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SIMULATION STUDIES FOR THE ONLINE DIAL-A-RIDE PROBLEM

MARTIN GRÖTSCHEL, DIETRICH HAUPTMEIER, SVEN O. KRUMKE, AND J̈ORG RAMBAU

ABSTRACT. In a large distribution center of Herlitz AG, Berlin, we investigated the el-
evator subsystem of the fully automated pallet transportation system. Each elevator may
carry one pallet and has to serve eight levels. The goal is to minimize the average resp.
the maximum flow time. The variants of this elevator control problem have been subject of
recent theoretical research and are known as online-dial-a-ride problems. In this paper we
investigate several online algorithms for several versions of online-dial-a-ride problems by
means of a simulation program, developed on the basis of the simulation library AMSEL.
We draw statistics from samples of randomly generated data providing for different load
situations. Moreover, we provide preliminary studies with real production data for a sys-
tem of five elevators connected by a conveyor circuit, as can be found at the Herlitz plant.
We show which algorithms are best under certain load situations and which lead to break
downs under particular circumstances.

1. INTRODUCTION

The pallet transportation system at the Herlitz PBS AG in Falkensee near Berlin (the
major European office supply provider) consists of truck loading stations, pallet sorters,
conveyor belts (horizontal transportation), elevators (vertical transportation), registration
and inspection stations, and an automatic storage system. The flow of pallets from the
automatic storage system to the truck loading stations is controlled by a central computer
unit. Online decisions with respect to control have to be made, e.g., which way a pallet
should travel to its destination, or when a pallet is to be stored in the automatic storage
system. There are constraints restricting the organization of the system, for instance the
FIFO-principle which requires that pallets must be delivered in the order of their manufac-
turing date.

The overall goal is to control the system in such a way that there is a quick and con-
gestion free flow of pallets which satisfies all restrictions. Violating constraints inhibits the
throughput. For instance, if the capacity of a route is exceeded this might lead to blocking
of the automatic storage system. In the mathematical literature transport problems of this
type are called “Dial-a-ride problems” (DARP).

The pallets that have to be transported during one day of production are not known in
advance. Thus, decisions have to be madeonline without any knowledge of the future.
Upon the arrival of a new transportation request a (temporarily) locally optimal control
might have bad consequences which even reoptimization can not cure. This situation is
mathematically modeled by the online version ofDARP calledONLINEDARP.

Decisions do not only have to be made online, they also must be made within severe
time restrictions which brings up therealtime aspectof the problem.

Figure 1 displays a layout diagram of the pallet transportation system at Herlitz. In this
paper we focus on the control of the elevators within this system. The pallet transportation
system employs several vertical transportation systems (elevators) in order to move pallets
between the eight floors of the building. The elevators are connected by conveyor belts,
each elevator can carry one pallet at a time. Figure 2 shows a top view of one of the
eight floors. The arrows indicate the direction of the conveyor belts on that floor which
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FIGURE 1. Layout of the pallet transportation system.

move pallets between the five elevators. A schematic horizontal view of a single elevator is
shown in Figure 3.

FIGURE 2. Top view of one of the eight floors.

A major problem in the mathematical investigation of the system is the lack of an obvi-
ous objective function. The intuitive goal of “maximal throughput” is best reflected by the
following two objectives:

• minimize the average flow time, where the flow time of a transportation request
equals the sum of its waiting time and the time needed to serve this request;

• minimize the maximum flow time.

Preliminary investigations revealed that the two objectives conflict. Moreover, the cor-
responding offline problems areNP-hard to solve and not approximable within a constant
factor (unlessP = NP).
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FIGURE 3. Horizontal view of an elevator.

2. RELATED RESEARCH

The model of online computation using time stamps or release dates for the requests was
introduced in [6, 5] in the context of theOnline Traveling Salesman Problem. The problem
ONLINEDARP has been investigated with respect to competitive analysis in [2, 7].

DARP is also called the Stacker-Crane-Problem. In [12] it is shown thatDARP is NP-
hard to solve even on caterpillars, which are trees of maximum degree three. On paths
DARP can be solved in polynomial time[4]. Approximation algorithms forDARP are given
in [10, 12, 9]. An important extension ofDARP with respect to practical applications was
investigated in [12]. The authors consider the case when “First-In-First-Out” precedence
constraints for the requests are given. It is shown that the problem can be solved in poly-
nomial time on paths but isNP-hard on caterpillars. Approximation algorithms for general
graphs and also improved results for trees are presented. Preemptive versions ofDARP,
where objects are allowed to be dropped at intermediate vertices, are studied in [11, 8].

3. THE SIMULATION MODEL

Our simulation programs are built on top of AMSEL [1], a callable C-library to design
event-based simulation programs. The input data consists of a set ofevent points, a set
of modules, and a collection ofrequests. Every request becomes anobjectwhich flows
through the system via the event points. For every event point a method is specified to
derive a successor event from the current state of the system. If an object is on an event
point then the event is stored in the globalevent listtogether with a time stamp, and the
object stores it as its current event. The basic flow of objects is modeled as follows: the
currently next event in time is read from the event list. Then the successor event is derived
together with the point in time when this event should be processed. Now, the object
updates its current event point to the successor event, and the successor event is entered
into the event list; the old event point is deleted from the list. Modules are closed regions in
the system where the number of objects inside is constrained by a capacity value. Modules
are entered through entry events and left through exit events. For more details on AMSEL
see [3].

All our studies were produced on a Sun UltraSparc 10 workstation. The running time
was approx. 2% of the simulated time. This shows that our simulation environment is fast
and that the algorithms under consideration are all real-time compliant.

4. THE ALGORITHMS

We tested the following algorithms in our simulation environment:
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FIRSTFIT: The server always serves a “nearest request”. A request is “nearest”, if
corresponding empty move, i.e., the move of the empty server to the source of the
request, is shortest.

FIFO: Requests are served in the order of their occurrence.
REPLAN : As soon as a new request arrives, the server completes the current carrying

move (if it is performing one), then the server stops and does a replan: it computes a
new shortest schedule which starts at the current position of the server and takes care
of all yet unserved requests.

IGNORE: The server remains idle until the first request becomes known. It then serves
the first request immediately. All requests that arrive during the service of the first
request are temporarily ignored. After the first request has been served, the server
computes a shortest schedule for all unserved requests and follows this schedule.
Again, all new requests that arrive during the time that the server is following the
schedule are temporarily ignored. A schedule for the ignored requests is computed
as soon as the server has completed its current schedule. The algorithm keeps on
following schedules and temporarily ignoring requests this way.

IG GREEDY: The algorithm works basically likeIGNORE. However, if a new request
becomes known and this request can be inserted into the current schedule without
increasing the cost, then the new request is added to the schedule.

FF MAXAGE : The algorithm works likeFIRSTFIT, but additionally for each un-
served request records its waiting time. If the waiting time for a request exceeds
the grace period parameter then this request is served next.

FF DYNAGE: This is a modification ofFF MAXAGE which does not have a fixed
grace period parameter, but which adjusts the parameter dynamically during the run
to a fraction of the maximal waiting time of all served request so far. The value of
this fraction has to be given to the algorithm as a parameter.

Our partners in industry told us that in their elevator systems are exclusively controlled
by FIFO- andFIRSTFIT-type algorithms.

5. SIMULATION STUDIES OF A SINGLE ELEVATOR WITH RANDOM DATA

The basic layout investigated in this section consists of one elevator and a fixed number
of levels. Waiting requests line up in front of the elevator; the requests on one level have
to be served in a First-In-First-Out fashion (FIFO). Requests are generated randomly as
follows: at every point, the time until the next requests occur is taken from a uniformly at
random on the interval(0, tε], wheretε is an adjustable parameter. The number of requests
issued at that time is taken uniformly at random from the integers in the interval[1,nmax],
wherenmax is to be chosen by the user in advance. With these two parameters it is possible
to control the load of the system: a smallertε yields a higher load; a largernmax leads to a
stronger peakedness of the input data.

Under low load almost all algorithms yield the same performance concerning the mini-
mization of the average flow time. For the minimization of the maximal flow time we see
thatFIRSTFIT andREPLAN perform considerably worse than the rest.

If the system works under medium load then we observe that algorithms performing
especially well for the average flow time (FIRSTFIT, REPLAN) yield approx. 30% worse
results for the maximal flow time than the other algorithms. Note thatFIFO is still a
feasible strategy with comparably poor performance for the average flow time and good
performance for the maximal flow time. The algorithmsIGNORE, IG GREEDY, FF
MAXAGE, andFF DYNAGE all show a balanced behavior in the sense that average and
maximal flow times are not too much apart.

Under high load theFIFO strategy breaks down because it runs in such an inefficient
way that requests are issued faster thanFIFO can serve them. AlgorithmFF MAXAGE
almost breaks down because of the following: if many requests are in the system then at
some point there will be many requests whose time has run out. All these requests are
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/0 flow/s max. flow/s completion/s
Algorithm /0 max min /0 max min /0 max min

FIRSTFIT 45 49 41 276 409 192 57648 57722 57616
FIFO 48 54 43 227 420 163 57649 57722 57616

REPLAN 45 50 43 278 490 197 57648 57722 57616
IGNORE 46 51 42 221 383 164 57648 57722 57616

IG GREEDY 46 50 42 224 381 164 57648 57722 57616
FF MAXAGE 45 49 41 220 370 175 57649 57722 57616
FF DYNAGE 45 49 41 226 342 189 57648 57722 57616

System Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 systems,1 elevator each,9 FIFO levels.
Request Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .tε = 165s, nmax = 3.
Statistics Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . simulated time:8h, sample size:20.

TABLE 1. Simulation studies for low load.

/0 flow/s max. flow/s completion/s
Algorithm /0 max min /0 max min /0 max min

FIRSTFIT 54 60 48 410 715 263 57667 57737 57619
FIFO 68 87 55 287 477 206 57675 57751 57619

REPLAN 55 64 49 371 539 253 57664 57716 57619
IGNORE 59 69 51 279 381 206 57669 57751 57619

IG GREEDY 58 67 50 279 412 210 57667 57719 57619
FF MAXAGE 57 66 50 256 375 209 57667 57737 57619
FF DYNAGE 55 61 49 270 365 229 57667 57737 57619

System Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 systems,1 elevator each,9 FIFO levels.
Request Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .tε = 120s, nmax = 3.
Statistics Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . simulated time:8h, sample size:20.

TABLE 2. Simulation studies for medium load.

then scheduled first-in-first-out, which is inefficient. Thus, the number of requests whose
age is too large will increase, resulting in an even worse situation. We conclude thatFF
MAXAGE is unstable under heavy load and under large peakedness. While the average
performance on20 instances ofFF DYNAGE is acceptable, we see that there is a large
deviation. Hence, we considerFF DYNAGE not very robust. For bothFF MAXAGE and
FF DYNAGE we have to cope with the problem that parameters have to be adjusted to the
actual system; this makes both algorithms difficult to use in praxis. AlgorithmFIRSTFIT
works very efficiently under high load (small average flow time). This is plausible because
if many requests are in the system then the probability thatFIRSTFIT can proceed without
non-carrying moves is large. A similar argument explains whyREPLAN also yields a
small average flow time: the potential for the optimization of a schedule is the larger the
more requests can be planned. Both algorithms, however, trade the flow times of individual
requests for the global efficiency. In this respect,IGNORE and IG GREEDY show the
most balanced behavior, where the average flow time results ofIG GREEDY show that the
insertion of additional requests at no extra costs pays off.

/0 flow/s max. flow/s completion/s
Algorithm /0 max min /0 max min /0 max min

FIRSTFIT 125 175 98 1119 1380 791 57751 58064 57653
FIFO 3017 4676 1765 5887 8103 3840 63357 65706 60884

REPLAN 135 194 110 1074 1576 781 57734 58072 57644
IGNORE 215 383 155 864 1290 651 57816 58331 57653

IG GREEDY 185 292 135 832 1234 584 57799 58200 57653
FF MAXAGE 782 1889 276 1628 2858 875 58680 60325 57662
FF DYNAGE 234 1094 109 869 2171 484 57796 58416 57653

System Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 systems,1 elevator each,9 FIFO levels.
Request Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .tε = 75s, nmax = 3.
Statistics Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . simulated time:8h, sample size:20.

TABLE 3. Simulation studies for high load.

We conclude that online control of elevator systems shows a trade-off between “global
efficiency” (small average flow time) and “balanced behavior” (small maximal flow time).
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Algorithm average flow maximal flow completion

FIRSTFIT 108 312 86363
conveyor 78 303
elevator 29 104

FIFO 108 312 86363
conveyor 79 303
elevator 29 104

REPLAN 108 312 86363
conveyor 78 303
elevator 29 170

IGNORE 108 312 86363
conveyor 79 303
elevator 29 104

IG GREEDY 108 312 86363
conveyor 79 303
elevator 29 104

FF MAXAGE 108 312 86363
conveyor 78 303
elevator 29 104

FF DYNAGE 108 312 86363
conveyor 79 303
elevator 29 104

System Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 systems,5 elevators each,8 levels.
Requests: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Real request data, simulated data:24h.

TABLE 4. Simulation study using real data.

The load of the system has a substantial influence on the performance of the algorithms un-
der consideration. Our simulation rendersFIFO unusable under high load, whileFIRST-
FIT andREPLAN show an inacceptable imbalance between average and maximal flow
time. The performance of the algorithmsFF MAXAGE andFF DYNAGE heavily de-
pends on their parameter settings. We were not able to find parameters for them that worked
equally well in all load situations.

By ignoring upcoming requestsIGNORE andIG GREEDY do not ignore waiting re-
quests for an arbitrarily long period of time, thereby showing a stable behavior with respect
to the maximal flow time; the local improvement procedure ofIG GREEDY enhances
it with a better performance for the average flow time thanIGNORE. We proposeIG
GREEDY for robust control of an elevator system under varying load situations.

6. PRELIMINARY STUDIES OF AN INTEGRATED ELEVATOR SYSTEM

The layout investigated in this section integrates five elevator systems into a conveyor
system. This is the layout of the elevator system in the distribution center of Herlitz. On
each level, pallets are transported on circuits which have connections to single-capacitated
waiting slots in front of the elevators. See Figure 2 in the introduction for a sketch. For the
following simulation studies, the simulation parameters, such as capacities and times that
pallets take for traveling between components, were adjusted to reflect the real situation at
the Herlitz plant.

We first observe that in this particular system vertical transportation is faster than hor-
izontal transportation. A pallet takes about4s to move from one floor to another (not
counting another5s for boarding and also for alighting from the elevator). However travel-
ing from the system entrance to the first elevator takes15s and completing a whole journey
around the conveyor belt takes more than2 minutes.

This observation together with the fact that there is at most one pallet waiting for an
elevator on each floor could lead to the conclusion that the scheduling of elevators has a
rather small influence on the performance of the system.

In fact, looking at a simulation using real data as shown in Table 4, we see that the sys-
tems behave very similar, when different algorithms are used for controlling the elevators.
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average flow maximal flow completion
Algorithm mean high low mean high low mean high low

FIRSTFIT 120 122 118 340 438 239 28924 28968 28879
conveyor 87 89 86 281 333 155
elevator 32 34 31 167 270 105

FIFO 121 125 118 341 427 264 28923 28973 28879
conveyor 87 89 86 289 333 155
elevator 33 37 31 140 175 106

REPLAN 120 123 118 354 554 213 28924 28968 28879
conveyor 87 89 86 283 333 155
elevator 32 35 31 210 435 140

IGNORE 121 123 118 337 449 255 28923 28968 28879
conveyor 87 89 86 287 333 155
elevator 33 36 31 132 168 96

IG GREEDY 120 123 117 336 427 257 28923 28968 28879
conveyor 87 89 86 287 333 155
elevator 33 36 31 136 174 96

FF MAXAGE 120 122 118 340 438 235 28924 28968 28879
conveyor 87 89 86 281 333 155
elevator 32 34 31 153 194 105

FF DYNAGE 120 122 118 340 438 235 28924 28968 28879
conveyor 87 89 86 281 333 155
elevator 32 34 31 153 182 105

System Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 systems,5 elevators each,8 levels.
Request Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .tε = 90s, nmax = 3.
Statistics Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . simulated time:8h, sample size:20.

TABLE 5. Simulation study with low random load.

average flow maximal flow completion
Algorithm mean high low mean high low mean high low

FIRSTFIT 159 163 155 644 815 562 29023 29121 28946
conveyor 103 105 100 519 735 369
elevator 56 60 54 456 572 398

FIFO 208 220 199 814 1088 675 29041 29095 28953
conveyor 119 125 113 688 927 565
elevator 88 97 84 308 347 261

REPLAN 162 166 157 634 902 484 29005 29073 28939
conveyor 103 105 100 499 734 352
elevator 58 61 56 504 831 402

IGNORE 170 176 166 623 828 524 29012 29090 28943
conveyor 106 108 103 561 801 499
elevator 63 67 61 273 306 241

IG GREEDY 169 173 163 611 828 452 29027 29113 28953
conveyor 106 108 103 526 801 369
elevator 62 66 60 281 336 259

FF MAXAGE 167 171 161 638 755 506 29018 29102 28941
conveyor 105 108 102 535 713 372
elevator 61 65 58 256 295 223

FF DYNAGE 161 165 157 662 798 528 29007 29123 28947
conveyor 103 105 101 553 967 375
elevator 57 62 56 274 299 256

System Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 systems,5 elevators each,8 levels.
Request Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .tε = 30s, nmax = 3.
Statistics Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . simulated time:8h, sample size:20.

TABLE 6. Simulation study with medium random load.

A similar pattern emerges, when running the system on randomly generated data. The
load used for generating Table 5 is chosen similar to the maximum load observed in the
real data.

However, when we increase the load of the system, some trends appear which are some-
what similar to the observations for elevators without a connecting conveyor system. The
following observations draw on Tables 6 and 7.

The algorithmsFIRSTFIT andREPLAN once again show the best average flow be-
havior. We also notice again that these algorithms are performing badly when considering
maximal flow times through the elevator subsystem, ie., the maximal time it takes a pallet
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average flow maximal flow completion
Algorithm mean high low mean high low mean high low

FIRSTFIT 175 180 171 778 866 682 29058 29169 28972
conveyor 111 114 109 634 797 517
elevator 63 67 61 575 795 451

FIFO 293 350 256 1752 4019 1141 29181 29350 29058
conveyor 171 211 146 1602 3811 1048
elevator 121 138 110 337 390 313

REPLAN 180 186 176 776 1062 684 29063 29149 28965
conveyor 113 116 111 615 789 520
elevator 66 70 64 589 744 413

IGNORE 191 201 186 795 1012 647 29069 29155 28961
conveyor 117 122 115 714 979 579
elevator 73 79 70 296 356 257

IG GREEDY 190 200 184 771 992 637 29068 29152 28965
conveyor 117 121 114 676 842 565
elevator 72 78 69 303 397 260

FF MAXAGE 192 203 186 835 1163 669 29088 29191 28941
conveyor 118 123 115 716 993 565
elevator 74 80 70 291 331 242

FF DYNAGE 178 184 175 755 1013 637 29074 29222 28945
conveyor 112 116 110 636 984 528
elevator 65 69 64 295 326 265

System Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 systems,5 elevators each,8 levels.
Request Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .tε = 25s, nmax = 3.
Statistics Parameter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . simulated time:8h, sample size:20.

TABLE 7. Simulation study with high random load.

Elevator Passengers

1st elevator 683
2nd elevator 188
3rd elevator 45
4th elevator 8
5th elevator 5

TABLE 8. Results of elevator simulation with 24h traffic data from Her-
litz’s Falkensee plant

from entering the elevator waiting slot until emerging from the elevator on its target floor.
However, in the special settings of the Herlitz system the conveyor belt levels off most of
these effects, so that the overall maximal flow times ofFIRSTFIT andREPLAN are not
much worse than those achieved by other algorithms.

Once againFIFO performs initially quite well, however with rising load both its average
and maximum flow times deteriorate compared to other algorithms.

The performance of the modified first fit algorithmsFF MAXAGE andFF DYNAGE
is for all samples similar to that ofIG GREEDY. Preliminary studies with both higher
load and systems with more floors suggest that this remains true. This would suggest that
the instability ofFF MAXAGE andFF DYNAGE which was observed for elevators with
waiting queues is not apparent, when there is at most one passenger waiting at each floor.
However this needs to be verified in further studies of the algorithms.

Additionally to controlling the elevators, the system has to decide on which elevator a
pallet is to be transported. Currently this is done using a “first fit” strategy: pallets enter
the first free waiting slot which they encounter. This obviously leads to the first elevators
being used much more extensively than the further elevators as shown in Table 8.

In future research we will also look at other strategies for assigning pallets to elevators.
However, the current “first fit” algorithm could prove a very good strategy for the system
under consideration, since in this particular case vertical transportation is much faster than
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horizontal transportation and therefore choosing the first possible elevator could well be
efficient.

7. CONCLUSION

We have simulated various algorithms for the basic elevator control problem in varying
load situations. In particular, we focused on the performance with respect to minimizing the
average and the maximal flow times, resp. It turned out that algorithms seeking for highest
possible “global efficiency” (FIRSTFIT, REPLAN) may leave single requests unserved for
an unacceptable long period of time. Algorithms likeFF MAXAGE or FF DYNAGE seem
to require a new parameter setting for extreme load situations—otherwise the system may
break down completely. Parameters suitable for normal load have both algorithms imitate
the inefficientFIFO strategy under high load. The algorithmsIGNORE andIG GREEDY
achieve a good balance between the two objectives in every load situtation.

Our preliminary simulation studies on the integrated elevator system at Herlitz show
the same effects if only the elevator performance is considered, even though there waits
at most one request per level and elevator. However, the complete system suffers from
the poor performance of the conveyor system so that the optimization effects on the single
elevators alone do not lead to a substantially higher overall performance. This suggests to
further integrate the optimization efforts on both the elevator subsystem and the conveyor
control.
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