
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

MARC C. STEINBACH

Recursive Direct Algorithms for Multistage Stochastic
Programs in Financial Engineering

Preprint SC 98-23 (August 1998)



Recursive Direct Algorithms for Multistage Stochastic Programs

in Financial Engineering

Marc C. Steinbach

August 29, 1998

Abstract

Multistage stochastic programs can be seen as discrete optimal control problems with a char-

acteristic dynamic structure induced by the scenario tree. To exploit that structure, we propose

a highly efficient dynamic programming recursion for the computationally intensive task of KKT

systems solution within an interior point method. Test runs on a multistage portfolio selection

problem demonstrate the performance of the algorithm.

1 Introduction

Multistage stochastic programs have become an important approach to model the process of decision

making under uncertainty over a finite planning horizon. Important applications include, among

others, financial engineering problems such as portfolio selection or asset and liability management.

Multistage stochastic programs are considered a very hard class of optimization problems since their

size can become excessively large even for coarse discretizations of the probability space and possibly

the time horizon. Nevertheless, the characteristic structure of scenario trees makes these problems

tractable by numerical algorithms. Among the most prominent ones are several variants of decompo-

sition methods. Primal decomposition approaches [3, 6, 9] assign a small local optimization problem

to every node and treat the vertical coupling between stages iteratively, by passing intermediate

solutions up and objective and feasibility cuts down the scenario tree. Dual decomposition and

progressive hedging algorithms [13, 15, 17] optimize individual scenarios and iterate on the nonantic-

ipativity condition representing the horizontal coupling. Both groups of algorithms offer a significant

degree of inherent parallelism [2, 4, 7, 18].

This paper presents a highly efficient method adopting the complementary strategy: as in [1, 5, 10],

optimality and feasibility are achieved by an interior point iteration whereas the global coupling across

the tree is treated explicitly. The distinguishing new component of our method is a recursive direct

KKT solver that fully exploits the topological structure of the scenario tree. Rapid convergence is

ensured by a simple but effective refinement technique that exploits the multistage stochastic nature

of the problem. Due to space limitations, this technique will be presented in a forthcoming paper [21];

our emphasis here is on the inherent dynamic structure of multistage stochastic programs, which we

view as discrete optimal control problems. Two formulations of dynamics are distinguished, explicit

and implicit, and corresponding classes of tree-sparse quadratic programs (QP) are introduced. These

purely equality-constrained QP represent simple, well-understood optimization problems in their own

right, whose solution by direct application of dynamic programming naturally leads to the KKT

1



recursions of interest. On the other hand, their structure is sufficiently general to catch the essentials

of nonlinear stochastic optimization within interior point or sequential quadratic programming (SQP)

methods. In fact, the KKT recursion generalizes a previous serial version that has been successfully

applied in a direct SQP method for nonlinear trajectory optimization [22, 23, 24].

The remainder of the paper is organized as follows. After introducing a quadratic multistage portfolio

selection problem as an example, we formulate explicit and implicit tree-sparse quadratic programs

as general problem classes, and present the recursive solution algorithms. Computational results on

the example problem demonstrate the excellent performance of these algorithms. Finally we provide

some conclusions and future directions of research.

2 A multistage portfolio selection problem

We consider a multistage extension of the mean-variance approach as introduced by Frauendorfer [8].

Assume that a portfolio manager can invest into n risky assets. After the initial investment at t = 0

the portfolio may be restructured at discrete times t = 1, . . . , T ; it is redeemed one period later at

time T+1. Denote by vνt the transaction volume in asset ν at time t (positive for buying, negative for

selling), by xνt the capital at time t after rebalancing, and by vt, xt ∈ Rn the vectors with components

vνt , x
ν
t , respectively. The initial wealth is normalized and fully invested, and subsequent transactions

do not change the wealth. With e := (1, . . . , 1) these conditions read e∗x0 = 1 and e∗vt = 0, t > 0.

The objective is to minimize risk while achieving a prescribed expected return on investment. This

yields the same efficient frontier as maximizing the expected return ρ for a given level of risk and can

be seen as a multistage version of the classical Markowitz approach [11]. Other researchers formulate

the portfolio selection problem as a stochastic network problem [12, 14] or model the tradeoff between

profit and risk by a utility function [6].

A standard factor model is assumed for the random returns and associated risk: the risk driving

factors are given by stochastic data ωt observed at time t = 0, . . . , T . Denote by ωt := (ω0, . . . , ωt)

the history of random events up to time t, by rt(ω
t) ∈ Rn the vector of returns in period [t − 1, t],

by r̄T (ω
T ) = E(rT+1(ω

T+1|ωT )) the expected return in period [T, T + 1] conditioned on ωT , and

by ΣT (ω
T ) ∈ Rn×n the associated covariance matrix. The decision at time t > 0 is made after

observing ωt, yielding asset capitals xνt = rνt (ω
t)xνt−1 + vνt . Clearly, this leads to a nonanticipative

policy x = (x0, . . . , xT ), that is, decisions may depend on the past but not on future events. (Note

that ω0 is observed before the initial decision and can thus be treated deterministically.)

Risk is modeled as the variance of the expected return at T + 1, which can be written as

σ2
ωT+1

{
rT+1(ω

T+1)∗xT (ωT )
}
= EωT

{
xT (ω

T )∗
[
ΣT (ω

T ) + r̄T (ω
T )r̄T (ω

T )∗
]
xT (ω

T )
}
− ρ2. (1)

For numerical computations, the stochastic evolvement of risk driving factors is approximated by a

discrete set of scenarios, that is, sequences of events. Given a partial event history ωt, we distinguish

only finitely many possible outcomes for the next observation ωt+1. This branching process creates

a scenario tree rooted in the deterministic initial event ω0. We denote by Lt the level set of nodes

representing event histories ωt up to time t, by L ≡ LT the set of leaves, and by V :=
⋃T

t=0 Lt the

complete vertex set. In the following we use j ∈ V as node variable and denote by j = 0 the root,

by π(j) the predecessor (parent) of node j and by S(j) its set of successors (children). The path to

node j is a partial scenario with a probability pj; thus the probabilities sum up to one in each level

2



set Lt, t = 0, . . . , T . The tree structure reflects the growing amount of information: two scenarios

that are indistinguishable up to time t share the path (the same information ωt) up to some node

j ∈ Lt but may follow different branches when the next event ωt+1 is observed.

Assume that returns rj, r̄k and associated covariance matrices Σk are given (j ∈ V , k ∈ L ≡ LT ).

Dropping the constant −ρ2 in (1), the portfolio selection problem can then be written as the QP

min
x

∑
j∈L

x∗j [pj(Σj + r̄j r̄
∗
j )]xj (2)

s.t. e∗x0 = 1, (3)

e∗xj = r∗jxπ(j) ∀j ∈ V \ {0}, (4)∑
j∈L

pj r̄
∗
jxj = ρ. (5)

Note that the transaction volumes do not appear here: transition equations (4) simply state that the

net value of the portfolio remains unchanged when it is restructured. The same condition determines

the first component v1j uniquely if the “control vector” uj := (v2j , . . . , v
n
j )

∗ is given. Defining

E :=

(−e∗
I

)
∈ Rn×(n−1), h0 :=

(
1
0

)
∈ Rn,

and Gj := Diag(r1j , . . . , r
n
j ), hj := 0, j ∈ V \ {0}, we can thus replace (3,4) by explicit transition

equations xj = Gjxπ(j) +Euj + hj (with xπ(0) ∈ R0). The complete QP reads now

min
u,x

∑
j∈L

x∗j [pj(Σj + r̄j r̄
∗
j )]xj (6)

s.t. x0 = Eu0 + h0, (7)

xj = Gjxπ(j) +Euj ∀j ∈ V \ {0}, (8)∑
j∈L

pj r̄
∗
jxj = ρ. (9)

For a given scenario tree, both the implicit and the explicit QP represent deterministic equivalents

of the verbally formulated stochastic program. The explicit form clearly expresses their nature as

optimal control problems.

Realistic asset allocation problems typically include various inequality constraints imposed by the

investor and/or the market, a cash account (with riskless, deterministic return), transaction costs [6],

and often cash deposits and withdrawals. While the implicit form above is well suited and more

efficient for our simple model problem, the explicit form can easily be extended to include such

model refinements. Details will be given in a forthcoming paper.

3 General problem classes

In this section we introduce two general problem classes, the tree-sparse quadratic programs, based

on explicit and implicit dynamic equations, respectively. The explicit case, as a natural extension

of deterministic optimal control problems, is very similar to the problems introduced in [16]. The

implicit form is often used in financial applications but has not yet received much attention from

an optimal control viewpoint. A detailed study of both problem classes, the associated recursive

algorithms, and the relation of explicit and implicit formulations will be given in [20].

3



3.1 Dynamic structure

In the following we consider dynamic systems on arbitrary trees. For the sake of brevity, the parent

node of j will now be denoted by i ≡ π(j).

Explicit dynamics. Associated with each node j ∈ V are a state vector xj, a control vector uj,

and an (affine) transition mapping pj. Every state xj depends on its preceding state xi ≡ xπ(j) and

on control uj through explicit dynamic equations

xj = pj(xi, uj) = Gjxi +Ejuj + hj , j ∈ V. (10)

To avoid a special notation for the root j = 0, we formally assume that xπ(0) is zero-dimensional and

not associated with any node. Every control vector u = {uj}j∈V uniquely determines a state vector

x = {xj}. Thus the control variables represent all degrees of freedom in the dynamic system.

Implicit dynamics. As in the portfolio problem, a more compact formulation of dynamics is often

possible. Associated with each node is again a state xj but no control, and only part of xj depends

on the preceding state via implicit dynamics

pj(xi, xj) = Gjxi + hj − Pjxj = 0, j ∈ V. (11)

Here the transition mapping pj maps into a space with smaller dimension than xj , and Pj is required

to have full rank. Thus (11) leaves some local degrees of freedom (“controls”) hidden in xj .

3.2 Tree-sparse quadratic programs

We now formulate the quadratic programs which can be seen as discrete linear-quadratic optimal

control problems: the aim is to find states and (possibly hidden) controls that minimize the objective

while satisfying the dynamic equations and additional, problem-dependent linear constraints, the

latter usually representing boundary conditions. The quadratic objective is typically a sum of local

contributions, that is, it satisfies certain separability properties. This characterizes the tree-sparse

case; only the linear objective term and additional constraints may introduce global coupling across

the tree.

Explicit tree-sparse QP. The tree-sparse quadratic program with explicit dynamics takes the

general form

min
u,x

∑
j∈V

[
1

2
x∗jH

0
j xj +

1

2

(
xi
uj

)∗(
Hij J∗

j

Jj Kj

)(
xi
uj

)
+

(
dj
fj

)∗ (
uj
xj

)]
(12)

s.t. (Gj Ej)

(
xi
uj

)
+ hj = xj ∀j ∈ V, (13)

∑
j∈V

(Dj Fj)

(
uj
xj

)
+ eV = 0. (14)

Note that the linear objective terms and constraints involve node variables uj, xj , whereas the mixed

quadratic terms couple xi, uj along edge (i, j). These mixed terms may arise as second derivatives of

nonlinear transition mappings in general optimization problems, hence the different contributionsHij.

We defineHj := H0
j +
∑

k∈S(j)Hjk to collect pure quadratic terms associated with xj , and reformulate

the objective by substituting Hj for H0
j and zero for Hij . Potentially the boundary conditions (14)

4



couple all decision variables globally across the tree. Note, however, that initial conditions may be

modeled separately by suitable choice of the root transition mapping p0.

Regularity assumption. For QP (12–14) we require that (a) the constraints (13,14) have full rank,

and (b) the objective is strictly convex on the null space of dynamic equations (13). Condition (b) is

slightly stronger than usual: in addition to guaranteeing a unique minimizer, (a) and (b) also ensure

that the QP can be solved by the recursive tree-sparse PH method developed below.

Implicit tree-sparse QP. The tree-sparse quadratic program with implicit dynamics has the general

form

min
x

∑
j∈V

[1
2
x∗jHjxj + f∗

j xj
]

(15)

s.t. Gjxi + hj = Pjxj ∀j ∈ V, (16)∑
j∈V

Fjxj + eV = 0. (17)

Regularity assumption. For QP (15–17) we require more restrictive conditions than before: (a) the

constraints (16,17) have full rank, (b) the objective is strictly convex on the full space, i.e., every

Hj is positive definite. These conditions ensure that the tree-sparse SC method can be applied to

compute the unique minimizer.

4 Recursive solution

Under the respective regularity assumptions stated above, both the implicit and explicit tree-sparse

QP have unique minimizers that can be obtained through recursive solution of the KKT conditions.

Basically these recursive algorithms proceed as follows. In a leaf, all the local variables can be formally

eliminated. This modifies only the KKT data associated with the parent node, leaving a similarly

structured KKT system on the subtree without the leaf. Thus leaves are cut off in an inward recursion

until the root is eliminated, and a positive definite system determines the global multiplier μ. Node

variables are then computed in an outward recursion. The inward recursion actually defines a direct

symmetric factorization of the KKT matrix and transformation of the right hand side by one factor,

while the outward recursion corresponds to the adjoint transformation. Details will be given in [20]

along with proofs that only positive definite blocks are being inverted; here we restrict ourselves to

an algorithmic description of the recursions. In both cases we introduce artificial zero blocks in the

KKT conditions. These appear in positions that are modified during the recursion (fill-in), so they

might contain nonzero entries without invalidating the algorithms.

4.1 Recursion for the explicit QP: tree-sparse PH method

The Lagrangian of the explicit tree-sparse QP reads

L(u, x, λ, μ) =
∑
j∈V

[
1

2
x∗jHjxj +

1

2

(
xi
uj

)∗ (
0 J∗

j

Jj Kj

)(
xi
uj

)
+

(
dj
fj

)∗ (
uj
xj

)]
−

∑
j∈V

λ∗
j

[
(Gj Ej)

(
xi
uj

)
+ hj − xj

]
− μ∗

[∑
j∈V

(Dj Fj)

(
uj
xj

)
+ eV

]
.

5



Equating partial derivatives with respect to all variables uj , xj, λj , μ to zero and introducingXV := 0

yields the (linear indefinite) system of KKT conditions

Jjxi +Kjuj −E∗
j λj −D∗

jμ+ dj = 0 ∀j ∈ V, (18)

Hjxj +
∑

k∈S(j)
J∗
kuk + λj −

∑
k∈S(j)

G∗
kλk − F ∗

j μ+ fj = 0 ∀j ∈ V, (19)

Gjxi +Ejuj − xj + hj = 0 ∀j ∈ V, (20)∑
j∈V

(Djuj + Fjxj) +XV μ+ eV = 0. (21)

Consider a leaf j all of whose siblings are also leaves, S(i) ⊂ L, and observe that S(j) = ∅ in (19).

From (20) and (19) we obtain immediately

xj = Gjxi +Ejuj + hj , λj = −Hjxj + F ∗
j μ− fj. (22)

Substituting the expression for xj into (21) yields the local modification (in {i} ∪ S(i))

Fixi +
∑

j∈S(i)
(Djuj + Fjxj) +XV μ+ eV = F̂ixi +

∑
j∈S(i)

D̂juj +XV μ+ êV \S(i) (23)

where F̂i := Fi +
∑

j FjGj, D̂j := Dj +FjEj, and êV \S(i) := eV +
∑

j Fjhj . Similarly, substitution of

λj = −HjGjxi −HjEjuj +F ∗
j μ− f̄j, f̄j := fj +Hjhj into (18) and the parent’s equation (19) yields

Ĵjxi + K̂juj − D̂∗
jμ+ d̂j = 0, Ĥixi +

∑
j∈S(i)

Ĵ∗
j uj + λi − F̂ ∗

i μ+ f̂i = 0, (24)

respectively, where Ĵj := Jj+E∗
jHjGj, K̂j := Kj+E∗

jHjEj , d̂j := dj+E∗
j f̄j, Ĥi := Hi+

∑
j G

∗
jHjGj,

and f̂i := fi +
∑

j G
∗
j f̄j. From the first equation of (24) one obtains now

uj = −K̂−1
j (Ĵjxi − D̂∗

jμ+ d̂j). (25)

Substituting that expression into the second equation of (24) and into (23) restricts the KKT system

to the subtree with vertex set V \ S(i),

H̃ixi + λi − F̃ ∗
i μ+ f̃i = 0, F̂ixi +

∑
j∈S(i)

D̂juj +XV μ+ êV \S(i) = F̃ixi +XV \S(i)μ+ eV \S(i).

Here the modified data are H̃i := Ĥi−∑j Ĵ
∗
j K̂

−1
j Ĵj, F̃i := F̂i−∑j D̂jK̂

−1
j Ĵj, f̃i := f̂i−∑j Ĵ

∗
j K̂

−1
j d̂j ,

XV \S(i) := XV +
∑

j D̂jK̂
−1
j D̂∗

j , and eV \S(i) := êV \S(i) −
∑

j D̂jK̂
−1
j d̂j.

Repeating this process recursively creates the positive definite system X∅μ = −e∅ after eliminating

the root node. Using the solution μ and formulae (25,22), the node variables uj , xj , λj (in that order)

are then calculated in the outward recursion. XV = 0 may be replaced by any symmetric positive

semidefinite block (of suitable dimensions) or, more generally, by any symmetric block yielding a

positive definite X∅.
The elimination of xj, λj is a projection of the KKT system onto the null space of the local dynamic

equation, while elimination of uj is a local minimization using the projected Hessian K̂j. Thus each

recursion step represents a local version of the projected Hessian (PH) method (or null space method),

so we call the recursion a tree-sparse PH method. See [20, 22] for more details.

6



4.2 Recursion for the implicit QP: tree-sparse SC method

The Lagrangian of the implicit tree-sparse QP is

L(x, λ, μ) =
∑
j∈V

[1
2
x∗jHjxj + f∗

j xj
]
−
∑
j∈V

λ∗
j [Gjxi + hj − Pjxj ]− μ∗

[∑
j∈V

Fjxj + eV

]
.

After introducing XV := 0 and Yj := 0, Zj := 0, j ∈ V , the KKT conditions read

Hjxj + P ∗
j λj −

∑
k∈S(j)

G∗
kλk − F ∗

j μ+ fj = 0 ∀j ∈ V, (26)

Gjxi − Pjxj + Yjλj − Z∗
j μ+ hj = 0 ∀j ∈ V, (27)∑

j∈V
(Fjxj − Zjλj) +XV μ+ eV = 0. (28)

Again we consider a set of leaves S(i) ⊂ L with common parent i, so that S(j) = ∅ in (26) and

xj = −H−1
j (P ∗

j λj − F ∗
j μ+ fj). (29)

Substituting xj into (28) yields the local modification

∑
j∈S(i)

(Fjxj − Zjλj) +XV μ+ eV = −
∑

j∈S(i)
Ẑjλj + X̂V \S(i)μ+ êV \S(i) (30)

where Ẑj := Zj + FjH
−1
j P ∗

j , X̂V \S(i) := XV +
∑

j FjH
−1
j F ∗

j , and êV \S(i) := eV − ∑
j FjH

−1
j fj.

Substitution of xj into (27) gives

Gjxi + Ŷjλj − Ẑ∗
j μ+ ĥj = 0

with Ŷj := Yj + PjH
−1
j P ∗

j , ĥj := hj + PjH
−1
j fj, and consequentially

λj = −Ŷ −1
j (Gjxi − Ẑ∗

j μ+ ĥj). (31)

From that we obtain final modifications of (30) and of the parent’s equation (26),

Fixi −
∑

j∈S(i)
Ẑjλj + X̂V \S(i)μ+ êV \S(i) = F̃ixi +XV \S(i)μ+ eV \S(i), H̃ixi + P ∗

i λi − F̃ ∗
i μ+ f̃i = 0,

respectively, where the modified data are F̃i := Fi+
∑

j ẐjŶ
−1
j Gj, XV \S(i) := X̂V \S(i)−

∑
j Ẑj Ŷ

−1
j Ẑ∗

j ,

eV \S(i) := êV \S(i) +
∑

j Ẑj Ŷ
−1
j ĥj , H̃i := Hi +

∑
j G

∗
j Ŷ

−1
j Gj, and f̃i := fi +

∑
j G

∗
j Ŷ

−1
j ĥj .

The inward recursion again yields a system of the form X∅μ = −e∅ defined on the empty tree, and

node variables λj , xj are calculated (in that order) from equations (31,29). XV , Yj may be replaced

by arbitrary symmetric positive semidefinite blocks (more generally, any symmetric blocks leading

to positive definite X∅, Ŷj), and Zj by any rectangular blocks of suitable dimensions.

The elimination steps (31) for λj involve Schur complements Ŷj , and each recursion step represents a

local version of the Schur complement method (or range space method). Hence we call that recursion

a tree-sparse SC method. Again, see [20, 22] for details.

7



QP form stages scenarios nodes variables constraints matrix entries time

explicit 2 81 91 1,365 729 0.01

explicit 3 729 820 12,300 6,561 0.22

explicit 4 6,561 7,381 110,715 59,049 2.11

explicit 6* 48,000 59,977 899,655 479,817 25,430,010 18.4

implicit 3 729 820 6,560 821 0.06

implicit 4 6,561 7,381 59,048 7,382 0.80

implicit 5 59,049 66,430 531,440 66,431 7.21

implicit 6* 217,728 259,939 2,079,512 259,940 23,394,504 33.1

Table 1: Sizes of KKT systems and solution times for tree-sparse recursions on balanced trees with

9 branches per node. *Tree not balanced; largest problem fitting into memory (KKT data ≈ 207MB).

5 Computational results

As test problems we consider explicit and implicit formulations of the portfolio management problem

with n = 8 assets. The scenario trees have nine branches per node, giving (9T+1−1)/8 nodes and 9T

scenarios for the T -stage problem. In addition, two 6-stage problems that fill all available memory

are constructed (with different numbers of branches). Benchmark runs are performed on a Silicon

Graphics O2 workstation with a 175MHz R10000 processor. The algorithms are implemented in C++

and treat all matrix blocks as dense and scenario-dependent. Table 1 lists the sizes of KKT systems

and the CPU times in seconds. These data clearly demonstrate the efficiency of the recursions.

6 Conclusions and extensions

We have proposed a new method for multistage stochastic programs, based on a general strategy

that is often pursued in nonlinear programming and clearly formulated in [22]: we treat nonlinearities

and inequality constraints globally by suitable iterative algorithms (interior point or SQP methods),

and exploit any problem-inherent structure on the linear algebra level. Clearly, that strategy has

proved successful here due to the excellent performance of tree-sparse recursion in the critical task of

KKT systems solution. In addition, convergence of the global iteration on inequalities is significantly

enhanced by exploiting nonlinear characteristics of the problem through successive refinement [21].

Our method is not only conceptually elegant, it is also advantageous from a software engineering

viewpoint. Since any relevant problem structure is concentrated in the KKT systems, one can apply

generic iterative algorithms globally and still obtain high efficiency. For instance, linear algebra

operations on subtrees are completely independent in the tree-sparse recursions, so they can easily

be parallelized without affecting the interior point method.

In this work we have only considered the basic recursive structure of dynamics. In applications,

local constraints involving only one control uj , state xj , or pair (xi, uj) may appear in many nodes.

Such constraints can be eliminated by local projections; the details given in [22] (for the chain case)

generalize immediately to the tree case, except for minor technical complications when the number

of local constraints exceeds the number of local degrees of freedom.

With local constraints included, our view on multistage stochastic programs as optimal control

problems with a recursive dynamic structure provides a general framework for classifying variables

8



and constraints, and for treating them appropriately. It also provides a guideline to exploit not only

the common dynamic structure of multistage stochastic programs but also the local sparse structure

of every specific application. In the portfolio selection problem, for instance, matrices Gj, Ej are

(almost) diagonal in the explicit QP, and matrices Ej are identical in all nodes for both QP forms.

This can be used to save CPU time and memory simply by specializing the node operations. The

more difficult situation of sparse blocks in the presence of local constraints can be dealt with efficiently

in a number of financial engineering problems. In the general case, suitable sparse local projections

have to be constructed, which requires highly sophisticated sparse matrix techniques and remains a

promising subject of future research.

We believe that the method proposed here is a significant step towards meeting at least one of the

challenges formulated by Ruszczyński [19]: the development of specialized methods and high quality

software for certain application areas.

7 Acknowledgement

This work is a result of an ongoing cooperation with K. Frauendorfer and H. Siede, to whom the

author wishes to express his thanks for many inspiring discussions.

References

[1] A. J. Berger, J. M. Mulvey, E. Rothberg, and R. J. Vanderbei, Solving multistage

stochastic programs using tree dissection, Technical Report SOR-95-07, Princeton University,

June 1995.

[2] A. J. Berger, J. M. Mulvey, and A. Ruszczyński, An extension of the DQA algorithm to

convex stochastic programs, SIAM J. Optimization, 4 (1994), pp. 735–753.

[3] J. R. Birge, Decomposition and partitioning methods for multistage stochastic linear programs,

Oper. Res., 33 (1985), pp. 989–1007.

[4] J. R. Birge, C. J. Donohue, D. F. Holmes, and O. G. Svintsitski, A parallel implemen-

tation of the nested decomposition algorithm for multistage stochastic linear programs, Math.

Programming, 75 (1996), pp. 327–352.

[5] J. Czyzyk, R. Fourer, and S. Mehrotra, A study of the augmented system and column-

splitting approaches for solving two-stage stochastic linear programs by interior-point methods,

ORSA J. Computing, 7 (1995), pp. 474–490.

[6] G. B. Dantzig and G. Infanger, Multi-stage stochastic linear programs for portfolio opti-

mization, Annals Oper. Res., 45 (1993), pp. 59–76.

[7] E. A. Eschenbach, C. A. Shoemaker, and H. M. Caffey, Parallel algorithms for stochas-

tic dynamic programming with continuous state and control variables, ORSA J. Computing, 7

(1995), pp. 386–401.

[8] K. Frauendorfer, The stochastic programming extension of the Markowitz approach, Int. J.

Mass-Parallel Comput. Inform. Syst., 5 (1995), pp. 449–460.

9



[9] H. I. Gassmann, MSLiP: A computer code for the multistage stochastic linear programming

problem, Math. Programming, 47 (1990), pp. 407–423.

[10] E. R. Jessup, D. Yang, and S. A. Zenios, Parallel factorization of structured matrices

arising in stochastic programming, SIAM J. Optimization, 4 (1994), pp. 833–846.

[11] H. M. Markowitz, Portfolio Selection: Efficient Diversification of Investments, John Wiley,

New York, 1959.

[12] J. M. Mulvey, Nonlinear network models in finance, Adv. Math. Progr. Fin. Planning, 1

(1987), p. 253.

[13] J. M. Mulvey and A. Ruszczyński, A new scenario decomposition method for large-scale

stochastic optimization, Oper. Res., 43 (1995), pp. 477–490.

[14] J. M. Mulvey and H. Vladimirou, Stochastic network optimization models for investment

planning, Annals Oper. Res., 20 (1989), pp. 187–217.

[15] , Applying the progressive hedging algorithm to stochastic generalized networks, Annals

Oper. Res., 31 (1991), pp. 399–424.

[16] R. T. Rockafellar and R. J.-B. Wets, Generalized linear-quadratic problems of deter-

ministic and stochastic optimal control in discrete time, SIAM J. Control Optim., 28 (1990),

pp. 810–822.

[17] , Scenarios and policy aggregation in optimization under uncertainty, Math. Oper. Res., 16

(1991), pp. 119–147.

[18] A. Ruszczyński, Parallel decomposition of multistage stochastic programming problems, Math.

Programming, 58 (1993), pp. 201–228.

[19] , Decomposition methods in stochastic programming, Math. Programming, 79 (1997),

pp. 333–353. Invited lectures of the 16th International Symposium on Mathematical Program-

ming, Lausanne EPFL.

[20] M. C. Steinbach, Back to the roots: recursive optimization on dynamic trees. In preparation.

[21] , Recursive direct optimization and successive refinement in multistage stochastic programs.

In preparation.

[22] , Fast Recursive SQP Methods for Large-Scale Optimal Control Problems, Ph. D. disserta-

tion, University of Heidelberg, 1995.

[23] , Structured interior point SQP methods in optimal control, Z. Angew. Math. Mech., 76

(1996), pp. 59–62.

[24] M. C. Steinbach, H. G. Bock, G. V. Kostin, and R. W. Longman, Mathematical opti-

mization in robotics: Towards automated high speed motion planning, Surv. Math. Ind., 7 (1998),

pp. 303–340.

10


