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Abstract

We derive and analyze the hierarchical basis-multigrid method for solving
discretizations of self-adjoint, elliptic boundary value problems using piece-
wise linear triangular finite elements. The method is analyzed as a block
symmetric Gauf-Seidel iteration with inner iterations, but it is strongly re-
lated to 2-level methods, to the standard multigrid V-cycle, and to earlier
Jacobi-like hierarchical basis methods. The method is very robust, and has
a nearly optimal convergence rate and work estimate. It is especially well
suited to difficult problems with rough solutions, discretized using highly
nonuniform, adaptively refined meshes.

Keywords: hierarchical basis, multigrid, finite elements, adaptive mesh
refinement, preconditioned conjugate gradients, symmetric Gau8-Seidel.
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1. "»Introduction

" In this work we describe and analyse the hierarchical basis multigrid method
. for solving selfadjoint, positive definite, elliptic boundary value problems.
This method is related to standard multigrid methods (5,9], to the 2-level
. scheme of [1,3,6,11], and the hierarchical basis method in [14,15,16,17).
~ The method can be formulated as a standard multi-grid V-cycle [9],
. 'except that a smaller than normal subset of unknowns are updated during
the smoothing phase at a given level. In particular, each unknown on the
given finest level is uniquely associated with exactly one level, not several,
and is updated only at that level. This formulation of the hierarchical basis
method is especially useful when considering questions of implementation,
since these aspects of multigrid methods are now well understood.

Although the multigrid-like viewpoint gives the appearance of a recur-
sively defined algorithm, the hierarchical basis method can be mathemati-

- cally formulated as a standard block iteration, albeit using the somewhat

nonstandard hierarchical basis. In this respect, it resembles the 2-level

. -:scheme. The algebraic theory of block iteration, and in particular, the block

symmetric Gauf-Seidel iteration considered here, is relatively straightfor-

ward. One interesting feature is that we allow for “inner” iterations to

" solve linear systems involving the diagonal blocks. In any event, a fairly

" complete algebraic analysis can be developed using only the assumptions
that the matrix is symmetric and positive definite. S

While we ultimately return to and use the prbpqrties of the finite el-

- “ement subspaces, in order to make our final estimates, the assumptions

we need are all very weak and are almost always satisfied in practice. In

particular, we assume shape regularity (e.g. a small angle condition) for

each element but do not assume quasiuniformity of the global mesh. Our

estimates involve only local ellipticity; we use no global regularity for the

*‘solution beyond the minimal H'-regularity required for the standard weak
formulation. Finally, we use local properties of piecewise polynomials.

Within this framework, we are able to show the hierarchical basis meth-
ods used as preconditioners have generalized condition numbers which grow
like 52, where j is the number of levels. This is slightly suboptimal in com-
parison with standard multigrid methods, where the condition numbers
are uniformly bounded, and it introduces a logarithmic-like factor into the
overall work estimate. '

The hierarchical basis method requires O(n) operations per iteration,
where n is the number of unknowns on the finest level. This is the same as
for standard multigrid methods. However, because of their recursive nature,
one often requires geometric growth in the dimensions of the subspaces to




insure that the work on coarse levels will not dominate the overall work
per cycle. Because our hierarchical basis method is just a symmetric block
 GauB-Seidel iteration, its work estimate remains valid for any allowable
dlstnbutlon of unknowns among the levels; it relies only on the usual and
_ normal spar51ty of the global stiffness matrix for the nodal basis, (ire. O(1)
nonzeroes per row). ‘ SRR
The overall complexity of the hierarchical basis multlgrld method, used
‘as a preconditioner for the conjugate gradient iteration, is-thus O(nj|loge|)
operations required to reduce the initial error by the factor e. In the realm
of smooth model problems on rectangular regions, solved using'a sequence
~ of uniform and uniformly refined meshes, it is fair to say that the hier-
“archical basis method is just another pretty face in a big crowd of very
good optimal or nearly optimal methods [1,9]. On the other hand, for ge-
ometrically complex regions, involving highly nonuniform and adaptively
refined meshes, and/or problems with rough coefficients and solutions, there
are far fewer good candidates for a simple but effective iterative method
'17,8,14,15,16,17]. It is in this regime that the hierarchical basis multigrid
method looks very attractive. Since its theory is based: on .only.weak as-
sumptions, its performance and work estimate remain’ essentially stable
" over an extremely broad range of problems. We' remark -that the theory
developed here can be extended in straightforward fashion to other finite
elements (e.g. quadrilaterals as well as triangles), other types of-refine-
“ments procedures (e.g. [12]) and to higher degree polynomial spaces. We
also mention that the method works well for many strongly indefinite and
" highly nonsymmetric problems (e.g. singular perturbation problems) but
our theory does not cover such cases. Thus, as a general purpose,-tobust,
elliptic solver, the hierarchical basis multigrid method has:a lot to recom-
mend it, and we believe its future is bright. R ‘
The remainder of this paper is organized as follows: In Section 2 we
" discuss the finite element discretization, introduce the nodal and hierarchi-
cal bases and derive the linear algebra problem to be'solved.. In 8ection
3, we present and analyze the block symmetric GauB-Seidel iteration for a
' general symmetric, positive definite matrix. We analyze three possibilities
for solving linear systems involving the diagonal blocks: direct solution,
and point GauB-Seidel and point symmetric Gau3-Seidel:inner iterations.

o The theory developed here is ‘strictly algebraic; the generalized condition

numbers for the three cases are estimated in terms of a few constants, which
- ultimately are bounded, in Section 4, using the properties of the:finite ele-
~ ment space In Section 5, we outliné the precise relationship between the

’ . hierarchical basis method and the sta.nda.rd multlgnd V-cycle, and .present

. some numencal 1]1ustra.t10ns et : . S



2. The Finite Element Discretization

We assume that {1 C R? is a bounded polygonal domain. As a model
problem we consider the differential equation

1,5=1

- f: Dj(ai;D;u) = f (2.1)

" ‘on 0} with Dirichlet boundary conditions

=0 | (2.2)
on the boundary piece I' and natural boundary conditions

2

Z(Ez: a:;#l;)Div =0 (2.3)

=1 j=1

on the remaining part dQ\T of the boundary of Q). 7 denotes the outward
_unit normal vector. The appropriate solution space of this boundary value

problem is
HO)={ueW"(Q)|u=0 on I'} (2.4)

where T' is assumed to be composed of some or all edges of the polygonal
domain  and the zero boundary conditions have to be understood in the
sense of the trace operator. The seminorm

[eizn =3 [, (D) (=) ez (2.5

‘is a norm on H(1). The weak formulation of our boundary value problem
is to find a function u € H(N) satisfying

B(u,v) = f*(v), ve H(N), - (2.6)

where f* is a given bounded linear functional on H(f1) and the bilinear
form B is defined by
2
B(u,v) =/ Z a,-,-D,-uDjvd:z: . (2.7)
£,5=1

" We assume that the a;; are measurable and bounded functions satisfying

a;; = @i, 1,7 =1,2 - (2.8)




and ' - ‘ ‘ Lo g

2 2 :
63 n} Z wh<MZM. | (2.9)
=1 7=1 i=1 : :
for almost all £ € 0 and all n € R% 6 and M are positive constdnts
independent of z and 7.
By (2.8) and (2.9) B is a symmetric bounded and coercive bilinear form
on H(f).
Jull* = B(u,v) . (240)

defines a norm on H((2), the energy norm. This norm is equivalent to
the norm (2.5). Since H(Q) is a Hilbert space under this norm, the Riesz
representation theorem guarantees that the boundary value problem (2.6)
has a unique solution. In this paper we consider only the weak formulation
(2.6) and not the classical formulation given above.

By a triangulation T of the polygonal domain {1 we mean a set of trian-
gles such that the union of these triangles is 0 and such that the intersection
of two triangles of T either consists of a common side or a common vertex
of both triangles or is empty. Here we start w1th an intentionally coarse
initial triangulation T; of . For every triangle T € T; let 6 (T ) and M (T)
be positive constants with

E'l- < Z a"J "*ni S M T)Z"I. ’, (2'11)

1,5=1 =1

for almost all z € T and all n € R2. Let

b M(T)
5(T) =

This constant o and not the global ratio M/é with the constants M a.nd 6
from (2.9) enters into our estimates.

To produce a sufficiently accurate solution we refine T; several tlmes,
giving a family of nested triangulations T;, Tz, Ts,.... A triangle of Tet1
;. is either a triangle of the triangulation T; to be refined or is generated by
subdividing a triangle of Ty into four congruent subtriangles as shown in
Fig. 1a or into two triangles as shown in Fig. 1b. The two trlangles in
Fig. 1b are obtained by connecting a given vertex of the original triangle
‘with the midpoint of the opposite side. The situation described by Fig.
la we call a regular refinement, and the resulting triangles as well as the
- triangles of the initial triangulation are regular triangles. A refinement as
in Fig. 1b is an srregular refinement and results in two irregular triangles.

The irregular refinement is potentially dangerous because interior angles
of the resulting irregular elements might be reduced. Therefore we add the
rule that irregular triangles may not be further refined. This rule insures

TeT. (2.12)
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Figure 1 ab

~ that every triangle of any triangulation T, is geometrically similar to a
triangle of the initial triangulation T; or an irregular refinement of a triangle
of Ty.

The triangles of T; are called level I elements, and the regular and
*irregular triangles created by the refinement of level k — 1 triangles are
called level k elements. The vertices of the mesh T; are the level 1 vertices
or nodes and those vertices created by the refinement of a level k-1 element
are level k vertices. It is important to recognize that not all elements in
Ti-1 need to be refined in creating T;. In particular, the mesh T, may
contain unrefined elements from all lower levels, and thus it may be a
highly nonuniform mesh.

Algorithms for adaptively generating meshes T, satisfying the rules
given here are described in [5] and have been implemented in the finite
element package PLTMG [2]. The details are unimportant for our consider-
ations but one should note that the levels introduced here do not necessarily
reflect the dynamic refinement process.

. Corresponding to the triangulations T; we have finite element spaces

* Sk. Si consists of all functions which are continous on 2 and linear on the
triangles T' € T and which vanish on the boundary piece T. Clearly Sy is
a subspace of S; for I > k.

For each space Sj there are two sets of basis functlons which play im-
portant roles in our discussion: the nodal basis ¢ ,t=1,...,n;, and the

hierarchical basis ¥;, t = 1,. . The nodal basxq 1s the standard basis
used in practical computatlon The basis function ¢ € Sy is defined by
'/A’;(k)(zz) = 0il (2.13)

where the z; runs over the vertices of the triangles of T not lying on T'.
The hierarchical basis, on the other hand is defined as follows:

1. The hierarchical basis of S; is 1; := 1/;'(1), 1=1,...,m
2. For k = 2,3,... the hierarchical basis of S consists of the hierarchical

basis functions _
Ipi; 1= 1,-“ 3 Mk~1




of Si_; and the nodal basis functions

A

¢i = 1/)1'(k)7 1= Ne-1+ 1,00,

In other words the hierarchical basis for Sy is built from that of Sy_; by
adding the nodal basis functions of S; associated with the level k nodes not
lying on T', namely with z;, ¢t = ny_y +1,...,n;. The hierarchical basis of
Sk induces a natural partitioning of the finite element space. Let

Vi = span {¢; | z; is a level k vertex} (2.14)
Then one has the decomposition
Si=VhoV:0---dW (2.15)

For convenience we fix a finite element space § = S;. Every function u € S
can uniquely be written as ’

] .
=) u, u; € V; (2.16)
1=1 . <

‘ - 'We now define the interpolation operators
Jh:S—= 8, k=1,...,J (2.17)
by
. k v
Jku = Eu.- ' ':’ (2.18)

i=1

Jiu is the uniquely given function of S; interpolating u € S at the vertices
of the triangles of Ti. The finite element space Sy, is the range of J; and for

'k =2,...,7 the space V; is the range of Jp — Ji—1.
Our final aim is to solve the linear system

Az =1b ; (2.19)

corresponding to the boundary value problem (2.6) and the discrete solution
- space S represented in terms of the nodal basis. The components of the
solution vector % are the values of the discrete solution at the nodal points.
To solve (2.19) we implicitly switch to the hierarchical basis formulation

Az =b - (2.20)

of the system (2.19). This system is solved by a preconditioned conjugate
gradient method. As preconditioners we use relaxation procedures associ-
ated with the blocking of the matrix A induced by the splitting (2.15) of the



finite element space S; = S. A complete description of the preconditioning
procedures is given in the next section.

Algorithmically the preconditioners are realized ezactly as V-cycle multi-
grid methods with Gaufl-Seidel smoothers, except that only unknowns cor-
responding to Vi (and not to Si) are smoothed at level k. Therefore the
‘amount of work per ileration step 1s proportional to the number of un-
knowns, but unlike standard multigrid methods, it is unnecessary to as-
sume geometrically increasing dimensions of the subspaces S, to achieve
this bound. This feature makes the method especially attractive for adap-
tively refined grids.

In the next two sections we show that the growth of the condition num-
" ber of the preconditioned matrices is bounded by O(35?), with 5 the number
of levels. This is slightly suboptimal and leads to an O(jn) algorithm.
Practically this represents logarithmic growth in the number of iterations
as a function of n, but contrary to usual multigrid methods this estimate
does not require the usual strong elliptic regularity assumptions or the qua-
stuniformity of the family of triangulations.




3. The Block GauB-Seidel Iteration

Let A be arbitrary symmetric positive definite (n x n):matrix ‘wr'it;'t_i,an in
block form as A

Ay -0 Ay . o
A=| : " . e o (3.1)
A - Ay s o

with the A;; square matrices, remaining fixed in this section. We use the
decomposition
A=L+D+L" (3.2)

of A into its block lower triangular part
o - e 0]

Ay O .
L= _“_ . _ (3.3)

| Ajn e Ajja O

its symmetric, positive definite block diagonal part

Ap - O
p=|: - (3.4)
0 - Aj;

and its corresponding upper triangular part LT.
We consider the solution of

Az =b (3.5)
by the symmetric block GauB-Seidel iteration

0+ = Z0) 4 (L+D)T(b~- Az(‘)) (3.6)

200 = g0+1/2) 4 (L4 D)1(b — Azl+1/2) (3.7)

In each step (3.6), (3.7) one must solve 27 linear systems with the coefficient
matrices A;j,..., A1 and Ay, ..., Aj;. In many applications, such as ours,
the cost of direct solution is prohibitively large. Therefore we replace the
block diagonal matrix D in (3.6) and (3.7) by another nonsingular, but
not necessarily symmetric, block diagonal matrix D obtaining the modified
iteration ’

2412 = Z0) 4 (L+ f))"T(b - A:c(")) (3.8)
Z6+) = 0¥ (L 4 D)1(b — A1) (3.9)

We begin our analysis with:



Theorem 3.1 Let the symmetric matriz
X=D+D"-D (3.10)
| be positive definite. Then the iteration (3.8), (3.9) can be written as
) = z0) 4 B=1(b — Azl)) (3.11)
with the symmetric and positive definite matriz

B=(L+ DXL+ D) (3.12)

Proof: Let
r@ = p— Az 04172 = g5 0+1/2)

The definition of £(+1/?) leads to
PGH1/2) = £6) _ A(£l+1/3) — 200
=) — (L + D + LT)(£(+1/2) — z0))
=l —(L+ f))T(m(s‘H/z) —z()) + ([)T — D — L)(zl+1/2) — z(9)
= (DT — D — L)(z0+/2) — z(), '

Using the definitions of z(*1) and z(*+1/2) we obtain

(L+ 13)(:1:("“) — z(i))

=(L+ ﬁ) (z(""”l) _ $(£+1/z)) + (L + b) (1:(‘+1/2) _ x(‘))

= r(+1/2) 4 (L + D)(l+V/2) — z0)

= (DT — D — L)(z0+Y2) — £0)) 4 (L + D)(zl+1/2) — )
= (D + DT — D)((+1/2) — (1)

= (D + DT — D)(L + D)~T(b— Az®)

AsD+DT-D=Xis positive definite this is the proposition. n

The matrix B~! can be regarded as an approximate inverse of A. The
efficiency of the positive definite matrix B as a preconditioner for A is
largely described by the generalized condition number

K
K=— 3.13
251 ( )
where p; and p, are defined by
1_ (2, Bz) (3.14)
H“1

Iil??g( (z,Az)
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and

_ (z,Az)
. H2 = 102X =, Ba) (3-15)
The brackets denote the Euclidean inner product.
We cpnsider three different choices for D. The first one is
Casel: D=D _ (3.16)

" which corresponds to the original block GauB-Seidel method (3.6), (3.7).
The other two choices are described in terms of the decomposition

D=l+d+I" (3.17)

of the block diagonal matrix (3.4). Here

An . 0

. diag (A .
d=| g (4a) . . (3.18)

0 - - disg(4y)
is a pointwise diagonal matrix except for the (1,1)-block and [ is a strictly
lower—triangular matrix. Now we can define

Case 2: D=1l+d (3.19)
Case3: D=(+d)Td'(+d) (3.20)

Case 2 corresponds to using one GauB-Seidel step for all diagonal blocks
except for the first one where the corresponding system is solved exactly.
In Case 3 each of the diagonal blocks with exception of the first one is
treated by one symmetric Gaufi-Seidel step; compare Theorem 3.1. In all
three cases the matrix (3.10) is positive definite: We have for

Casel: X= D ’ ' (3.21)
Case2: X= d 7‘ - (3.22)
Case3: X = D+27Td U (3.23)

" Therefore Theorem 3.1 applies.
For all three cases the constant p; in (3.15) is explicitly known:

Theorem 3.2 For all three cases defined above

=1 (3.24)



Proof: The proof that u; is bounded by 1 requires only the hypothesis
of Theorem 3.1. Let Y = D — D. Because D = X — YT we have

=(L+X-Y)TX Y L+X-YT)
Using the identities X7 = X and D = X — Y — YT we obtain

=((L-YO)T+ X)X ((L-YT) + X)
=L+(X-Y-YT)+LT+(L-YT)TX Y L-YT)
=A+F

where F is the symmetric, positive semidefinite matrix
F=(L+D-D7)XY(L+D- D7)
' An immediate consequence of this representation is

(z, Az) _ (z, Az) < (z, Az)
(z,Bz) (z,Az)+ (z,Fz) ~ (z,Ax)

=1

for all vectors z # 0 or uy < 1. B
Therefore the proof is completed by showing that for each choice of D
there exists a vector z* # 0 satisfying

Fz'=0
or equivalently ;
(L+D-DT)z* =0
We have for -
Casel: L+D-DT= L
Case 2: L+D-DT= L+1
Case3: L+D-DT= L-I1Td™Y
The last column z* = (0,...,0,1)7 of the identity matrix satisfies
Lz"=0, Iz*=0

and therefore in all three cases Fz* = 0. =

By Theorem 3.2 for all three choices of D the generalized condltxon number

(3.13) is given by

: (z, Bz)
K = max

z#0 (z,A:z:v)_ (3-25)

12




In the following we use the Euéiidean norm

|z| = (z,2)"/? (3.26)
its associated matrix norm
lMxl A
|M| = max 2] (3.27)

which is the spectral norm, the energy norm
lz|| = (z, Az)*/? (3.28)

and its associated matrix norm

Mz||
|M ” 3.29
which is given by
M| = |AY2M AT (3.30)
The rate of convergence of a stationary iterative method
20 = 200 4 M6~ A=) (3.31)
with respect to the energy norm is , .
|E - M7 A|| = [E — AYV2M~14Y?Y  (3.32)

E denotes the identiy matrix.

Theorem 3.3 For all three choices of the block diagonal matriz D the mod-
ified symmetric block Gaufl-Seidel iteration (3.8), (3.9) has the convergence
ratle 1
1—=
K

Proof: By definition u, is the smallest and u; the largest eigenvalue of the
matrix B~/2AB~1/? which is similar to the symmetric matrix AY/2B~141/2,
Using Theorem 3.2, (3.14) and (3.25), we obtain

IE_A1/2B—1A1/2| =1- _]_'
K

We note that the convergence rates of the modified forward block Gau8B-
Seidel iteration

‘ a2 =20 4 (L4 D) (b - 421) (3.33)
and the corresponding backward iteration - ,
20t = z0) 4 (L + D)7 (b — Az) (3.34)

can be expressed in terms of the generalized condition number (3.13). This
is shown following [13].

13



Theorem 3.4 For all three choices of D the rate of convergence of the
iterations (3.33), (3.34) with respect to the energy norm is
1
1 — 2)U/2
-2
Thus two steps of the iterations (8.88) or (3.84) have approzimately the
same effect as one step of the symmetrized iteration (3.8), (3.9).

Proof: The convergence rate of the first method is
|E — Al/z(L+I~))'1A1/2|
and the convergence rate of the second iteration
IE _ A1/2(L+ I“j)—TAllzl

As the spectral norm of a matrix and its transpose coincide both norms are
equal and given by the squareroot of the largest eigenvalue of the matrix
[E — AVY(L + D)™ TA*)|E — AM*(L + D)4 = E — A B4
As we have stated in the proof of Theorem 3.3 this eigenvalue is
1
1 —_ —

K
|

We are left with the problem of bounding the constant (3.14). This cannot
be done without using further properties of the matrix A. In the remainder
of this section we develop some estimates that can be applied to our finite
element equations.

We define the following constants:

o = ma (x,(L+D():,12:)(L+D):c) 835
al = ng(%:—g% ' (3.36)
F = ma (2’(23:)11) (3:37)
% o= rggg(g”—g%) (3.38)
¥ = max ((23;3) (3.39)

The constants ap and «; are invariant under any block diagonal scaling of
A and B,~; and v, under any diagonal scaling of A.
Lemma 3.5 For the block Gaufi-Seidel method (3.6), (3.7) (Case 1),
1 9 :
— =« 3.40
i (3.40

14




Proof: The matrix (3.12) of Theorem 3.1 is given by

B=(L+D)"D™Y(L+ D)

[ |
By Theorem 3.2 and Lemma 3.5
K1 = o} (3.41)
is the generalized condition number corresponding to Case 1.
1/c? is the smallest eigenvalue of the symmetric matrix
D12 4p-1/2 (3.42)

This corresponds to the original matrix A preconditioned by its block di-
agonal part D. Note that the maximum eigenvalue
2 (z, Az) :
Q3 = max ;———+ 3.43
7 %%#0 (z,Dz) (343)
of the matrix (3.42) does not enter into our estimates.
1/4? is the minimum and 43 the maximum eigenvalue of the scaled block

diagonal part
d~*Dd"1/* (3.44)

of the matrix A.
Using the spectral norm the constants can be written as follows:

oo = |[D7Y}L+ D)A™'? (3.45)
oy = |DYV?ATY? (3.46)
B = |dVud (3.47)
v = |dY/*D7V? (3.48)
N, = |DM*d7V?| (3.49)

As the spectral norm of a matrix and of its transpose coincide in addition
we have

B = |dYHTd? (3.50)
m = |D7VdV (3.51)
4o = |d7V2DV¥{ (3.52)

'Lemima 3.6 ‘For Case 2 the constant (9.14) satisfies

1
ll_ < (Y20 + [371&1)2 (3.53)
1

15



Proof: The matrix B is given by
B=(L+I+d)Td (L+!+d)
and therefore we have

_l;l_= |d_1/2(L+l+d)A_1/2|2
1

Using (3.45), (3.46), (3.48), (3.50) and (3.52) we obtain

|d~YV3(L + 1+ d) A~1/2

— ’d—l/z(L+ D)A—l/z _ d‘llleA—l/zl

< Id_1/2D1/2I |D—1/2(L + D)A—1/2l+
+|d—1/2le-1/2| |d1/2D—1/2l |D1/2A—1/2|

< v + Py

|
Lemma 3.7 For Case 38 the constant (3.14) satisfies
2 < (o0 + Tzpman)? (3.54)
[ V2

Proof: For this calculation only, let
z=1Td"1
Then the matrix B has the representation
B=(L+D+2)"(D+22)"(L+ D+ 2),

and therefore we have

(#l)lf2 = |(D+22)"*(L+ D+ 2)4™'
1

< |(D+22)"Y*DY* |D~Y*(L + D)A™'?| +
_t_l(D+2z)-1/QZD-l/2| IDI/ZA—1/2I

Using the positive semidefinite symmetric matrix
Q — D—l/2ZD—~1/2
one obtains

[(D+2z)—1/2D1/2]T[(D+2z)—1/2D1/2] = Dl/Z(D+2z)—1D1/2
= (E+2Q)7!

16



and
[(D + 22)—1/2ZD—1/2]T[(D + zz)—IZD—1/2]

= D7'?Z(D +22)"'ZD~/?

= Q(E +2Q)'Q
If A denotes the set of eigenvalues of Q,
1
Trax &4

is the set of eigenvalues of (E +2Q)~!. As Q is a positive semidefinite and
singular matrix this means

|(D+22)*D"*| =1.

The set of eigénvalues of the matrix Q(E + 2Q)™!Q is

A2
1+2)° A€ A
Since A2 A
< — >
142X~ 2’ A20,
we get

i(D+2Z)-1/ZZD—1/2l2 < %lD—l/zzD—Uzl

Inserted above we obtain the estimate

(i_l)l/z < |D"V*(L+ D)4 + _%ID—I/ZZD—I/ZIIﬂIDI/ZA—ljzI
Now, using (3.51), (3.50), (3.47), (3.48)
|D-2ZD"Y2| = |D VT4 DM
< |DVRH3) |d-YHT g1 |d- Vg1 |d/2 D1
< BB
Combining this with (3.45) and (3.46) completes the proof. N

Theorem 3.2 and Lemma 3.6 and 3.7 lead immediately to the following
estimates for the generalized condition number (3.13):

Case 2: K2 S (’)’2(10 + ﬁ'ylal)z (3.55)
1
Case 3: ks < (ap+ —=Bmoy)? 3.56
s < (o ﬁﬂ’h 1) (3.56)
We conjecture |
' K1 S Kg S Ko (357)
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Because of 43 > 1 our estimates reflect this supposed behaviour.
Our next task is to obtain simple bounds for the constants o and «;.
For this purpose let

- -

Ey +++ -+ -+ O
L= Ex (3'58)
0 o eer see O

be the block-diagonal matrix the first k block—diagonal entries of which
are the identity matrices E;; and all other blocks are zero. In our applica-
tion the matrices Iy, k = 1,...,7, can be interpreted as the finite element
interpolation operators of Section 2.

Lemma 3.8 For all n—dimensional vectors z,

j
[DTV3(L + D)AT 2] < 57 | AV LAY P af? (3.59)
k=1
and .
J
|DY2A~2zt < 4 |AVA LAY ) (3-60)
k=1

0

Proof: The first proposition holds if and only if one has for any fixed
vector =

J
lz|* < 3" |AY*L(L + D)~ Dz} (3.61)
k=1

Let y = (L + D)"'D'?z and define the matrices
Po=1, Po=L— Iy, k=2,...,5.
Because of the block structure of the matrices L and D we have
DY 2Ily = Pz

Since
IIDI]_ = I]_AI]_

we obtain
|Prz| = |4 Ly| (3.62)

For estimating |P,z| for k = 2,...,5 we introduce the decomposition

Liy=v+w,

18




where .

v = Ik(L+D)~1D1/2PkI
w = I,,(L-{-D)_lDl/zIk_lz

Since Ii{L + D)~'D'2P, is zero except for its k—th diagonal block, we

. obtain from a simple computation
V= ka = PkD_I/Zka,
and because
PLAP, = P.DPF,

as a first consequence
: |Pez| = |AY?v|.

Now, since

PkAIk = Pk(L + D),
we get
PAw = PAL(L+ D) 'DYV?I,_;z

= PkDI/zlk_lx
= 0

Using (3.63)
: (v, Aw) = (Piv, Aw) = (v, PeAw) =0

and hence

| A2 Ly [? = | AV (v + w)? = |4Y%]? + |AV2w]2.

Thus from (3.64)
: |Pz| < |AY?Ly|.

Combining (3.62) and (3.65) we finally obtain

J J
|z = 3" |Pezl* < 3 |AV Lyl
k=1 k=1

which is (3.61) and completes the proof of (3.59). The proof of the second
estimate is less tricky. Using the triangle and Cauchy-Schwarz inequalities

for all vectors =z we obtain
|DY*z)* = (z,Dz)

J
= E (P;,.'E, Aka)

k=1

‘19
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J
= E lAl/Zkal'a’
k=1

J
= |AVLz|* + 5 |AYVA (L — Lioy)z?
k=2

2
< |AYLz| + ) (|AY Lz + |AY Loy 2))?
k=2

J
< 4 |AY )
k=1

which implies (3.60). m

An immediate consequence of Lemma 3.8 and the representations (3.45)
and (3.46) are the bounds

J
o < LI (3.66)
k=1
J
o < 43 L e
k=1

for the constants (3.35) and (3.36) in terms of the energy norms of the
matrices I;. We remark that since

(z,(L+ D)TX YL+ D)z) > |LX Y*(L+ D)z|?
= |LDY*z]?
(hz,ALz),

for all three choices of DD we obtain the lower bounds
k> | L2 (3.68)

for the condition numbers k& = ki, k3, k3.
In the next lemma we derive simple estimates for 8 and ~; of (3.47) and
(3.49), respectively.

Lemma 3.9 Suppose the Ay, k = 2,...,7, have at most m + 1 nonzeros
per row. Then

B =|dd V| <m (3.69)
and
7 =|DV?d < Vm + 1 (3.70)
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Proof: By the Cauchy-Schwarz inequality the entries g;; of any symmetric
positive definite matrix satisfy

lgij| < /@G5
Therefore all entries of the scaled matrix .
d—1/2Dd—1/2

are bounded by 1. Remembering that the (1,1)-block of this matrix is an
identity matrix, simple Gershgorin estimates show that the eigenvalues of

the matrices
(d—1/2ld—1/2)T(d—l/zld—l/Z)

and
(Dl/2d—l/2)T(D1/2d—l/2)
are bounded by m? and m + 1, respectively. n

Finally, we note that the estimates of this section (with a small and obvious
modification of Lemma 3.9) remain unchanged if one replaces the matrix d
from (3.18) by the diagonal of D.

In the next section we derive estimates for

”Ik”) k= 1;---;."7 (371)

and for the constant 7; of (3.48). For these estimates we must return to
the finite element discretization and use the properties that it implies for

A
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4. Condition Number Estimates

In this section let A be the discretization matrix corresponding to the model
problem (2.20) of Section 2. Assume that the blocking (3.1) of A is induced
by the partition (2.15) of the finite element space into different refinement
levels. Within this framework, we derive bounds for the growth of the
condition numbers (3.13) as a function of the number of levels j.

First we observe that the matrices (3.58) correspond to the interpolation
operator (2.17): If u € S is the function represented by the hierarchical
basis coefficient vector z, the function Jyu is represented by Iyz. For finding
bounds for the norms of the interpolation operators J, we utilize one of the
key results of [14]. This result is restricted to two space dimensions. One
obtains more rapid growth rates for three-dimensional problems; compare
the remarks in the introduction of [14] concerning this topic.

hémma 4.1 There exists a constant Ky such that
|euftor < Ki( — k+1) Jul},r (4.1)

for k=1,...,7, all triangles T of the initial triangulation Ty and all func-
tions u € S. K, depends only on a lower bound for the interior angles of
the triangles in T; but not on k or j.

Proof: The proposition is an immediate consequence of Lemma 2.2 of
[14]. .

Remark: By Lemma 2.3 of [14] one gets the estimate
Wiulloar < Ki(5 = &+ 1) {lullgpr + (277 H)" Jullpr}  (4.2)
for the Ly—norm of J,u. H denotes the diameter of the triangle T € T;.

" Lemma 4.2 For k=1,...,5 and all functions u € S one has

Veull* < Kio (5 — k + 1)|ulf® (4.3)

where K is the constant from Lemma 4.1 and o the constant (2.12) de-
scribing the local elliptieity of the boundary value problem.
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Proof: By (2.11), (2.12) and Lemma 4.1 one has
Mel® < 30 M(T)ull

TeT

< > M(T) VE(5 — k4 1)ulizr
TeT

< Kio(j—k+1) Z 5(T)|"’|§,2;T

TeTN
< Kolj — k + 1)]Ju)?
n

As a consequence of Lemma 4.2 and the estimates (3.66) and (367) .one
obtains the bounds

1 o ,. .

o < SKioj(j+1) B | (4.4)

& < 2Ky05(5 +1) (4.5)

for the constants (3.35) and(3.36). I

We remark that estimates for ag and a; can also be derived from

strengthed Cauchy-Schwarz inequalities. The inequalities appropriate here
are \

|B(vk, wi)| < exllvel llwill, k=1,...,5 -1,

0<e<1-——<1,
J—k
" which hold forall vy € Vi ®@ Vo ® -+ @ Vi, wi € Viey1 ® - - ® V;. These can
be established using techniques similar to those in [3,14]. The estimates
1
2 <

Vel < 7

.are then immediate from the decomposition

U= vp+w, Ju=uv,

and estabhsh Lemma 4.2. .
As second step we have to derive a bound for the constant 1 given by

(3.38).

Lemma 4.3 Let 9; = 1/35"), t =ng_1+1,...,n, be the nodal basis of V;
with the associated level k nodes z;, t+ = np_; + 1,...,n;, as introduced in
Section 2. Then there exists a constant K, such that

Nk

Yo liarlv(=z)? < Kalvlisr (4.6)
Eoh

for all functions v € Vi and all triangles T € Ty. This constant depends
only on a lower bound for the interior angles of the triangles in the initial
triangulation Ty but not on the choice of k =2,...,7.

Lt
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Proof: First we observe that it is sufficient to prove the proposition for
the level k — 1 triangles T of T;_; containing a level k node instead for the
triangles of T;. Here one has to distinguish the two types of triangles shown
in Fig. 2a,b. In the first case T contains three level k nodes and in the

> — - -2

Figure 2 a,b

second case one. The functions v € V, are piecewise linear on the dashed
triangles in Fig. 2a,b. They vanish at the vertices of . Therefore

1/2
ny -

Z li/’iﬁ,z;rlv(x-')lz

f=ng_y+1
z €T

and

|U!],2:T
are norms on the space of all functions v € V; restricted to T. These
" norms are uniformly equivalent as one can