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The paper supplies an alternative derivation of the exact bound-
ary conditions needed for the solution of time-harmonic acoustic scat-
tering problems modeled by the Helmholtz equation. The main idea
is to consider the exterior domain problem as an initial value prob-
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transformation techniques, where the asymptotic Sommerfeld radia-
tion condition is reformulated accordingly.
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1 Introduction

The solution of problems of acoustic or electro-magnetic radiation
and scattering, based on the Helmholtz equation, is an essential in-
gredient in the modeling of complex physical situations or technical
devices. Moreover, even in quantum mechanics the solution of time–
dependent scattering problems is often closely linked to the solution
of the Helmholtz equation in exterior domains. Most work spent on
this subject has been concentrated on the development and analysis
of fast and reliable numerical schemes combining effective methods
for the interior problem with methods constructed to solve problems
in exterior domains. The methods most often used are presented and
analyzed in the books by Givoli [4] and by Ihlenburg [8] and can be
grouped roughly into the following classes:

1. Combination of interior methods like the finite element method
with boundary element methods to solve both the interior and
the exterior problem.

2. Combination of interior methods with an infinite element method
to solve both the interior and the exterior problem.

3. Combination of interior methods with an Dirichlet-to-Neumann
(DtN) operator on an artificial boundary to solve the interior
problem only.

4. Combination of interior methods with exact or approximate
absorbing boundary conditions to solve the interior problem
only.

The first class is applicable, if a fundamental solution is available,
which satisfies Sommerfeld’s radiation condition. Extensive litera-
ture on this subject exists [15], especially concerning the case of the
potential non-uniqueness if the standard Helmholtz integral repre-
sentation formulas are used, see [1] and the literature cited therein.

The second class uses a discretization of the exterior domain with
shape functions obtained from an asymptotic expansion in radial
direction of the exterior solution, see [3]. Again, a representation of
the exterior solution must be available.

The third class utilizes separable coordinate systems to construct
exterior solutions which are used to construct a mapping from Dirich-
let data given on an artificial boundary separating the interior and
the exterior domain to Neumann data on the same boundary. The
method is closely related to the first one, except that the exterior
solution is not represented by a convolution formula but by a super-
position of separated solutions. This idea overcomes the potential
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difficulties of the first method (with respect to the elementary repre-
sentation formulas) and goes back to Keller and Givoli [9]. However,
again we need a tool to decide, in case when all separable solutions
are known, which of them are outgoing solutions, i. e. , which of them
fulfill Sommerfeld’s radiation condition.

The last class of methods does not aim to solve the Helmholtz
equation on an unbounded domain. Instead, absorbing boundary
conditions are constructed which have to guaranty that the bound-
ary of the computational domain does not cause artificial reflections.
Most prominent here are the perfectly matched layers of Bérenger
[2].

The crucial prerequisite for the first three methods is to have a
representation of the exterior solution and a tool like the Sommerfeld
condition at hand, in order to decide, what is outgoing and what is
incoming. However, in some practical relevant situations such a tool
is not available, for example in cases with non-constant coefficients
or even in some cases with piecewise constant coefficients. In [5]
Goldstein investigated the case of an waveguide type inhomogeneity.
In examples like this the Sommerfeld condition is not applicable.

The purpose of this paper is to give a new view on Sommer-
feld’s radiation condition. We do not aim to give a new boundary
conditions or a new numerical method but a new understanding of
the Sommerfeld condition. In fact, in §4.1 we replace this condition
by a different one. Our formulation of the radiation condition is
equivalent to Sommerfeld’s condition in case of the Helmholtz equa-
tion. The new condition, however, is not restricted to the special
case of the Helmholtz equation with a constant Helmholtz term. In
fact, we applied the same basic idea originally to the time-dependent
Schrödinger equation [11], [12] in one space dimension. Besides its
generality, the point is that the new formulation is constructive. It
allows to derive the radiation condition directly from the differential
equation and allows therefore to construct a DtN-map based directly
on the given equation. Thus the use of any special functions, which
are the core of the first three methods, is avoided.

We present the concept here in correspondence to the derivation
of the classic DtN-map, i. .e. , based on a separation ansatz. This
is not crucial for the method, but it simplifies the representation
and allows a complete analytic treatment of the subject. Thus, both
similarity and difference with respect to the classic approach becomes
apparent.
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2 Formulation of the scattering prob-

lem

Let R be a bounded domain in two dimensions, and let Γ be its
piecewise smooth boundary. Further, let Br0 be a disc of of radius r0
with boundary ∂Br0 which contains R. We seek a solution u(x), x ∈
Ω̄, where the domain Ω is the region inside the disc and outside the
scatterer, Ω = Br0 ∩R, which satisfies the Helmholtz equation

Δu+ k2u = f outside R
αu+ β∂nu = g on Γ

∂nu− iku = o

(
1

r1/2

)
. (1)

Here k is the real wavenumber, f is the source term with compact

n

Ω

r

0
Γ r

∂B

Figure 1: The computational domain Ω with the artificial boundary ∂B

support in Ω, α, β, g are given functions and (1) is the famous Som-
merfeld radiation condition. The purpose of the radiation condition
is to allow only outgoing waves at infinity. Sommerfeld formulated
the condition in a 1912 paper [13] and dealt with it also in his famous
lecture notes [14]. To derive the condition, he argues as follows. In
the potential theoretic limit (k → 0) we know that the knowledge
of the sources supplemented with zero boundary conditions at infin-
ity is enough to derive a unique solution. In the case of the time-
harmonic wave equation, where the time-dependence is assumed to
be exp(−iωt), however, we have fundamental solutions of the type
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exp(±ikr)/r. Hence, we can superpose any given solution with func-
tions, even with regular functions, which satisfy the equation and
vanish at infinity. Sommerfeld concluded that, different to potential
theory, not the decay behavior of the modulus of a function is the
decisive property but one has to the distinguish between incoming
and outgoing waves. Incoming and outgoing waves may have the
same decay behavior with respect to their modulus, however, they
are characterized by a different phase increment. In fact, we identify
functions of type exp(ikr)/r, for example, with outgoing waves.

The main idea of solution techniques to solve Helmholtz equations
based on DtN maps is to decompose the unbounded exterior to R
into the regions inside and outside the disc Br0 and relate them to
each other via the DtN-operator M as

∂nu = Mu on ∂Br0 ,

where continuity of both ∂nu and u across the artificial boundary
∂Br0 is required. Now our problem reads

exterior problem PE : Δu+ k2u = 0 outside Br0 (2)

∂nu = Muo on ∂Br0

and

interior problem PI : Δu+ k2u = f inside Br0 (3)

αu+ β∂nu = g on Γ

∂nu = Mu on ∂Br0

Here, the Sommerfeld condition is hidden behind the DtN-operator
M. The function u0(x), x ∈ ∂Br0 , is assumed to be given and the
DtN-operator supplies, as it will be shown later, a bijective mapping,
in a suited function space, between Dirichlet and Neumann data,
such that for every function u0 on ∂Br0 the exterior problem can be
solved uniquely and satisfies Sommerfeld’s radiation condition. The
algorithmic procedure then is as follows

1. solve problem PI

2. set u0(x) := u(x), x ∈ ∂Br0

3. solve problem PE .

In many practical situations we can drop the third step, because we
are interested in u(x), x ∈ Ω, only. The DtN-operator M can be
computed by means of an integral representation formula based on a
Green’s function approach or by an explicit solution of the exterior
problem by means of an separation ansatz. Following [9], we describe
the latter technique.
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3 Classical derivation of the DtN-map

Every function u(x) ∈ L2(∂Br0) can be expressed via its Fourier
series expansion

u(r0, φ) =
∞∑

ν=−∞
aνe

iνφ, aν =
1

2π

∫ π

−π
e−iνφu(r0, φ) dφ .

A separation ansatz in cylindric coordinates u(r, φ) =
∑

ν aνe
iνφuν(r)

shows that uν(r) must obey Bessel’s differential equation

∂2
ruν +

1

r
∂ruν +

(
k2 − ν2

r2

)
uν = 0 , r ≥ r0.

The fundamental solution and its derivative are

uν(r) = c1H
(1)
ν (kr) + c2H

(2)
ν (kr)

v′ν(r) = c1Hν
(1)′(kr) + c2H

(2)
ν

′
(kr),

where H
(1)
ν ,H

(2)
ν are Hankel’s functions of the first and the second

kind, respectively, and the prime denotes the derivative with respect
to the argument. From an asymptotic study of Hankel’s functions
we know that only the first kind obeys the Sommerfeld condition.
In order to drop the Hankel function of the second kind, we must
establish an additional condition, namely,

u′ν(r) = k
H

(1)
ν

′
(kr)

H
(1)
ν (kr)

uν(r),

or, equivalently,

u′ν(r) =

(
ν

r
− k

H
(1)
ν+1(kr)

H
(1)
ν (kr)

)
uν(r).

Taking the angular-dependent part into account, we obtain the DtN-
map

∂nu(r, φ)|r=r0
=

∞∑
ν=−∞

(
ν

r
− k

H
(1)
ν+1(kr)

H
(1)
ν (kr)

)
eiνφ

2π

(
eiνφ, u(r0, φ)

)
L2

.

The main ingredients, with respect to this classical approach, have
been the expression of the fundamental solution in terms of a su-
perposition of Hankel’s functions and the decision, which of them
fulfill Sommerfeld’s radiation condition. For example, if we would
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start with another pair of fundamental solutions, say with Bessel-
and Weber functions, none of them would satisfy the Sommerfeld
condition and we must try to find a superposition of both, namely
the Hankel functions, which obey the radiation condition. There the
question arises, is there an approach which allows the construction
of the DtN-operator in a canonical way, without an explicit con-
struction of fundamental solutions given by, sometimes complicated,
special functions?

4 Technique of Laplace transform

The alternative way of deriving a DtN-map is based on the tech-
nique of Laplace transformation. The key point is that we will be
able to state Sommerfeld’ s radiation condition (1) as an property
of Laplace-transformed solutions of the exterior problem PE . To be-
come familiar with this point of view, we first give the alternative
formulation of the Sommerfeld condition, and consider then two in-
troductory examples.

4.1 The alternative formulation of Sommer-
feld’s radiation condition

Let us write the solution u(x) of the exterior problem (2) with x
given in polar coordinates r, φ, r ≥ r0,−π < φ ≤ π, as u(r, φ). Then
the Sommerfeld condition (1) reads

∂ru(r, φ) − iku(r, φ) = o

(
1

r1/2

)
. (4)

We will replace this by the equivalent formulation∮
γ
û(s, φ) ds = 0 , (5)

where û(s, φ) denotes the Laplace-transformed counterpart of u(r, φ)
with respect to the radial variable r,

û(s, φ) = Lu(r, φ) =
∫ ∞

0
e−sxu(r0 + x, φ)dx .

Condition (5) must hold for every closed contour γ which lies in the
lower half of the complex plane, and for every −π < φ ≤ π. In other
words, we require û(s, φ) must be holomorphic in the lower half of
the complex plane.
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4.2 Examples

Example 1 (1D). Let us consider the Helmholtz equation in
the semi-infinite interval [r0,∞) and let us introduce the shifted
coordinate-system with the independent variable x via r = r0+x, x ≥
0,

d2

dx2
u(x) + u(x) = 0, x ≥ 0.

Laplace-transformation yields

û(s) =
su(0) + ∂xu|x=0

s2 + 1
.

The function û : U ⊂ C → C is holomorphic in U = C \ {±i}. A
partial fraction decomposition supplies

û(s) =
1

2

u0 + iux
s+ i

+
1

2

u0 − iux
s− i

.

For convenience, we introduced here the abbreviations u0 := u(0)
and ux := ∂xu(x)|x=0. Obviously, the pole at s = −i vanishes,
and condition (5) is fulfilled, if the 1D Sommerfeld condition holds:
u0 + iux = 0. Thus, the Laplace-technique supplies two essential
informations:

1. It gives a natural splitting of a given function into asymp-
totically incoming and outgoing waves, because we can iden-
tify a complex function û−(s) := 1

s+i with an incoming wave

u−(x) = exp(−ix) and a function û+(s) :=
1

s−i with an outgo-
ing wave u+(x) = exp(ix).

2. It supplies automatically the relation between Neumann data
ux = ∂xu(x) and the Dirichlet data u0 = u(x) at the position
x = 0 needed to drop one of them.

Example 2 (2D). The following example is essentially for the
understanding of the full 2D problem. Let us consider the complex
function û(s)

û : U ⊂ C → C , û(s) :=
g(s)√
s2 + 1

. (6)

Here, the square-root is understood as the square root on the princi-
pal plane, i. e. , for a ∈ C we define

√
a = |a|1/2eiφ/2, φ = arg(a), φ ∈

(−π, π]. With respect to the definition of û(s) this means, that we
define

U = C \ {±i(1 + R0 )} with R0 = {x ∈ R | 0 ≤ x < ∞ } (7)
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(see Fig. 2). The function g(s) in the numerator of (6) is defined as
follows: g : U → C , g(s) is holomorphic in U and lim|s|→∞ |g(s)| =
const. The two singularities ±i and the infinite point are branch
points of û(s) of order 1. The infinite point is a zero of û, and the
derivative û′(s) vanishes for |s| → ∞, too. Hence, the infinite point
is a regular point. In the following, we want to analyze the function
û(s) in the same way as we analyzed the function 1/(s2+1) occurring
in the 1D example. The following lemma supplies the key for this
investigation.

Lemma 1. (Partial fraction decomposition). The complex function
û(s) defined by (6) and (7) possesses a partial fraction decomposition

û(s) =
1

2πi

∮
γ1

g(ζ)√
ζ2 + 1 (s− ζ)

dζ +
1

2πi

∮
γ2

g(ζ)√
ζ2 + 1 (s− ζ)

dζ,

where the paths γ1 and γ2 are closed contours in U enclosing the
singularities (see Fig. 2).

Proof. For a small disc with radius ε we have, according to Cauchy’s
integral formula,

û(s) =
1

2πi

∮
|ζ−s|=ε

û(ζ)

ζ − z
dζ .

Without to change the result, we deform the path, as it is shown in
Fig. 2, and obtain

û(s) =
1

2πi

∮
γ

û(ζ)

ζ − s
dζ .

Here, γ denotes the path composed from the pieces γ1, . . . , γ4. Choos-
ing for γ3, γ4 half-circles with radius r, we have only to show that the
integrals along these paths vanish for r → ∞. In polar coordinates
r, φ, π

2 ≤ φ ≤ 3π
2 , we obtain on γ3∣∣∣∣

∫
γ3

û(ζ)

ζ − s
dζ

∣∣∣∣ ≤
∫ 3π

2

π
2

∣∣∣∣ |g(ζ)|√
r2e2iφ + 1 (reiφ − s)

ireiφ
∣∣∣∣ dφ

≤
∫ 3π

2

π
2

r |g|√|r2 − 1|∣∣r − |s|∣∣ dφ .

Hence, the integral tends to zero for r → ∞. The same applies to
the integral on γ4.

We set g(s) := 1 and consider the first term of the partial fraction
decomposition

û+(s) :=
1

2πi

∮
γ1

dζ√
ζ2 + 1 (s− ζ)

.
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Figure 2: Definition of the Riemann sheet and the contour γ. The + and
−-signs mark the positive and the negative boundaries.

Now we split the contour γ1 into two parts γ1 = γ′1 + γ′′1 , where γ′1
lies to the left and γ′′2 to the right of the imaginary axis and ζ1 ∈ γ′1
and ζ2 ∈ γ′′1

û+(s) =
1

2πi

∫ i∞

i

dζ1√
ζ21 + 1 (s− ζ1)

+
1

2πi

∫ i

i∞

dζ2√
ζ22 + 1 (s− ζ2)

.

Next, we let both contours get arbitrary close to the imaginary axis.
Taking the definition of the square root into account and performing
the limiting process ζ1,2 → ζ, such that 
(ζ1,2) → 0, with

ζ1 → ζ and
√
ζ21 + 1 → −

√
ζ2 + 1

ζ2 → ζ and
√
ζ22 + 1 →

√
ζ2 + 1

we obtain

û+(s) = − 1

πi

∫ i∞

i

dζ√
ζ2 + 1

(
s− ζ

) . (8)

In order to retrieve the standard form of the integral along the real
axis, we compute

û+(s) =
1

πi

∫ i−0

i−∞

dζ√
ζ2 + 1

(
s− ζ

) (9)

=
1

πi

∫ ∞

0

dτ√
τ2 − 2iτ

(
s− (i− τ)

) . (10)

In (9) we applied Cauchy’s residue theorem in the left upper part of
the complex plane and in (10) we introduced ζ = i + τ, τ ∈ R and
reversed the direction of integration. Both equations (8) and (10)
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possess an interesting interpretation. Using ζ = iτ and applying

L−1
(

1
s+τ

)
= exp(−τx) to (8), we find

u+(x) =
1

π

∫ ∞

1

eiτx dτ√
τ2 − 1

, (11)

i. e. , we can represent u(x) as a superposition of Fourier modes
with positive frequencies (i. e. wavenumbers) τ ≥ 1. On the other
hand, (10) allows a further representation of the same function u(x),
namely,

u+(x) =
1

iπ

∫ ∞

0

e(i−τ)x dτ√
τ2 − 2iτ

,

=
ei(x−

π
4
)

π
√
2x

∫ ∞

0

e−τ dτ√
τ
√
1 − τ

2ix

. (12)

That is, we have equally valid u(x) as a superposition of damped
Fourier modes of a single frequency, due to the factor exp(ix), and
with positive damping parts τ ≥ 0. Observe, that for x → ∞ the
integral converges to Γ(12 ) =

√
π, which in turn supplies the well-

known asymptotic formula for the Hankel function

u+(x) = H
(1)
0 (x) =

ei(x−π/4)

√
2πx

(
1 +O

(
1

x

))
.

Differentiating (12) with respect to x and expanding the square-root
term into a Taylor series supplies the asymptotic behavior

∂ru+(r)

u(r)
= i+O

(
1

r

)
for r → ∞ . (13)

Obviously, (13) tells us that u+ behaves asymptotically and locally
like an outgoing plane wave.

5 Alternative derivation of the DtN-

map

The starting point of the classical derivation was to find proper so-
lutions of the Bessel equation

u′′(r) +
1

r
u′(r) +

(
1− ν2

r2

)
u = 0 , r ≥ r0 ,
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exploiting the known properties of the Hankel functions at infinity.
For the alternative derivation, we start again from the Bessel equa-
tion. We introduce a new coordinate system with the independent
variable x via r = x + r0, x ≥ 0 and denote, for convenience, the
shifted function u(x + r0) again by u(x). This way, we obtain our
basic differential equation

u′′(x) +
1

x+ r0
u′(x) +

(
1− ν2

(x+ r0)2

)
u = 0 , x ≥ 0 . (14)

Now our concept is the following:

1. Laplace transformation of (14), which yields again a differential
equation, this time in the dual domain.

2. Solve the new differential equation by means of the variation of
constant formula.

3. Identify the singularities which correspond to incoming waves.

4. Remove them by a proper choice of the initial conditions at
x = 0.

In contrast to the classical approach, we can carry out the whole
procedure without to fall back upon properties of Hankel’s functions.

Step 1. We multiply (14) with x+ r0, introduce the new variable
v(x) = u(x)/(x + r0), and take into account the rule L(xu(x)) =
−û′(s), where the prime denotes the derivative with respect to the
complex argument s, to obtain

d

ds

[(
s2 + 1 0

0 1

)(
û
v̂

)]
=

(
r0(s

2 + 1) + s −ν2

−1 r0

)(
û
v̂

)

− r0

(
su0 + ux

0

)
.

Equivalently, we have

d

ds

(
û
v̂

)
=

(
r0 − s

s2+1
− ν2

s2+1

−1 r0

)(
û
v̂

)
− r0

( su0+ux

s2+1

0

)
. (15)

Here, u0 and ux denote the function u(x) and its normal derivative
∂xu(x), respectively, at x = 0. In view of the solution procedure,
it is convenient, to extract the translation part and to denote the
remaining matrix with A
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d

ds

(
û
v̂

)
= r0I

(
û
v̂

)
+A

(
û
v̂

)
− r0

( su0+ux

s2+1

0

)

where I =

(
1 0
0 1

)
and A =

(
− s

s2+1
− ν2

s2+1

−1 0

) (16)

Step 2. Our goal is a solution formula of the type(
û(s)
v̂(s)

)
= Φ

∫ ∞

s
Φ−1r(u0, ux)ds

′ . (17)

Φ is the matrix of fundamental solutions and must obey the matrix
differential equation

Φ′(s) = (x0I+A(s)) Φ(s) , (18)

and r(u0, ux) is the source vector of (16) which depends on the initial
data. The determination of Φ evolves in three sub-steps: (i) remove
the translation part, (ii) factorize the solution to drop the part which
corresponds to ν = 0, (iii) transform the variable s → τ , to arrive at
a problem with constant coefficients.
Step (i). We introduce

Φ = Φ(1)er0s ,

which results in

Φ(1)′(s) = A(s)Φ(1)(s) .

This way, a column (u, v)T of Φ, where we have dropped here the hat
used so far to mark a Laplace transformed quantity, is transformed
into a corresponding column of Φ(1)

(
u
v

)
�→
(
u(1)

v(1)

)
.

Step (ii). We factorize the first components of every column of Φ(1)

u(1) = u(2)w, w =
1√

s2 + 1

v(1) = v(2) ,

which results in

Φ(2)′(s) = − 1√
s2 + 1

(
0 ν2

1 0

)
Φ(2)(s) .
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Step (iii). Finally, we transform Φ(2)(s(τ)) = Φ(3)(τ) with

dτ

ds
=

1√
s2 + 1

, τ = − log
(√

s2 + 1 − s
)

to obtain

Φ(3)′(s) = −
(
0 ν2

1 0

)
Φ(3)(s) ,

which in turn has a solution

Φ(3)(s) =

(
eντ e−ντ

− 1
ν e

ντ 1
ν e

−ντ

)
.

Tracing the whole procedure backwards, we find

Φ(3) �→ Φ(2) �→ Φ(1) �→ Φ =(
(
√
s2+1−s)−ν√

s2+1

(
√
s2+1−s)ν√
s2+1

− 1
ν (
√
s2 + 1 − s)−ν 1

ν (
√
s2 + 1 − s)ν

)
er0s . (19)

Applying (17), we obtain finally the desired representation of û(s)

û(s) =

r0
2

(
√
s2 + 1− s)−ν

√
s2 + 1

er0s
∫ ∞

s
e−r0s′ (

√
s′2 + 1 − s′)ν√

s′2 + 1
(s′u0 + ux) ds

′ +

r0
2

(
√
s2 + 1 − s)ν√

s2 + 1
er0s

∫ ∞

s
e−r0s′ (

√
s′2 + 1 − s′)−ν√

s′2 + 1
(s′u0 + ux) ds

′

(20)

Step 3. According to (20), we can represent û(s) in factorized
form

û(s) =
1√

s2 + 1
g(s) ,

with

g(s) =

r0
2
(
√
s2 + 1 − s)−νer0s

∫ ∞

s
e−r0s′ (

√
s′2 + 1− s′)ν√

s′2 + 1
(s′u0 + ux) ds

′ +

r0
2
(
√

s2 + 1 − s)νer0s
∫ ∞

s
e−r0s′ (

√
s′2 + 1− s′)−ν√

s′2 + 1
(s′u0 + ux) ds

′ .

(21)
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Consequently, û(s) may have singularities at s = ±i. In order to
drop the singularity at s = −i, the necessary condition

g(−i) = 0 (22)

must be fulfilled.

Step 4. This, in turn, supplies the necessary condition

ux = bνu0

bν := −
∫∞
−i ds e

−r0ss
i−ν(

√
s2 + 1 − s)ν + iν(

√
s2 + 1 − s)−ν

√
s2 + 1∫∞

−i ds e
−r0s

i−ν(
√
s2 + 1 − s)ν + iν(

√
s2 + 1− s)−ν

√
s2 + 1

.
(23)

In the next section we will show that the factor bν defined this way, is
bounded away from zero and infinity. Therefore a one-to-one relation
between ux and u0 has been established.

The following is the main statement of the paper.

Theorem 1. The solution û(s) of the system (15), given by (20),
together with with the boundary condition (23) is holomorphic in the
complex plane U− = {s ∈ C | �(s) < 0}. Moreover, the boundary
condition (5) (analyticity of û(s) in U−) possesses the equivalent form

ux − iu0 =
i

r0
û(−i) .

Proof. We investigate the behavior of û(s) in a close surrounding of
s = −i. To this end, we introduce the variable ζ by ζ := s+ i. Let
pk(ζ) denote a Taylor series expansion with leading term larger or
equal k and Pk(ζ) and pk(ζ) matrices and vectors, respectively, with
elements pk(ζ).

We rewrite the square root expressions appearing in (19) by√
s2 + 1 =

√
ζp0(ζ)

−i
(√

s2 + 1− s
)
= 1 +

√
ζp0(ζ)− ζ

= 1 +
√
ζp0(ζ) + p1(ζ)[

−i
(√

s2 + 1− s
)]ν

= 1 +
√
ζp0(ζ) + p1(ζ)[

i
(√

s2 + 1 + s
)]ν

= 1 +
√
ζp0(ζ) + p1(ζ) .

(24)

The symbols p0(ζ), p1(ζ) appearing at different places denote differ-
ent expressions. The convergence radius of the series expansion of the
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square root terms is 2 because the convergence radius of the Taylor
expansion of

√
1 − ζ/(2i) is 2.

Our goal is to rewrite the convolution representation (17) for
ζ small. The idea is to show that the critical terms, causing the
singularities and branch points inside and outside the integrals are of
the type “

√
ζ/

√
ζ” and cancel each other, if the boundary condition

(23) is satisfied. To this end, we start with the integral

I :=

∫ ∞

s
Φ−1r ds′

=

∫ −i

s
Φ−1rds′ +

∫ ∞

−i
Φ−1r ds′ .

The latter integral-term vanishes, due to the boundary condition
(22), and it remains

I = −
∫ ζ

0
Φ−1(s(ζ′))r dζ′ .

It follows from (19) that Φ(s) can be factored

Φ(s) =

(
1√
s2+1

0

0 1

)
Φ0(s),

where Φ0 is holomorphic in ±i. Both factors can be expanded with
respect to ζ

Φ(ζ) =

(
1√−2i

1√
ζ
+
√
ζp0(ζ)

1

)(
Φ0(−i) + P1(ζ)

)

=

(
1√−2i

1√
ζ

1

)
Φ0(−i) +

√
ζP0(ζ) .

Observe that there is no additional term of type Pk(ζ). In the same
way, we find for the inverse

Φ−1(ζ) = Φ−1
0 (−i)

(√−2i
√
ζ

1

)
+
√
ζP1(ζ) .

Hence, the integral expression becomes

I = −r0

∫ ζ

0
dζ ′

[
Φ−1
0 (−i)

(√−2i
√
ζ ′

1

)
+
√
ζ ′P1(ζ

′)
]( (ζ′−i)u0+ux

ζ′(ζ′−2i)

0

)

= −r0

∫ ζ

0
dζ ′

[
Φ−1
0 (−i)

(
1√−2i

−iu0+ux√
ζ′

0

)
+
√
ζ ′p0(ζ

′)

]

= −r0Φ
−1
0 (−i)

(
2√−2i

√
ζ(−iu0 + ux)

0

)
+
√
ζp1(ζ) .
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Together with the expansion of Φ this gives(
û(s(ζ))
v̂(s(ζ))

)
=

(
r0
i (−iu0 + ux)

0

)
+ p1(ζ) . (25)

This shows, that the derivative of û(s) for s → −i remains bounded.
Further, it follows

û(−i) =
r0
i
(−iu0 + ux) .

The Taylor series of the square root terms converges uniformly within
the radius of convergence. Thus, the above operations are legitimate.
Moreover, û(s(ζ)) possesses a polynomial representation within the
radius of convergence, hence it is holomorphic there and we can add
the part of the former branch cut, which lies in this domain of con-
vergence, to the domain of definition of û. Proceeding further this
way with an analytic continuation along the negative imaginary axis,
we find that ˆu(s) is holomorpic in all points s = −iτ, τ ≥ 1.

5.1 Contour integral representation

Lemma 1 supplies another possibility to represent û and leads to
further insight into the structure of the solution. First, in order to
meet the assumptions of Lemma 1, we must show that g(s), given by
(21), is holomorphic in U and converges to a constant for |s| → ∞.
In fact, we have

Lemma 2. The complex function g : U ⊂ C → C, is holomorphic
in U . Further, it holds

lim
|s|→∞

g(s) = u0

lim
|s|→∞

d

ds
g(s) = 0

for any given complex numbers u0 and ux.

Proof. The only point in question is the infinite point. A direct
computation shows(√

s2 + 1− s
)−ν

=
(√

s2 + 1 + s
)ν

= (2s)ν +O (sν−2
)

(√
s2 + 1− s

)ν
=

1

(2s)ν
+O

(
1

sν+2

)
1√

s2 + 1
=

1

s
+O

(
1

s3

)
.

16



Next, we split (21) into two parts and investigate the asymptotic
behavior of the functions

f1(s) := (
√
s2 + 1 − s)−νer0s

∫ ∞

s
e−r0s′ (

√
s′2 + 1 − s′)ν√

s′2 + 1
(s′u0 + ux) ds

′

(26)

f2(s) := (
√
s2 + 1 − s)νer0s

∫ ∞

s
e−r0s′ (

√
s′2 + 1 − s′)−ν√

s′2 + 1
(s′u0 + ux) ds

′ .

(27)

It follows

f1(s) = (2s)νer0s
∫ ∞

s
e−r0s′ u0

(2s′)ν
ds′

+O(sν)er0s
∫ ∞

s
e−r0s′O

(
1

s′ν+1

)
ds′ .

An integration by parts yields

f1(s) =
u0
r0

+O(sν)er0s
∫ ∞

s
e−r0s′O

(
1

s′ν+1

)
ds′ .

The last term is, for every r0 > 0, a function O(1/s). Hence

lim
|s|→∞

f1(s) =
u0
r0

.

The same procedure applied to f2(s) gives

f2(s) =
1

(2s)ν
er0s

∫ ∞

s
e−r0s′u0(2s

′)ν ds′

+O
(

1

sν

)
er0s

∫ ∞

s
e−r0s′O

(
s′ν−1

)
ds′

=
u0
r0

+O
(

1

sν

)
er0s

∫ ∞

s
e−r0s′O

(
s′ν−1

)
ds′ .

Again, the last term is a function O(1/s) for r0 > 0, and we obtain
the same limiting value as for f1(s)

lim
|s|→∞

f2(s) =
u0
r0

.

It follows

lim
|s|→∞

û(s) = lim
|s|→∞

r0
2
(f1(s) + f2(s))

= u0.

Differentiation of û(s) and application of the same procedure results
in lim|s|→∞ f ′

1(s) = 0 and lim|s|→∞ f ′
2(s) = 0, which finally yields

lim|s|→∞ û(s) = 0 .
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Let us assume that u0, ux satisfy the boundary condition (23). Then
û(s) is holomorphic in U−, hence the partial fraction decomposition
of Lemma 1 shows that we can represent û(s) as contour integral

û+(s) =
1

2πi

∮
γ1

g(ζ)√
ζ2 + 1 (s− ζ)

dζ, (28)

and we choose γ1 according to Fig. 2. The function g(ζ) itself is
an integral expression. In order to to simplify (28), let us consider
the two points s−, s+, located to the left and to the right of the
cut (see Fig. 3), such that �(s−) = �(s+) and 
(s−) → −0, and

(s+) → +0.

�

�

bb
�
��−

s−

+

s+


(s)
Figure 3: Definition of the paths to compute g(s−) and g(s+). The + and
−-signs mark the positive and the negative boundaries.

The values of g(s) at these points can be written as, using the
definitions (26) and (27),

2

r0
g(s−) =

[
f1(s−) − f1(i)

]
+ f1(i) +

[
f2(s−) − f2(i)

]
+ f2(i)

2

r0
g(s+) =

[
f1(s+) − f1(i)

]
+ f1(i) +

[
f2(s+) − f2(i)

]
+ f2(i) .

Taking the signs of the square roots, involved in g(s), with respect
to the signs of the boundaries into account, we find the following
symmetry

[f1(s−) − f1(i)] = − [f2(s+) − f2(i)]

[f1(s+) − f1(i)] = − [f2(s−) − f2(i)] ,

i. e. , these terms cancel each other under the contour integral and
it remains simply

û+(s) =
g(i)

2πi

∮
γ1

1√
ζ2 + 1 (s− ζ)

dζ. (29)
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Remark. If u0, ux do not satisfy the boundary condition (23), we
have, instead of (29), the complete partial fraction decomposition

û(s) =
g(i)

2πi

∮
γ1

1√
ζ2 + 1 (s− ζ)

dζ +
g(−i)

2πi

∮
γ2

1√
ζ2 + 1 (s− ζ)

dζ .

First, this shows again that g(−i) = 0 is the condition needed to re-
alize analyticity in U−. Second, this equation corresponds exactly to
the partial fraction decomposition of the 1D-example in §4.2. Hence,
we are able to apply the same Laplace transformation techniques of-
ten applied to differential equations with constant coefficients to a
large class of differential equations with non-constant coefficients.

From (29), along with our 2D-example of §4.2, we get directly the
asymptotic behavior

u+(x) =
ei(x−π/4)g(i)√

2πx

(
1 +O

(
1

x

))
. (30)

The factor g(i) cannot vanish. Otherwise û+(s) would vanish
identically and u+(x) would be the trivial solution. Therefore, (30)
tells us that for x∗ < x < ∞, with x∗ sufficiently large, u+(x) does
not possess asymptotically any resonance node. As the only differ-
ence between the general outgoing solution of Bessel’s equation (29)
and our 2D example is the factor g(i), we obtain asymptotically again
(13)

∂ru+(r)

u+(r)
= i+O

(
1

r

)
for r → ∞, ν ≥ 0, fixed.

In fact, this shows that our alternate contour integral formulation (5)
and the classic Sommerfeld radiation condition (4) are equivalent.
Further, we see by (30) that any wave, which fulfills the radiation
condition, must decays asymptotically. This fact that the Sommer-
feld condition implies an asymptotic decay was first shown by Rellich
[10].

6 Asymptotic properties

We investigate the asymptotic and spectral properties of the bound-
ary condition (23). It is our goal to derive an analytic expression,
which allows a study of the boundary condition for large ν and r0,
respectively. The technique is the following:
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(s)

�(s)

�

�
�

−i

1

P1

P2
P3

Figure 4: Definition of the integration paths. The thick solid line repre-
sents the chosen path consisting of the elements P1, P2, P3. The dashed
lines mark the continuation of the paths P1, P3 needed to obtain analytic
approximations.

1. We choose a special path and decompose it into intervals, for
which a uniform convergent Taylor series expansion is known.

2. We extract the leading term of the series expansion and com-
pute the corresponding integral separately.

3. A bound for the remainder is determined.

4. The results corresponding to the different paths are summed
up.

First, we choose the path consisting of the segments P1, P2, P3,
as it is shown in Fig. 4. The reason for doing this decomposition is
simply that these different intervals contribute in a different sense to
the integral. The integral along P1 dominates the integral for r0 → ∞
and ν fixed. On the other hand, the integral on P3 dominates the
result for r0 fixed and ν → ∞. The path P2 does not play a decisive
role.

Path P1. Let us compute the integral in the numerator of (23)
along P1:

I1,N =

∫ 1−i

−i
ds e−r0ss

[
−i
(√

s2 + 1− s
)]ν

+
[
i
(√

s2 + 1 + s
)]ν

√
s2 + 1

.

We proceed exactly as in the proof of Theorem 1, i. e. , we introduce
local coordinates in the surrounding of the singularity by ζ := s+ i
and use the notation pk(ζ) as in (24).
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We rewrite the integral I1,N

I1,N =
er0i√−2i

∫ 1

0
dζe−r0ζ ζ − i√

ζ

(
2 +

√
ζp0(ζ) + p1(ζ)

)

=
−2i√−2i

er0i
∫ 1

0
dζ

e−r0ζ

√
ζ

+R1,N .

The residual integral R1,N possesses a continuous integrand whose
absolute value is bounded, for 0 ≤ ζ ≤ 1, by K3ν exp(−r0ζ) with
a constant K independent of ν. The factor 3ν results from the fact
that max|√s2 + 1+ s| < 3 for s ∈ P1. Therefore R1,N is bounded by

|R1,N | < K

∫ 1

0
dζ e−r0ζ3ν

= K
3ν

r0

(
1− e−r0

)
. (31)

For the corresponding denominator integral we obtain

I1,D =
2√−2i

er0i
∫ 1

0
dζ

e−r0ζ

√
ζ

+R1,D,

with the same bound (31) with respect to the residual integral R1,D.
In order to obtain an analytic result for the leading coefficient of the
integrals I1,N and I1,D, we enlarge the interval of integration from
(1,∞) to the interval (0,∞) and subtract the additional term

I1,N =
−2i√−2i

er0i
∫ ∞

0
dζ

e−r0ζ

√
ζ

+
2i√−2i

er0i
∫ ∞

1
dζ

e−r0ζ

√
ζ

+R1,N .

The first integral corresponds to the Gamma–function, scaled with
the factor r0 in the argument, the second is bounded by

√
2/r0, which

we add to the residual expression R1,N to obtain

I1,N =
−2i√−2i

er0i
Γ
(
1
2

)
√
r0

+R1,N ,

where RN is bounded by

|R1,N | < R = K
3ν

r0
(32)

with a constant K independent of ν and r0. Accordingly, the result
for the corresponding denominator integral is

I1,D =
2√−2i

er0i
Γ
(
1
2

)
√
r0

+R1,D ,

where RD satisfies the same bound (32) with a different constant
K. Thus, the computation of the integrals on the first segment is
complete.
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Path P2. Because the integrands on P2 are bounded, and the in-
terval is finite, we can apply the same technique used to bound the
residual integral R1,N . The contributions of the integrals on the path
P2 are bounded again by (32).

Path P3. The path P3 lies on the real axis. According to (23), we
have to compute the integral

I3,N =

∫ ∞

1
ds e−r0ss

[
−i
(√

s2 + 1− s
)]ν

+
[
i
(√

s2 + 1 + s
)]ν

√
s2 + 1

and the corresponding integral in the denominator of (23). Analo-
gously to P1, we decompose the integrand into its leading term with
respect to a Taylor series expansion, this time for s ≥ 1, and the
remainder, and enlarge the domain of integration

I3,N =

∫ ∞

0
ds e−r0ss

(
iν2νsν−1

)− ∫ 1

0
ds e−r0ss

(
iν2νsν−1

)
+RN

R3,N :=

∫ ∞

1
ds e−r0ss

[
−i
(√

s2 + 1 − s
)]ν

+
[
i
(√

s2 + 1 + s
)]ν

√
s2 + 1

−
∫ ∞

1
ds e−r0ss

(
iν2νsν−1

)
.

The integral on the interval [0, 1] has a bound∣∣∣∣
∫ 1

0
ds e−r0ss

(
iν2νsν−1

)∣∣∣∣ < 2ν

r0
K,

where K is independent of r0 and ν. Next, we derive a bound for
R3,N . It holds

0 ≤
√
s2 + 1 − s < 1 for s ≥ 1, s ∈ R.

This yields

(
√
s2 + 1 − s)ν < 1 ≤

√
s2 + 1

s

(
√
s2 + 1 − s)ν√

s2 + 1
<

1

s
.

We do not need to compute the corresponding integral explicitly,
because this term will be dominated by the second term, for which
we find from

2s ≤
√
s2 + 1 + s < 2s+ 1
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the bounds

(2s)ν√
s2 + 1

− 2νsν−1 ≤
(√

s2 + 1 + s
)ν

√
s2 + 1

− 2νsν−1 <
(2s+ 1)ν

s
− 2νsν−1.

(33)

The left-most expression is always negative, the rightmost term al-
ways positive. In order to find a bound for the middle expression,
we rewrite the right inequality

(2s+ 1)ν

s
− 2νsν−1 = 2νsν−2

(
1

s

[
s+ 1/2

s

]ν
− 1

s

)
.

The term in parenthesis on the right-hand side tends to zero for
s → ∞ and has no local maximum in the interval 1 ≤ s < ∞. Hence
it attains its maximum on the boundary s = 1. This shows(√

s2 + 1 + s
)ν

√
s2 + 1

− 2νsν−1 < 2νsν−2

(
1 − 1√

2

)
.

The left-hand side of (33) is discussed in the same way. We rewrite

2νsν−1 − (2s)ν√
s2 + 1

= 2νsν−2

(
s− s2√

s2 + 1

)
.

Again, the term in parenthesis attains its maximum value at s = 1.
We find, all together, the bound∣∣∣∣∣∣
(√

s2 + 1 + s
)ν

√
s2 + 1

− 2νsν−1

∣∣∣∣∣∣ ≤ sν−22νmax

{(
3

2

)ν

− 1, 1 − 1√
2

}

≤ sν−23νK (34)

with a constant K independent of ν. The leading term of of the
numerator integral results in

∫ ∞

0
ds e−r0siνsν = 2νei

π
2
ν Γ(ν + 1)

rν0
,

and the corresponding denominator integral becomes∫ ∞

0
ds e−r0siνsν−1 = 2νei

π
2
ν Γ(ν)

rν−1
0

.

23



By the bound (34), the residual function R3,N can be bounded by

|R3,N | < K

∫ ∞

0
ds e−r0ssν−13ν

= K3ν
Γ(ν)

rν0
,

and the corresponding expression for the denominator becomes

|R3,D| < K

∫ ∞

0
ds e−r0ssν−23ν

= K3ν
Γ(ν − 1)

rν−1
0

.

Adding all terms, we find the following expression for the boundary
condition (23)

ux = bνu0

bν = −
−i ei(r0+

π
4
)

√
2π

r0
+ 2νei

π
2
ν Γ(ν + 1)

rν+1
0

+RN (r0, ν)

ei(r0+
π
4
)

√
2π

r0
+ 2νei

π
2
ν Γ(ν)

rν0
+RD(r0, ν)

(35)

with |RN (r0, ν)| < K13
ν

(
Γ(ν)

rν0
+

1

r0

)

and |RD(r0, ν)| < K23
ν

(
Γ(ν − 1)

rν−1
0

+
1

r0

)
.

(36)

Thus, (35) allows us to study the behavior of the boundary condition
for large r0 and ν from a single equation. First, we consider the case
ν fixed and r0 → ∞. The integrals on P1 dominate the expression,
i. e. , the singularity at s = −i determines the character of the
solution. We get the Sommerfeld condition at infinity

bν = i for r0 → ∞. (37)

The boundary condition is bounded and becomes imaginary. Next,
let r0 fixed and ν → ∞. Then, for ν sufficiently large, we find that
the integrals on the infinite interval P3 dominate the result. We
obtain

bν → − ν

r0
for ν → ∞. (38)

Hence, the boundary condition becomes real and unbounded.
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Definiteness of the energy flux �(r0ū0ux). For the unique-
ness of the solution of the interior problem (3), it is crucial to have
the definiteness property �(u,Mu)L2 > 0 for all u ∈ H1/2(∂Br0), see
Grote and Keller [6, Theorem 3.1], and Ihlenburg [8, Chapter
3.1.3]. In the following, we show that data u0 
= 0 and ux, which sat-
isfy the boundary condition (23), fulfill the corresponding inequality

�(r0ū0ux) > 0 for all r0 > 0 and 0 ≤ ν < ∞. (39)

We already know two extremal cases: For ν fixed and r0 → ∞ we
read from (37) �(ū0ux) = ū0u0 > 0, and for r0 fixed and ν → ∞ we
know �(ū0ux) → 0 owing to (38). The key idea to verify (39) for
intermediate values of r0 and ν is to use the conservation of energy
flux in the exterior to the disc, �(∮γ ū∇udr) = const, which holds
for every closed contour enclosing the disc Br0. Together with the
asymptotic non–resonance property (30) we can derive (39). To be
consistent with our approach via Bessel’s differential equation, we
derive the conservation law directly from (14). First, we multiply
(14) with a function v(x). Then we integrate the equation on an
interval x1 ≤ x ≤ x2, perform an integration by parts and set v(x) =
(r0 + x)ū(x). Taking the imaginary part of the whole expression, we
find

�((r0 + x)ū(x)∂xu(x)
)
x=x1

= �((r0 + x)ū(x)∂xu(x)
)
x=x2

. (40)

Let x1 = 0 and x2 a large distance away from x = 0. Owing to the
non–resonance property (30) we obtain

�(ū(x)∂xu(x))x=x2
−→ |g(i)|2

2πx2
as x2 → ∞ . (41)

Remember that g(i) never vanishes. Substituting (41) into (40), we
get finally the desired result

�(r0 ū(x)∂xu(x))x=0
= r0|u0|2�(bν) = |g(i)|2

2π
> 0 .

To prepare the following chapter, we summarize the properties of bν :

1. bν
ν→∞−−−→ −ν/r0.

2. |bν/ν| ≤ K < ∞ for all ν, which follows from (35) and (36).

3. �(bν) = |g(i)|2/(2πr0|u0|2) > 0 for all 0 ≤ ν < ∞.

4. |bν | ≥ K > 0 for all ν ≥ 0, which follows from (35) and (36)
and item 3.

Similar results were shown by Harari and Hughes [7] and Ihlenburg
[8, Chapter 3.2.2] dealing with properties of Hankel’s functions.
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7 Mapping properties

By construction, the boundary condition (23) supplies a DtN-map
for the νth Fourier mode uν(r, φ), where from now we label the νth
mode by the subscript ν,

∂ruν(r, φ)|r=r0
= bνuν(r0, φ)

with uν(r0, φ) = cνe
iνφ, cν = const.

The set of functions {u(0)ν := eiνφ/
√
2π, ν = −∞, . . . ,∞} supplies

an orthonormal basis of L2(∂Br0) and we construct the DtN-operator
by superposition (see §3)

∂ru(r, φ)|r=r0
=

∞∑
ν=−∞

bν
eiνφ

2π

(
eiνφ, u(r0, φ)

)
L2

. (42)

Here we have b−ν = bν for ν = 1, 2, . . . , as it follows from (23).
Eq. (42) defines an operator M via

∂ru(r0, φ))|r=r0
= Mu(r0, φ) . (43)

For the solution of the interior problem (3), which we do not discuss
here, it is necessary that we have ∂ru(r0, φ) ∈ H−1/2(∂Br0). In fact,
in the context of the corresponding variational formulation, we show
that

M : H1/2(∂Br0) → H−1/2(∂Br0)

supplies a continuous and bijective mapping between data u0 ∈ H1/2

and data ux ∈ H−1/2. That is, instead of (43), we consider the
corresponding variational equation∫ π

−π
v̄∂rudφ =

∫ π

−π
v̄Mudφ for u, v ∈ H1/2(∂Br0) ,

and define, corresponding to M , the map b

b : H1/2(∂Br0) →
(
H1/2(∂Br0)

)∗
= H−1/2(∂Br0)

with b(v)(u) =

∫ π

−π
v̄Mudφ for all u ∈ H1/2(∂Br0)

=: 〈b(v), u〉 .
We aim to show that the map b is continuous and bijective. To this
end, we define the inner product in H1/2(∂Br0) via the Fourier series
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expansion of two functions u, v ∈ L2(∂Br0) by

(v, u)H1/2 = 2π
∞∑

ν=−∞
(1 + ν2)1/2āνbν

with aν =
1

2π

∫ π

−π
e−iνφv(φ) dφ

and bν =
1

2π

∫ π

−π
e−iνφu(φ) dφ .

The inner product induces the norm

‖u‖H1/2 = (u, u)
1/2

H1/2 =

(
2π

∞∑
ν=−∞

(1 + ν2)1/2|aν |2
)1/2

.

The orthonormal basis of L2(∂Br0) with elements u
(0)
ν transforms

into an orthonormal basis {u(1/2)ν := eiνφ/(
√
2π(1 + ν2)1/4), ν =

−∞, . . . ,∞} of H1/2(∂Br0), and every function

u =
∞∑

ν=−∞
cνu

(1/2)
ν , cν ∈ C

with
∑ |cν |2 < ∞ belongs to H1/2(∂Br0). We show first that each

functional 〈b(vb), u〉 corresponds uniquely to a functional (v, u)H1/2

such that 〈b(vb), u〉 = (v, u)H1/2 for all u ∈ H1/2. More precisely, we
define a mapping

T : H1/2(∂Br0) → H1/2(∂Br0)

with v = T (vb), such that

(v, u)H1/2 = 〈b(vb), u〉 for all u ∈ H1/2.

We show that T is bijective. The bijectivity of T then implies the
bijectivity of the map b via the duality map. First, T is surjective.
To each given v ∈ H1/2 we compute explicitly a function vb ∈ H1/2.
Let v given by

v =
∞∑

ν=−∞
cνu

(1/2)
ν ,

∑
|cν |2 < ∞.

Each vb ∈ H1/2 possesses a representation

vb =
∞∑

ν=−∞
c(b)ν u(1/2)ν ,
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and we must show that
∑ |c(b)ν |2 < ∞. Due to the orthonormality of

u
(1/2)
ν with respect to the inner product in H1/2, it follows for all ν

(v, u(1/2)ν )H1/2 = c̄ν ,

and further

c̄ν = 〈b(vb), u(1/2)ν 〉
=

∫ π

−π
v̄bMu(1/2)ν dφ

=

∫ π

−π
v̄bbνu

(1/2)
ν dφ

=

∫ π

−π

(∑
c
(b)
ν u

(1/2)
ν

)
bνu

(1/2)
ν dφ

=
bν

(1 + ν2)1/2
c̄(b)ν .

Because bν is bounded away from zero, and bν/ν is bounded away
from infinity, the convergence of

∑ |cν |2 implies the convergence of∑ |c(b)ν |2. Second, T is injective. Given two functions vb,1, vb,2 ∈
H1/2, it follows by the forgoing construction that there are two
uniquely determined Riesz-elements v1, v2 ∈ H1/2, such that

〈b(vb,1), u〉 = (v1, u)H1/2

and 〈b(vb,2), u〉 = (v2, u)H1/2 for all u ∈ H1/2 .

Consequently,

〈b(vb,1), u〉 = 〈b(vb,2), u〉 implies (v1, u)H1/2 = (v2, u)H1/2

for all u ∈ H1/2. It follows v1 = v2 and vb,1 = vb,2. Finally, because
the duality map

J : H1/2(∂Br0) → H−1/2(∂Br0)

with J(v) = (v, u)H1/2 for all v, u ∈ H1/2(∂Br0)

=: 〈J(v), u〉
is continuous and bijective, see Zeidler [16, Chapter 2.11], so is the
map b.

Summary

We presented a new view on the classic Sommerfeld radiation con-
dition. Like Sommerfeld, we analyzed the far field of a scatterer in
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order to decide what are incoming and what are outgoing waves.
This decision is taken by a comparison of the far field with local
plane waves. Different to Sommerfeld, we formulated this insight
not in a radiation condition containing an asymptotic term but in a
structural property of the corresponding Laplace transformed field.
We showed that outgoing fields are characterized by singularities in
the upper half, and incoming fields by singularities in the lower half
of the complex plane. Consequently, our radiation condition aims to
remove the singularity in the lower half of the complex plane. We
proved that, provided the radiation condition is satisfied, the field
becomes even holomorphic there. Moreover, our formulation is con-
structive. It allows a direct computation of a radiation condition from
the differential equation. We demonstrated this by a construction of
a DtN-map on a circle, which is equivalent to known DtN-maps based
on evaluating Hankel’s functions. We were able to evaluate the coef-
ficients without to use special functions, only by the computation of
path integrals on the complex plane. By an analytic approximation
of these integrals, the relevant mapping properties have been shown.
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