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Abstract. When attempting to compute unsteady, variable density flows at
very small or zero Mach number using a standard finite volume compressible
flow solver one faces at least the following difficulties: (i) Spatial pressure
variations vanish as the Mach number M −→ 0, but they do affect the veloc-
ity field at leading order; (ii) the resulting spatial homogeneity of the leading
order pressure implies an elliptic divergence constraint for the energy flux;
(iii) violation of this constraint would crucially affect the transport of mass,
thereby disabling a code to properly advect even a constant density distri-
bution. A previous companion paper derived the above observations from a
single time - multiple length scale asymptotic analysis for M � 1, applied
to the conservation form of the governing equations and assuming an ideal
gas with constant specific heats. The paper then restricted to weakly com-
pressible one-dimensional flows and introduced a semi-implicit extension of a
compressible flow solver, designed to handle the interaction of long wavelength
acoustics with small scale, large amplitude density fluctuations. In the present
paper we concentrate on the limit of zero Mach number for multi-dimensional,
variable density flows. The construction of numerical fluxes for all conserved
quantities involves: An explicit upwind step (1) yielding predictions for the
nonlinear convective flux components. This procedure still neglects the in-
fluence of pressure gradients on the convective fluxes during the time step.
Suitable corrections are applied in step (2), which guarantees compliance of
the convective fluxes with the divergence constraint. This step requires the
solution of a Poisson-type equation to obtain the relevant pressure gradients.
Step (3), which requires the solution of a second Poisson-type equation, yields
the yet unknown (non-convective) pressure contribution to the total flux of
momentum. The final cell centered velocity field exactly satisfies a discrete
divergence constraint consistent with the asymptotic limit. Notice that step
(1) can be done by any standard finite volume compressible flow solver and
that the input to steps (2) and (3) involves solely the fluxes from step (1), but
is independent on how these were obtained. Thus, we claim that our approach
allows any such solver to be extended to simulate incompressible flows. Exten-
sions to the weakly compressible regime 0 < M � 1, reactive flows and more
complex equations of state will be addressed in follow-up publications.

1. Introduction

Low Mach number variable density flows play an important role in many natural
and technological processes.

Free convection in the atmosphere takes place at low speed and is controlled
by the rate of change of density with height. In geophysical flows the interaction
between non parallel density and pressure gradients, often called baroclinic insta-
bility, is responsible for a wide range of interesting phenomena both at small and
planetary scales. The general circulation of the oceans is mainly driven by salinity
and temperature, i.e. density, gradients.
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In combustion processes density fluctuations occur due to thermal gas expansion
upon chemical energy conversion. If the flame fronts are thin in comparison with
some characteristic length of the flow, these density fluctuations may have very steep
gradients. This is the case whenever chemical reactions are fast in comparison with
the characteristic time of fluid motion. Prominent examples are fuel/air combustors
in energy plants, open fires, Otto engine combustion etc.

Industrial processes like spray deposition and fluid jetting require the numerical
simulation of fluids having different material properties. In these flows high density
ratios (e.g. between water and air) and low velocities are common.

All such methods must face a fundamental problem: that of coupling the evolution
in time of some set of dependent variables with divergence constraints for the un-
derlying velocity fields. These constraints (e.g. ∇ · �v = 0 in inviscid non reacting
flows in closed domains of constant volume) arise because of the singularity of the
governing equations in the limit of vanishing Mach number (M). Due to this singu-
larity any numerical method for zero and low Mach number flows has to cope with
at least two fundamental problems. These are the dynamic range problem and the
signal speed problem.

The dynamic range problem is associated with the fact that pressure fluctua-
tions, non-dimensionalized by the background pressure, vanish as M −→ 0. As a
consequence, their numerical representation deteriorates if only a single pressure
variable is used in a numerical scheme.

The signal speed problem arises from the order of magnitude difference between
the speed of sound and a characteristic flow velocity as M −→ 0. The challenge is
to operate a numerical scheme at time steps resolving convection processes, while
still capturing correctly the net effects of acoustic waves.

The dynamic range and the signal speed problem are manifestations of the fact
that in the limitM −→ 0 the hyperbolic part of the governing equations degenerates
to a mixed hyperbolic-elliptic operator. At zero Mach number a numerical formu-
lation which explicitly accounts for the degeneration of the governing equations is
unavoidable. In the regime of low but finite Mach numbers such formulation is
necessary in order to overcome the accuracy and efficiency drawbacks which would
affect a formulation which naively ignores the singularity of the limit M −→ 0.

In this paper attention is focused on the extension of conservative methods for
compressible flows to the zero Mach number limit. We insist on a conservative
formulation because the ultimate goal of our work is to develop an all-Mach number
flow solver which reduces to a high-resolution finite volume method for compressible
flows at large Mach numbers. Finite volume schemes for compressible flows are
usually written in conservation form, see [27]. In this paper we demonstrate that
the introduction of suitable elliptic constraints for the numerical fluxes of mass,
momentum and energy allows us to pass to the limit of zero Mach number. Our
method for zero Mach number flows with large density variations can indeed be
interpreted as the zero Mach number limit of a numerical method for compressible
flows which will be presented in a subsequent paper. The scheme is second order
accurate on smooth flows and requires the solution of two elliptic problems per time
step. The discrete operators associated with these problems have compact stencil.
The resulting linear systems can be solved by standard iterative methods.

Our approach is based on the low Mach number asymptotic theory for conserva-
tion laws proposed in [19]. The results of the asymptotics are systematically used to
embed a standard scheme for compressible flows in the incompressible framework.
The embedding leads to numerical fluxes complying with divergence constraints
that are consistent with energy conservation.
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These fluxes are obtained using a semi-implicit construction: first we compute a
second order explicit approximation to the fluxes of an auxiliary hyperbolic system.
The structure of this system is close to that of the compressible Euler equations
but retains finite signal speeds as M −→ 0. Secondly a Poisson-type equation for
cell-centered pressures is solved. This is essentially a MAC projection as described
in [16], motivated in a natural way through the asymptotic analysis of the energy
conservation law in [19]. The solution of this energy equation/MAC projection al-
lows the determination of convective fluxes of mass, momentum and energy that are
consistent with the velocity divergence constraint. However the grid cell interface
pressure as a non-convective contribution to the momentum flux is yet unknown.

This pressure is obtained by solving another suitable discrete form of the en-
ergy conservation law. This yields a second elliptic problem. The solution of this
problem leads to a new cell-centered velocity field which exactly satisfies a discrete
divergence constraint that is consistent with energy conservation.

In the rest of this section we discuss the relation between energy conservation and
velocity divergence constraints in zero Mach number flows with variable density.
We introduce an asymptotics based regularization and present a new approach
for constructing fluxes via upwind techniques and divergence constraints that are
consistent with energy conservation. Finally we point out the differences between
the present and other modern approaches for the numerical computation of zero
Mach number variable density flows.

To focus attention on the essentials of the method we consider inviscid non-
reactive flows through most of the paper. Sections 2 and 3 describe in detail the
construction of numerical fluxes that observe the necessary divergence constraints.
Section 4 deals with initial and boundary conditions for the explicit fluxes and
for the two elliptic problems mentioned above. In this section we also discuss a
time step restriction for our semi-implicit scheme. In section 5 we summarize the
complete construction of numerical fluxes at grid interfaces at an intermediate time
level tn + δt/2.

Numerical results are presented in section 6. We assess the accuracy of the
method for unsteady constant as well as variable density flows. Numerical results
for two and three dimensional inviscid flows are presented and discussed. A straight-
forward extension to the viscous case, sufficient to run a standard driven cavity test
but ignoring heat conduction, is given and our driven cavity computations are com-
pared with results from the literature.

In the last section we draw conclusions and outline further work to be done.

1.1. Divergence constraints induced by energy conservation. We consider
the equations governing the evolution of a calorically perfect gas in a gravitational
force field:

ρt +∇ · (ρ�v) = 0

(ρ�v)t +∇ · (ρ�v◦�v) + 1

M2
∇p =

1

Fr2
ρ�g

(ρe)t +∇ · ((ρe+ p)�v) =
M2

Fr2
ρ�v ·�g

p = (γ − 1)(ρe− 1

2
M2ρ�v ·�v)

(1)

γ represents the ratio of the specific heats which is assumed to be constant and
set to 1.4 in all computation shown in this paper. By non-dimensionalization the
acceleration �g is a constant unit vector. In these equations all variables are dimen-
sionless and O(1). M and Fr represent the Mach number and the Froude number
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respectively

M :=
uref√

pref/ρref
Fr :=

uref√
glref

. (2)

uref , pref , ρref and lref are reference quantities and g is the (dimensional) accel-
eration due to gravity. For M −→ 0 the above equations develop a singularity,
because:

• The third term of the momentum equation ∇p/M2 obviously degenerates.
• The eigenvalues of the Jacobian of the flux function fM associated with the
homogeneous part of (1)

fM :=

⎛
⎜⎝

ρ�v ·�n
ρ�v�v·�n+

1

M2
p�n

(ρe+ p)�v ·�n

⎞
⎟⎠ (3)

degenerate as M −→ 0. These eigenvalues are �v·�n and �v ·�n ± c/M with
c2 = γp/ρ and �n any unit vector.

Thus some reformulation is required. According to the asymptotic analysis pre-
sented in [35], [36], [19], we decompose the pressure p into a thermodynamic pres-
sure p(0) and a second order pressure p(2) i.e. p = p(0) +M2p(2). The leading order
pressure p(0) is required to be homogeneous in space i.e. ∇p(0) = 0. As a result
∇p/M2 = ∇p(2). With this formulation the governing equations for zero Mach
number variable density flow in conservation form become

ρt +∇ · (ρ�v) = 0

(ρ�v)t +∇ · (ρ�v◦�v) +∇p(2) =
1

Fr2
ρ�g

(ρe)t +∇ · ((ρe + p)�v) = 0

p = (γ − 1)ρe

p = p(0)(t)

(4)

These are the equations we will deal with in this paper. We end this paragraph
with the following three remarks, that are crucial for the subsequent developments:

Remark 1. Equation (4)5 and the state equation (4)4 imply a strong restriction
on the energy ρe which must be prescribed at the initial time: this energy must be
homogeneous in space.

Remark 2. Consider the zero Mach number governing equations (4). The rate of
change of energy is

(ρe)t =
1

γ − 1

dp(0)

dt
. (5)

If boundary conditions for the normal component of the velocity are prescribed on
the boundary ∂Ω of the domain Ω:

�v·�n = b on ∂Ω , (6)

then the rate of change of the thermodynamic pressure p(0) can be computed by
integrating (4)3 over Ω, using equation (4)5, the state equation (4)4, the divergence
theorem and the boundary condition (6)

|Ω|dp
(0)

dt
= −γp(0)

∮
∂Ω

b dS . (7)

Otherwise dp(0)/dt must be imposed and equation (7) is a constraint for the distri-
bution of velocity along ∂Ω. In both cases equation (5) implies a constraint for the
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energy flux, namely ∮
∂V

(ρe+ p)�v ·�n dS = −|V | 1

γ − 1

dp(0)

dt
(8)

for arbitrary V ⊂ Ω. This is an integral constraint for the velocity divergence on V
because ρe+ p = γ/(γ − 1)p(0) is constant in space.

Remark 3. The auxiliary system, (see [19])

ρt +∇ · (ρ�v) = 0

(ρ�v)t +∇ · (ρ�v◦�v) +∇p =
1

Fr2
ρ�g

(ρe)t +∇ · ((ρe + p(0))�v) = 0

p = (γ − 1)ρe

(9)

with flux function

f∗ :=

⎛
⎝ ρ�v ·�n

ρ�v�v ·�n+ p�n
(ρe + p(0))�v ·�n

⎞
⎠ (10)

enjoys the following properties:

• The system is hyperbolic.
• The eigenvalues of the Jacobian of the flux function f∗ are �v ·�n and �v ·�n ± c
with c2 := (γ − 1)(ρe+ p(0))/ρ (see [19]).

• This system has the same convective fluxes as the zero Mach number governing
equations (4).

• Solutions of (9) satisfy, for homogeneous pressure p and zero flow divergence
at time t = 0, the following estimates at time t > 0 (see appendix A):

∇ · �v = O(t)

∇p = O(t2) .
(11)

System (9) is the auxiliary hyperbolic system mentioned earlier, which is used in
the first step of our method to obtain explicit predictions of the convective fluxes.

1.2. Flux construction via upwind techniques and divergence constraints.
Consider a finite volume method for the zero Mach number governing equations (4):

Un+1

V = Un

V − δt

|V |
∑

I∈I∂V

|I|FI + δtWV . (12)

Un
V is a numerical approximation to the average un

V of the solution u(�x, t) of (4)
over the cell V at time tn

Un

V ≈ un

V un

V :=
1

|V |
∫
V

u(�x, tn) dV u :=

⎛
⎝ ρ

ρ�v
ρe

⎞
⎠ . (13)

FI and WV are numerical approximations to the averages fI and wV of the flux
function f and of the right hand side w of (4). These averages are taken over the
time interval [tn, tn+1 := tn + δt] and over the interface I and the cell V for fI and
wV , respectively.

FI ≈ fI fI :=
1

δt

1

|I|

tn+1∫
tn

∫
I

f(u(�x, t), �n(�x)) dS dt f :=

⎛
⎝ ρ�v ·�n

ρ�v�v ·�n+ p(2)�n
(ρe+ p)�v ·�n

⎞
⎠ (14)
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WV ≈ wV wV :=
1

δt

1

|V |

tn+1∫
tn

∫
V

w(u(�x, t)) dV dt w :=

⎛
⎜⎝

0
1

Fr2
ρ�g

0

⎞
⎟⎠ . (15)

V is a cell of a conformal space discretization of Ω. |V | is the volume of V . I is
an interface between two adjacent cells and |I| is the area of I. By V , I we denote
the set of all cells and of all interfaces, respectively. I∂V ⊂ I are those interfaces of
I which lay on the boundary ∂V of the cell V . The sum on the right hand side of
(12) is equivalent to the double integral on [tn, tn+1]× ∂V

δt
∑

I∈I∂V

|I| fI =
tn+1∫
tn

∮
∂V

f dS dt . (16)

We use the indices V and I to represent sets of cell and interface averages, respec-
tively. In particular Un

V is a set of approximate cell averages (space averages) at
time tn while FI, WV represent sets of interface and cell averages (space and time
averages). The time averages are taken over the interval [tn, tn+1]. In this paper
we will often use the term numerical flux to indicate an interface average FI .

In our implementation the space discretization is a regular Cartesian grid in two
or three space dimensions, but we expect our approach to be applicable to more
sophisticated spatial discretizations as well. We focus the attention on second order
schemes.

We describe a new algorithm for constructing numerical fluxes FI for the finite
volume method (12). These are defined through the flux function f as follows

FI := f(UI , �nI) =

⎛
⎝ ρ�v ·�n

ρ�v�v·�n+ p(2)�n
ρh�v ·�n

⎞
⎠

I

. (17)

In (17) the enthalpy ρh := ρe+p has been used to express the energy flux. The nu-
merical fluxes or, equivalently, the interface averages UI , are constructed according
to the following criteria

• FI is defined on the basis of higher order upwind rules with respect to con-
vection.

• The interface average velocities �vI used to construct the numerical fluxes FI
satisfy the divergence constraint (8), thereby guaranteeing energy conserva-
tion.

• On smooth solutions FI approximates the average flux fI up to errors of order
O(δt2).

The numerical fluxes are obtained as follows. First explicit auxiliary numerical
fluxes F∗

I are computed

F∗
I :=

⎛
⎝ ρ�v ·�n

ρ�v�v ·�n+ p�n
ρh0�v ·�n

⎞
⎠

∗

I

(18)

with h(0) := e+ p(0)/ρ. F∗
I approximates the average flux f∗

I

F∗
I
≈ f∗

I
f∗
I
:=

1

δt

1

|I|

tn+1∫
tn

∫
I

f∗(u(�x, t), �n(�x)) dS dt (19)

of the auxiliary system (9) up to errors of order O(δt2). The auxiliary numerical
fluxes are computed by using an explicit high resolution upwind method for hyper-
bolic systems of conservation laws. Our present implementation employs operator
splitting techniques to account for the source terms. The high resolution method
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is a MUSCL scheme (see [22], [23], [24], [25], [26]) based on slope limiting of char-
acteristic variables and the numerical flux proposed by Einfeldt [12]. This flux has
been extended for system (9) according to the characteristic analysis presented in
[19].

Once F∗
I are known we apply a two-step elliptic correction to compute the final

numerical fluxes FI . In the first step we compute the convective part of FI. In
particular, the interface velocities �v∗

I associated with the auxiliary numerical flux
F∗

I are corrected to enforce the divergence constraint (8):

�vI = �v∗
I
− δt

2

∇p(2)|I
ρI

∀ I ∈ I (20)

∑
I∈I∂V

|I| (ρh�v)
I
·�nI = −|V | 1

γ − 1

dp(0)

dt
∀V ∈ V . (21)

Notice that the correction term on the right hand side of (20) can be interpreted as
a numerical approximation for the integral over I × [tn, tn + δt/2] of the difference
between the acceleration implied by the governing equations (4) and that implied
by the auxiliary system (9). The estimate (11)2 guarantees that this interpretation
is correct up to terms of order O(δt3). Assume the interface averages ρI , hI are
known. Then equations (20),(21) are, in conjunction with a linear rule to compute
∇p(2)|I on the basis of cell-centered pressures p(2)

V , a discrete Poisson-type problem
for these pressures. Its solution provides p(2)

V and the interface average velocity
�vI responsible for advecting mass, momentum and energy. The pressure gradient
∇p(2)|I guarantees, through (21), that these interface velocities satisfy the diver-
gence constraint associated with energy conservation. This is a crucial property in
conservative schemes for zero Mach number variable density flows: a violation of
this property implies, e.g., the failure to properly advect even a constant density
distribution!

This step closely resembles a MAC projection as described in [16]. In the present
context it naturally follows from energy conservation.

In the second correction step the pressure component of the momentum flux at
the interfaces, p(2)

I �nI is computed. A straightforward way to do this would be to use
the cell-centered values p(2)

V to compute, e.g. by the trapezoidal rule, the interface
average pressures. This simple approach, however, does not guarantee that the new
velocities �vn+1

V exactly satisfy the zero Mach number divergence constraints. To
enforce this property the pressure forces p(2)

I �nI are computed by solving a second
Poisson-type problem. This problem is discussed in section 3.

In summary our scheme is a systematic procedure for constructing numerical ap-
proximations to the interface averages of f over I × [tn, tn + δt]. Consistently with
second order accuracy, the time integrals are replaced by δt times second order
approximations to the exact values of the integrand at time t = tn + δt/2. These
approximations are defined in terms of three contributions: the explicit flux F∗

I

yields the influence of convection on the time evolution of ρ, ρ�v and ρe. The first
correction step includes the effect of ∇p(2) on the interface velocities. Finally, the
second projection provides the pressure contribution p(2) to the momentum flux at
the desired time level.

There is a conceptually different interpretation of this construction of numerical
fluxes for (4). One may view the scheme as an add-on to an existing explicit
compressible flow solver. The sophisticated technology of a high resolution scheme
is employed to provide proper upwinding for the convective fluxes, thereby allowing
a robust representation of high Reynolds number or even inviscid flows.

In this context the two correction steps can be understood as discrete projections
for the intermediate interface velocity field �vI and for the final cell velocity field �vn+1

V .
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These projections are similar in spirit to Chorin’s original projection method from
[10], [9] and more recent advanced schemes, e.g., in [2], [3], [34], [13], [1].

1.3. Relation to other low and zero Mach number approaches.

1.3.1. Projection methods. The present method resembles a projection method for
incompressible flows [10], [9], [2], [3], [34] in that we first generate explicit estimates
for various vector fields which are then corrected in an additional elliptic projection
step so as to comply with the desired divergence constraints. Our scheme differs
from these techniques in various ways, however:

1. Chorin’s classical projection method and its modern higher order extensions
explicitly adopt a constraint for the velocity divergence. Their “projection
step” thus projects explicit estimates of the velocity field back onto the sub-
space of divergence-free fields or onto the subspace of fields with a prescribed
divergence in more general situations. In contrast, the first elliptic correction
in our conservative finite volume scheme yields convective fluxes that are con-
sistent with energy conservation for zero Mach number. In this fashion we
combine projection techniques with the conservation of mass, momentum and
energy.

2. The projection step of a projection method is an abstract mathematical con-
struction designed to achieve velocity fields complying with suitable divergence
constraints and the pressure is validly considered as a “Lagrangian multiplier”
in this context. In contrast, the first elliptic flux correction in our scheme nat-
urally appears as part of a half-timestep update from time level tn to tn+δt/2
of the convective fluxes at grid cell-interfaces based on the original equations.

3. Most of the projection methods cited require a single elliptic solve per time
step. Our approach requires two, which are in addition based on two different
discretizations of the Poisson operator in the respective pressure equations.

4. On the other hand, our approach does not compromise on the discrete diver-
gence, which we satisfy exactly up to the order of the convergence threshold of
our elliptic solvers. Thus we avoid the approximate projection that has been
introduced in a number of higher order projection methods.

1.3.2. SIMPLE-type methods. Extensions of incompressible flow solvers for inclu-
sion of compressibility effects are often based on the SIMPLE [39] method for in-
compressible flows of Karki & Patankar [5]. Successful representative examples of
this class of methods can be found in [14], [17], [7].

One important feature of these methods is also implemented in our approach:
There is a separate scaling of the background pressure by some suitable thermody-
namic reference value and of pressure gradients or pressure corrections by a charac-
teristic value of ρ|�v|2. This is equivalent to the introduction of two separate pressure
variables in the sense of an asymptotic expansion p = p(0)(t) + M2p(2)(�x, t) with
a spatially homogeneous leading order pressure (notice that M2 ∼ ρ|�v|2/p in di-
mensional variables). We have also found this kind of “multiple pressure variable
ansatz” to be a necessary ingredient of a numerical method that is supposed to
smoothly transit to zero Mach number (see the later sections and [19], [8]).

In [8] the authors also discuss the compressibility extension of a class of SIMPLE-
type methods and provide a more comprehensive account of earlier work in this
area. Their work goes beyond earlier approaches in that they explicitly allow for
the presence of acoustic pulses that are compatible with the small Mach number
assumption, but nevertheless affect the velocity field at leading order. The above-
mentioned pressure expansion p = p(0) + M2p(2) with ∇p(0) ≡ 0 precludes such a
leading order acoustic effect. This is, in fact, common knowledge from the theory of
characteristics [33], has been proven rigorously in [35], [36] and was discussed in the
context of a multiple length scales asymptotic expansion in [19]. Thus, in [8] the
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authors introduce a three-fold pressure expansion p = p(0) +Mp(1) +M2p(2) in the
SIMPLE framework and include a physics-induced multi-grid procedure in order to
deal with long wavelength acoustics associated with p(1).

There are currently two major differences between these derivatives of incom-
pressible flow computation methods and the approach proposed in this paper:

1. Some of the SIMPLE-type schemes are able to handle flows with large spatial
variations of the local flow Mach number [17], [14].

2. The SIMPLE-type schemes generally compromise on conservation of one or
more of the fundamental conserved quantities, mass, momentum and energy.

The first item emphasizes a current limitation of our approach, as we assume a
single, spatially global characteristic Mach number. The asymptotic analysis that
backs up our numerical techniques will have to be extended in future work to include
this case, which is important for quite a number of realistic applications.

As a consequence of the second item, the extended SIMPLE schemes do not
automatically reduce to a conservative finite volume formulation for compressible
flows as the Mach number increases. This, on the other hand, was one of the major
motivations of the present work, even though in this paper we only discuss the zero
Mach number limit version of our method (see [18] for a first “all Mach number
implementation” in more than one space dimension).

1.3.3. Direct extensions of high resolution shock capturing schemes. Another class
of low Mach number techniques results from the desire to extend existing modern
high resolution shock capturing schemes to the incompressible limit. This is also
one of the key points of the present paper. In [20], [21], [6], [15] the truncation and
round-off errors of various compressible flow solvers are carefully analyzed in the
limit of small Mach numbers. The approach in [20], [21] differs quite substantially
from that in [6], [15] but both arrive at the same conclusion: The incompressible
limit cannot be achieved by standard compressible flow solvers, unless particular
care is taken to eliminate large errors that stem from subtle interactions of trunca-
tion errors and the zero Mach number singularity of the compressible flow equations.

The difficulties of representing low Mach number flows are traced back in [21]
to round-off errors upon subtraction of large numbers. This is consistent with
the previous discussions regarding the asymptotic pressure scaling p = p(0)(t) +
M2p(2)(�x, t). As M −→ 0, spatial pressure differences are of order O(M2) and naive
discrete differentiation of p without an appropriate rescaling must ultimately result
in unacceptable round-off errors. Interestingly, the authors in [21] do not introduce
this scaling explicitly as, e.g., in [17], [14], [19], [8], [18]. Instead they propose to let
the automatic scaling of modern floating point arithmetic take care of the problem.
The idea is to always handle deviations from appropriately chosen homogeneous
background values rather than the original absolute values of all flow quantities.
The reader should consult the original references regarding a detailed account of
differentiation schemes that do not suffer from the round-off error problem. It is not
clear to us, whether the approach actually allows to go the limit M = 0, because (i)
the floating point arithmetic would have to overcome an infinite gap in amplitudes
and (ii) there is no evidence that the numerical solutions obey, for Mach number
tending to zero, a proper divergence constraint.

The ansatz in [6], [15] specifically addresses higher order upwind schemes that
can be written in the form of central differences plus the effects of an upwind
dissipation matrix. One prominent example is Roe’s method. Turkel’s [11] pre
conditioning technique, originally developed only for steady state computations,
is employed and selectively applied only to the upwind dissipation terms. It is
shown that artificially excited small scale acoustics that are associated with oder
O(M) pressure variations can be suppressed in this fashion. In contrast to the
original method in [11] the resulting scheme does provide a consistent discretization
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of the unsteady flow equations. Unfortunately, the authors do not provide any
evidence that their numerical solutions would actually approach a divergence-free
flow as the Mach number diminishes and that their pressure variables obey some
elliptic Poisson-type equation. By employing an implicit time stepping algorithm,
the dissipation-preconditioned scheme does not suffer from the sound-speed CFL
constraint, so that efficient computations are possible even for very small Mach
numbers.

Notice: We have formulated the details of our method in sections 2 to 5 in
a general fashion so as to support readers interested in applying our approach
to curvilinear or unstructured grids. Specialized formulae for Cartesian grids are
compiled in appendices B and C.

2. Convective fluxes

In this section the algorithm for computing the convective part of the numerical
fluxes FI, i.e. the interface averages ρI�vI ·�nI , ρI�vI�vI ·�nI and ρIhI�vI ·�nI in (17), is
described in detail. We assume that the auxiliary numerical fluxes F∗

I are known.
As explained in the introduction F∗

I are computed by a standard high resolution
method for the auxiliary system (9). FI are then constructed according to the
following rules:

• Density ρI and enthalpy hI are those associated with the numerical flux F∗
I
:

ρI = ρ∗
I

hI = h0,∗
I .

(22)

• The velocity �vI is obtained from �v∗
I
through the projection step (20), (21).

Using these rules and the definition of F∗
I
in (18) we find

FI = F∗
I
− δt

2

⎛
⎝ ∇p(2) ·�n

�v∗∇p(2) ·�n+∇p(2)�v∗ ·�n− p(2)�n
h0,∗∇p(2) ·�n

⎞
⎠

I

(23)

up to terms O(δt2). As mentioned in the introduction, the pressure gradient ∇p(2)|I
is computed on the basis of cell-centered pressures p(2)

V . Let

∇p(2)|
I
:= GV

I (p
(2)

V )|
I
= GV

I (p
(2)

V ). (24)

GV
I (p

(2)

V ) is a linear operator mapping cell-centered pressures into interface average
pressure gradients. Using (24) and (22) the discrete Poisson-type problem (20),
(21) for the cell-centered pressures p(2)

V becomes

δt

2

∑
I∈I∂V

|I|h0,∗
I
GV

I
(p(2)

V )·�nI =
∑

I∈I∂V

|I| (ρh0�v)∗
I
·�nI +

|V |
γ − 1

dp(0)

dt
∀V ∈ V . (25)

Let DI
V be the discrete divergence

DI
V (·) : DI

V (�aI)|V = DI
V
(�aI) :=

1

|V |
∑

I∈I∂V

|I|�aI ·�nI ∀V ∈ V . (26)

DI
V maps interface averages of vector fields into their cell average divergences. Using

GV
I , D

I
V the linear system (25) for the cell-centered pressures p(2)

V reads

δt

2
DI

V (h0,∗
I GV

I (p(2)

V )) = DI
V ((ρh0�v)∗I) +

1

γ − 1

dp(0)

dt
. (27)

The set product appearing as the argument of the discrete divergence operator
on the left hand side of (27) is the set of interface averages, say �w∗

I such that
�w∗

I
:= h0,∗

I
GV

I
(p(2)

V ).
The gradient GV

I is defined in such a way that the discrete Laplacian on the
left hand side of (27) has compact stencil and the linear system for p(2)

V can be
solved by standard iterative methods. With GV

I as given in appendix B, DI
VG

V
I is,
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on Cartesian grids, the standard 5-point (7-point) Laplacian in two (three) space
dimensions. Boundary conditions for (27) are discussed in section 4.

Notice that our flux construction algorithm (23) requires, besides the auxiliary
flux F∗

I, the interface averages ρ∗
I, �v

∗
I and h0,∗

I . The enthalpy h0,∗
I also appears in

the elliptic problem (27) for the pressures p(2)

V . This is a delicate issue, because the
numerical flux F∗

I is not obtained, in general, by evaluating the exact flux function
f∗ in some state UI . After all, as explained in the introduction, we do not want
to restrict the computation of F∗

I to some special class of high resolution methods.
In our current implementation, for instance, F∗

I are computed using a standard
high resolution method which makes use of directional splitting and approximate
Riemann problem solvers, but any other method designed for the hyperbolic system
(9) could be used as well.

We circumvent this problem by computing ρ∗
I (and �v∗

I , h
0,∗
I ) through a suitable

interpolation of cell averages

ρ∗
I := LV

I (ρ∗
V) . (28)

The cell averages ρ∗
V are those obtained by advancing the data from time level tn to

time level tn + δt using the high resolution finite volume method for the auxiliary
system (9).

3. Interface pressures

Consider the finite volume method (12). With the convective fluxes for mass and
energy computed as described in the previous section, this method provides the cell
averages ρn+1

V and (ρe)n+1
V at the new time tn+1. Due to our exact projection

(ρe)n+1

V =
1

γ − 1
p(0)(tn+1) ∀V ∈ V . (29)

To compute the new cell averages (ρ�v)n+1
V we still need the pressure components of

the momentum flux: this is the last term of (14)2. Let

(ρ�v)n+1

V
= (ρ�v)∗∗

V
− δt

|V |
∑

I∈I∂V

|I| p(2)

I
�nI . (30)

Here (ρ�v)∗∗
V

is the cell average obtained by setting p(2)

I to zero in the momentum flux
(23)2 while retaining the effects of ∇p(2) ·�n on ρ�v�v ·�n and using the finite volume
method (12) to update (ρ�v)n

V
.

Remember that p(2)

I is, according to (14), a numerical approximation to the aver-
age, on [tn, tn+1]× I, of the exact pressure p(2). Assume a numerical approximation
to the exact pressure p(2) at time tn + δt/2 be known in the grid nodes. Then the
interface average p(2)

I could be computed from the nodal values using some suitable
quadrature rule.

We need to extend our notation: let V be a dual discretization of Ω. V consists
of control volumes V centered around the nodes of the original grid. The interfaces
between the cells of V are denoted by I. As usual I is the set of all such interfaces.

In figure 1 a cell-centered and a node-centered control volume, V and V , are
drawn for a two dimensional Cartesian grid. In this figure the cell centers, the
nodes and the midpoints of the interfaces are marked by circles, squares and crosses,
respectively. Let p(2)

V be a set of node-centered pressures. The interface-centered
pressures p(2)

I can be computed by

p(2)

I := LV
I
(
p(2)

V
)
. (31)
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V

V

Figure 1. Cell (V ) and node centered (V ) control volumes; cell
centers, nodes and the midpoints of the interfaces are marked by
circles, squares and crosses, respectively

In (31) LV
I is a linear operator which maps nodal values into interface averages. Let

GV
V be the linear operator

GV
V (·) : GV

V (aV)
∣∣
V
= GV

V (aV) :=
1

|V |
∑

I∈I∂V

|I|LV
I (aV)�nI (32)

mapping nodal values of a scalar a into cell averages of its gradient field. Using (31)
and (32), the last step of our finite volume method for the momentum equation
reads

(ρ�v)n+1

V = (ρ�v)∗∗V − δtGV
V

(
p(2)

V
)
. (33)

The nodal values p(2)

V are computed following an idea originally proposed by Geratz

[18]. The average change of energy on V :

(ρe)n+1

V
− (ρe)n

V
:= − δt

|V |
∑

I∈I∂V

|I| 1
2
((ρh�v)n

I
+ (ρh�v)n+1

I
)·�nI (34)

is required to be consistent with the constraint (5) i.e.

(ρe)n+1

V
− (ρe)n

V
=

1

γ − 1
(p(0),n+1 − p(0),n) . (35)

p(0),n+1 is the same as was computed and used in the first projection step. Notice
that the interface averages under the sum on the right hand side of (34) can be
expressed to the desired order accuracy by means of cell averages:

(ρh�v)nI = LV
I ((ρh�v)nV) . (36)

LV
I is a (linear) operator mapping cell averages into interface averages. The inter-

faces are those associated with the control volumes of the dual grid. In fact (34) is
a finite volume method for the averages of (ρe) on the cells of the dual grid and the
sum on the right hand side of (34) is, after division by |V |, a discrete divergence.
Let DV

V be this discrete divergence:

DV
V (·) : DV

V (�aV)|V = DV
V
(�aV) :=

1

|V |
∑

I∈I∂V

|I|LV
I
(�aV)·�nI . (37)

Using LV
I , D

V
V and taking into account equation (35) the finite volume method (34)

yields

−δtDV
V ((ρh�v)n+1

V ) = δtDV
V ((ρh�v)nV) +

2

γ − 1
(p(0),n+1 − p(0),n) . (38)
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Using equation (33) to replace the new cell averages (ρh�v)n+1
V on the left hand side of

this equation leads to the following elliptic problem for the unknown nodal pressures
p(2)

V :

δtDV
V
(
hn+1

V GV
V
(
p(2)

V
))

= DV
V (hn+1

V (ρ�v)∗∗V ) +DV
V ((ρh�v)nV)

+
2

γ − 1

p(0),n+1 − p(0),n

δt
.

(39)

The linear operators LV
I and LV

I are chosen in such a way that the discrete Laplacian
DV

VG
V
V has a compact stencil and the linear system (39) for p(2)

V can be solved by
standard iterative methods. Boundary conditions for (39) are discussed in section
4; the explicit rules for computing GV

V and DV
V on Cartesian grids that we have

used to produce the results shown in section 6 are given in appendix C. For flows
without background compression or expansion the last term on the right hand side
of (39) is zero. In this case the new velocities

�vn+1

V : �vn+1

V := (ρ�v)n+1

V /ρn+1

V (40)

are divergence free in the following sense.

Remark 4. Let DV
V (�v

n
V) = 0, (ρh)nV homogeneous in space and p(0),n+1 = p(0),n (no

background compression or expansion). Then (ρe)n+1
V are homogeneous in space and

the velocities �vn+1
V obtained by our semi-implicit fluxes from (33) where p(2)

V is solu-
tion of (39) satisfy DV

V (�v
n+1
V ) = 0.

Proof: for p(0),n+1 = p(0),n equation (39) becomes

δtDV
V

(
(ρh)n+1

V

ρn+1
V

GV
V
(
p(2)

V
))−DV

V

(
(ρh)n+1

V

ρn+1
V

(ρ�v)∗∗V

)
−DV

V ((ρh)nV�v
n

V) = 0. (41)

Remember that our flux correction method has been constructed around a divergence
constraint that guarantees the new cell averages (ρe)n+1

V to be homogeneous in space
(cf. equation (29)). Therefore (ρh)n+1

V are homogeneous in space as well. Using
homogeneity of (ρh)nV , (ρh)

n+1
V , the linearity of DV

V and the assumption DV
V (�v

n
V) = 0

equation (41) yields

DV
V

(
1

ρn+1
V

(
ρ�v∗∗

V − δtGV
V
(
p(2)

V
)))

= DV
V

(
1

ρn+1
V

(ρ�v)n+1

V

)
= DV

V (�v
n+1

V ) = 0.

4. Initial and boundary conditions; time step restriction

In this section we discuss initial conditions for the approximate cell averages at
time t = 0 and boundary conditions for the computation of the auxiliary numerical
flux F∗

I
and for the Poisson equations (27) and (39). We also address the problem

of finding a suitable time step restriction for our semi-implicit method.

4.1. Initial conditions. As mentioned in the introduction the constraint∇p(0) = 0
implies, because of the state equation (4), a restriction on the initial condition for
the energy (ρe), namely

∇(ρe) = 0.

The initial cell averages (ρe)0
V
must be homogeneous in space and equal to p(0)(0)/(γ−

1). We take p(0)(0) = 1. The initial density distribution is arbitrary. In section 6 we
show numerical results both for smooth and for discontinuous density distributions.
In the case of a falling “droplet”, for instance, the density is equal to 1000 inside
the droplet and 1 outside. The initial velocity field

�v0

V
:=

(ρ�v)0
V

ρ0
V
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is required to satisfy the divergence constraint

DV
V (�v0

V) =
1

γp(0)

dp(0)

dt

∣∣∣∣
t=0

∀V ∈ V .

As explained in the previous section DV
V (�v

0
V) = 0 is sufficient, for constant back-

ground pressure p(0), to obtain DV
V (�v

n
V) = 0 for all n > 0. Using a similar argument

one can show that this condition is also necessary.

4.2. Boundary conditions. In a finite volume formulation boundary conditions
appear as constraints for the numerical fluxes on ∂Ω. In our method the interface
averagesFI are computed by means of an implicit correction of the explicit auxiliary
numerical fluxes F∗

I . Thus, we have to prescribe boundary conditions both for F∗
I

and for the implicit cell-centered and node-centered pressures p(2).

4.2.1. Explicit fluxes. For periodic boundary conditions the constraints for F∗
I are

straightforward. For rigid non permeable walls the convective part of FI must be
zero. This constraint applies to the numerical flux F∗

I
as well:

F∗
I :=

⎛
⎝ 0

p�n
0

⎞
⎠

∗

I

∀ I ∈ Iw. (42)

In the above equation Iw represents the set of all wall interfaces. Boundary condi-
tions for in- and outflow boundaries can be derived by coupling suitable assumptions
about the outside of the computational domain with a characteristic analysis of the
governing equations. Again these boundary conditions must be translated into con-
straints for the numerical fluxes F∗

I.

In our Cartesian grid framework the boundary conditions are implemented by
filling rows of “ghost” cells laying outside the computational domain with suitable
cell averages and then treating ∂Ω as a set of standard grid cell interfaces. In the case
of periodic boundary conditions the rules for filling these cells are straightforward.
Let V be a ghost cell and V ′ the image obtained reflecting V with respect to the
boundary. Let I ′ ∈ Iw be the boundary interface lying between V and V ′. For rigid
non permeable fixed walls one can show that, with the numerical flux function that
we use to compute F∗

I′ , the filling rules

ρV = ρV ′

�v
V
·�n = −�v

V ′ ·�n
pV = pV ′

are sufficient to guarantee that the numerical flux F∗
I′ satisfies the boundary con-

ditions (42). In the case of inflow and outflow boundaries other filling rules must
be derived. Notice that, in general, the filling rules depend both on the boundary
conditions and on the numerical flux function used to construct F∗

I.
Notice also that, no matter what the boundary condition, the energy flux F ∗

ρe,I
on ∂Ω must satisfy some discrete form of the integral condition (7). As we will see
in the next paragraph this is a solvability constraint for the elliptic problem (27)
for the cell-centered pressures p(2)

V .

4.2.2. Cell centered pressures. Consider the Poisson-type problem associated with
the first projection, equation (27). The normal derivative

∇p(2)|
I
·�nI := GV

I
(p(2)

V )·�nI

must be evaluated on all interfaces belonging to the boundary ∂Ω of the computa-
tional domain. Let the boundary condition for the auxiliary interface velocity �v∗

I
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be the same as those for �vI i.e.

�v∗
I
·�nI = �vI ·�nI . (43)

This assumption seems to be quite standard in projection methods and has been
used in all our computations. Boundary conditions based on relaxed forms of (43)
are under current investigation. Using (43) equation (20) yields

δt

2

1

ρI

GV
I
(p(2)

V )·�nI = (�v∗
I
− �vI)·�nI = 0 ∀ I ⊂ ∂Ω.

With these boundary conditions the right hand side of the linear system (27) must
satisfy an integral constraint for a solution p(2)

V to exist, namely:∑
V ∈V

|V |DI
V

(
�F ∗
ρe,I

)
+

|Ω|
γ − 1

dp(0)

dt
= 0 (44)

Notice that (44) is nothing but a discrete form of equation (7) which prescribes the
rate of change of the background pressure p(0) on the basis of the mass flux through
the boundary ∂Ω of the computational domain. Equation (7) was directly derived
from the governing equations for zero Mach number flows (4). In the introduction
we pointed out that dp(0)/dt must be computed from (7) or, alternatively, that (7)
implies, for a given dp(0)/dt an integral constraint for the velocities on ∂Ω. However
we did not specify in which discrete sense equation (7) should be fulfilled: the
answer to this question is now given by equation (44).

4.2.3. Node centered pressures. Consider the elliptic problem (39) for the nodal
pressures p(2)

V . To compute the divergence field DV
V the discrete normal derivative

LV
I
(
hn+1

V GV
V
(
p(2)

V
))·�nI

and the scalar products

LV
I (hn+1

V (ρ�v)∗∗V )·�nI LV
I ((ρh�v)nV)·�nI (45)

must be evaluated on interfaces I ∈ I laying beyond the boundary of the compu-
tational domain Ω. This has been done as follows. The dual cells around nodes
laying on walls of ∂Ω have been cut by ∂Ω: on these interfaces both the normal
derivative of p(2)

V and the scalar products (45) have been set to zero. Dual cells
around nodes laying on periodic boundaries have been left overlap the outside of Ω:
rows of “ghost” cell averages and nodes have been filled with suitable values and
LV

I has been evaluated as on internal interfaces.

4.3. Time step restriction. Because of the explicit computation of the numerical
fluxes F∗

I
, the time step δt is subject to a CFL [32] stability restriction. We use

δt := Cδt∗ with 0 ≤ C < 1 and

δt∗ := min
I∈I

{
1

|I| min

{ |V L
I |

|min{0, �v∗
I ·�nI − c∗I}|

,
|V R

I |
max{0, �v∗

I ·�nI + c∗I}
}}

.

V L
I
, V R

I
are the control volumes on the two sides of the I-interface. Notice that

on a regular grid of spacing δx this restriction implies δt = CO(δx) because the
characteristic speeds �v·�n± c of the auxiliary system (9) are of O(1). C is a safety
factor. In most of the computations presented in section 6 we used C = 0.8.

5. Summary of the time step algorithm

In this section we summarize the time step algorithm for the computation of the
approximate cell averages Un+1

V at time tn+1 := tn + δt from Un
V .

The time step δt is given by the constraint from section 4.3. We assume that
the boundary conditions are compatible with the background pressure p(0)(t) )(in
the sense that suitable discrete forms of (7) e.g. equation (44), hold) and that cell
averages of ghost cells are properly set whenever they are needed.
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5.1. Time step algorithm.

// Explicit numerical fluxes and interface averages
Using a standard high resolution finite volume method for the auxiliary system
(9) compute numerical fluxes F∗

I , source terms W∗
V and auxiliary cell averages

U∗
V := Un

V − δt

|V |
∑

I∈I∂V

|I|F∗
I + δtW∗

V . (46)

Compute the auxiliary interface averages

ρ∗
I := LV

I (ρ∗
V) �v∗

I := LV
I (�v∗

V) h0,∗
I := LV

I (h0,∗
V ) .

// Implicit flux correction: cell-centered pressures
Solve the discrete Poisson problem

δt

2
DI

V (h0,∗
I GV

I (p(2)

V )) = DI
V ((ρh0�v)∗I) +

1

γ − 1

dp(0)

dt

for the cell-centered pressures p(2)

V .

// Implicit flux correction: density and energy updates, source term
Compute the numerical fluxes of density and energy

Fρ,I =F ∗
ρ,I

− δt

2
GV

I
(p(2)

V )·�nI

Fρe,I =F ∗
ρe,I

− δt

2
h0,∗

I
GV

I
(p(2)

V )·�nI ,

the new density and energy cell averages

ρn+1

V
= ρn

V
− δt

|V |
∑

I∈I∂V

|I|Fρ,I

(ρe)n+1

V
= (ρe)n

V
− δt

|V |
∑

I∈I∂V

|I|Fρe,I ,

and the source term of the momentum equation

Wρ�v,V :=
1

Fr2
1

2
(ρn

V
+ ρn+1

V
)�g

// Implicit flux correction: intermediate momentum update.
Compute the convective momentum numerical fluxes

F ∗∗
ρ�v,I

= F ∗
ρ�v,I

− δt

2
(�v∗

I
GV

I
(p(2)

V )·�nI +GV
I
(p(2)

V )�v∗
I
·�nI) ,

and the temporary momentum cell averages

ρ�v∗∗
V

= ρ�vn

V
− δt

|V |
∑

I∈I∂V

|I|F ∗∗
ρ�v,I

+ δtWρ�v,V (47)

// Implicit flux correction: node-centered pressures
Solve the discrete Poisson problem

δtDV
V
(
hn+1

V GV
V
(
p(2)

V

))
= DV

V (hn+1

V (ρ�v)∗∗V ) +DV
V ((ρh�v)nV)

+
2

γ − 1

p(0),n+1 − p(0),n

δt
.

for the node-centered pressures p(2)

V .

// Implicit flux correction: final momentum update
Compute the new cell averages (ρ�v)n+1

V

(ρ�v)n+1

V = (ρ�v)∗∗V − δtGV
V

(
p(2)

V
)
.
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Remark 5. Note that the combination of the intermediate and final momentum
updates are equivalent to the following formulation of the effective momentum flux

Fρ�v,I = F ∗∗
ρ�v,I

+ (p(2)

I
− p(0),n+1/2)·�nI p(2)

I
= LV

I

(
p(2)

V
)

Remark 6. In the present implementation F∗
I and W∗

V are computed by coupling
a standard high resolution finite volume method for hyperbolic systems of conser-
vation laws with operator splitting techniques to account for the source term on the
right hand side of the auxiliary system (9):

Un,1

V := Un

V − δt

2

1

|V |
∑

I∈I∂V

|I|F∗
I (U

n

V)

Un,2

V := Un,1

V + δtW∗
V (Un,1

V ) (48)

U∗
V

:= Un,2

V
− δt

2

1

|V |
∑

I∈I∂V

|I|F∗
I
(Un,2

V )

Steps (48)1, (48)3 and (48)2 are second order numerical methods for the homoge-
neous part and for the source term of (9), respectively

ρt +∇ · (ρ�v) = 0 ρt = 0

(ρ�v)t +∇ · (ρ�v◦�v) +∇p = 0 (ρ�v)t =
1

Fr2
ρ�g

(ρe)t +∇ · ((ρe+ p(0))�v) = 0 (ρe)t = 0 .

(49)

Comparing (48) with (46) yields

F∗
I
=

1

2
(F∗

I
(Un

V) + F∗
I
(Un,2

V )) W∗
V
= W∗

V
(Un,1

V ) (50)

6. Numerical results

In this section we discuss the numerical results obtained with the semi-implicit
method for five test problems. These are chosen to assess the accuracy and the
efficiency of the method and test its capability to cope with large density variations
and small scale gravity driven flows. For these tests either the exact solution or at
least some properties of the exact solution are known. This allows a meaningful
validation of the method and provides a flavor of the difficulties that must be faced
in the numerical simulation of more realistic flows. All test problems can be run with
trivial geometries and using the boundary conditions discussed in section 4. These
imply a constant thermodynamic pressure p(0). Thus dp(0)/dt = 0 and p(0),n = p(0),0

∀n ≥ 0.
The computations have been performed on regular Cartesian grids. The discrete

gradient and divergence operators and the linear systems for the cell-centered and
for the node-centered pressures are those explicitly given in appendixes B and C.
These two linear systems must be solved at each time step. This has been done
using a multi-grid preconditioned conjugate gradient method. The difference with
respect to the standard conjugate gradient solver is that, in each iteration, the new
residual vector is computed by applying a multi-grid cycle to the previous residual
vector. There are several ways of visiting the grid levels during the multi-grid
procedure, such as a V-cycle, W-cycle, F-cycle [31] and nested cycle. In our case,
the F-cycle turned out to provide the best contraction rate. As smoother a Gauss-
Seidel method was used with two pre and post smoothing steps on each grid level. In
two space dimensions a standard nine point prolongation operator was used. This
operator is defined through bilinear interpolation. In three dimensions trilinear
interpolation provides a 27 point prolongation operator. The adjoint prolongation
operator served as restriction operator. In presence of large density variations, the
coefficients of both linear systems can change by order of magnitudes. In this case
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the linear coarse grid operators need to be constructed by Galerkin’s approximation
[31].

As expected the computations show that the CPU time needed to solve the
systems depends linearly on the number of unknowns. The solution of the linear
systems accounts for about 95% of the time required for a computation and demands
a memory allocation of roughly one K-byte per computational point.

In each solution the residuals

r2(p
(2)

V ) :=

∥∥∥∥DI
V ((ρh0�v)∗I)−

δt

2
DI

V (h0,∗
I GV

I (p(2)

V ))

∥∥∥∥
2

r2(p
(2)

V ) :=
∥∥DV

V (hn+1

V (ρ�v)∗∗V ) +DV
V ((ρh�v)nV)− δtDV

V
(
hn+1

V GV
V
(
p(2)

V

))∥∥
2

have been driven down to 10−7. In the above definitions ‖aV‖2 represents the
Euclidean norm of a vector whose components are the values aV i.e.

‖aV‖2 :=

(∑
V ∈V

a2V

)1/2

and similarly for ‖aV‖2.
6.1. Convergence studies. This test problem was originally proposed in Almgren
et al. [34]. It has been designed to assess the accuracy of the method on constant
density flows. For any time t and 0 < x < 1, 0 < y < 1, the velocity field

u(x, y, t) :=1− 2 cos(2π(x− t)) sin(2π(y − t))

v(x, y, t) :=1 + 2 sin(2π(x− t)) cos(2π(y − t)),

together with the pressure p(2)(x, y, t)

p(2)(x, y, t) := − cos(4π(x− t))− cos(4π(y − t))

is an exact solution of the zero Mach number governing equations (4) with constant
pressure p(x, y, t), constant density ρ(x, y, t) and periodic boundary conditions on
the unit square.

Starting from t = 0, we have computed numerical approximations uN
i,j to the

cell-averages u(xi, yj, t
N) of the exact velocity u at time tN = 3. Similarly vN

i,j, ρ
N
i,j

are numerical approximations to the cell-averages v(xi, yj, t
N) and ρ(xi, yj, t

N) of
the exact v, ρ at time tN = 3.

Three equally spaced regular Cartesian grids of spacings h = 1/32, h = 1/64 and
h = 1/128 have been used on the unit square. On a each grid the time step was
chosen according to a fixed Courant number C = 0.8. (see section 4.3). The initial
cell averages (ρ�v)0

i,j
have been computed for �v0

i,j
to be discretely divergence free

(ρ�v)0
i,j

= (ρ�v)(xi, yj, 0)−GV
i,j

(
p(2),0

V
)

i.e the initial pressure p(2),0

V is solution of the Poisson problem

DV
V

(
1

ρ0
i,j

GV
i,j

(
p(2),0

V

))
= DV

V

(
(ρ�v)(xi, yj, 0)

ρ0
i,j

)

with ρ0
i,j = ρ(xi, yj, 0) = 1. In the MUSCL scheme for the computation of the

auxiliary numerical fluxes F∗
I unlimited slopes have been used.

For each grid we have measured the 2-norm e2 and the maximum norm e∞ of
the cell-error ei,j at time tN = 3:

ei,j :=
∣∣ρ(xi, yj, t

N)− ρN

i,j

∣∣+ ∣∣u(xi, yj, t
N)− uN

i,j

∣∣+ ∣∣v(xi, yj, t
N)− vN

i,j

∣∣ .

e2 :=

⎛
⎝∑

i,j

(ei,jh)
2

⎞
⎠

1/2

e∞ := max
i,j

{ei,j}
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Notice that this is essentially a measure of the velocity error: the density error in
the 2-norm is, due to the exact projection of the interface velocity, of the same
order as r2(p

(2)

V ) i.e. 10−7. Table 1 shows e2, e∞ on the three grids together with
the corresponding convergence rates.

32× 32 rate 64× 64 rate 128× 128

2-norm 0.193646 2.07 0.0458949 2.10 0.010705
max-norm 0.236456 2.09 0.0553504 2.11 0.012821

Table 1. Constant density: errors and convergence rates in the
2-norm and in the maximum norm.

These have been computed as follows: Given e.g. coarse and fine grid 2-norm errors
e2,c, e2,f and the corresponding grid spacings hc, hf the convergence rate p is

p :=
log(e2,c/e2,f)

log(hc/hf)

The exact velocity field (6.1) has been constructed by differentiating the streamline
function

φ(x, y, t) := y − x+
1

π
cos(2π(x− t)) cos(2π(y − t))

and taking u := ∂φ/∂y, v := −∂φ/∂x. φ represents a vortical motion ϕ := φ−y+x
superimposed on a translation. The vortical motion is simply advected by the
velocity field �v i.e.

Dϕ

Dt
:=

∂ϕ

∂t
+ �v ·∇ϕ = 0 ,

as one can verify by inspection. Thus, variable density exact solutions to the gov-
erning equations (4) can be constructed by taking

ρ(x, y, t) := f (ϕ)

with some smooth function f . We used

f (ϕ) := 2 + (πϕ)
2

(51)

The constant on the right hand side is taken to avoid negative densities. The
square ensures that densities monotonically increase from the center to the outer
boundary of each vortex: a density distribution with local maxima in vortex cores
would undergo Rayleigh-Taylor instability. With (51) an exact solution for the
density of (4) is

ρ(x, y, t) := 2 + 0.5 cos2(2π(x− t)) cos2(2π(y − t)).

In table 2 the error norms for the variable density computations are shown. As for
the constant density case we obtain second order accuracy both in the 2-norm and
in the maximum norm.

32× 32 rate 64× 64 rate 128× 128

2-norm 0.229332 2.02 0.0563924 2.16 0.0125899
max-norm 0.263492 1.98 0.0664518 1.68 0.0207160

Table 2. Variable density: errors and convergence rates in the
2-norm and in the maximum norm.
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6.2. Advection of a vortex. We consider the advection of a vortex in a channel.
The computational domain is the rectangle [0, 4] × [0, 1]. The upper and lower
boundaries are walls; periodic boundary conditions are imposed at the left and
right boundaries. The grid consists of 80× 20 cells. The initial velocity field is:

ρ(x, y, 0) = 1, p(x, y, 0) = 1, u(x, y, 0) = 1− vθ(r) sin θ, v(x, y, 0) = vθ(r) cos θ

with

vθ(r) =

⎧⎪⎨
⎪⎩
r/0.2 if 0 < r < 0.2

2− r/0.2 if R < r < 0.4

0 if r > 0.4

and r =
√
(x− 0.5)2 + (y − 0.5)2

For the above initial data the exact velocity for t > 0 can be computed: u(x, y, t) =
u(x−u∞t, y, 0) and v(x, y, t) = v(x−u∞t, y, 0): The initial data are simply advected
by the background velocity u∞.

This problem was originally proposed by Gresho et al. [28]. In figure 2 we show
contour lines of the stream function for three computations. They have been done
using different slope limiters in the MUSCL step of the Godunov type method for
the computation of the auxiliary fluxes. In contrast to the results shown in [28]

Figure 2. Advection of a vortex at times t = 0.0, 1.0, 2.0, 3.0: 9
contour lines of the stream-function in [0.02,0.18]. Unlimited slopes
(top), monotonized central-difference (middle) and Sweby’s limiter
with k := 1.8 (bottom).

the symmetry of the flow with respect to the axis of the channel is well preserved.
The first computation (unlimited slopes) shows a loss of vorticity comparable with
[28] by exhibiting a stronger deformation of the vortex. The second and the third
computations (monotonized central-difference and Sweby’s limiter with k := 1.8,
see e.g. Schulze-Rinne [37]) show even stronger deformation of the initial vorticity
distribution.

6.3. Driven cavity flows. The driven cavity test problems proposed in [29] have
been the subject of many numerical computations, see e.g. [38], [4]. For Reynolds
numbers (Re) up to 1000 most computations seem to converge towards a steady
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state and there is an excellent agreement between stationary solutions obtained with
different numerical schemes. Thus, these problems are very well suited to validate
new numerical methods. Here driven cavity flows at Reynolds numbers 100 and
1000 have been computed. Our main goals are

• Show that the method can be easily extended to cope with viscous flows.
• Investigate the behavior of the method with respect to the coupling between
pressure and velocity fields.

• Investigate the behavior of the method with respect to convergence towards
stationary solutions.

• Compare our numerical results with established reference solutions.

In agreement with [29], we consider a viscous zero Mach number flow with no heat
conduction. Thus, viscosity has no effect on the energy balance (the work of viscous
forces scales with M2/Re and we consider here the limit M −→ 0 and finite Re)
and only enters in the momentum equation through a viscous stress

1

Re
∇ · τ τ := ∇�v + (∇�v)T − 2

3
∇ · �v (52)

on the right hand side of the zero Mach number governing equations (4)2 and of
the auxiliary system (9)2. In (52) τ is the stress tensor and (∇�v)T is the transpose
of the velocity gradient.

In our finite volume method viscous effects appear in the form of a numerical
viscous flux; equation (12) becomes

Un+1

V
= Un

V
− δt

|V |
∑

I∈I∂V

|I|FI +
δt

|V |
∑

I∈I∂V

|I|RI + δtWV .

RI ≈ rI rI :=
1

δt

1

|I|

tn+1∫
tn

∫
I

r(u(�x, t), �n(�x)) dS dt r :=

⎛
⎜⎝

0
1

Re
τ ·�n
0

⎞
⎟⎠

In the numerical solution of the auxiliary system (9) the viscous fluxes R∗
I
are

computed as follows. The first step of algorithm 5.1 is replaced by

U∗
V := Un

V − δt

|V |
∑

I∈I∂V

|I|F∗
I +

δt

|V |
∑

I∈I∂V

|I|R∗
I + δtW∗

V

and F∗
I , R

∗
I and W∗

V are computed via operator splitting as in (48), (50):

Un,1

V := Un

V − δt

2

1

|V |
∑

I∈I∂V

|I|F∗
I (U

n

V)

Un,2

V
:= Un,1

V
+

δt

2
W∗

V
(Un,1

V )

Un,3

V
:= Un,2

V
− δt

|V |
∑

I∈I∂V

|I|R∗
I
(Un,2

V )

Un,4

V := Un,3

V +
δt

2
W∗

V (Un,3

V )

U∗
V := Un,4

V − δt

2

1

|V |
∑

I∈I∂V

|I|F∗
I (U

n,4

V )

F∗
I
=

1

2
(F∗

I
(Un

V) + F∗
I
(Un,4

V )) W∗
V
=

1

2
(W∗

V
(Un,1

V ) +W∗
V
(Un,3

V ))

R∗
I = R∗

I (U
n,2

V )
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In the computation of the temporary momentum cell averages (ρ�v)∗∗V equation (47)
is replaced by

ρ�v∗∗
V = ρ�vn

V − δt

|V |
∑

I∈I∂V

|I|Fρ�v,I +
δt

|V |
∑

I∈I∂V

|I|Rρ�v,I + δtWρ�v,V

For the present steady state computations we avoid a correction of the viscous fluxes
and simply take Rρ�v,I := R∗

ρ�v,I which is consistent with first order accuracy in time.

A delicate issue in the numerical computation of incompressible flows is that of the
coupling between pressure and velocity fields. For finite discretizations this problem
(often referred to as “local grid decoupling” or “checker-board instability”) can be
described as follows.

Assume that the null space of the discrete gradient operator, ker(GV
V), contains

highly oscillating fields. Since GV
V has a local stencil this is usually the case when-

ever dim(ker(GV
V)) > 1. If the solution pV of the Poisson-type problem (39) has

components in ker(GV
V) one obtains pressure oscillations which do not influence the

velocity field: pressure and velocity field “decouple”.
For two-dimensional equally spaced Cartesian grids and the implementation de-

scribed in appendix C one finds that dim(ker(GV
V)) = 2 and ker(GV

V) contains, beside
constant pressures pc

V , a non-trivial highly oscillating mode po
V . Therefore, we ex-

pect to observe pressure-velocity decoupling whenever the iterative linear system
solver for (39) converges towards solutions pV with components in ker(GV

V).
The method of conjugate gradients preserves, by exact arithmetics, the compo-

nents of pk

V in ker(GV
V). Since we always start our iteration with p0

V := 0 we expect a
numerical solution obtained in a reasonable number of iteration steps to be oscilla-
tion free. This is confirmed by our numerical results. On the other hand numerical
solutions obtained through a random choice of p0

V may exhibit pressure-velocity
decoupling.

The understanding of the pressure-velocity decoupling in the limit of vanishing
grid size requires a deeper analysis. We have investigated numerically the effects (1)
of grid refinement at constant convection-based Courant number C of 0.8 and (2) of
time step refinement for a fixed grid size. Some results are shown in figures 3 and 4.
Neither in the first nor in the second case we observe the onset of pressure-velocity
decoupling.

Figure 3. Driven cavity at Re = 100, C = 0.8: 30 contour lines
of the nodal pressure p(2)

V in [−0.4, 0.4]. 64×64 (left) and 256×256
(right) grid cells.
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Figure 4. Driven cavity atRe = 100, 64×64 grid cells: 30 contour
lines of the nodal pressure p(2)

V in [−0.4, 0.4]. C = 0.08 (left) and
C = 0.008 (right).

Figure 5 shows the time history of the residual

rn2 :=
∑
V∈V

h2‖Un
V −Un−1

V |‖2

for a Re = 1000 computation on several grids. The residual is plotted versus the
number of computational steps. The cost of a single step on a 64 × 64 grid is of
about 1.3 seconds on a DEC Alpha 21164 CPU running at 500 MHz.
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Figure 5. Driven cavity at Re = 1000: Residual versus number of
iterations for 32×32, 64×64 and 128×128 grid cells computations;
coarser grid solutions have been taken as initial data for finer grid
solutions.

For the 128× 128 grid cells computation pressure and streamlines of the numerical
solution after 5000 time steps are shown in figures 6 and 7.
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Figure 6. Driven cavity atRe = 1000, 128×128 grid cells: 30 con-
tour lines of the nodal pressure p(2)

V in [-0.4,0.4] (left) and stream-
lines (right). Streamline values and labels are taken from [29].
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Figure 7. Driven cavity at Re=1000, 128×128 grid cells: stream-
lines in the left and right bottom secondary vortices. Values and
labels are taken from [29].

These results are in a good qualitative agreement with the ones presented by Ghia
et al. [29] page 400. For a more quantitative comparison the horizontal (vertical)
component of the velocity along the vertical (horizontal) line through the geometric
center of the cavity have been drawn in figure 8. The solid line represents the
numerical solution obtained with the present method. The dots are values of a
reference solution, taken from [29]. The accuracy of this solution has been confirmed
by many independent computations.

6.4. Falling droplet. A heavy “droplet” falls through a light fluid atmosphere
and impacts into the surface of the heavy fluid in a cavity. The density ratio is
1000:1 and the Froude number equal to one. The flow is assumed to be inviscid
and there is no account for surface tension or for a change of the equation of state
(hence, the quotes on “droplet”!). The computational domain is the rectangle
[0, 1]× [0, 2]. We present both two- and three-dimensional computations. The goal
is to investigate the capability of the method to cope with large density variations.
From the numerical point of view the effect of density variations is to increase the
condition number of the discrete Poisson-type operators associated to the numerical
computation of the pressure p(2). We expect poor convergence in the iterative
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Figure 8. Driven cavity at Re=1000, 128 × 128 grid cells: hori-
zontal (vertical) component of the velocity along the vertical (hor-
izontal) line through the geometric center of the cavity; present
results (solid line) and reference solution from [29] (dots).

solution of the linear systems and, in the worst case, oscillations in the pressure
field p(2)

I . Since our interface pressures p(2)

I are computed via a discrete Poisson-
type operator which, for two-dimensional equally spaced Cartesian grids, exhibits
local grid decoupling, we are particularly interested in the behavior of p(2)

I in the
two dimensional case.

6.4.1. Two-dimensional case. This problem was originally proposed in Puckett et
al. [13] to test a tracking method for incompressible variably density flows. Here the
interface between light and heavy fluid is captured but we still expect our second
order method to properly describe the main features of the flow. The computational
grid consists of 64× 128 cells. The initial data are:

ρ(�x, 0) =

{
1000.0 if 0.0 ≤ y ≤ 1.0 or 0.0 ≤ r ≤ 0.2

1.0 if 1.0 < y ≤ 2.0 or 0.2 < r
,

p(�x, 0) = 1, �v(�x, 0) = 0 and r =
√
(x− 0.5)2 + (y − 1.75)2 .

Figure 9 shows density contours at a sequence of output times. After the impact
of the droplet some areas of lighter fluid appear within the heavy fluid (last three
frames). This is consistent with the results shown in [13] where this effect was
referred to as “trapped air bubbles”. Figure 10 shows contour lines of the cell
interface pressure p(2)

I as the droplet hits the surface of the heavy fluid in the cavity.
We do not notice spurious oscillations or local grid decoupling effects.

The multi-grid preconditioned conjugate gradients technique allows the iterative
solution of the linear systems for the pressure in about the same number of iterations
as for the constant density case.
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t = 0.000 t = 0.500 t = 0.875

t = 1.125 t = 1.250 t = 1.375

Figure 9. Two-dimensional falling “droplet” at Fr = 1 and den-
sity ratio 1000: Contour lines of density in [1,1000].

6.4.2. Three-dimensional case. This is a simple extension of the previous case to
three space dimensions. The grid consists of 64 × 64 × 128 cells. The initial data
are:

ρ(�x, 0) =

{
1000.0 if 0.0 ≤ z ≤ 1.0 or 0.0 ≤ r ≤ 0.2

1.0 if 1.0 < z ≤ 2.0 or 0.2 < r
,

p(�x, 0) = 1, �v(�x, 0) = 0 and r =
√

(x− 0.5)2 + (y − 0.5)2 + (z − 1.75)2 .

Figure 11 shows the density iso-surface 500 as the droplet falls and impacts into the
surface of the heavy fluid in the closed cavity.

7. Conclusions and future work

7.1. Summary and Conclusions. This paper demonstrates that a finite volume
compressible flow solver can be extended to handle incompressible, zero Mach num-
ber flows. Our approach is general enough to include a wide variety of underlying
compressible flow schemes. The major ingredients of the required extensions are
two pressure Poisson-solutions. These allow us to enforce zero Mach number elliptic
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Figure 10. Two-dimensional falling “droplet” at Fr = 1 and den-
sity ratio 1000: 10 contour lines of the cell interface pressure p(2)

I
at -999, -990, -900, -800, -600, -400, -200, 0, 200 and 400 (left) and
10 contour lines of the density in [1,1000] (right) at t = 1.125.

divergence constraints for the convective numerical fluxes as well as for the final cell
centered velocity fields.

The design of the scheme directly draws on a low Mach number asymptotic
analysis of the governing equations in conservation form. The analysis, which was
presented in [19], shows how the well-known velocity divergence constraint of incom-
pressible flows emerges in a natural way from an associated divergence constraint on
the energy flux as the Mach number vanishes. The insight gained in this way is used
to construct numerical fluxes of mass, momentum and energy that are consistent
with the zero Mach number limit. The scheme thus represents a discretization of
the full conservation equations rather than one of an asymptotic limit system which
would explicitly introduce a velocity divergence constraint!

The computational examples given are chosen to demonstrate various features
of the proposed method. Thus we show second order accuracy for a test problem
proposed by Almgren et al., [34], and we obtain competitive results on the test
problem of an advected zero circulation vortex as proposed by Gresho and Chen,
[28]. After adding a first order in time extension to viscous incompressible flow,
we find very close agreement with published results in the literature for standard
driven cavity test problems (see Ghia, Ghia & Shin, [29]). Notably, grid refinement
at constant convection-based CFL number of 0.8 as well as decreasing time steps
at constant spacial resolution do not affect the results. This suggests stability and
convergence of the method, even though we cannot provide rigorous proofs at this
stage. Excellent behavior of the scheme is found for variable density flows. A
“falling droplet” with a density ratio of 1000, simulated by a suitable choice of an
initial entropy distribution in an ideal gas, is handled without evidence of pressure,
velocity or density oscillations.

7.2. Current limitations and future work. The asymptotics in [19] has been
carried out for an ideal gas equation of state assuming constant ratio of heat capaci-
ties. A consequence is that the total energy per unit volume, which is the conserved
energy quantity in our numerical scheme, is proportional to pressure to leading and
first order in the Mach number. This simplifies the formulation of the asymptotic
limiting form of the energy equation and, hence, the set-up of the numerical method.



28 T. SCHNEIDER, N. BOTTA, K. J. GERATZ AND R. KLEIN

t=0.000 t=0.750 t=1.125

t=1.500 t=1.875 t=2.250

Figure 11. Three-dimensional falling “droplet” at Fr = 1 and
density ratio 1000: Iso-surface ρ = 500 of density.

In the present paper we have restricted ourselves to the zero Mach number limit,
but considered multi-dimensional flows. In contrast, [19] was restricted to one space
dimension for the numerics, but allowed small, but non-zero Mach numbers. The
obvious next step is to combine the approaches and construct a method that allows a
smooth transition from fully compressible to zero Mach number. A first realization
of this generalization of the present ideas has been described by one of the authors
in [18].

The original motivation for this work stems from combustion applications; no-
tably from the desire to simulate deflagration-to-detonation transitions, where,
throughout a computation, the Mach number would vary from M ≈ 10−4 to
M ≈ 10. Thus, two of our further goals are (i) to extend the scheme to include chem-
ical reactions for resolved computations of combustion processes at arbitrary Mach
number and (ii) to combine the present technology with the flame front capturing-
tracking ideas from [40] (compressible flow) and [30] (zero Mach number combus-
tion).
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Appendix A. Fake acoustics in the system I∗ remain small

Let �v(�x, t), p(�x, t) be a smooth solution of the auxiliary system (9) for initial
data �v(�x, 0), p(�x, 0) such that

∇ · �v(�x, 0) = 0

∇p(�x, 0) = ∇p(0)(�x, 0) = 0 .

From (9)3, (9)4 one has

pt(�x, 0) = (γ − 1)(ρe)t(�x, 0)

= − (γ − 1)∇ · ((ρe(�x, 0) + p(�x, 0))�v(�x, 0))

= −∇ · (γ p(�x, 0)�v(�x, 0))
= − γ �v(�x, 0)·∇p(�x, 0)− γ p(�x, 0)∇ · �v(�x, 0)
= 0 .

Expanding �v(�x, t) and p(�x, t) about t = 0 and using the above equations yields

∇ · �v(�x, t) =∇ · �v(�x, 0) +O(t) = O(t)

∇p(�x, t) =∇p(�x, 0) +∇pt(�x, 0)t+O(t2) = O(t2)

as stated in (11).

Appendix B. First projection: discrete Poisson equation

We write the discrete gradient GV
I and divergence DI

V for a two dimensional
Cartesian grid of constant spacings δx and δy and derive the explicit form of the
Poisson-like equation (27).

The double index (i, j) is used to tag a cell value. The indexes (i + 1/2, j),
(i, j + 1/2) are used for interface values between the cells (i, j), (i+ 1, j) and (i, j),
(i, j + 1) respectively. The discrete gradient GV

I is defined as follows

GV
i+1/2,j (pV) :=

⎛
⎜⎝

pi+1,j − pi,j

δx
pi,j+1 − pi,j−1 + pi+1,j+1 − pi+1,j−1

4δy

⎞
⎟⎠

GV
i,j+1/2 (pV) :=

⎛
⎜⎝

pi+1,j − pi−1,j + pi+1,j+1 − pi−1,j+1

4δx
pi,j+1 − pi,j

δy

⎞
⎟⎠ .

The discrete divergence DI
V is, according to equation (26)

DI
i,j (�vI) :=

ui+1/2,j − ui−1/2,j

δx
+

vi,j+1/2 − vi,j−1/2

δy

with �vI := (uI, vI). With these definitions DI
VG

V
I is the standard 5-points Laplacian

DI
i,j

(GV
I (pV)) :=

pi+1,j − 2pi,j + pi−1,j

δx2
+

pi,j+1 − 2pi,j + pi,j−1

δy2
.

and the (i,j)-th equation of the linear system (27) for the cell values pV reads

h0,∗
i+1/2,jp

(2)

i+1,j −
(
h0,∗

i+1/2,j + h0,∗
i−1/2,j

)
p(2)

i,j + h0,∗
i−1/2,jp

(2)

i−1,j

δx2
+

h0,∗
i,j+1/2p

(2)

i,j+1 −
(
h0,∗

i,j+1/2 + h0,∗
i,j−1/2

)
p(2)

i,j + h0,∗
i,j−1/2p

(2)

i,j−1

δy2
=

2

δt

(
F ∗

ρe;i+1/2,j
− F ∗

ρe;i−1/2,j

δx
+

G∗
ρe;i,j+1/2

−G∗
ρe;i,j−1/2

δy

)
+

2

δt

1

γ − 1

dp(0)

dt
.

with F ∗
ρe;i+1/2,j := (ρh0u)∗i+1/2,j and G∗

ρe;i,j+1/2 := (ρh0v)∗i,j+1/2.
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Appendix C. Second projection: discrete Poisson equation

We write the discrete gradient GV
V and the divergence DV

V for a two dimensional
regular Cartesian grid and derive the explicit form of the Poisson-like equation (39).

Beside the notation introduced in the previous section we use the double index
(i+1/2, j+1/2) to tag node values. The indexes (i+1, j+1/2), (i+1/2, j+1) are
used for interface values between the node centered control volumes (i+1/2, j+1/2),
(i + 3/2, j + 1/2) and (i + 1/2, j + 1/2), (i + 1/2, j + 3/2) respectively (figure 12).
The linear operators LV

I (pV), L
V
I (�vV) are defined as follows

interfacenodecell center

j

j + 1/2

i+ 1/2i

V

Figure 12. Two dimensional Cartesian grid.

LV
i+1/2,j

(pV) :=
1

2
(pi+1/2,j+1/2 + pi+1/2,j−1/2)

LV
i,j+1/2 (pV) :=

1

2
(pi−1/2,j+1/2 + pi+1/2,j+1/2)

LV
i+1,j+1/2 (�vV) :=

1

2
(�vi+1,j+1 + �vi+1,j)

LV
i+1/2,j+1 (�vV) :=

1

2
(�vi,j+1 + �vi+1,j+1)

With these definitions the discrete gradient GV
V is, according to equation (32)

GV
i,j (pV) =

⎛
⎜⎜⎝

LV
i+1/2,j(pV)− LV

i−1/2,j(pV)

δx
LV

i,j+1/2(pV)− LV
i,j−1/2(pV)

δy

⎞
⎟⎟⎠

=

⎛
⎜⎝

pi+1/2,j+1/2 − pi−1/2,j+1/2 + pi+1/2,j−1/2 − pi−1/2,j−1/2

2δx
pi+1/2,j+1/2 − pi+1/2,j−1/2 + pi−1/2,j+1/2 − pi−1/2,j−1/2

2δy

⎞
⎟⎠ .



EXTENSION OF COMPRESSIBLE FLOW SOLVERS TO ZERO MACH NUMBER FLOWS 31

After (37) the divergence DV
V is

DV
i+1/2,j+1/2 (�vV) =

LV
i+1,j+1/2 (uV)− LV

i,j+1/2 (uV)

δx
+

LV
i+1/2,j+1

(vV)− LV
i+1/2,j

(vV)

δy

=
ui+1,j+1 − ui,j+1 + ui+1,j − ui,j

2δx
+

vi,j+1 − vi,j + vi+1,j+1 − vi+1,j

2δy
.

With the above definitions DV
V (G

V
V(pV)) is the standard 9-points Laplacian

DV
i+1/2,j+1/2

(
GV

V (pV)
)
=

1

4

δx2 + δy2

δx2δy2
ai+1/2,j+1/2 − 1

2

δx2 − δy2

δx2δy2
bi+1/2,j+1/2

with

ai+1/2,j+1/2 := pi+3/2,j+3/2 + pi−1/2,j+3/2 + pi−1/2,j−1/2 + pi+3/2,j−1/2 − 4pi+1/2,j+1/2

bi+1/2,j+1/2 := pi+3/2,j+1/2 − pi+1/2,j+3/2 + pi−1/2,j+1/2 − pi+1/2,j−1/2.

For δx = δy the second term on the right hand side of the discrete Laplacian
disappears and the stencil of DV

V (G
V
V(pV)) reduces to a five diagonal point stencil.

The (i + 1/2, j + 1/2)-th equation of the linear system (39) becomes

1

4δx2

[
hn+1

i+1,j+1

(
p(2)

i+3/2,j+3/2
− p(2)

i+1/2,j+3/2
+ p(2)

i+3/2,j+1/2
− p(2)

i+1/2,j+1/2

)−
hn+1

i,j+1

(
p(2)

i+1/2,j+3/2
− p(2)

i−1/2,j+3/2
+ p(2)

i+1/2,j+1/2
− p(2)

i−1/2,j+1/2

)
+

hn+1

i+1,j

(
p(2)

i+3/2,j+1/2 − p(2)

i+1/2,j+1/2 + p(2)

i+3/2,j−1/2 − p(2)

i+1/2,j−1/2

)−
hn+1

i,j

(
p(2)

i+1/2,j+1/2 − p(2)

i−1/2,j+1/2 + p(2)

i+1/2,j−1/2 − p(2)

i−1/2,j−1/2

) ]
+

1

4δy2

[
hn+1

i,j+1

(
p(2)

i+1/2,j+3/2
− p(2)

i+1/2,j+1/2
+ p(2)

i−1/2,j+3/2
− p(2)

i−1/2,j+1/2

)−
hn+1

i,j

(
p(2)

i+1/2,j+1/2
− p(2)

i+1/2,j−1/2
+ p(2)

i−1/2,j+1/2
− p(2)

i−1/2,j−1/2

)
+

hn+1

i+1,j+1

(
p(2)

i+3/2,j+3/2
− p(2)

i+3/2,j+1/2
+ p(2)

i+1/2,j+3/2
− p(2)

i+1/2,j+1/2

)−
hn+1

i+1,j

(
p(2)

i+3/2,j+1/2 − p(2)

i+3/2,j−1/2 + p(2)

i+1/2,j+1/2 − p(2)

i+1/2,j−1/2

) ]
=

1

δt

1

2δx

[
hn+1

i+1,j+1
ρu∗∗

i+1,j+1
− hn+1

i,j+1
ρu∗∗

i,j+1
+ hn+1

i+1,j
ρu∗∗

i+1,j
− hn+1

i,j
ρu∗∗

i,j

]
+

1

δt

1

2δy

[
hn+1

i,j+1
ρv∗∗

i,j+1
− hn+1

i,j
ρv∗∗

i,j
+ hn+1

i+1,j+1
ρv∗∗

i+1,j+1
− hn+1

i+1,j
ρv∗∗

i+1,j

]
.
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