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Abstract

Two polynomial expansions of the time-evolution superoperator to
directly integrate Markovian Liouville-von Neumann (LvN) equations
for quantum open systems, namely the Newton interpolation and the
Faber approximation, are presented and critically compared. Details
on the numerical implementation including error control, and on the
performance of either method are given. In a first physical application,
a damped harmonic oscillator is considered. Then, the Faber approxi-
mation is applied to compute a condensed phase absorption spectrum,
for which a semi–analytical expression is derived. Finally, even more
general applications are discussed. In all applications considered here it
is found that both the Newton and Faber integrators are fast, general,
stable, and accurate.

1 Introduction

The quantum dynamical, often time–dependent, microscopic description of
molecular systems has seen a big leap forward in recent years [1]. In par-
ticular the treatment of complex molecules or molecules in an environment
(in solution, in a matrix, in a solid, or at a surface) is in the focus of actual
theoretical research [1].

The quantum dynamics of “open” systems, e.g., those exchanging energy
and phase with their surroundings, are frequently treated within open sys-
tem density matrix theory [2]. In cases where the characteristic timescales
of motion of the environmental modes are fast the Markov approximation
can be made, which neglects memory effects [2]. The problem then comes
down to the solution of a Markovian, open–system Liouville-von Neumann
equation of the form (� := 1):

˙̂ρ(t) = Lρ̂(t) = −i[Ĥs, ρ̂(t)] + LD ρ̂(t) . (1)

Here, L is the total, and LD the dissipative Liouvillian. These are linear
functions of the actual, “reduced” density operator ρ̂, the latter depending
on the typically few molecular (“system”) degrees of freedom only. Ĥs is the
corresponding system Hamiltonian, which is to be understood as an effec-
tive Hamiltonian because it may include the static (averaged) distortion of
the system dynamics due to the “reservoir”, or “bath”. Energy and phase
exchange between the system and the bath (“relaxation” and “dephasing”)
are hidden in the dissipative Liouvillian LD, the proper choice of which ist
still a matter of scientific dispute [3]. It is even unclear whether under the
Markov approximation such a “proper” choice (i.e., one which does not vi-
olate basic physical principles such as equipartitioning or non–occurrence of
negative probabilities) is possible at all [3]. The most prominent examples of
how to choose LD have been given by Redfield (“Redfield” theory) [4], and
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by Lindblad and others (“dynamical semigroup approach”) [5, 6]. Existing
alternative choices [7] for LD can be shown to be often closely related to
existing schemes such as Redfield theory [3].

Once Equ.(1) is solved, i.e., ρ̂(t) known, the relevant observables are
readily computed from a quantum mechanical trace,

〈Â〉(t) = tr{Â ˆρ(t)} .

Except for special examples, an analytical solution of Equ.(1) is not available
and one has to resort to a numerical treatment. The latter requires (i) a
particular representation of the operators, and (ii) a time integration scheme.
Assuming that a certain representation was selected (e.g., discrete spatial
grids [8, 9, 23], zeroth order or other state representation [11, 12, 13], or
mixed ones [14, 15]), Equ.(1) can be written as a matrix differential equation

�̇(t) = L�(t) , (2)

with the initial condition �(0) = �0. Here, L is a D×D matrix representa-
tion of the Liouvillian and �0 is a “vector” of size D = N ×N , where N is
the size of the Hilbert space of the system. Analytically, the solution of (2)
for a time τ ≥ 0 is

�(τ) = exp(τL)�0 . (3)

Equ.(3) will be referred to as a “direct”, or matrix solution of the LvN equa-
tion (1).

The direct solution is to be contrasted with indirect ones, for which
(many) stochastically sampled or variationally determined, (coupled) wave
packets are employed. Examples of these wave packet based methods are the
Monte Carlo Wave Packet (MCWP) [17, 18, 19, 20, 21, 10], the Quantum
State Diffusion (QSD) [22, 10, 23], and the Variational Wave Packet (VWP)
methods [24, 25], respectively. Both classes of solution techniques (direct
or indirect) require different computational resources (memory occupation
and computation time), differ in their accuracy (e.g., statistical convergence
vs. numerically “exact”), and are not equally generally applicable (e.g., re-
stricted to Lindblad forms of dissipation). Whether or not one or the other
approach offers computational advantages is, therefore, quite system- and
problem-dependent [21]. The direct methods serve, at a minimum, as accu-
rate and general benchmarks.

In the practice of direct methods the exponential of a large matrix
has to be approximated. Various approaches have been proposed to do
so. Besides “brute–force” direct diagonalization of the Liouvillian [26] and
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general–purpose Runge–Kutta integration [23, 11], there are more sophisti-
cated schemes such as various split–operator techniques [8, 10, 27], Krylov
methods [12], and polynomial expansions [28, 29, 30, 14, 15, 16].

The polynomial expansions, which will be the focus of the present pa-
per, have the distinct advantage of being (arbitrarily) accurate but still
efficient. In the following, two specific examples of how to approximate the
time-evolution superoperator exp(τL) in Equ.(3) will be considered in some
detail. The first one is a Newton interpolation, which has been used ear-
lier for density matrix propagation [28, 29, 30, 14, 15, 16]. The second is
an approximation of exp(τL) based on Faber polynomials – these haven’t
been used so far to propagate density matrices in time, but proved useful for
approximating the Green operator for time–independent scattering calcula-

tions or to compute a propagator e−i ˆ̃Ht with non–Hermitean Hamiltonian
ˆ̃H [31].

We will provide a unified mathematical background for both types of
polynomial expansions (Sec.2), and a critical evaluation of numerical as-
pects of their implementation, stability, and performance (Sec.3). In Sec.4,
examples for the application of the Newton and Faber methods to physical
problems will be given. In Sec.4.1 both methods will be applied to a damped
harmonic oscillator. In Sec.4.2, a semi–analytical series expansion based on
Faber polynomials for continuous wave (cw), condensed phase absorption
spectra will be derived. We apply the new series to the dissipative infrared
(IR) absorption spectrum of benzoic acid dimers in a crystalline environ-
ment. In Sec.4.3 it will be argued that the Faber and Newton techniques
can also be efficiently applied to explicitly time–dependent problems, and
are general enough to treat any kind of (Markovian) dissipation. A final
section 5 concludes our work.

2 Newton and Faber polynomial integrators

2.1 General aspects

If we choose a polynomial approximation for the time evolution superoper-
ator, we are interested in a polynomial Pτ

n (L)�0 which minimizes among all
polynomials of degree ≤ n the local error

εloc(n) = ‖ exp(τL)�0 − P τ
n (L)�0‖. (4)

To further proceed we first note that the eigenvalue spectrum of the Liouvil-
lian is complex. The eigenvalues are distributed symmetrically with respect
to the real axis, because their imaginary part derives from the Hamiltonian
Liouvillian LH := −i[Ĥs, •] in Equ.(1). This term corresponds to all the
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possible differences between the eigenvalues of Ĥs, that is the imaginary
frequencies iωij = i (Ei −Ej). Further, the eigenvalues are usually (i.e., for
energy–withdrawing processes) located in the left half of the complex plane,
indicating negative real parts due to the dissipative Liouvillian LD.

The application of functional calculus of analytic functions [32] gives an
insightful framework to approximate a function of a Liouvillian with complex
spectrum. Let Γ ⊂ C be any closed (Jordan) curve that does not intersect
itself (e.g., the boundary of a rectangle or an ellipse) enclosing the spectrum
of L; then

εloc(n) = ‖ exp(τL)�0 − P τ
n (L)�0‖

= ‖ 1

2πi

∫
Γ

{exp(τz) − Pτ
n (z)}(zI −L)−1

�0 dz‖

≤ min
Γ

{
CΓmax

z∈Γ
| exp(τz) − Pτ

n (z)|
}

for a constant CΓ > 0, depending on L and Γ, but independent of n. From
the above inequality, we see that the local error is related to the problem of
approximating a scalar analytic function, i.e., finding among all polynomials
P τ
n at most of degree n one that minimizes for fixed Γ

max
z∈Γ

| exp(τz) − Pτ
n (z)| . (5)

Following the maximum principle [33], one can substitute in (5) Γ by the
domain G = G(Γ) defined as the set of all points enclosed by Γ. The exact
solution of the min–max problem requires the calculation of the spectrum
of L, equivalent to diagonalize it. This is precisely what we want to avoid,
since direct diagonalization of L is in general inefficient. Therefore, it is a
common practice to fix a curve Γ or respectively a domain G and consider
the scalar valued approximation problem (5). The choice of the domain G
is important for numerical aspects as we are going to see below.

There is a rich literature about the approximation problem (5) both in
complex analysis [34, 35, 36] and in theoretical chemistry [1, 31] to cite a
few. These different methods can be considered as special realizations of
polynomial approximations. In the next subsection, the notion of conformal
mapping associated with a domain is introduced to be used in the definition
of the “quasi–optimal” polynomial approximation on a domain that includes
the eigenvalues of the matrix L.

2.2 Conformal mapping

For a given domain G, it is advantageous to consider separately its geom-
etry from its size. The shape of G determines the form of the polynomial
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approximation Pτ
n , while the size influences its numerical stability.
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Figure 1: Elliptical and rectangle–like scaled domains as in the examples (7)
and (8). The parameters are m = −0.25,−0.75, . . . , −1.75 and d = −(m+1)
(from the left to the right ellipse) and m = −0.875 for the “rectangle”.

Let G be a bounded, closed continuum in the complex plane, such that
the complement of G is simply connected in the extended plane and contains
the point at ∞, e.g., a rectangle or an ellipse. By the Riemann mapping the-
orem [33], there exists a conformal mapping ψ which maps the complement
of a closed disc with center at the origin and radius ρ onto the complement
of G, satisfying the normalization condition lim|w|→∞ψ(w)/w = 1. Then,
its Laurent expansion at ∞ is given by

ψ(w) = w + γ0 + γ1w
−1 + γ2w

−2 + . . . (6)

with coefficients γi ∈ C . The logarithmic capacity of G is defined as the
radius ρ of the above disc. We call a domain scaled, if ρ = 1. Two examples
may illustrate this:

1. For the herein suggested polynomial integrator, the conformal map-
ping

ψ(w) = w +m+ d/w (7)

with parameters m,d ∈ C is of central importance. The left picture of
Fig. 1 shows that for a given logarithmic capacity ρ, ψ(w) describes
a family of ellipses with center at m and minor and major axis a =
(ρ− d/ρ) and b = (ρ+ d/ρ), respectively.
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2. The mapping

ψ(w) = w +m− 1/(2w)3, m ∈ C , (8)

specifies a family of “smoothed rectangles”, centered at m (see right
panel of Fig. 1).

2.3 The Faber approximation

In this section a brief introduction to Faber polynomials is provided. It
is interesting to notice that the well known Chebychev polynomials are a
special family of Faber polynomials constructed to approximate continuous
functions of real variables. When functions of matrices have to be computed,
the Chebychev approximation is consequently suited to matrices with real or
purely imaginary eigenvalues, like the Hamiltonian, while Faber polynomials
are generally appropriate when the eigenvalues are defined in the complex
plane.

The family of Faber polynomials {Fk}k∈N associated with a conformal
mapping ψ is defined via the recursion relation

Fk+1(z) = z · Fk(z) −
k∑

j=0

γj · Fk−j(z) − k · γk (9)

for k ≥ 1 and F0(z) ≡ 1 [37, 38, 31]. The corresponding relations for matrix
operations are obtained substituting z by L and multiplying the equations
by �0, as is exemplified in Equ.(11) below. The recursion relation is stable, if
z or the spectrum of L respectively are contained in the scaled domain [39].
It can be seen from (9) that Faber polynomials, defined by their recursion
relation, depend upon the coefficients γj of the conformal mapping ψ and
thus on the shape of G independently of the size of the domain G [there is
no ρ in Equ. (9)].

From a numerical point of view, e.g., for memory occupation, we are
interested in the families of Faber polynomials which allow short–term re-
cursions. Thus, we are interested in domains G whose associated confor-
mal mappings have only a few non–zero terms in their Laurent expan-
sion at ∞ [see (6)]. Among them, we have been working mainly with
the family of Faber polynomials corresponding to the conformal mapping
ψ(w) = w + m + d/w [see example (1) above]. The parameters m and d
depend upon the relative strength of the Hamiltonian and dissipative dy-
namics of the physical problem studied.
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For our conformal mapping (7), the associated Faber polynomialis are
defined by the three term recursion

Fk+1(z) = (z −m)Fk(z) − d · Fk−1(z), k > 1 (10)

with initial values F0(z) ≡ 1, F1(z) = z −m and F2(z) = (z −m)2 − 2d.
The matrix equivalents of these relations are

Fk+1(L)�0 = (L−mI)Fk(L)�0 − d · Fk−1(L)�0, k > 1 (11)

with initial values F0(L)�0 ≡ �0, F1(L)�0 = (L−mI)�0 and F2(L)�0 =
(L−mI)F1(L)�0 − 2d · �0. Setting the parameters m to 0 and d to 1/4,
the associated Faber polynomials Fk are equal to the normalized Chebychev
polynomials Tk via Fk(z) = 21−kTk, for k ≥ 1, while F0 = T0.

Any function that is analytic inside G can be expanded in terms of the
Faber polynomials associated with ψ [37, 40, 38]. In application to exp(τz),
this yields:

exp(τz) =
∞∑
k=0

1

2πi

∫
|w|=1

exp(τψ(w))

wk+1
dw︸ ︷︷ ︸

ck(τ)

Fk(z) (12)

for all z ∈ G. Equ.(12) is exact. Now we define the Faber approximation of
order n to be the truncated series

P τ
n (z) =

n∑
k=0

ck(τ)Fk(z)

with expansion coefficients as defined above. Substituting Fk(z) by Fk(L)�0,
one gets the “matrix valued version” Pτ

n (L)�0

�(τ) = exp(τL)�0 ≈ P τ
n (L)�0 =

n∑
k=0

ck(τ)Fk(L)�0 . (13)

For our conformal mapping ψ(w) = w +m + d/w, the coefficients can be
solved analytically

ck(τ) =
1

2πi

∫
|w|=1

exp (τ(w +m+ d/w))

wk+1
dw

= (−i/√−d)k exp(τm)Jk(2τ
√−d), (14)

where we used the identity exp (x(t+ 1/t)/2) =
∑

k(t/i)
kJk(ix) [41]. Here,

Jk is a Bessel function of the first kind. For d = 0 the conformal mapping ψ
is a simple translation. Thus, Equ. (12) is simply the power series expansion
at point m. From now on, the term “Faber approximation” is always meant
with respect to the conformal mapping (7).
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2.4 The Newton interpolation at Lejá points

Another way to approximate functions of matrices with polynomials is sug-
gested by the theory of the interpolation of analytic functions. The complex
Newton interpolation based on Lejá points is an efficient implementation of
this idea, and was introduced in density matrix calculations by Kosloff, Tal-
Ezer and Berman [28, 16]. The method is shortly outlined in the following.

Let G be a domain as defined in Section 2.2. A sequence (zm)m∈N of
points on the boundary of G, i.e., (zm)m∈N ⊂ Γ, is called a Lejá point
sequence [36], if |z1| = max

z∈G
|z| and

m∏
k=1

|zm+1 − zk| = max
z∈G

m∏
k=1

|z − zk|

for m > 16. In numerical applications, one substitutes the maximum of all
z ∈ Γ by the maximum of all z ∈ ΓL, where ΓL = {z̃1, z̃2, z̃3, ...z̃L} is a
set of uniformly distributed points on the boundary of G with L  n =
(estimated) degree of Pτ

n . We call a Lejá point sequence scaled if the points
lie on the boundary of a scaled domain.

A sequence of Lejá points defines the associated Newton polynomials
{ωk(z)}k∈N by the two term recursion

ωk+1(z) = (z − zk+1)ωk(z) (15)

for k ≥ 0 and ω0(z) ≡ 1. The relations used for functions of matrices are
defined by

ωk+1(L)�0 = (L− zk+1I)ωk(L)�0 (16)

with starting term ω0(L)�0 ≡ �0. The recursion relation is stable if the
Lejá points are scaled and z (or the spectrum of L respectively) is contained
in the scaled domain [36].

The Newton polynomials are related to the logarithmic capacity ρ of G
by m+1

√|ωm(zm+1)| −→ ρ for m→ ∞ thus

|ωm(zm+1)| ≈ ρm+1 (17)

for “large” m. This shows why scaled Lejá points are necessary to avoid
overflows (underflows) [42, 36].

6For the numerical purposes, z1 can be any point ∈ Γ.
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The coefficients entering a Newton series are the so called divided dif-
ferences. For a function f on G, the divided differences can be defined
recursively7 :

[zk, . . . , zl]f =
[zk+1, . . . , zl]f − [zk, . . . , zl−1]f

zl − zk
(18)

for 1 ≤ k < l and initial values [zk]f = f(zk).

Let ψ be the conformal mapping associated with a domain G. Then,
any function that is analytic inside G can be expanded in terms of the
Newton polynomials associated with the Lejá points (zm)m∈N [37, 40, 36].
The application to f(z) = exp(τz) yields

exp(τz) =
∞∑
k=0

[z1, . . . , zk+1]exp ωk(z)

for all z ∈ G. Now we define the Newton interpolation of order n as the
truncated series

exp(τz) ≈ Pτ
n (z) =

n∑
k=0

[z1, . . . , zk+1]exp ωk(z) .

Substituting ωk(z) by ωk(L)�0 one gets the “matrix valued version” Pτ
n (L)�0

that is formally equivalent to relation (13).

3 Numerical aspects

Analytically, the Faber approximation and the Newton interpolation are
very similar [39]. It has to be checked whether this holds true also nu-
merically. Before starting, we have to decide how to choose the domain
that includes the eigenvalues of L. This step is very similar for the two
algorithms.

3.1 On scaling and domain

The effects of the choice of the domain on the numerical stability and effi-
ciency are of general nature, so any system can be used to exemplify them.
For this purpose we have chosen an abstract model dissipative system. Here
L corresponds simply to a diagonal matrix with complex eigenvalues, shown
as dots in the first panels to Figs. 2-4 below. The matrix dimension was
taken to be D = 199, and the complex eigenvalues were chosen to be lo-
cated on the arc of an ellipse, symmetrically with respect to the real axis.

7Every two elements of the Lejá point sequence are different – therefore the denominator
in Equ.(18) is always different from zero.
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This eigenvalue spectrum resembles a “typical” physical situation insofar as
states separated by large frequencies ωij (corresponding to largely positive
or negative imaginary parts of the eigenvalues of L), are connected by “fast
dissipation”, i.e., also their real parts are large (and negative) [28]. In con-
trast, eigenvalues closer to the real axis typically have also small real parts
[28]. As initial state, a randomly occupied vector �0 has been chosen, and
propagated for one time step. The shape of the domain G used for interpo-
lation / approximation is taken here as elliptic, and is shown as a solid curve
in the first panels of Figs. 2-4. The effects of choosing ellipses G which are
different in size and location, can be illustrated with the three exemplary
cases of Figs. 2-4. (The results are shown only for the Faber approximation
– the Newton expansion behaves similarly.)

−4 0 2
−3

0

3

 real

 im
ag

0 25 50 75 100
10

−15

10
−10

10
−5

10
0

10
5

 n
0 25 50 75 100

10
−15

10
−10

10
−5

10
0

10
5

 n

Figure 2: Behaviour of the integration for an non–scaled Liouvillian. Start-
ing from the left, the scaled domain and the non–scaled spectrum (’· · · ’) are
shown in the first graph. The local error (4) versus the order n of approxi-
mation is depicted in the center, while in the last picture the Frobenius norm
of the Faber polynomials (’—’) are presented together with the modulus of
the coefficients (’-·-’).

In Fig.2, a typical case of numerical instability is presented. It clearly
arises from the recursion relation (11) since the so called Frobenius norm

||Â|| :=
√
tr{Â† Â}

of the last term of the series (13) (Â = Fn(L)ρ̂0) “explodes”, as shown
in the third panel of the figure (solid line). This quantity is, therefore,
a good measure to control this kind of numerical instability; in contrast,
the modulus of the last coefficient cn is not (dot–dashed curve in the third
panel). The recursion relation is unstable because in this case the non–scaled
eigenvalues of L lie outside the domain. The local error εloc(n) [Equ. (4)]
grows first exponentially, but then finally decreases to a constant (second
panel of Fig. 2). Furthermore, it was shown in [43] that in the above case
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the remaining error grows exponentially with the time step τ , so for large
values of τ the accuracy is completely lost.

Scaling. To avoid these last numerical instabilities in the recursion
relation, the Liouvillian has to be scaled:

L → σ−1L . (19)

The scaling factor σ > 0 should make the spectrum of σ−1L lie inside the
scaled domain. As a consequence8, the step size has to change, too: τ → στ .
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Figure 3: Behaviour of the integration when the Liouvillian is properly
scaled but the domain lies partially in the right part of the complex plane.
The meaning of the graphs is the same as in Fig. 2.

In Fig. 3, it is shown what happens if the domain is properly scaled
but improperly set and enters the right part of the complex plane. This
depends on the position of the points for the Newton interpolation and on
the parameter m in Equ.(7) for the Faber approximation, respectively. The
Frobenius norm of the Faber polynomials decreases exponentially in this
case, because the recursion relation is stable. The modulus of the coefficients
cn increases exponentially until n ≈ 70, where it reaches a value far larger
than 1 (which indicates this kind of error), then it starts to decrease. If the
center m of the ellipse lies on the imaginary axis, the local error εloc(n) looks
similar to the one shown in Fig. 2. The local error is constant until n ≈ 70
and then starts to decrease; therefore the calculation finally converges, but
the propagation is numerically inefficient because a high polynomial order
is required.

In Fig.4, the spectrum of the scaled Liouvillian lies entirely in the scaled
domain, which is completely contained in the left part of the complex plane.
The norm of the Faber polynomials is almost constant, showing that the
scaling was correct [42]. The modulus of the coefficients is bounded by 1
and decays exponentially from n ≈ 30 = τσ on. The effort to reach a given
local tolerance is much less than in the two examples above. The optimal

8We have ρ(τ ) = exp(τL)ρ0 = exp(στ σ�1
L)ρ0 ≈ Pn

στ (σ�1
L)ρ0. Note that in gen-

eral Pn
στ (σ�1

L)ρ0 �= P τ
n (L)ρ0, although the identity holds for the exponential function.
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Figure 4: Behaviour of the integration when the Liouvillian is properly
scaled and the domain is correctly set. The meaning of the graphs is the
same as in Fig. 2.

ellipse has the smallest scaling factor σ compatible with a stable propagation.

In practice, an algorithm is necessary to determine a rough estimate of
the region of the complex plane where the eigenvalues of the Liouvillian ma-
trix L lie. For the Faber algorithm with an ellipitical domain G, this will
produce the parameters m (and d) in (7). Also for the Newton algorithm
an estimate for the size and shape of the eigenvalue spectrum is required,
no matter how G will actually be chosen. In Refs.[28, 29, 30] it was shown
how a first guess for the shape and size of the spectrum of L can be made
on the basis of physical arguments (expected maximum Hamiltonian energy
difference |Ei −Ej |, and fastest dissipative channel).

As a more automatized procedure, in this work we employ the most
simple iterative method, the power method [44] to estimate an eigenvalue
spectrum. This method is particulaly useful because in the present applica-
tions the reasonable assumption can be made that the eigenvalues lie “along
the lines” between zero and the eigenvalue of largest modulus – hence only
this last one has to be evaluated. To have a reasonably stable iteration, one
should consider that:

1. The eigenvalues are distributed symmetrically with respect to the real
axis (see above). Accordingly, there are always two eigenvalues with
maximum modulus. Adding iEmax Î to the Liouvillian, where Emax is
an estimate of the maximal energy, the eigenvalue spectrum is trans-
lated along the imaginary axis and one of the eigenvalues with maxi-
mum modulus becomes larger than the other one.

2. The Frobenius norm and relative scalar product has to be used to
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compute the eigenvalue as

λ =
tr{�†n�n−1}√
tr{�†n−1�n−1}

. (20)

3. The iteration procedure has to be repeated a number of times sufficient
in order to let the system relax close enough to the desired eigenvalue.

3.2 Spectral estimates, scaling and coefficients

3.2.1 Newton interpolation

In order to stabilize the computation of the Newton polynomials and the
divided difference coefficients, the Lejá points have to be scaled [see (15)
and (18)]. This is done iteratively: use a few points in the Lejá algorithm
to derive a rough estimate of ρ [see (17)] and rescale all points with respect
to ρ. Now, use more points to generate a more precise logarithmic capacity,
rescale and so on. Repeat this procedure until ρ deviates by less than a
prespecified tolerance from 1. Usually no more than three or four iterations
are needed.

The generation of the Lejá points requires the repetition of many opera-
tions [16]. If we call zi the i–th point chosen, and dn(z̃i) the product of the
distances of point z̃i with the n points already chosen, the Lejá algorithm
starts as follows:

• The first point z1 is chosen.

• d1(z̃i) = z̃i − z1 for every other point z̃i is computed and the z̃i with
maximal d1 is chosen as the second point z2.

• The product d2(z̃i) = (z̃i − z1)(z̃i − z2) = d1(z̃i)(z̃i − z2) is computed,
and the maximum value of it determines z3.

• At every step k the dk(z̃i) =
k∏

j=1
(z̃i−zj) = dk−1(z̃i)(z̃i−zk) is computed

and its maximum values determines zk, until the number of required
points, n, is generated.

If the last dk−1(z̃i) for all the remaining points in ΓL is kept in the memory,
the algorithm scales as n(L− n− 1), where n is the number of points to be
chosen for the interpolation and L is the total number of points used by the
Lejá algorithm.

13



3.2.2 Faber approximation

If an eigenvalue λ of maximal modulus is known [see Equ.(20)], it is pos-
sible to determine an “optimal” ellipse: Its parameter m ∈ [−2, 0] solves
the third order equation (1 + r2)m3 + (6r2 − 2)m2 + 12r2m+ 8r2 = 0 with
r = Im(λ)/Re(λ), which can be solved by Newton methods [44, 45]. Since
the ellipse should not penetrate the right part of the complex plane, we
choose d = −(m + 1). Now, the scaling factor is fixed, too: σ = |λ/q| for
q =

√
1 + r22rm(2 +m)2/(m2 + r2(2 +m)2).

The next step is to calculate the coefficients ck = ηkJk(2στ
√−d) with

ηk = (−i/√−d)k exp(στm). Since the density matrix theory in general is
applicable in the weak or at least medium coupling limit (for Markovian
equations), the spectrum of L is “near” the imaginary axis and therefore
−1 ≤ m ≤ 0. Accordingly, d ≤ 0 and we need only Bessel functions for
purely real arguments. The factor ηk is prone to underflow for large τ and
to overflow for large k. For this purpose we calculated ηk in the following
way:

ηk =

{
{( −i√−d

)k/τ exp(σm)}τ ; |ηk−1| < 10−3tol
−i√−d

ηk−1 otherwise

}

with η0 = exp(σm) and tol denoting the local tolerance.

3.3 Local error estimator

We have seen in Sec.3.1 that instabilities are detectable by the modulus of
the coefficients and the Frobenius norm of the Faber polynomials. Therefore,
the term

εloc(k) = |ck(στ)|
√
tr{F∗

kFk}

can be used as a local error estimator. The estimator is only valid in the
decaying phase, which starts around n ≈ στ and ends at the constant re-
maining error level, see Fig.5. Unfortunately, not much about the remaining
error level can be said. It is known to grow moderate linearly in τ and D
[43], but there seems to be no way of estimation. Since for a stable recursion
the Frobenius norm of Fk is usually around 1 the order of the series is taken
as high as necessary for the coefficients’ modulus to be smaller than the
required tolerance. As a stability check one should compute the Frobenius
norm of the last Faber polynomial Fn (see above).

Some caution must be taken for the Newton interpolation, since the di-
vided difference coefficients oscillate in the decaying phase. This may cause
an underestimation of the real error. To eliminate this problem a simulta-
neous check on a few coefficients before the last one is usually sufficient.
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Figure 5: The local error of the Faber approximation (’—’) and the Frobe-
nius norm of ck(στ)Fk(σ

−1L)� (’-·-’) for the three examples of Figs.2-4. The
two curves do behave very similar in the interesting decaying phase of the
local error.

4 Physical applications

4.1 Damped harmonic oscillator: Comparison between Faber
approximation and Newton interpolation

In terms of memory occupation, the two methods are equivalent: The New-
ton interpolation is based on a two term recursion (15) while the Faber
approximation is based on a three term recursion (10). In practice, both
need three copies of the matrix � to realize the recursive generation of �(t),
as can be seen from Equs.(11) (Faber) and (16) (Newton), respectively. In
both cases the basic operation is L�, thus there is no need to store any
(super) matrices of size D×D = N2×N2. The operation L� itself depends
on the particular representation used; e.g., in the case of a coordinate grid
representation the Hamiltonian operation LH� is conveniently done via a
Fast Fourier Transform (FFT) algorithm, which scales as N2log2N [9].

To test the propagators, a one–dimensional harmonic oscillator coupled
to a bath at T = 0 K was chosen, following the equation [46]:

˙̂ρ = −iω[â†â, ρ̂] + γ

(
âρ̂â† − 1

2
[â†â, ρ̂]+

)
, (21)

where [ ]+ denotes an anticommutator, and â† and â are the creation and
annihilation operators, respectively. ω is the oscillator frequency, and γ a
damping constant. Equ.(21) derives from the general form (1) with the
identification Ĥs = ω(â†â + 1

2), and the assumption that the dissipative
Liouvillian is of Lindblad form [5]

LD ρ̂ =
∑
i

(
Ĉiρ̂Ĉ

†
i −

1

2

[
Ĉ†
i Ĉi, ρ̂

]
+

)
(22)
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Table 1: Damped harmonic oscillator: Typical polynomial order necessary
for a Newton and a Faber polynomial series to achieve a relative error in the
energy smaller than 10−4. “n.s.” means not stable.

time step τ [a.t.u.] 100 400 1000 2000 3000

Faber 277 1059 2509 5249 7795
Newton 273 1067 2545 5662 n.s.

(i labels different dissipative channels). In the damped oscillator case (21),
we use a single Lindblad operator Ĉ, which is Ĉ =

√
γâ.

By choosing ω = 0.02 Eh and γ ≈ 10−2ω, weak damping was antici-
pated. Further, the system was represented on a spatial grid of 128 points,
although a harmonic oscillator basis should do equally well. As initial state,
we assume that the oscillator is at t = 0 in its first excited state, i.e.,
ρ̂0 = |ψ1〉〈ψ1|, where |ψ1〉 is the first excited harmonic oscillator function.

In Table 1, we compare the performance of the Newton–Lejá and Faber
algorithms by propagating one time step τ and determining the correspond-
ing polynomial order n which is required to keep the relative error in the
energy smaller than 10−4. From the table we note that the two algorithms
behave quite similar, i.e., about the same polynomial order (and hence com-
putation time) is required to achieve the same accuracy, with small advan-
tages for the Faber algorithm. Hence, both algorithms are similar not only
in their mathematical structure, but also in their numerical efficiency. This
was confirmed in a series of test calculations with varying parameters ω and
γ.

The advantages of the Faber algorithm are that (i) it is stable to higher
orders than the Newton algorithm (see Table 1), (ii) the coding of a computer
program is definitely easier, and (iii) no selection of sampling points has
to be made. On the other hand, for the Newton interpolation, there are
no restrictions on the analytic function to be applied to; also; there is no
restriction on the shape of the domain G chosen to enclose the complex
eigenvalue spectrum of the Liouvillian, whereas the Faber approach requires
a different implementation if domains different from the elliptical one are
adopted. It should be noted, however, that the choice of an optimal enclosing
domain is difficult in general, simply because the eigenvalue spectrum is not
known. Therefore, working with a fixed domain shape (e.g., an elliptical
one) is only a moderate disadvantage in practice.
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4.2 Absorption spectra by polynomial expansions

4.2.1 Polynomial expansion of an absorption spectrum

Often, the propagated density matrix is used in other formulae to derive
observables of interest. A typical case is the computation of a continuous
wave (cw) absorption spectrum. For a weak, continuous wave field, there is
a known expression for the absorption coefficient of a system embedded in
a dissipative environment [47]

α(ω) =
4πωnmol

nc
Re

∫ ∞

0
dt eiωt tr

{
μ̂eLt [μ̂, ρ̂0]

}
, (23)

which can be viewed as a generalization of the so called Heller formula [48]
to the dissipative case. Here ω is the light frequency, μ̂ is the dipole opera-
tor, nmol is the density of molecules, c the velocity of light, and ρ̂0 the initial
density operator. Setting ρ̂′0 := [μ̂, ρ̂0], the solution of (23) is equivalent to
the propagation of a matrix according to the dissipative LvN equation (1).
The integration is done for a discrete number of time steps, the trace is
computed for each time step and Fourier transformed.

An interesting aspect of the polynomial integrators is that the time de-
pendence is only in the coefficients and the representation dependence is left
in the Faber or Newton recursion relations [1, 31, 49]. In the case of the
Faber approximation, for example,

eLt [μ̂, ρ̂0] ≈
n∑

k=0

ck(t)Fk(L)ρ̂′0 . (24)

This implies that (23) in its polynomial approximation (24) can be rewritten
as

α(ω) ≈ KsRe
n∑

k=0

ω

∫ ∞

0
eiωtck(t)dt︸ ︷︷ ︸
sk(ω)

tr{μ̂Fk(L)ρ̂′0}, (25)

where Ks := 4πnmol
nc and the only approximation is in the polynomial ex-

pansion of the propagator, and where the trace is time–independent. In
contrast to the Newton expansion, the Faber coefficients ck(t) are given an-
alytically by Equ.(14). Using (14), also the coefficients sk(ω) of the Faber
approximation for spectrum evaluation in (25) can be evaluated analytically
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as [50]:

sk(ω)= ω

∫ ∞

0
eiωtck(t)dt

= ω

( −i√−d

)k ∫ ∞

0
eiωtemσtJk(2σt

√−d)dt

=
ω√

4σ2d+ (mσ + iω)2

(√
4σ2d+ (mσ + iω)2 + (mσ + iω)

2σdi

)k

.(26)

These coefficients are very similar to the Chebychev series for computing
dissociative Raman spectra [1] or the Faber series for the Green operator
[31]. This is to be expected because the underlying framework of the three
series is equivalent.

Hence, the evaluation of absorption spectra for condensed phase prob-
lems can be done semi-analytically by using (25), with the coeffcients given
by (26). Unlike the Faber coefficients ck(t), the coefficients ck(ω) (26) for
spectra evaluation are algebraic and therefore no special functions like Bessel
functions are needed. This makes the series very stable and polynomial or-
ders up to millions can be used without problems. However, a different
series is needed for every frequency ω. For a given ω, the terms in (26) are
generated via a simple one term recursion relation – the (k+1)st coefficient
is readily calculated from the k th one.

4.2.2 Infrared absorption spectrum of benzoic acid dimers

The new series was applied to the IR absorption spectrum of benzoic acid
dimers embedded in benzoic acid crystals. For this pourpose, a two–dimen-
sional model of the double minimum type was used, which is described
elsewhere [51, 52]. The model consists of a “hydrogen transfer mode” and
a “molecular frame mode”, and all operators were represented in the basis
of the (16 lowest) vibrational bound states of the model Hamiltonian Ĥs.
The system vibrational levels |i〉 relax due to vibrational energy dissipa-
tion, caused by the coupling to the phonons of the embedding crystal. The
relaxation was taken to be of the Lindblad form (22), with

Ĉi → Ĉkl =
√
Γkl|k〉〈l| ,

where the Γkl are relaxation rates connecting two vibrational states. For the
evaluation of Γkl, a microscopic model was used. All details of the model
and the parameters are from Refs. [52] and [51].

In Ref. [52], the spectrum was obtained by numerically propagating a
matrix �

′
0 [Equ. (23)] with a Newton polynomial integrator. Here we use
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the semi–analytic series (25). When the dissipation is of simple Lindblad
form, there is also an analytical solution for α(ω) [47, 52]. The analytical
spectrum is then a sum of broadened Lorentzians [52]:

α(ω) = ω
∑
i>j

μij
2 (gj − gi)

(
Γii + Γjj

(Γii + Γjj)
2 + (ω + ωji)

2 − Γii + Γjj

(Γii + Γjj)
2 + (ω − ωji)

2

)
.(27)

Here, the μij are the matrix elements of the dipole moment operator, ωij is
the frequency for transitions between levels |i〉 and |j〉, and gi is the Boltz-

mann weight for state |i〉 at temperature T , i.e., gi = e
− Ei

kbT /Q (kb the

Boltzmann constant, Ei the energy of state |i〉, and Q =
∑∞

i=0 e
− Ei

kbT the
partition function). For the diagonal elements of the relaxation matrix we
used the definition Γii =

∑
j �=i Γji, as in Ref.[52].

Before considering the spectrum itself, we comment on the behaviour
of the expansion coefficients sk(ω) as a function of ω and the strength of
dissipation (i.e., temperature). From Fig.6, where sk(ω) is shown as a func-
tion of ω, it is clear that the smallest ω can be taken as a reference for
the convergence of all series, i.e., the low–ω part of the spectrum requires
the highest polynomial order to converge a spectrum, while at higher ω the
computational effort becomes smaller.

0 500 1000 1500 2000
Polynomial order

�10

�8

�6

�4

�2

0

Log �sk�Ω��

Figure 6: Computation of spectra by polynomial expansion. The logarithm
of the coefficient |sk(ω)| as a function of the polynomial order is plotted for
ω = 0.2, 0.7, 1.2, 1.7, 2.2 Eh; m is set to 0.2 Eh and σ = 1.2. The bigger ω,
the smaller are the dashes of the dashed lines.
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In Fig.7 effects of the dissipative strength are considered, which can
be investigated by varying the parameter m in Equ.(7). One finds that
for stronger dissipation (larger modulus of m), the modulus |sk(ω)| of the
expansion coefficients decay more rapidly with k than in weakly dissipative
cases. This means that the series (25) converges faster when the dissipation
is strong, and the computation of spectra is less costly in this case. Strong
dissipation is characterized by large Lorentzian line widths according to
Equ.(27). In contrast, when dissipation is weak and the peaks are narrow
(e.g., at low temperature), larger polynomial orders are required. Further,
in order to resolve narrow peaks many points ωi are needed at which α(ωi)
has to be calculated.
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Polynomial order
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Figure 7: Computation of spectra by polynomial expansion. The modulus
of the coefficients |sk(ω)| is plotted as a function of the polynomial order
for m = −.05,−.25,−.45,−.65,−.85 Eh; ω is set to 0.2 Eh and σ = 0.8. The
bigger the modulus of m the smaller are the dashes in the dashed lines .

In Fig.8 we show the IR absorption spectrum of the benzoic acid dimer
in a crystal as obtained with our two–mode model [51, 52] according to
Equ.(25) for various crystal temperatures T . The well known trends are
observed, that (1) temperature increases the magnitude of dissipation and
hence makes the peaks broader, and (2) higher temperatures favour the
contribution of “hot bands” to the high–ω part of the spectrum. All spectra
obtained via (25) are in complete agreement with the analytical solution
(27) (when the antiresonant terms are included), and it is not possible to
distinguish between the analytical and the semi-analytical curves on the
scale of Fig.8. There is a certain quantitative disagreement with the spectra
reported in Ref. [52], thus showing that the present approach can improve
accuracy in computing spectra in the presence of dissipation.

We do not analyze and assign the spectrum in detail here – that has
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Figure 8: Benzoic acid dimer, embedded in a crystal. IR absorption spectra
computed for T = 40, 100, 200, 300K (from lowest to highest frame). The
spectra are scaled in order to keep the peak at ≈ 1140 cm−1 at 80 % of the
height of the frame. For the lowest temperature a very high peak emerges at
59.76 cm−1, whose features are plotted in Fig. 9, at the same vertical scale.
The analytical spectra are indistinguishable from the computed ones.

already been done elsewhere [52]. It is enough to note that the differ-
ent (broadened) lines correspond to either (double–) hydrogen transfer or
molecular frame modes. From Fig.8 we note that in particular at very low
temperatures (e.g., at T = 40 K), there exists a very sharp peak right be-
low ω = 60 cm−1, which corresponds to the hydrogen transfer mode. This
peak is particularly hard to compute by a series expansion, because (i) ω is
small (which is unfavourable according to Fig.6), (ii) the dissipation is weak
(which is unfavourable according to Fig.7, and because many ωi are needed).
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To converge the 40K spectrum around ω = 60 cm−1, a series of order
n = 4 ·107 was needed, which took about 40 min of CPU time on a medium–
sized workstation. For this calculation, the ratio between the modulus of
the last coefficient and the first one, cn(ω)/c0(ω), was set to 10−7. Fig.9,
which is a blow–up of the spectrum around the 60 cm−1 peak, shows that this
accuracy is indeed sufficient to give agreement with the analytical result even
on a high–resolution scale. Also, with a ratio cn(ω)/c0(ω) = 10−5 the series
(25) gives a reasonable agreement with the analytical answer. However, by
choosing cn(ω)/c0(ω) = 10−3, the semi–analytical peak becomes too broad,
and artificial oscillations emerge at the wings of the Lorentzian.
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Figure 9: The absorption spectrum around the peak at 59.76 cm−1 is shown
as computed for three different ratios cn(ω)/c0(ω) of the moduli of the last
and first expansion coefficients: 10−7 (circles), 10−5 (triangles) and 10−3

(diamonds). The analytical solution is depicted as a solid line.

In contrast for other peaks of the spectrum a ratio of 10−3 gives a spec-
trum almost indistinguishable from the analytical one, even at temperatures
as low as T = 40K. At the same time, for larger ω a shorter polynomial ex-
pansion suffices to make the ratio cn(ω)/c0(ω) small (see Fig.6). At ω ≈ 1200
cm−1, for example, we require only n ≈ 2 · 103 terms to converge the spec-
trum with cn(ω)/c0(ω) = 10−3. And even cn(ω)/c0(ω) = 10−7 requires only
n ≈ 8 · 103 in this case.

4.3 More general applications

The application of Newton or Faber polynomial integrators is neither re-
stricted to Lindblad dissipation (22), nor to time–independent Liouvillians.
For illustration, we considered a double minimum potential hydrogen trans-
fer model similar to the one described in the last subsection (see Ref.[53])
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for details), with two important differences: (1) The hydrogen transfer was
driven by coupling the molecular dipole to an explicitly time–dependent,
pulsed electromagnetic field in the IR frequency domain, and (2) the dissi-
pation was of Redfield form, i.e., elementwise,

(LD ρ̂)kl =
∑
i,j

Rkl,ij ρij . (28)

Here, the elements of the relaxation tensor, Rkl,ij, and all other computa-
tional parameters where taken from Ref.[53]. In contrast to Lindblad dissi-
pation, Equ.(28) allows for the coupling of diagonal and off–diagonal density
matrix elements, as well as for the coupling between different off–diagonal
elements.

For these applications, it turned out that even in the case of a rapidly
oscillating driving field, both the Newton–Lejá and the Faber expansion can
outperform a standard Runge–Kutta integrator in terms of computation
time. This was particularly so when when high accuracy was demanded for.
This is not necessarily to be expected, since polynomial expansions are (due
to their exponential convergence [1]), most efficient when large polynomial
orders and large timesteps can be used.

It further appears that the polynomial integrators are general enough
to cope not only with Lindblad forms of dissipation, in contrast, e.g., to
stochastic wave packet methods [18]. Even when the dissipation is chosen
artificially strong, in which case the Redfield form (28) leads to physically
meaningless negative eigenvalues of the density matrix, the polynomial in-
tegators proved to be stable – only special care had to be taken during the
scaling procedure.

5 Conclusions

In conclusion, both the Newton–Lejá interpolation and the Faber approx-
imation are very valuable tools to integrate a Markovian, open–system
Liouville–von Neumann equation (1) in time. Both integrators are stable and
accurate; various measures can be given to keep their accuracy well under
control. In particular the Faber approximation appears to be highly stable
and easy to implement; it further leads to an efficient, semi–analytical series
expansion for the linear absorption coefficient for condensed phase spectra.
Both algorithms are found to be fast (even for explcitly time–dependent
problems), and general (the dissipative Liouvillian must only be Markovian).

These propagators will therefore be useful not only when a benchmark
solution is required, but also for physical applications where other methods
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cannot easily be used in practice. Also, the polynomial expansion of others
than the exponential function of a Liouvillian will be of interest. Finally,
a critical comparison of the polynomial integrators presented here to e.g.
the split–operator integrators [8, 10, 27] should be a rewarding task for the
future.
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