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0. Introduction 

Mesh independence of Newton's method means that Newton's method applied 
to a family of finite dimensional discretizations of a Banach space nonlinear oper
ator equation behaves essentially the same for all sufficiently fine discretizations. 
This fact has been frequently observed and even used in designing efficient mesh 
refinement strategies for certain classes of nonlinear equations (e.g. [1], [9]). 

In order to explain these observations, a mesh independence principle for New
ton's method has been proved in [2] for general families of discretizations that 
are bounded, stable, consistent and Lipschitz uniform. The last property means 
that the Frechet derivatives of the finite dimensional operators are Lipschitz con
tinuous with a Lipschitz constant that is independent of the mesh size. Such 
a uniform Lipschitz condition may be hard to verify for a number of operator 
equations (such as the biharmonic equation). In the present paper we do not re
quire this property as an axiom, but obtain it asymptotically in a rather natural 
way by assuming certain simple convergence conditions that implicitly contain 
a stability assumption. In our framework, the proof of mesh independence is 
much simpler and gives more insight. Another advantage of our approach is that 
we are only using norms corresponding to the domain of definition of the oper
ators and no norms in the domain of values or corresponding operator norms 
as in [2], On one hand this leads to better theoretical bounds, and on the other 
hand this opens the possibility that all quantities needed for applications can 
be numerically estimated. 

In proving our results we use a presumably new refined version of the Mysovskii 
theorem which guarantees, under some affine-invariant assumptions, the exis
tence and the uniqueness of the solution, as well as the quadratic convergence 
of the Newton iterates towards this solution. This theorem may be of interest 
in a much wider context, especially its uniqueness result. 

In the first section of our paper, we state and prove the refined version of the 
Mysovskii theorem and show that, for operators that are twice Frechet differ-
entiable, its hypothesis is equivalent to the hypothesis of the affine invariant 
version of the Mysovskii theorem due to DEUFLHARD/HEINDL [7], which has 
been slightly refined by BOCK [5]. The second section contains different aspects 
of our asymptotic mesh independence principle for Newton's method when ap
plied in the context of Galerkin approximations. 
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1. A Refined Newton-Mysovskii Theorem 

Consider a nonlinear operator equation of the form 

F{x) = 0 (1.1) 

where F : D C X —* Y is a, nonlinear mapping defined on a convex domain D 
of a Banach space X with values in a Banach space Y. Under certain conditions 
Newton's method 

xk+1=xk-F\xk)-1F(xk) it = 0 , 1 , . . . (1.2) 

produces a sequence {xfe}£L0 which converges to a solution x* of the equation 
(1.1). In (1.2) F'(xk) denotes the Frechet derivative of the nonlinear operator 
F at the point xk. At each step of Newton's method a linear equation of the 
form 

F'(xk)Axk = -F(xk) (1.3) 

must be solved yielding the correction 

xk+1 =xk + Axk . (1.4) 

The first convergence theorem for Newton's method in Banach spaces is due to 
L.V. KANTOROVITCH [8] — originally even in an affine-invariant form. The 
Kantorovitch theorem gives sufficient conditions under which equation (1.1) 
has a unique solution x* in a certain neighborhood of a;0, and proves that under 
those conditions the iterates given by (1.2) converge quadratically to x*. There 
is a huge literature concerning different aspects of the Kantorovitch theorem. 
For an account on some of the results, we refer the reader to the monograph of 
P O T R A / P T A K [11] and the paper of YAMAMOTO [13]. 

Another approach in studying the convergence of Newton's method was con
sidered by MYSOVSKII [10]. We start from an affine invariant version of the 
Mysovskii theorem that has been first considered by DEUFLHARD and HEINDL 
[7] and later refined by BOCK [5]. 

Theorem 1.1 Let F : D C X —> Y be continuously Frechet differentiable, with 
F'(x) invertible for all x 6 D, D open and convex. Assume that one can find a 
starting point x° £ D and constants a, u> > 0 such that 

I I F ^ x 0 ) " 1 ^ 0 ) ! ! < a < o o (1.5) 
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I F ' ( JZ) - 1 ( F ' ( X + s-(y-x))- F'(x)^j (y - x) <s-u\\y -x\\2 , 
(1.6) 

Vx, yeD, s 6 [0,1] 

h := au/2 < 1 (1.7) 

S(x°, />) := {x 6 X | ||x - x°|| <p}cD 
(1.8) 

toüÄ p = a E ^ _ 1 < a / ( l - Ä) . 
3=0 

Then the following results hold: 

(A) The sequence {xk} of Newton iterates generated by (1.2) remains in ~S(x°, p) 
and converges to a solution x* € ~S(x°,p) of (1.1). 

(B) The convergence rate can be estimated by 

| |^+i _ a.fc|| < w/2||xfc - x^1!!2 . (1.9) 

(C) In addition, one obtains the error estimates 

\\xk-x*\\<ek\\x
k-xk-1\\2 (1.10) 

where 
CO , . / O 

e ^ ^ B A ' V - 1 * ^ ^ . (LH) 

While the hypothesis of the above theorem implies the existence of a solution 
x* £ S(x°,p) of equation (1.1), nothing is said about the uniqueness of this 
solution. In what follows we will show that if the Lipschitz assumption (1.6) is 
exchanged by 

(1.12) 
I F ' (x)"1 (F'(x + s(y - x)) - F'(x))(y -x)\\< scv\\y - x||2 , 

Vx, y € D, s e [0,1] 

then x*can be proved to be the unique solution of (1.1) in the region 

D* := (J S(xk,2/u)nD 

where C1-13) 

S(xk,2/u) = {x G X | \\x - xfc|| < 2/w} . 

3 



We note that under the hypothesis of Theorem 1.1 we have xk+1 £ S(xk, 2/co) 
because 

||x*+i -x
k\\< Hx1 _ x ° | | < a < 2/w (1.14) 

so that D* is a connected set. We have clearly S(x*, 2/OJ) H D C D*. Moreover, 
it is easily seen from (1.8) that if h < 1/2 then x* £ S(X°,2/UJ). 

An immediate straightforward consequence of assumption (1.12) is — in the 
just introduced notation — that 

J F'(x)-1 (F{y) - F(x) - F'(x)(y - *)) ||< u/2\\y - x\\2, Vx, y € D . (1.15) 

This auxiliary result permits now a more detailed study of the attraction ball 
of Newton's method. 

Theorem 1.2 Let F : D C X —>Y be a nonlinear operator defined on a convex 
domain D of a Banach space X with values in a Banach space Y. Suppose that 
F is Frechet differentiable on D, that F'(x) is invertible for each x £ D, and 
that (1.12) is satisfied. Moreover, assume that equation (1.1) has a solution 
y* 6 D. Let y° £ D be such that 

S(y*,\\y°-y'\\)cD (Lie) 

and 
y°eS(f,2/u). (1.17) 

Then the iterates given by Newton's method 

yM-i =yk_ F ' ( / ) - i F ( j / * ) k = 0 , 1 , . . . (1.18) 

remain in the open ball S(y*, \\y° — y*\\), converge to y* and satisfy the following 
inequality 

| | 2 / f c + 1 - y i < W 2 | | / - y T , * = o , i , . . . (1.19) 

Moreover, y* is the unique solution in S(y*,2/u). 

Proof. Suppose that yk £ S~(y*, \\y° - y*\\). Using (1.18) and the fact that 
F(y*) — 0, we have 

yk+1-y* = yk-y*-F'(yk)-l(F(yk)-F(y*)) 

= F'{yk)-' (F(y*) - F(yk) - F'(yk)(y* - ykj) . 

From (1.15) and (1.17), it follows that 

||y*+1 - y' | | < u/2 \\yk - y*\\2 < u/2 \\y° - y*\\2 < \\y° -y*\\, 
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and the first part of the theorem is proved by a simple inductive argument. 

In order to prove uniqueness in S(y*,2/uj) let y° :'= y** for some y** ̂  y* with 
F(y**) = 0) which implies y1 = y** as well. Upon insertion into (1.19), this 
yields 

| | y « - y ' | | < w / 2 | | y " - y * | | a < | | y - - y ' | | , 

which is a contradiction. This completes the proof. • 

The result contained in the above theorem is certainly interesting in itself and 
— though being so simple — appears to be new. We will use it in proving 
our uniqueness theorem. In order to do that, we first observe that assumption 
(1.16) is required only to ensure the fact that the iterates (1.18) stay in D. If 
we can ensure by other means that 

yjED, j = 0 , 1 , . . . (1.20) 

then assumption (1.16) may be dropped from the hypothesis of Theorem 1.2. 

Theorem 1.3 Given the hypothesis of Theorem 1.1 replace the Lipschitz con
dition (1.6) by (1.12). Then x* is the unique solution of (1.1) in the region D* 
defined by (1.13). 

Proof. Suppose there is an y* 6 D such that F(y*) = 0. First, take some x° 
such that 

* ° € % * , 2 / u , ) , 

which is equivalent to 
y*eS(x°,2/u>). 

Theorem 1.2 guarantees that y* is unique in S(y*,2/uj). In order to show that 
y* is also unique in S(x°,2/u>), assume that there exists another solution 

y"eS{z0,2/u,)\S{y\2/u) 

with F(y**) = 0. Then y** must be the unique solution in S(y**,2/u) and the 
sequence of Newton iterates starting at x° must converge to y** — which is a 
contradiction to the uniqueness of the sequence of Newton iterates. Hence, y* 
is unique in S(x°,2/u)). Upon extending the same argument over all Newton 
iterates xk, one arrives at the natural definition of D* in (1.13). This completes 
the proof. • 

In what follows we will discuss the relationship between assumptions (1.6) and 
(1.12). First, observe that both are particular cases of the stronger assumption 

| | F , ( ^ ) - 1 ( F ( u ) - F ' ( a ; ) ) ( u - a ; ) | | < u ; | | u - z | | 2 Vu,x,z e D collinear . (1.21) 
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Indeed (1.6) follows from (1.21) by taking z — y and u = x + s(y — x), while 
(1.12) follows from (1.21) for z = x and u = x + s(y — x). Let u, x € D 
and denote by L the line containing u and x, and by L\ the half line of origin 
u, contained in L but not containing x. Assumption (1.6) says that (1.21) is 
satisfied only for z € L\ and not necessarily for all z £ L. However, we will 
prove that in case F is twice Frechet differentiate assumptions (1.6) and (1.21) 
are equivalent. First note that if F is twice Frechet differentiate then, by 
dividing both sides of (1.6) by s, and then setting s —* 0, we obtain 

\\F'(y)-
1F"(x)(y-xY\\<u;\\y-x\\2 Vx.y € D . (1.22) 

Lemma 1.4 Assume that the operator F : D C X —• Y is twice continuously 
Frechet differentiable on D, where D is open and convex, and X, Y are Banach 
spaces. Then properties (1.6), (1.21) and (1.22) are equivalent. 

Proof. We have already seen that (1.21) implies (1.6) and (1.6) implies (1.22). 
We are left to prove that (1.22) implies (1.21). Because F is twice continuously 
differentiable on D, we may apply the integral mean value theorem to obtain 

dt F'(z)-1 (F'(u) - F'(x)) (u-x) = JF\z)-xF" (x + t{u - x))(u - x)' 
0 

for any u, x, z € D. If u, x, z are collinear, then by writing 

u = x + v, z = x + jxv, x(t) — x + tv 

it follows that 

F ' (z) - 1 (F'(u) - F'(x))(u -x) = l^-L-F'(z)-lF"(x(t)) (z - x{t)fdt. 

By majorizing under the integral sign and using (1.22), we have 

IIF'(z)"1 (F>(u) - F'(x))(u -x)\\< »JllZ
{~*{ly2dt 

l 

= u 1 \\u - x\\2dt = u\\u -x\\2 , 
o 

which proves that (1.21) is satisfied. 
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The above lemma motivates us to replace condition (1.6) in the hypothesis of 
Theorem 1.1 by the stronger, but practically equivalent condition (1.21). By 
doing this we obtain both existence and uniqueness of the solution of (1.1). For 
convenience, we repeat all assumptions explicitly. 

Theorem 1.5 (refined Newton-Mysovskii theorem) 
Let F : D C X —> Y be continuously Frechet differentiate, with F'(x) invertible 
for all x £ D, D open and convex. Assume that one can find a starting point 
x € D and constants a, u > 0 such that 

\\F'(x0)-1F(x°)\\<a<oo, 

| | F ' ( Ä ) - 1 ( F ( u ) - F / ( x ) ) ( u - a ; ) | | < w | | u - x | | 2 Vu,x,*eZ> collinear, 

h := aw/2 < 1 , 

5(x°, p):={x€X\ \\x - x°\\ < p} C D 

with p = aZ h23-1 < a / ( l - h) 
3=0 

Then: 

(A) The sequence {xk} of Newton iterates (1.2) remains in S(x°,p) and con
verges to a solution x* €E ~S(x°,p) of equation (1.1). 

(B) x* is the unique solution of'(1.1) in the region 

CO 

D* := \JS(xk,2/u;)nD 

(C) The following error estimates hold 

| | ^ -x f c + 1 | | <u ; /2 | | x f c - 1 - a ;
f c | | 2 

| |x*-:r*| | <u/2\\xk-1-xm\\2 

, . , \\xk-xk+1\\ 
\\xk -x*\\ < l - w / 2 | | x * - x * + 1 | | 

The proof has been given in the above careful stepwise derivation. 
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2. Asymptotic Mesh Independence of Newton-
Galerkin Methods 

In the previous section we have given sufficient conditions under which the 
Newton iterates (1.2) converge toward a unique solution x* of the nonlinear 
equation (1.1). However, if X and Y are infinite dimensional spaces then the 
solution of the linear equation (1.3) can rarely be found in applications, so that 
in practice equation (1.1) is replaced by a family of discretized equations 

Fj(xj) = 0 i = 0 , 1 , . . . (2.1) 

where Fj : Dj C Xj —•> Yj is a nonlinear operator defined on a convex domain 
Dj of a finite-dimensional subspace Xj C X with values in a finite dimensional 
subspace Yj C Y. This means that we restrict our attention to Galerkin meth
ods. For finite difference methods, similar results should hold — but the proofs 
would certainly be much more technical. 

One would like to choose the "discretized operators" Fj in such a way that a 
solution x*j of (2.1) can be computed for each j so that 

lim x* = x* . (2.2) 
j—KXl J 

Eventually x*j should be obtainable via Newton's method applied to the finite 
dimensional equation (2.1): 

x)^=xkj-F'j{xkj)-lFj{x% * = 0 , 1 , . . . (2.3) 

Corresponding to (1.3) and (1.4) one Newton step for (2.1) is performed by first 
solving the finite dimensional linear equation 

F'j{x))^x) = -Fj(xk
k) (2.4) 

and then by setting 
xk+l=xk + Axk. (2.5) 

In order for (2.2) to hold, one has to assume that the elements of the infi
nite dimensional space X can be well approximated by elements of the finite 
dimensional subspaces Xj. In fact we may well restrict ourselves to a subset 
W* C X consisting of elements that have "better smoothness properties" than 
the generic elements of X. We assume that 

{x*,xk,xk -x*,Axk}cW*, fc = 0 , l , . . . (2.6) 



This assumption is quite natural because x* is the solution of the nonlinear 
equation (1.1) and Axk is the solution of the linear equation (1.3), and therefore 
under reasonable conditions they have better smoothness properties. 

Let 7Tj : X —> Xj, j = 0 , 1 , . . . be some family of linear projection operators. 
Assume that these operators are uniformly bounded on W*, which means that 
they satisfy a stability condition of the type 

\\njX\\ < £||:r||, x € W\ qj < q < oo . (2.7) 

The projection property irj = TTJ then immediately implies that 

qj > 1 . (2.8) 

Subsequently, the most interesting case will turn out to be that the constants 
qj satisfy 

Jim qj = q. (2.9) 
J-fOO 

The fact that the subspaces Xj can be used to approximate the elements of W* 
well, at least asymptotically, is expressed by the approximation condition 

\\x-irjX\\ < 8j\\x\\, I G T , j = 0 , 1 , . . . (2.10) 

l im<5,=0. (2.11) 
j—»CO 

For most of the subsequent results we will need monotonicity of the kind 

*i+i < ^ , i = 0 , l , . . . (2.12) 

Thus the discretization method is characterized here by the family of triplets 

{Fj,*M, j = 0 , 1 , . . . (2.13) 

We assume that the domains Dj of the discretized operators are such that 

Sj{TTjx\2/u)cDjCD, j =0,1,... (2.14) 

where Sj(zj,r) := {x 6 Xj \ \\x — Zj\\ < r } . We also assume that the discretiza
tion is consistent in the sense that there are positive constants Co, Cy such that 
the following properties hold: 

C0: if Uj G Xj and u € X are solutions of the linear equations 

F'j(KjX)Uj = Fj{TTjX) 

F'(x)u = F(x) 

where x £ W* C\D, WjX 6 Dj, then 

\\uj-irjul\Kco8j, i = 0 , 1 , . . . (2.15) 
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C\: if Wj G Xj and w € X are solutions of the linear equations 

J*(*>,- = F?(Xj)v? 

F'(Zj)w = F"(Xj)v] 

where Xj, Zj G Dj, Vj € span(^ — Xj), then 

H - * i H I < M ; M a J =0,1,. . . (2.16) 

We note that the consistency condition C\ may be rephrased in first Frechet 
derivative terms, if we replace 

F'\Xj)v) 

by 

(see (1.21) and (1.22)). For the simplicity of the subsequent presentation, how
ever, we prefer to use the second derivative formulation. The connection be
tween the Lipschitz constant u for the operator equation and the associated 
Uj for the finite-dimensional approximating nonlinear systems is studied in the 
following lemma. 

Lemma 2.1 Let F : D C X —> Y satisfy the hypothesis of Lemma 1.4 and 
suppose that the discretization method (2.13) satisfies (2.7), (2.10), (2.12), (2.14) 
as well as C\. Then 

l ^ i ) - 1 ^ ) -/*(*;))(«; -Xj)\\ <Uj\\Ui -Xj\\> 
(z.17) 

V Uj, Xj, Zj G Dj collinear, 

where 
Uj = uqj + CiSj (2.18) 

Proof. With the choice of assumption Ci, the proof is elementary. Just apply, 
in the above notation, the definitions 

IK II < ";IMIa, 
HI < «Nl2 , 
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and the inequalities 

IKII ^ IK - *-;«>ll + \\*M\ < M + ?;w)KII2 • 
• 

Recall that the Lipschitz constant tu,- (chosen best possible ) governs the conver
gence speed of Newton's iteration in subspace Xj. Note that the assumptions 
(2.9) and (2.11) imply that 

lim ujj = uiq , (2.19) 
j-+oo 

which means that the convergence speed is asymptotically constant. 
For a more precise statement, the initial guesses x° need to be additionally 
related. In what follows, two selections will be made: first, setting x® := TTJX* 

will lead to a local existence and uniqueness result (Theorem 2.2) and second, 
setting x°j "sufficiently close" to x*j, will lead to a formulation of the asymptotic 
mesh independence property (Theorem 2.3). 

Theorem 2.2 Under the hypothesis of Theorem 1.5 suppose that F is twice 
continuously Frechet differentiable on D. Consider a discretization method 
given by the family of triplets (2.13) that satisfy (2.7), (2.10), (2.12) and (2.14). 
Assume also that the operators Fj are twice continuously differentiable on Dj, 
that F'j(xj) is invertible for each Xj € Dj and that conditions Co and C\ are 
satisfied. 

Then there is a refinement index j * € IN such that for any j > j * equation (2.1) 
has a solution x*j that satisfies the inequality 

\\x*j-irjx*\\<2c0Sj. (2.20) 

Moreover x*j is the unique solution of (2.1) in the region 

Sj(TTjX*,2/u;j)nDj (2.21) 

where Uj is given by (2.18). 

Proof. The basic idea is to set a formal starting point x® := KjX* and to apply 
Theorem 1.5 to the associated Newton iteration. For ease of writing denote 

u'^F^jxT'FjinjX*), a * : = | K | | . 

Because x* is a solution of (1.1), we have 

u* := F'{x*)-lF{x*) = 0 
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and by using property C0 we obtain 

«i = KII = IK-- ' i«l<cb*i. (2-22) 

Denote the Kantorovitch quantity by 

* ; : = a ; W i / 2 . 

From (2.18) and (2.22), it follows that 

h.) < {wqj + c15i)c06i/2 , 

so that by virtue of (2.7) and (2.12) there is a refinement index j * > 0 such 
that h) < 1/2 for j > j * . It follows that 

°° a* 
Pi ••= «i E ( ^ ) 2 ' - 1 < TZT7 < 2«* < 2 ^ , - . 

«=o l "•j 

Now, applying Theorem 1.5 to Newton's process (2.3) with starting point x'j, we 
deduce the existence of a solution x*- € S'j(njX*, p*-) which is the unique solution 
of (2.1) in the region 

oo 

D*=[jSj(x
k
j,2/uj)nD. 

Jt=0 

In particular x^ is the unique solution of (2.1) in the region (2.21). • 

Next consider Newton's process (2.3) with some starting point x° 6 Dj and let 
aj(x'j) be given by 

«;(*") == m^^n • (2-23) 
if 

M*J) = ai(xJ)a;i/2 < 1 (2.24) 
then we may define 

oo 

«(*?):= 2ME[M*J)]a'- (2-25) 
t'=0 

If besides (2.24) we also have 

MxM*tycD* (2-26) 
then according to Theorem 1.5 and Lemma 2.1 the sequence {x^}^LQ given 
by (2.3) will converge to a solution of the equation (2.1). In general it may 
converge to a solution that is different from the solution x'j whose existence 
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and uniqueness is guaranteed by Theorem 2.2. However this is not the case for 
properly chosen starting points. For example, if 

\\x°j-x*\\<2/uJj (2.27) 

then according to Theorem 1.2 the sequence {x1- }£i0 will converge to x*j. When
ever the Newton iterates (2.3) stay in Dj and converge to x*^ they satisfy the 
error estimates 

| | x J -xJ + 1 | | < W i /2 | | a ! J - 1 -xJ | | a (2.28) 

\\^-z]\\<Uil2\\^-x)f. (2.29) 

Under the asymptotic assumption (2.19), the estimates (2.28) and (2.29) show 
that for ,;' sufficiently large all sequences of Newton iterates associated with the 
finite-dimensional equations (2.1) behave the same. This is the essence of our 
asymptotic mesh independence property. If, in addition, the relation (2.9) is 
satisfied with 

]imqj = q = l , (2.30) 

then the number of steps required to reduce an initial error by a given factor is 
essentially the same for the continuous Newton process (1.2) and the discrete 
Newton process (2.3), provided j is large enough. Indeed, suppose that the 
initial error satisfies (2.27) and let e > 0 be a given (small) positive number. 
We want to find an integer kj := kj(x?,e) such that 

| | a?J -a ; ; | |<e , k > kj . (2.31) 

By multiplying both sides of (2.29) by UJJ/2 we deduce that 

u>M4-*nziuM*0j-*j\\f- (2-32) 
Hence (2.31) is satisfied, whenever 

[<V2||*S-*;||]*<wjC/2. (2.33) 

It follows that we may take 

ln(cOje/2) 
kj{Xj,e) — log2 

(2.34) 
>(Wj | |*$-*}||/2), 

where ] x [ := min{p| p integer,p > x}. Similarly, if 

| | x ° - x * | | < 2 / a ; (2.35) 
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then 

for k > k(x°,e), where 

k(x°,e) = 

\x — x v. g 

l°g2 

ln(ue/2) 

/n(w| |s°-x*| | /2) 

(2.36) 

(2.37) 

Because fcj(x°,e) and k(x°,e) are integer valued, they will differ by at most one 
whenever u>j||x° — Xj\\ is close enough to u;||x° — x*||. This is certainly the case 
when condition (2.30) holds and when we relate the starting points for (2.3) by 

(2.38) 

This leads to our main asymptotic mesh independence result. 

Theorem 2.3 Under the hypothesis of Theorem 2.2 assume that (2.30) holds 
and that 

h = aw/2 < 1/2 . (2.39) 

Then there is ji > j * such that for each j > j \ the sequence of Newton iterates 
(2.3) with starting point (2.38) converges to x*?. Moreover, inequalities (2.35) 
and (2.27) are satisfied for j > j \ and 

\k^jX\e)-k{x\e)\<l, j>h. (2.40) 

//, instead o/(2.30) only (2.9) holds for q > 1, then the above results are valid 
with u to be replaced by uq. 

Proof. Let q = 1 w.l.o.g. (2.39) implies a < 1/w so that by using Theorem 
1.1 we obtain 

\\x° - a;*|| < p < a / ( l - h) < 2a < 2/w (2.41) 

which proves (2.35). Moreover, with (2.38) 

| ^ ( x 0 - x ' ) | | - IK** - x*|| I < Us? - 3 | | < | |T .(so _ x . ) | | + l]w.x* _ x*|| 

and by using Theorem 2.2 and (2.30) we deduce that 

l i m | K ° - x * | | = | | x ° - x * 
J-+00 

(2.42) 

Then from (2.19) and (2.35) it follows that 

Jim Wj-HxJ - x*|| = w||x° - x*|| < 2 (2.43) 
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This shows that both (2.27) and (2.40) are satisfied for all j sufficiently 
large. • 

The integer (2.37) cannot be exactly computed in practice because the quantity 
11x° — x* || is in general unknown. In this case we may use the last inequality 
from the statement of Theorem 1.5 to conclude that (2.36) is satisfied whenever 

\x
k-x

k+i\\ < 
1 + we/2 

(2.44) 

By using (1.9) and proceeding the same as in the deduction of (2.34) it follows 
that (2.44) is satisfied for all k > k(x°,e), where 

k{x°,e) log2 In ue 
2 + ue 

In h (2.45) 

Once more, u> may be replaced by wq whenever q ̂  1. In particular (2.36) is 
also satisfied for all k > k(x°,e). Similarly, if (2.24) holds, and if the sequence 
(2.3) converges to x*-, then inequality (2.31) is satisfied for all k > fc,(x°,e), 
where 

^('"(ö^l/toM*?)) • (2-46) *;(*?>*) = 2 + Uje, 

Suppose that the constants a and h in Theorem 1.1 are determined exactly, i.e.: 

a = a(x°) := WF^x^Fix0)]], h = h{x°) = a{x°)uj/2 . (2.47) 

Then from assumption Co and (2.11) it follows that 

lim ajfax0) = a . (2.48) 
j—>oo 

By applying (2.19), we obtain 

lim hjfax0) = h , (2.49) 
j-»oo 

which leads to the following corollary: 

Corollary 2.4 Under the hypothesis of Theorem 2.3, there is a ji > j \ , such 
that (2.24) holds for x° = ITJX0, j > ji and 

\kj(7rjx°,e)-k(x°,e)\<l, j > j 2 . (2.50) 
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Condition (2.30) is generally not satisfied for important discretization methods. 
Nevertheless, under the hypothesis of Theorem 2.2 it always follows that 

lim OJJWTTJX0 - x*\\ < uq2\\x° - x*\\ . (2.51) 

On the other hand from Theorem 1.1 we have 

u;||a:0 - x*\\/2 < up/2 < h/(l - h) . (2.52) 

From (2.51) and (2.52) we deduce that if the constant h satisfies the inequality 

h<l/(l+f) (2-53) 

then 
l imw j | |7r , -a : 0 -xj | |<2. (2.54) 

Hence (2.27) is satisfied for j sufficiently large and x° = TTJX0. We also have 

lim hj(xjx°) < fh < q2/(l + f) (2.55) 
j—+oo 

so that (2.24) is also satisfied for j sufficiently large. Hence we obtain the 
following result. 

Corollary 2.5 Under the hypothesis of Theorem 2.2 assume that inequality 
(2.53) is satisfied. Then there is jz > j * such that for any j > j'3 the se
quence {a:*}?!,) given by (2.3) with starting point (2.38) converges to x'- and the 
inequalities (2.24) and (2.27) are satisfied. 

In order to illustrate the above theory, the key result (2.18) will now be discussed 
for a special example. 

Example: Spline collocation in 1-D. This is a rather popular technique 
of solving boundary value problems (BVP's) for ordinary differential equations 
(ODE's) — see e.g. the recent textbook by A S C H E R / M A T T H E I J / R U S S E L L [3]. 
Following the basic theoretical paper by DE BOOR/SWARTZ [6], the subspaces 
Xj are defined on a (strict) partition 

Aj := {a = t0 < U < ... < tnj = 6} 

with (rij + 1) nodes over the finite interval [a, b]. The projection ITJ maps, say, 
the space C[a, b] to some space 

C i . : = C [ ( 0 , l i ] x . . . x C [ l „ r i , g 
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of piecewise continuous functions with certain additional specifications at the 
nodes of Aj (to be ignored here). Upon equipping this space with the canonical 
C°-norm — piecewise, of course — it is a Banach space. Assume that poly
nomial splines of fixed order k are chosen throughout Aj. Now, we maximize 
over each single sub-interval I{ C Aj separately, use the Lagrangian representa
tion and recall that the fundamental Lagrange polynomials are invariant under 
stretching of each sub-interval. Thus we end up with the stability result 

k 

qj = q = Ak ••= max £ \Ltk(s)\ , (2.56) 

in terms of the Lebesgue constant A^. It is well-known that independent of the 
choice of the internal nodes (within each sub-interval) 

A * > 1 , A: = 1,2,... , (2.57) 

in agreement with (2.8). Furthermore, let 

|Aj| :=max|*,+ 1 -t{\ (2.58) 

and denote the modulus of continuity of some / G C[a,fe] by 07, then the 
following approximation result from [6] can be used: 

| | / - njf\\ < 6(Afc + l)af(|^|/(2A: - 2)) . (2.59) 

At this point, in order to obtain a bounded 8j, we introduce for fixed K > 0, 
0 < 7 < 1 the subspace 

1 (2.60) 
s,t G [a,b}j . 

In view of the underlying BVP, Holder continuity is certainly a reasonable 
concept. With these preparations, we obtain 

sup ||/ - *jf\\ < Sj := 6(A* + 1)K • (JMY . (2.61) 
/€W,||/||=i \lk-2J 

For 7 > 0, the behavior of |Aj-| directly carries over to the behavior of Sj. Hence 

lim ^ 1 = 0 (2.62) 
j—t-CO 

implies (2.11) and the monotonicity property 

|A j + 1 | < |AJI (2.63) 
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implies (2.12) — without any quasi-uniformity assumption. This means that 
the above results cover the adaptive implementations of spline collocation as 
realized in codes like COLSYS or COLNEW. 

At this point, the key result (2.18) can already be discussed — assuming that 
bounded constants CQ, C\ can be found for the collocation approach, but without 
specifying these constants. As a first aspect, 1-D collocation for fixed order k 
can be seen to have the asymptotic mesh independence property, since 

lim ojj = u> A*, . (2.64) 
j—>-oo 

Moreover, with Gaussian nodes as internal collocation points (in view of the 
desirable superconvergence property at the nodes of Aj), the Lebesgue constant 
Afc remains decent — growing roughly like kxl2 for the small values of k, which 
are of practical interest. As a second aspect, Theorem 2.2 applied to the present 
context guarantees — under mild assumptions (boundedness of Co,Ci) — that 
the discretized nonlinear systems have locally unique discrete solutions x*j for 
sufficiently fine meshes. In particular, a rather constructive characterization 
of the term "sufficiently fine mesh" is given, which ai. the same time gives an 
error bound in comparison with TTJX*. In this sense, the above theory improves 
the comparable, but non-constructive results of DE BOOR/SWARTZ [6] and the 
constructive, but less transparent results of BADER's thesis [4]. 

Remark. In [4], BADER had already used the basic idea behind our Theo
rem 2.2. Instead of our refined Mysovskii theorem, however, he applied an affine 
invariant modification of the convergence theorem of RALL [12]. Moreover he 
used a different norm of the projection TTJ, namely 

p. :== »*' - ^ ' 1 1 > 1 , (2.65) 
F] dist(x*,X,) _ ' v ' 

which had been suggested in [6]. 

As illustrated above, the asymptotic mesh independence property for 1-D col
location does not really rely on essentials of the collocation approach. In fact, 
the same arguments hold for an adaptive finite element method in 1-D as well. 
In particular, Ai = 1 covers the case of linear elements. Even more interesting 
consequences for the construction of adaptive Newton-multilevel FEM in 2-D 
and 3-D follow from the above theory — a topic, which is, however, beyond the 
scope of the present paper. 
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