
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

F. SEEWALD1, A. POLLEI1, M. KRAUME1, W. MITTELBACH2,
J. LANG

Numerical Calculation of the Heat Transfer
in an Adsorption Energy Storage with

KARDOS

1Institut für Verfahrenstechnik, TU Berlin
2UFE SOLAR Gmbh and Fraunhofer Institute for Solar Energy Systems (ISE),
Freiburg

Preprint SC 99–04 (February 1999)

Abstract

A new seasonal energy storage for thermal solar systems has been de-
veloped on the basis of an adsorption-desorption process. Design and
optimization of this storage will be supported by numerical simula-
tions of heat and mass transfer with KARDOS. This paper focuses
on the unsteady heat transfer during the major operating step of en-
ergetic discharge of the storage, which is characterized by conductive
heat transfer in the fixed bed and a strong heat source caused by the
adsorption enthalpy. Results are interpreted concerning the influence
of variations in the parameter set. The method of implementation of
the differential equation will be shown as well as the post-processing
and gridwriting programs.

1 Introduction

The common application for active thermal solar systems is the supply of
buildings with hot water. The main obstacle for heating purposes is the gap
between summer, when the major amount of energy can be collected and
winter, when the heating energy is required. This demands the application
of a seasonal energy storage with small heat losses over a long time and well
defined load and unload behavior. For that purpose a new technique has
been developed, which is based on the heat of adsorption resp. desorption of
steam on silicagel (Mittelbach et. al, 1997). The load of water on the gel is
a function of H2O partial pressure and temperature.

For understanding and predicting the operation behavior of the adsorption
storage the temperature field and vapor density field in the bed have to
be calculated. The implementation of the heat balance of the fixed bed in
KARDOS (Lang, 1993) is already done and will be shown in this report.

2 Design and operating of the heat storage

The storage consists of a cylindrical insulated vessel filled with silicagel. Heat
exchanger pipes are installed in the total volume to provide short distances
for heat transfer. At the bottom the storage is connected to an evapora-
tor/condenser, which is used for pressure control of the vapor in the gas
space of the fixed bed. Since the gas phase in the system consists of pure
water the partial pressure of water is equal to the local pressure. To load the
storage energetically the water has to be desorbed from the silicagel. This

1

is done by heating the fixed bed with the heat exchanger and decreasing
the pressure by the condenser to withdraw the water from the storage. The
process of energetical discharge shall be considered in more detail because
it is the most important process step and will be therefore simulated. The
two-stage discharge starts from the state of a nearly dry adsorbent and a
very low vapor pressure while the evaporator is separated from the storage
by a closed valve. In the first stage the pressure in the storage is increased by
opening the valve to the evaporator. This causes a flow of low-temperature
water vapor from bottom to top into the storage. In the case considered the
front of the mass flow is adsorbed which causes a strong temperature increase
at the front and a much slower effective flow than in a vessel filled with non
adsorbing material. At the end of this operating step the temperature and
the pressure are constant in the total system and mass flow and adsorption
stop at equilibrium.

The second operating step starts from this equilibrium and is initiated by the
removal of heat by the heat exchanger. In this stage the heat exchanger acts
as an energy sink for the system, which causes a horizontal heat flow to the
exchanger and subsequently a temperature reduction in the adsorbent bed.
At lower temperature the adsorption equilibrium lies at higher load which
means, that adsorption takes place and adsorption heat is released. The
process of heat transfer is slow compared to the convective mass transfer
in the gas phase to supply the silicagel with new adsorptive. Therefore the
adsorption system can be considered to be always in equilibrium according
to the local temperature and the pressure given by the evaporator and is
described adequately by an energy balance.

3 Derivation of the set of governing equations

The processes which determine the heat and mass transfer in the adsorption
storage are acting at two different length scales. On a microscopic scale one
has to consider the mass transfer from the gas space of the sorption bed into
the pores of the adsorbent, the diffusion in the pores, the adsorption on the
solid surface and the heat transfer within the grains. On the macroscopic
scale one finds the convective heat and mass transfer by the vapor in the fixed
bed and the heat conduction in the solid phase. For a numerical simulation
which has to describe the whole storage it is impossible to resolve the system
on a microscopic scale because in that case the memory and time required
for computation would run out of any reasonable range. Instead of the nu-
merical solution of the temperature and the pressure field on the microscopic

2

scale, it is possible to use empirical functions to approximate the influence
of the microscopic transport processes on the macroscopic one. Considering
the energetical load or the second operating step of energetic discharge it
can be supposed, that the macroscopic processes are much slower then the
microscopic ones and determine the process rate. Therefore the balances are
formulated in a way which considers the adsorbent bed as a porous contin-
uum and the processes in the pore space of the single adsorbent particles as
continuously distributed sources resp. sinks.

The geometry of the heat exchanger has been simplified in order to realize
an axisymmetrical system which is in accordance with the set up of a test
storage. In that case the heat exchanger is a simple axisymmetric pipe flown
through by a liquid. Considering this system in a cylindrical coordinate
system we are left only with the radial coordinate r and the height coordinate
z.

To balance the local heat transfer we have basically to consider four different
processes: the convective flow of the gas phase, the conduction in the gas
phase, the storage of heat in the solid phase (unsteady term), the local ad-
sorption heat as a source and the conduction in the solid phase. The first two
processes mentioned are of minor importance as the gas density and therefore
the heat capacity and conductivity of the gas are quite low. So we end up
with a balance of the following form:

(1−Ψs)ρs(cs+cAd·X)
∂T

∂t
= (1−Ψs)ρsΔhAd(X, T)·∂X

∂t
+∇(λeff(X)ΔT) (1)

where the meaning of the variables is:

Ψs porosity of the sorption bed = volume fraction of gas phase (without
gas phase in the pores of the adsorbent particles),

ρs density of dry adsorbent particles,

cs heat capacity of dry adsorbent particles,

cAd heat capacity of the adsorbate phases in the particle,

X load = mass of adsorbate per mass of adsorbent, depends on tempera-
ture and pressure,

ΔhAd specific enthalpy of adsorption, depends on load and temperature,

λeff effective thermal conductivity of the fixed bed depending on load,

T temperature, and

3

t time

While Ψs, ρs and cs are constant for a certain adsorbent X, ΔhAd and λeff

have to be described with their functional dependencies. To complete the
mathematical formulation initial and boundary conditions are needed. The
initial state is easy to describe by a constant temperature:

Tt=0 = T0 (2)

The boundary conditions depend on the character of the walls considered.
A zero temperature gradient can be used for well insulated walls while at
the heat exchanger surface the boundary condition has to be formulated in
terms of the coefficient of heat transfer α:

∂T

∂�n
= 0 (3)

λeff
∂T

∂x

∣∣∣∣∣
wall

= α(Twall − Tref) (4)

with Tref being a reference temperature of e.g. the fluid in the heat exchanger.

4 Numerical solution

Since the balance equation (1) with its supplementary functions and bound-
ary conditions is too complex to be solved analytically a numerical analysis
has been carried out. The dominant source term and the temperature de-
pendence of most parameters require a high flexibility and stability of the
numerical method to be applied. Both is provided by the Finite Element code
KARDOS developed at the Konrad–Zuse–Zentrum für Informationstechnik
Berlin. The code allows the solution of transient differential equations cou-
pled with algebraic equations and complex boundary conditions in one, two,
and three spatial dimensions. It uses autoadaptation of the grid as well as
of the timestep and can therefore combine a good numerical resolution with
a reasonable effort in computing time and memory.

Under the assumption of a well insulated vessel and a small temperature
gradient in the heat exchanger compared to the difference between the tem-
perature of the exchanger surface and the sorption bed the problem can be

4

approximated by an one-dimensional description in radial direction. Never-
theless the formulation in cylindrical coordinates has to be used to consider
the correct relation between volume and heat exchange surface.

Considering (1), there are two equations to be solved. The first one is (1)
itself, the second is the equilibrium condition for the load. The system of the
two equations is shown in one carthesic coordinate x and with the KARDOS
vector function u = (u0, u1):

T =⇒ u0

X =⇒ u1
(5)

[
(1 − Ψs)ρs(cs + cAd · u1) (1 − Ψs)ρsΔhAd(u1, u0)

0 0

] (
∂u0/∂t
∂u1/∂t

)
−

− ∂

∂x

{[
λeff(u1) 0

0 0

] (
∂u0/∂x
∂u1/∂x

)}

=

[
0

u1 − u1(u0)

]
−

[
0 0
0 0

] (
∂u0/∂x
∂u1/∂x

)
(6)

Since the equilibrium for the load can be calculated in KARDOS only with a
differential equation, we have to define boundary conditions for it. Because
there is no flux of mass over the system borders, there can be set Neumann
boundary conditions. If the diffusion coefficient of u1, D1, equals zero (eq. 6),
the derivation of u1 by x at the boundaries may be unequal zero .

To reduce the solving time, (1) can be also solved in one equation. This is
realized by transforming and adding the source term to the parabolic (heat
capacity) term, as shown below.

(1 − Ψs)ρsΔhAd(X, T) · ∂X
∂t

=

(1 − Ψs)ρsΔhAd(X, T)
[

∂X
∂T

∣∣∣
T

∂T
∂t

+ ∂X
∂p

∣∣∣
p

∂p
∂t

] (7)

Since the pressure in the system is constant, the last term equals zero.

[
(1 − Ψs)ρs(cs + cAd · X) − (1 − Ψs)ρsΔhAd(X, T) ∂X

∂T

∣∣∣
T

]
∂T
∂t

=

∂
∂x

(
λeff(X)∂T

∂x

) (8)

The boundary conditions for T are the same as in (3) and (4).

5

Load changes do not act any more as heat sources, but increase dramatically
the heat capacity of the adsorbent. Calculating only the heating or cooling
of the fixed bed by the heat exchanger, as it is shown in this report, the
transformation will not cause any mistakes. However the computation of the
adsorption heat during the increasing of the pressure in the first operating
step will fail, because increasing the load will only increase the heat capacity,
but not the temperature field. In that case the load has to be calculated in
its own equation. So it has to be notified, that (7) only can be used, when
the pressure is constant.

To solve (1) in cylindrical coordinates, all matrices (except Dirichlet bound-
ary condition) have to be multiplied by x.

The implementation of the balance equation is realized stepwise to ensure the
correctness of the respective solutions. Each solution was subject to special
examinations of plausibility. In particular there were made comparisons be-
tween the total exported heat calculated by a global balance and calculated
by KARDOS. Finding the optimum of the numerical constant globtol, the
tolerance never exceeded 1%. In most cases the tolerance was at 0.1% or
even less.

5 Results

Implementing the energy balance in KARDOS, it is possible to calculate the
time dependent temperature field during the energetic load and the discharge
of the storage according to the defined parameters. The clearness of the one
dimensional formulation allows a discussion of the relative influence of the
different process steps on the heat removal from the storage at a certain time,
even if the choice of the reference value is somehow arbitrary.

Fig. 1 shows the energy removed during the first 10 operation days for dif-
ferent parameter sets. At the reference point, given in the diagram by a
variation factor of 1 and a relative change in removed heat of 0%, the values
resp. functional expressions for α, λeff , ΔhAd and X have been chosen as good
as possible in accordance with the real adsorbent and heat exchanger prop-
erties. The values of ΔhAd and as a function of temperature and pressure
have been determined experimentally. The effect of linear variations in these
four values on the amount of removed heat gives on one hand guide lines for
further optimization strategies, on the other hand an idea of the needed ac-
curacy in the experimental determination of these functions. An example for
the interpretation of the diagram is to compare the curve of a-variation with

6

the curve of λeff–variation. While a change in a causes only minor effects a
change in λeff by 10% increases the heat gained in that certain time by about
5%. This is caused by the fact, that the main resistance for the heat transfer
lies in the conductivity of the adsorption bed while the transfer to the heat
exchanger is relatively good. A further reduction of the latter resistance has
no great effect on the total process. This result is of technical interest since
the effort needed for an exact determination of a is very high. A discussion
of the other parameters is possible in a similar manner (Seewald, 1998).

Figure 1:

6 Outlook

Further research in the frame of the presented project will be undertaken
mainly in three directions. In the near future measurements of temperature
distributions in adsorbing systems will be carried out. These will be used
to validate the already programmed two-dimensional model. After its ver-
ification the storage simulation will be combined with a process simulation
of the whole thermal solar system. To do this in a satisfying way also the
desorption phase and the first adsorption phase in the storage have to be

7

modelled with the relevant heat and mass transfer processes.

7 List of used symbols

Ψs porosity of the sorption bed = volume fraction of gas phase (without
gas phase in the pores of the adsorbent particles),

ρs density of dry adsorbent particles,

cs heat capacity of dry adsorbent particles,

cAd heat capacity of the adsorbate phases in the particle,

X load = mass of adsorbate per mass of adsorbent, depends on tempera-
ture and pressure,

ΔhAd specific enthalpy of adsorption, depends on load and temperature,

λeff effective thermal conductivity of the fixed bed depending on load,

T temperature,

t time,

u0 first element of the KARDOS vector function =⇒ T ,

t second element of the KARDOS vector function =⇒ X, and

p local vapor pressure in the storage.

8 Appendix

In the appendix there will be shown the files user.c, kardos.startup, a
gridwriter and the post-processing program.

8.1 user.c

#include <stdio.h>

#include <string.h>

#include <math.h>

#include "zibutil.h"

#include "commands.h"

#include "problem.h"

#include "assemble.h"

#include "solve.h"

#include "nodes.h"

#include "timeinteg.h"

8

/*

Definition of constants

__________________________*/

#define a1 1.016111E+06 /*total heat capacity/Vol =805*(1000+2500*0.1049); 0,1049=X(T=333K) */

#define a2 1.0

#define a3 0.465738 /* lambda (X=0.3158)= 1.0;lambda(X=0.1049) = 0.465738 */

#define a4 2.0125E+06 /* = 805*2500 */

#define a5 0.4 /* = 1000/2500 */

#define a7 1.0

#define a8 1.0

#define Tnull 353.0 /* initial condition */

#define r1 0.01 /* inner radius of the cylinder */

#define r4 0.15 /* outer radius of the cylinder */

#define pbezug 0.0317

#define rho 805.0 /* Silicagel-N */

#define lambda 0.25

/**/

#define alpha 100.0 /* in W/qm*K */

#define Tsprung -60.0 /* temperatur step in upper direction */

/**/

/* factors for the sensitive analyse */

#define alphatol 1.0

#define lambdatol 2.0

#define hadtol 1.0

#define xisotol 1.0

#define trampe 10.0 /* time in s of soft decreasing of the inner wall temperature */

#define anstiegsgenauigkeit 5.0E-06 /* accuracy of calculating dX/dT */

#define kelvin 273.15 /* kelvin - celsius */

/*________________________*/

static char *varName[] = {"x"};

real Xiso(real, real);

real Xwertanstieg(real,real);

real DensitySaturatedLiquid(real);

real DF(real,real);

real EvaporationPressure(real);

real WFit(real);

real Had(real,real);

real EvaporationEnthalpy(real);

real Flambda(real);

/* ** */

static int SchatParabolic(real x, int classA, real t, real *u, int equ, int var, real *fVal)

{

if (equ!=var) return F_IGNORE;

/* this is made to ignore the under row of the matrix */

fVal[0] = (a4*(a5+Xiso(u[0],pbezug))-Had(u[0],pbezug)*Xwertanstieg(u[0],pbezug))*x;

return F_VARIABLE;

}

9

static int SchatLaplace(real x, int classA, real t, real *u, int equ, int var, real *fVal)

{

if (equ!=var) return F_IGNORE;

/* this is made to ignore the under row of the matrix */

/* The only element of the parabolic-matrix:

(a2) */

fVal[0] = Flambda(Xiso(u[0],pbezug))*x;

return F_VARIABLE;

}

static int SchatSource(real x, int classA, real t, real *u, int equ, real *fVal)

{

return F_IGNORE;

}

static int SchatJacobian(real x, int classA, real t, real *u, int equ, int var, real *fVal)

{

return F_IGNORE;

}

static real SchatInitialFunc(real x, int classA, int var)

{

return Tnull;

}

static int SchatDirichlet(real x , int classA, real t, int var, real *fVal)

{

return F_IGNORE;

}

static int SchatCauchy(real x, int classA, real t, real *u, int equ, real *fVal)

{

if (x==r4) fVal[0] = 0.0;

else if ((x==r1)&&(t==0.0)) fVal[0] = 0.0;

else if ((x==r1)&&(t>0.0)&&(t<=trampe)) fVal[0] = -alpha*alphatol*(u[0]-(Tnull+Tsprung/trampe*t))*r1;

else if ((x==r1)&&(t>trampe)) fVal[0] = -alpha*alphatol*(u[0]-(Tnull+Tsprung))*r1;

else ZIBStdOut("error in SchatCauchy\n");

return F_VARIABLE;

}

/* *****************End of the problem schrittalphatest*** */

real Flambda(real xquer)

{

/* calculating lambda */

real flambda;

/*flambda = (aa3 * xquer + ab3)*lambdatol;*/

flambda = lambda * lambdatol;

return (flambda);

}

real Xwertanstieg(real T, real pbar)

{

/* calculating the derivation of the load */

real xwertanstieg,Tlinks,Trechts;

Tlinks = T - 0.5 * anstiegsgenauigkeit;

10

Trechts= T + 0.5 * anstiegsgenauigkeit;

xwertanstieg=(Xiso(Trechts,pbar)-Xiso(Tlinks,pbar))/anstiegsgenauigkeit;

return(xwertanstieg);

}

/* ***

--

Isosterenfeld

--

Xiso(Tcel; Pbar)

function for calculating the isosterenfeldes X(T,p) according Dubinin

used : Xmax(Tcel)

EvaporationPressure(Tcel)

written by Walther Mittelbach, ISE, on 05/31/1997

modified for the use in KARDOS by Frank Seewald on 08/10/1998

*/

real Xiso(real Tkelvin,real pbar)

{

real DeltaF,Adsorptionsvolumen,xiso,Tcel,druck;

Tcel=Tkelvin-kelvin;

DeltaF = DF(Tcel, pbar);

Adsorptionsvolumen = WFit(DeltaF);

xiso = Adsorptionsvolumen * DensitySaturatedLiquid(Tcel)*xisotol;

return (xiso);

}

/* ***

DensitySaturatedLiquid(Tcel)

Calculating the density of liquid in kg/m3 at the phasis boarder liq-gas

written by Walther Mittelbach, ISE, on 05/31/1997

modified for the use in KARDOS by Frank Seewald on 08/10/1998

real DensitySaturatedLiquid(real Tcel)

{

real avon[4];

real ub[6];

real sum,densitySaturatedLiquid;

int i;

avon[1] = 999.7832889997;

avon[2] = 0.0735040006;

avon[3] = -8.3107357e-03;

ub[1] = 1000.4997407121;

ub[2] = -0.0186989131;

ub[3] = -0.0053775185;

ub[4] = 1.66834e-05;

ub[5] = -3.1523e-08;

if(Tcel <= 10.0)

{

sum = avon[1];

for (i = 2;i<=3;i++)

{

sum = sum + avon[i] * pow(Tcel,(i - 1));

}

}

11

else

{

sum = ub[1];

for (i = 2;i<=5;i++)

{

sum = sum + ub[i] * pow(Tcel,(i - 1));

}

}

densitySaturatedLiquid = sum;

return(densitySaturatedLiquid);

}

/* **

DF(Tcel;Pbar)

calculating the evaporation pressure (Temperature)

verwendet : EvaporationPressure(Tcel)

written by Walther Mittelbach, ISE, on 05/31/1997

modified for the use in KARDOS by Frank Seewald on 08/10/1998

real DF(real Tcel,real pbar)

{

real Rs = 0.4615; /*[kJ/kgK] spez. Gaskonstante Wasser*/

real dF;

dF = Rs * (Tcel + 273.15) * log(EvaporationPressure(Tcel) / pbar);

return(dF);

}

/* **

EvaporationPressure(Tcel)

Calculating the evaporation pressure liq-gas

written by Walther Mittelbach, ISE, on 05/31/1997

modified for the use in KARDOS by Frank Seewald on 08/10/1998

Funktion BETAK in WATER.FOR

*/

real EvaporationPressure(real Tcel)

{

real Tcrit = 647.3;

real pcrit = 221.2;

real K1 = -7.691234564;

real K2 = -26.08023696;

real K3 = -168.1706546;

real K4 = 64.23285504;

real K5 = -118.9646225;

real K6 = 4.16717732;

real K7 = 20.9750676;

real K8 = 1000000000.0;

real K9 = 6.0;

real Theta, Theta1, Term1, Term2, Betak, evaporationPressure;

Theta = (Tcel + 273.15) / Tcrit;

Theta1 = 1.0 - Theta;

Term1 = K1*Theta1+K2*pow(Theta1,2.0)+K3*pow(Theta1,3.0)+K4*pow(Theta1,4.0)+K5*pow(Theta1,5.0);

Term2 = 1.0+K6*Theta1+K7*pow(Theta1,2);

Betak = exp(Term1/(Term2*(1 - Theta1)) - Theta1/(K8 * pow(Theta1,2) + K9));

evaporationPressure = pcrit * Betak;

return(evaporationPressure);

}

12

/* the following functions compute special functions of the dubinin theory */

/* **

real WFit(real DeltaF)

’---

*/

real WFit(real DeltaF)

{

double wFit,a[317],b[317];

int i,j;

a[0]=-4.000000e+02; b[0]=4.260000e-04; a[1]=-1.000000e+00; b[1]=4.260000e-04;

a[2]=0.000000e+00; b[2]=4.254409e-04; a[3]=2.000000e+00; b[3]=4.244306e-04;

a[4]=4.000000e+00; b[4]=4.237301e-04; a[5]=6.000000e+00; b[5]=4.228959e-04;

a[6]=8.000000e+00; b[6]=4.219793e-04; a[7]=1.000000e+01; b[7]=4.210516e-04;

a[8]=1.200000e+01; b[8]=4.201165e-04; a[9]=1.400000e+01; b[9]=4.191665e-04;

a[10]=1.600000e+01; b[10]=4.182091e-04; a[11]=1.800000e+01; b[11]=4.172369e-04;

..

abridged

..

a[304]=8.160000e+02; b[304]=2.769459e-05; a[305]=8.240000e+02; b[305]=2.681576e-05;

a[306]=8.320000e+02; b[306]=2.591124e-05; a[307]=8.400000e+02; b[307]=2.492509e-05;

a[308]=8.480000e+02; b[308]=2.383781e-05; a[309]=8.560000e+02; b[309]=2.262250e-05;

a[310]=8.640000e+02; b[310]=2.123743e-05; a[311]=8.720000e+02; b[311]=1.960686e-05;

a[312]=8.800000e+02; b[312]=1.751776e-05; a[313]=8.880000e+02; b[313]=1.567616e-05;

a[314]=8.960000e+02; b[314]=1.324395e-05; a[315]=9.040000e+02; b[315]=9.321308e-06;

a[316]=9.070000e+02; b[316]=4.749135e-06;

for (i = 0;i<=316;i++)

{

if((a[i]<=DeltaF)&&(a[i+1]>=DeltaF))

{

j=i+1;

wFit=b[i]+(DeltaF-a[i])*(b[j]-b[i])/(a[j]-a[i]);

return(wFit);

}

}

}

/* ***

had(Tkelvin,pbar)

computing the specific enthalpy of adsorption

verwendet : Xmax(Tcel)

EvaporationPressure(Tcel)

written by Walther Mittelbach, ISE, on 05/31/1997

modified for the use in KARDOS by Frank Seewald on 08/10/1998

c is the load

*/

real Had(real Tkelvin,real pbar)

{

real W,had,Tcel;

Tcel=Tkelvin-kelvin;

had = (EvaporationEnthalpy(Tcel) + DF(Tcel,pbar))*1000.0*rho; /* in J/kubm */

had = had*hadtol;

return(had);

}

/* **

EvaporationEnthalpy(Tcel)

13

written by Walther Mittelbach, ISE, on 05/31/1997

modified for the use in KARDOS by Frank Seewald on 08/10/1998

Funktion HV in WATER.FOR without sublimation

*/

real EvaporationEnthalpy(real Tcel)

{

real Tcrit = 647.3;

real Htp = 2500.9;

real ub = 0.7729221;

real c = 4.62668;

real d = -1.07931;

real E[6];

real Theta,Theta1,X1,X2,X3,Sum,exponent,evaporationEnthalpy;

int i;

E[1] = -3.87446;

E[2] = 2.94553;

E[3] = -8.06395;

E[4] = 11.5633;

E[5] = -6.02884;

Theta = (Tcel + 273.15 - 5.0) / Tcrit;

Theta1 = 1.0 - Theta;

Sum = 0.0;

for (i = 1;i<=5;i++)

{

exponent = i;

Sum = Sum + E[i] * pow(Theta1,exponent);

}

X1 = 1.0 / 3.0;

X2 = 5.0 / 6.0;

X3 = 7.0 / 8.0;

evaporationEnthalpy = Htp * (ub * pow(Theta1,X1) + c * pow(Theta1,X2) + d * pow(Theta1,X3) + Sum);

return(evaporationEnthalpy);

}

/***/

int DefUserTimeProblems()

{

if (!SetTimeProblem("schrittalphatest",varName,

SchatParabolic,

OP_LINEAR,

SchatLaplace,

(int(*)(real,int,real,real*,int,int,real*))nil,

(int(*)(real,int,real,real*,int,int,real*))nil,

OP_LINEAR,

SchatSource,

(int(*)(real,int,real,real*,int,int,real*))nil,

/* die Jacobian-funktion wird hier automatisch berechnet */

SchatInitialFunc,

SchatCauchy,

SchatDirichlet,

(int(*)(real,int,real,int,real*))nil)) return false;

return true;

}

14

8.2 kardos-startup

read ../grids/PE1.g

read ../grids/PE2.g

timeproblem schrittalphatest

selestimate babuska

selrefine meanval

seldirect ma28

window new automatic name "Temperatur"

graphic solution triangulation %clipping (0.01,20.0,0.15,120.0)

seldraw 0

seltimeinteg rodas

setplot grid 0 nocomponents 1 components 0

setscaling atol 0.001 rtol 0.001

timestepping timestep 1.0E-6 maxsteps 4000 tEnd 1.174E+06 globtol 2.0E-05 showsol 1

8.3 kardos-startup

schrittalphatest1

Dimension:(11,10)

0:0.0100,B,C

1:0.0240,I,I

2:0.0380,I,I

3:0.0520,I,I

4:0.0660,I,I

5:0.0800,I,I

6:0.0940,I,I

7:0.1080,I,I

8:0.1220,I,I

9:0.1360,I,I

10:0.1500,B,C

END

0:(0,1)

1:(1,2)

2:(2,3)

3:(3,4)

4:(4,5)

5:(5,6)

6:(6,7)

7:(7,8)

8:(8,9)

9:(9,10)

END

8.4 The grid writer gitterschreiber.c

The program sets 10 nodes in a computing domain with user defined borders.

/* writing a grid */

#include <stdio.h>

15

#include <math.h>

#define gridfile1 "../grids/PE1.g"

#define gridfile2 "../grids/PE2.g"

#define npunkte 11 /* number of nodes */

void main()

{

FILE *fput1;

FILE *fput2;

int i;

float r1,r4,abstand;

printf("choose the inner radius: \t\t");

scanf ("%f",&r1);

printf("choose the outer radius: \t");

scanf ("%f",&r4);

abstand=(r4-r1)/(npunkte-1);

fput1=fopen(gridfile1,"w");

fput2=fopen(gridfile2,"w");

fprintf(fput1,"schrittalphatest1\n");

fprintf(fput2,"schrittalphatest2\n");

fprintf(fput1,"Dimension:(%d,%d)\n",npunkte,npunkte-1);

fprintf(fput2,"Dimension:(%d,%d)\n",npunkte,npunkte-1);

fprintf(fput1,"0:%.4f,B,C\n",r1);

fprintf(fput2,"0:%.4f,B,C\n",r1);

for(i=1; i<(npunkte-1); i++)

{

fprintf(fput1,"%d:%.4f,I,I\n",i,r1+i*abstand);

fprintf(fput2,"%d:%.4f,I,I\n",i,r1+i*abstand);

}

fprintf(fput1,"%d:%.4f,B,C\n",npunkte-1,r4);

fprintf(fput2,"%d:%.4f,B,C\n",npunkte-1,r4);

fprintf(fput1,"END\n");

fprintf(fput2,"END\n");

for(i=0; i<(npunkte-1); i++)

{

fprintf(fput1,"%d:(%d,%d)\n",i,i,i+1);

fprintf(fput2,"%d:(%d,%d)\n",i,i,i+1);

}

fprintf(fput1,"END\n");

fprintf(fput2,"END\n");

fclose(fput1);

fclose(fput2);

}

16

References

[1] W. Mittelbach, H.–M. Henning, Seasonal heat storage using adsorption
processes, in IEA Workshop Advanced Solar Thermal Storage Systems,
Helsinki, 1997

[2] F. Seewald, Mathematische Modellierung thermischer Prozesse in einem
Wärmespeicher auf der Basis von Sorptionsvorgängen, Diploma Thesis,
TU Berlin, 1998

[3] J. Lang, KARDOS – KAskade Reaction Diffusion One–dimensional Sys-
tem, Technical Report TR 93-9, Konrad–Zuse–Zentrum Berlin, 1993

17

