)~lQ is 

A2 

1 + 2A' 

Since 

A e A . 

< - , A > 0 , 
1 + 2A ~ 2 

we get 

\(D + 2Z)-1'2ZD-1/2\2 < -ID-^ZD-1'2] 

Inserted above we obtain the estimate 

(JL)i/a < |£)-i/2(x + D)A-l'2\ + 4H£~1/2^~1/2r /2|£>1/2^~1/2| 

Now, using (3.51), (3.50), (3.47), (3.48) 

p-i/2^-1/21 = |£>-i/2/rd-i/ö-i/2| 

< \D-Xl2dll2\ \d-^2lTd~^2\ \d~ll2ld-ll2\ Id1/8!?-1/3! 

< lißßlx 

Combining this with (3.45) and (3.46) completes the proof. • 

Theorem 3.2 and Lemma 3.6 and 3.7 lead immediately to the following 
estimates for the generalized condition number (3.13): 

Case 2: K2 < (72^0 + ßlxQ-if (3.55) 

Case 3: K3 < {a0 + -j=ßlx<XxY (3.56) 

We conjecture 
K\ < KS < /c2 (3.57) 
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Because of 72 > 1 our estimates reflect this supposed behaviour. 
Our next task is to obtain simple bounds for the constants a0 and a\. 

For this purpose let 

h = 

E 11 

Ekk 

0 0 

(3.58) 

be the block-diagonal matrix the first k block-diagonal entries of which 
are the identity matrices En and all other blocks are zero. In our applica­
tion the matrices Ik, k = 1 , . . . ,j, can be interpreted as the finite element 
interpolation operators of Section 2. 

L e m m a 3.8 For all n—dimensional vectors x, 

\D-XI\L + D)A-l'2x\2 < J2 lA^hA-^xf 

and 

pi/ iA-i/»»!» < 4 £ lA^hA-^xl 

(3.59) 

(3.60) 
*= i 

Proof: The first proposition holds if and only if one has for any fixed 
vector x 

|x|2 < J2 \Al'2Ik{L + D)-lD^2x}2 (3.61) 
*=i 

Let y = (L + D)~xDll2x and define the matrices 

Pi=h, Pk = h-h-u k = 2,...,j. 

Because of the block structure of the matrices L and D we have 

D^hy = Pxx 

Since 
IlDI1=I1AI1 

we obtain 
\Pxx\ = \All2hy\ (3.62) 

For estimating |Pjfcx| for k = 2 , . . . ,j we introduce the decomposition 
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where 

v = Ik(L + D)-lD^Pkx 
w = hiL + Dy'D^I^x 

Since Ik(L + D)~1Dll2Pk is zero except for its Jfc-th diagonal block, we 
, obtain from a simple computation 

v = Pkv = PkD~ll2Pkx, (3.63) 

and because 
PkAPk = PkDPk, 

as a first consequence 
\Pkx\=\Al'*v\. (3.64) 

Now, since 
PkAIk = Pk{L + D), 

we get 

PkAw = PkAhiL + D^D^h^x 

= PkD
ll2Ik.xx 

= 0 

Using (3.63) 
(v,Aw) = (Pkv, Aw) = (v,PkAw) — 0 

and hence 

\Al'2Iky\2 = \All\v + w)\2 = \A^2v\2 + \All2w\2. 

Thus from (3.64) 
\Pkx\ < \Al'2Iky\. (3.65) 

Combining (3.62) and (3.65) we finally obtain 

1*1' = E \P>*\2 < t \A1/2hy\2 

which is (3.61) and completes the proof of (3.59). The proof of the second 
estimate is less tricky. Using the triangle and Cauchy-Schwarz inequalities 
for all vectors x we obtain 

\Dx'2x\2 = (x,Dx) 

= jr{Pkx,APkx) 
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J b = l 

= iAi/i/lxi*+t;iAi/*(/*-/*-i)*r 
Jb=2 

< \A^hx\2 + t,{\A^Ikx\ + \A^Ik.xx\f 
* = 2 

< iY,\All*Ihx\* 

which implies (3.60). • 

An immediate consequence of Lemma 3.8 and the representations (3.45) 
and (3.46) are the bounds 

«2 < E I W (3-66) 

c\ < 4 E 117*11» (3.67) 

for the constants (3.35) and (3.36) in terms of the energy norms of the 
matrices 7*. We remark that since 

{x,{L + D)TX-\L+D)x) > \hX-^{L + D)x\2 

= \hDl'2x\2 

= (Iix,AIix), 

for all three choices of D we obtain the lower bounds 

* > \\Ii\\* (3.68) 

for the condition numbers K = /Ci,/C2,/Cs. 
In the next lemma we derive simple estimates for ß and 72 of (3.47) and 

(3.49), respectively. 

Lemma 3.9 Suppose the Akk, k = 2y... ,j, have at most m + 1 nonzeros 
per row. Then 

ß = \d-^2ld-^2\ < m (3.69) 

and 
72 = \Dxl2d~ll2\ < V m T T (3.70) 

20 



Proof: By the Cauchy-Schwarz inequality the entries <fcy of any symmetric 
positive definite matrix satisfy 

kol < y/qiiqjj 

Therefore all entries of the scaled matrix 

d - l / 2 £ > ( f - l / 2 

are bounded by 1. Remembering that the (l, l)-block of this matrix is an 
identity matrix, simple Gershgorin estimates show that the eigenvalues of 
the matrices 

(d-^id-vyid-^id-1'2) 
and 

(£> 1 /2 < r x/2)rpi / 2 ( i - i /2 ) 

are bounded by m2 and m + 1, respectively. • 

Finally, we note that the estimates of this section (with a small and obvious 
modification of Lemma 3.9) remain unchanged if one replaces the matrix d 
from (3.18) by the diagonal of D. 

In the next section we derive estimates for 

HAH, * = ! , . • • . / . (3-71) 

and for the constant q\ of (3.48). For these estimates we must return to 
the finite element discretization and use the properties that it implies for 
A. 
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4. Condition Number Estimates 
In this section let A be the discretization matrix corresponding to the model 
problem (2.20) of Section 2. Assume that the blocking (3.1) of A is induced 
by the partition (2.15) of the finite element space into different refinement 
levels. Within this framework, we derive bounds for the growth of the 
condition numbers (3.13) as a function of the number of levels j . 

First we observe that the matrices (3.58) correspond to the interpolation 
operator (2.17): If u 6 S is the function represented by the hierarchical 
basis coefficient vector x, the function J^u is represented by hx. For finding 
bounds for the norms of the interpolation operators J* we utilize one of the 
key results of [14]. This result is restricted to two space dimensions. One 
obtains more rapid growth rates for three-dimensional problems; compare 
the remarks in the introduction of [14] concerning this topic. 

Lemma 4.1 There exists a constant K\ such that 

\M\xT<KlU-k+l)Mh;T (4-1) 

for k = 1 , . . . , j , all triangles T of the initial triangulation T\ and all func­
tions u € S. K\ depends only on a lower bound for the interior angles of 
the triangles in T\ hut not on k or j . 

Proof: The proposition is an immediate consequence of Lemma 2.2 of 
114]. 

Remark: By Lemma 2.3 of [14] one gets the estimate 

li^^llo.2;T < i^r(i - fc + 1) {||«HO,2:T + (2-fcff)2 |u]2
li2;r} (4.2) 

for the Li—norm of J^u. H denotes the diameter of the triangle T € T\. 

Lemma 4.2 For k = 1 , . . . ,j and all functions u € S one has 

|ptu|l2<^Mi-fc + i)IHI2 (4-3) 

where K\ is the constant from Lemma 4.1 and a the constant (2.12) de­
scribing the local ellipticity of the boundary value problem. 
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Proof: By (2.11), (2.12) and Lemma 4.1 one has 

ll*H|2 < E M(T)\Jku\lAir 
Ten • • r . 

< EAf(r)Ä"i(y-* + i)HUr-
Ten 

< Kmu-k + i) EHT)H,2-,T 

< Kl0-{j- k + l)| |u||2 

• 

As a consequence of Lemma 4.2 and the estimates (3.66) and (3.67).one 
obtains the bounds 

a2 < IjJCiaj-y + l) (4.4) 

ot\ < 2K1aj{j + l) (4.5) 

for the constants (3.35) and(3.36). 
We remark that estimates for oto and c*i can also be derived from 

strengthed Cauchy-Schwarz inequalities. The inequalities appropriate here 
are , 

\B{vk,wk)\<ek\\vk\\\\wk\\, k = l,...,j-l, 

0 < ek < 1 - -AT < 1, 
3 - k 

which hold for all vk e Vi © "V2 © • • • © Vk, wk G Vt+i © • • • © Vj. These can 
be established using techniques similar to those in [3,14]. The estimates 

\\M2 < T 1 -

are then immediate from the decomposition 

u = vk + wk, Jku = vk, 

and establish Lemma 4.2. 
As second step we have to derive a bound for the constant 71 given by 

(3.38). 

L e m m a 4.3 Let fa = 0,- , » = nk-i + 1 , . . . ,nk, be the nodal basis of Vk 

with the associated level k nodes x,-, » = nk-i + 1 , . . . , nk, as introduced in 
Section 2. Then there exists a constant K2 such that 

E \HU,TM*<)\2 < KMh-,r (4.6) 
'= n i t - l+ l 

x,€T 

for all functions v £ Vk and all triangles T G T\. This constant depends 
only on a lower bound for the interior angles of the triangles in the initial 
triangulation 71 but not on the choice of k = 2 , . . . ,j>. 

,. \ 
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Proof: First we observe that it is sufficient to prove the proposition for 
the level k — 1 triangles T of Tk-i containing a level k node instead for the 
triangles of T\. Here one has to distinguish the two types of triangles shown 
in Fig. 2a,b. In the first case T contains three level k nodes and in the 

Figure 2 a,b 

second case one. The functions v 6 Vjt are piecewise linear on the dashed 
triangles in Fig. 2a,b. They vanish at the vertices of T. Therefore 

N 1/2 / 
>H 

£ MUM**)? 
\ • = n * - i + i 

V ».-ei-

and 
« 1 1 T 

are norms on the space of all functions v £ "V* restricted to T. These 
norms are uniformly equivalent as one can see by transforming T to a fixed 
reference triangle. In the second case one has 

£ WUrH*.-)l2 = \V\UT • 

Remark: Similarly one can prove the estimate 

n* 

£ H^ll2^l»(x*)r<A-ilMiSia!r 
• = n * - i - H 

x,€T 

with the seminorms (2.5) replaced by the L2—norm. 

L e m m a 4.4 For k = 2 , . . . , j and all functions v € "V* one has 

n* 

(4.7) 

£ !|V.-||2|v(x,-)|2<JRr2a||V||2 (4.8) 

where K2 is the constant from Lemma 4.3 and a the constant (2.12). 
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Proof: By (2.11), (2.12) and Lemma 4.1 one has 

£«>(*.-) I2 

reri «.-er 

< £ M{T)KMh,T 
Ten 

< K2o £ S(T)\v\l2iT 
T6T, 

< ^ H l 2 

• 
Because the diagonal blocks of D can be treated separately and the (1,1)-
block of d-^Dd-1'2 is an identity matrix, Lemma 4.3 gives the bound 

ll < K2a (4.9) 

for the constant (3.38). Here we see why the (l,l)-block of the matrix (3.18) 
cannot be replaced by its diagonal: Otherwise the lowest eigenvalue of the 
scaled level 1 discretization matrix would enter into our estimates, and 71 
would no longer be independent of the global structure of the problem. 

By construction for k = 2, . . . , j every level k node has at most four 
level k neighbours. Therefore by Lemma 3.9 one gets the bounds 

ß < 4 (4.10) 

12 < V5 (4.11) 

for the constants (3.37) and (3.39). For many cases these estimates will not 
be very sharp. If, for example, the scaled matrix (3.44) is weakly diagonally 
dominant one has ß < 1 and 72 < \/2-

We can now state our final theorem on the condition numbers «1, K2 

and /C3 corresponding to the three iterative methods: 

T h e o r e m 4.5 There exist positive constants C1} C2 and C3, which depend 
only on the lower bound for the interior angles of the triangles in the initial 
triangulation, such that 

Kl < doj2 (4.12) 

K2 < C2a
2j2 (4.13) 

«3 < Cza
2j2 (4.14) 

• - • • • : \ • • \ . ' . • . . '•'•• : ' ' ' ' 
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«2 

Proof: By (3.41) and (4.4) one obtains 

K i < - # i a y ( j + l ) . 

(3.55), (4.11), (4.4), (4.10), (4.9) and (4.5) lead to 

< U^ + lyßsß^, J KxaJiJ + 1), 

and by (3.56), (4.4), (4.10), (4.9) and (4.5) one obtains 

K3 < f-~ + AsfK^j J Jdaj (j + 1) 

Using a > 1 the proposition follows. • 

Through examples given in Section 5 of [14] one can see that ||Ii||2 = 
|| Ji| |2 usually grows like 0(j). As a consequence of this fact and (3.68), 
the condition.numbers and /c3 cannot be excepted to be bounded 
uniformly in the number j of levels. 

We remark that for the spectral condition number KQ of the scaled hi­
erarchical basis discretization matrix 

dr^Adr1'* (4.15) 

our estimate of the same type as in Theorem 4.5 holds: Using the constant 
(3.43) one gets 

«o < iliail2a2)
2, (4.16) 

and using a bound like 
o\ < Kza , (4.17) 

which has been derived in [14,15], we obtain K0 < Ca3j2 what can be 
improved to 

*o < CWV • (4.18) 

We now turn to work estimates for our procedures. By Theorem 3.3 
the modified symmetric block Gauß-Seidel iterations here denoted as Case 
2 and Case 3 have the convergence rate 

1 - i (4.19) 

with respect to the energy norm. After 

k<n\ log e\ + 1 (4.20) 
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iteration steps the energy norm of the initial error is reduced by the factor 
0 < e < 1. The estimates for K of Theorem 4.5 lead to the upper bounds 

i-ch? ,(4-21) 

for the convergence rate and to the upper bounds 

Ca2j21 log e| + l (4.22) 

for the number of iteration steps necessary to reach the given accuracy. 
Using Theorem 3.4 a similar result is found for the forward and backward 
modified block Gauß-Seidel methods. We recommend our Gauß-Seidel it­
erations as preconditioners for the conjugate gradient method, k conjugate 
gradient steps reduce the energy norm of the initial error by at least the 
factor 

2qk 

where 

see [1,10]. After 

l + q2k 

y/K+1 

(4.23) 

(4.24) 

* < j V E | l o g ( | ) | + l (4.25) 

steps the energy norm of the initial error has been reduced by at least the 
factor e. In our application not more than 

k<\VCaj\log{^)\ + l (4.26) 

steps are needed to reach this accuracy. As each iteration step requires 
0(n) operations a total of 0(yn|loge|) operations are required to reduce 
the energy norm of the initial error by the factor c. 
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5. Implementation and Numerical Results 
We begin this section with a brief discussion of the hierarchical basis method 
and its relationship to multigrid methods. For convenience we will limit the 
presentation to the case of j = 2 levels. As we noted in Section 2 we wish 
to solve the linear system (2.19), corresponding to the nodal basis, which 
we now write in block form as 

An Au 
A A 

A2I A22 

Xi 

X2 

bi 
A 

62 
(5.1) 

The system (5.1) is related to the hierarchical basis system 

An A12 

A21 A22 

Xi 

x2 

bi 

62 
(5.2) 

via a nonsingulax matrix S which transforms the representation of a finite 
element function with respect to the hierarchical basis into its representa­
tion with respect to a nodal basis. S has the block structure 

5 = 
E 0 

R E 
(5.3) 

The off-diagonal entries of S are zero except for at most two nonzeroes in 

Figure 3 a,b 

each row of R, whose values are J. In particular, if vertex x,- was created 
during the refinement process as the midpoint of the edge with endpoints x\ 
and xr then Sn = Sir = A; see Fig. 3a,b. Using (5.3) we relate the matrices 

A 

A and A by 
A = STÄS, (5.4) 
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the right hand sides b and 6 by 

b = STb (5.5) 

and the solutions x and x by 

x = Sx. (5.6) 
.i .v 

Blockwise this gives 

Mi = -An + RTÄ2l + Äl2R + RTA22R 

A12 = A12 + RTA22 
A A 

A21 == A21 4" A22R 
A 

A22 = i422 

and 

6i = b1 + RTb2 

b2 = b2 

X\ = X\ 

x2 = Rx\ + x2 

A single iteration cycle of the hierarchical basis method, Case 3, giving 

x = B-% x = SB~1STb, (5.7) 

B as in (3.12), is reformulated in the current notation as: 

P r o c e d u r e H B / M G 

1. smooth A22y2 = b2 

using symmetric Gauß-Seidel; denote approximate solution by y2 

2. form rx = 61 — A12I/2 as 

(a) fx = 61 — Auy2 
A A 

(b) f2 = 62 - A22y2 

(c) rx = f i + i2Tf2 

3. solve Anyi — r\ ' 
set x i '= '1/1, s i = *i 

4. form T2 = 62 — A21X1 — A22J/2 = f2 as 

(a) i2 — Rxi + 1/2 
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(b) f2 = b2 — A2lX1 — A22t2 

5. smooth -4.22(22 — 2/2) = r2 

using symmetric Gauß-Seidel; denote approximate solution by x2 —1/2 
set x2=i2 + [x2 — t/2) • 

Procedure HB/MG is just a standard multigrid V-cycle with j = 2 
levels. Steps (l) and (5) are the traditional multigrid smoothing steps, 
except that only the level-2 unknowns (y2 and x2) are smoothed, rather than 
all unknowns. Step (3) is the standard multigrid coarse grid correction, 
done by direct elimination for j — 2 (or inductively for j > 2). In step 
(2), the vector {fi,^) is just the fine grid residual after smoothing, while 
forming r\ is the standard finite element version of the fine-to-coarse grid 
residual transfer. Step (4) updates the fine grid solution as (x[ ,tjT) using 
the standard finite element coarse-to-fine grid interpolation. 

At this point, we briefly reflect on the mathematic aspects of the method 
developed in Sections 2-4. It seems clear that the only essential difference 
between Procedure HB/MG and standard multigrid methods is the restric­
tion on which points are smoothed in steps (l) and (5). Since only some 
of the fine grid points are smoothed, HB/MG should converge more slowly 
than a comparable V-cycle in which all grid points are smoothed. The 
logarithmic growth in condition number is thus forshadowed. 

In order to carry out Procedure HB/MG, one needs the fine grid sub-
A A A A _ 

matrices A22 = A22i -Ä21 and A\2 = A2lt and the coarse grid matrix An. R 
is not stored since the action Rx is always computed in the usual multigrid 

A 

fashion. A22 has at most 5 nonzeroes per row corresponding to a vertex x,-
as in Fig. 3a and at most 3 nonzeroes per row corresponding to a vertex x,-
as in 3b. The corresponding rows of A2i contain at most 2 and 3 nonzeroes, 
respectively. Thus the matrix storage is at most 7 nonzeroes per vertex of 
level 2, and because of the symmetry of A22 a further reduction is possible. 

For any number of levels the amount of work and storage per level 
(except for the initial level) is a small constant multiple of the number of 
vertices on this level. As the initial level is fixed, the overall cost of the 
algorithm becomes asymptotically proportional to the number of unknowns, 
regardless the distribution of the vertices to the different levels. 

As a numerical illustration, we consider the solution of Laplace's equa­
tion on a circle of radius one centered at the origin; the domain has a 
crack along the positive x axis. Homogeneous Dirichlet (Neumann) bound­
ary conditions are imposed on the top (bottom) of the crack, allowing a 
singular solution with leading term 

u = r1/4sin(Ö/4) (5.8) 

Equation (5.8) is imposed as a Dirichlet boundary condition on the remain­
der of the boundary, making (5.8) the exact solution. 
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The problem was solved using aposteriori error estimates and adaptive 
local mesh refinement, starting from a uniform coarse mesh with 8 elements 
and 10 vertices (Fig. 4.a) and ending with a nonuniform mesh including 28 
levels of refinement and 2560 vertices (Fig. 4.b). The calculation was made 

Figure 4 a,b 

using an updated version of the package PLTMG [2], in which the hierar­
chical basis multigrid method, Case 3 from Section 3, was implemented. 
This implementation used ORTHOMIN acceleration, similar to minimum 
residual-conjugate gradient acceleration [10]. The distribution of vertices 
among the refinement levels is given in Table 1. These are approximately 

level 1 2 3 4 5 6 7. 8 9 10 

vertices 10 17 58 212 328 219 204 173 135 141 

level 11 12 13 14 15 16 17 18 19 20 

vertices 149 139 118 96 110 95 80 42 33 31 

level 21 22 23 24 25 26 27 28 

vertices 31 29 29 27 23 19 9 3 

Table 1 

the dimensions of the spaces "V* of Section 3, except for the inclusion of 
Birichlet boundary vertices. The meshes are nearly optimal for,this prob­
lem and they illustrate the fact that local mesh refinement tends to generate 
subspaces which do not increase geometrically in dimension. 
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To illustrate the efficiency of the hierarchical basis multigrid method, 
we took the discrete solution x (in the nodal basis), formed 

A A 

b = Ax, 

and resolved the system using b as data and initial guess zero. The number 
of correct digits in the energy norm is given by 

digits = - log( | |ÄM-4 | | / | | * | | ) 

The results of the calculation are given in Table 2. Note x has about 1.44 

cycle 

digits 

1 2 3 4 5 6 7 8 9 10 

.44 .76 1.17 1.54 1.90 2.31 2.74 3.11 3.58 4.33 

Table 2 

digits of accuracy as a solution to the continuous problem, so only 4 cycles 
were required to reduce the initial error to the level of discretization error. 
Within the dynamic framework of an adaptive local mesh refinement pro­
cedure, intial guesses substantially better than zero are ususally available, 
further reducing the number of cycles required at any particular step of the 
adpative procedure. 

From Table 2, we see that the average error reduction per iteration was 

1 0- .4S3 s 3 7 = ß 

If we assume 

6 - ^—1 

V ĉ + 1' 
then we can estimate the size of the generalized condition number K by 

-G3)""-
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APPENDIX: ARBITRARILY MANY INNER ITERATIONS 

We use the notations of Section 3, 

Theorem 1: 

T . . . 

Let - A=L+D+L be a positive definite and symmetric matrix as in 

Section 3. Let 

B = (L+D)TD~1(L+D) . 

Id) 
Set x =0 and let 

:(i+D „xU>+B-
1<b-Ax(1,> 

Then 

(A+Zt)x
(l) = b 

where Z. is a positive semidefinite symmetric matrix having the 

same kernel as L . Z. satisfies 

,»-i/vi/ai • """H*1
 x-

1 - , 1 - - n T n r ' 

where Q is given by 

Q - ^ V D V 1 ' 2 
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Proof: 

Using the exact solution x=A b one has 

x(i+1)-x= (E-B-1A)(x(i)-x) 

(A) 
and therefore, because of x =0 , 

x(1) = (E-(E-B_1A)1)x . 

By Theorem 3.3 one obtains 

l(E-B~1A)1ll < IIE-B^AII1 < 1 

This means that E-(E-B~ A)1 is nonsingular. 

A(E-(E-B_1A)1)"1x(l) - b 

follows. Now 

AfE-fE-B^A)1)"1 = A+Zt 

if and only if 

Zi = A(E-B_1A)1(E-(E-B"1A)1)-1 

- A U - ^ R A 1 7 2 ) 1 « - ^ 1 ^ 1 ^ ) 1 ) - 1 

= A^VtE-RW'2 

where R is given by 

R = E - A ^ W 2 
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Using 

B = A+LTD_1L = A1/2(E+Q)A1/2 

one gets 

R - E-(E+Q)_1 

Q is a positive semidefinite singular symmetric matrix. Therefore 

the eigenvalues of Q range from zero to |Q| and the eigenvalues 

of the symmetric matrix R from zero to 

'»'^-TTTOT-*1 

The function 

i 1 

, 0<A<1 , 
1-A1 

is monotonely increasing. Therefore we can conclude that the eigen­

values of the symmetric matrix 

A-1/2Z.A-1/2 = R W ) " 1 

range from zero to 

IRI1 _ U " 1+lQl ' 

1-IRI1 1 " (1 -TTT^H1 

Using the given representations one sees that the symmetric matric­

es Q , R and A ~ 1 / ' 2 Z . A " 1 have the same eigenspaces and 

kernels. Therefore the kernel of Z. is nothing else than the 

T -1 
kernel of L D L , which is the kernel of L . m 
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Now we can generalize Case 3 by allowing for an arbitrary number of 

symmetric Gauß-Seidel steps for solving the inner equations. 

Theorem 2: 

If one solves the inner equations by m steps of the symmetric 

Gauß-Seidel method one has 

- — < (aft+c(m)<x.) 1*1 ~ 0 T. 

with 

(1 - 1 ) 2 m 

c(m) " — TTZr 
*- (1"lV 

and 

q= if^eV^-1'2! 

Proof; 

By Theorem 1, applied to the inner equations, the matrix D has 
the representation 

D = D+Z 

with a positive semidefinite singular symmetric matrix Z satisfy­
ing 

.»-"»ID-*",- H " I V " . . U, 
1 " « " BT»' 
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Now we can proceed as in the proof of Lemma 3.7. The matrix B has 

the representation 

B = {L+D+Z)T(D+2Z)~1(L+D+Z) 

and therefore we have 

( J _ ) 1 / 2 = |(D+2Z)"1/2(L+D+Z)A_1/2| (2) 

< I(D+2Z)" 1 / 2D 1 / 2IID" 1 / 2(L+D)A" 1 / 2I + 

+ I(D+2Z)"1/2ZD_1/2I|D1/2A"1/2 I 

As in the proof of Lemma 3.7 one obtains 

|(D+2Z)"1/2D1/2| = 1 . (3) 

If A denotes the set of eigenvalues of the positive semidefinite 

singular symmetric matrix 

Q = D- 1 / 2ZD" 1 / 2 

as in the proof of Lemma 3.7 the set of the eigenvalues of the 

matrix 

[(D+2Z)~1/2ZD"1/2]T[(D+2Z)"1/2ZD_1/2] 

is 

.2 
A 

TT21T ' A fc A 

As the function 

A2 

1+2A ' A - ° ' 
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is monotonely increasing one obtains 

-1/2 -1/2 
Substituting (1) for- |Q|=|D '*ZD I one gets 

|(D+2Z)"1/2ZD~1/2| - c(m) . (4) 

Inserting (3) and (4) into (2) and using (3.45), (3.46) 

- 1 — < (aft+c(m)aj
2 

follows. _ 

Applying Theorem 1 to the inner equations and using an argument as 

in the proof of Theorem 3.2 one gets 

/i2 = 1 . 

Therefore 

2 
K < (cu+ctmJoL) 

Because of 

q- .D-Wd-1«-1"« < </»/ 

this is a generalization of the condition number estimate (3.56) 
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