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Abstract

Let G = (V,E) be a simple graph and s and t be two distinct vertices of G. A path in
G is called �-bounded for some � ∈ N , if it does not contain more than � edges. We study
the computational complexity of approximating the optimum value for two optimization
problems of finding sets of vertex-disjoint �-bounded s, t-paths in G.

First, we show that computing the maximum number of vertex-disjoint �-bounded
s, t-paths is APX–complete for any fixed length bound � ≥ 5.

Second, for a given number k ∈ N , 1 ≤ k ≤ |V | − 1, and non-negative weights on the
edges of G, the problem of finding k vertex-disjoint �-bounded s, t-paths with minimal
total weight is proven to be NPO–complete for any length bound � ≥ 5. Furthermore, we
show that, even if G is complete, it is NP–hard to approximate the optimal solution value
of this problem within a factor of 2〈φ〉

ε

for any constant 0 < ε < 1, where 〈φ〉 denotes the
encoding size of the given problem instance φ.

We prove that these results are tight in the sense that for lengths � ≤ 4 both prob-
lems are polynomially solvable, assuming that the weights satisfy a generalized triangle
inequality in the weighted problem.

All results presented also hold for directed and non-simple graphs. For the analogous
problems where the path length restriction is replaced by the condition that all paths
must have length equal to � or where vertex-disjointness is replaced by edge-disjointness
we obtain similar results.

Keywords: disjoint paths, length bounded paths, approximation, reducibility, complete-
ness

Mathematical Subject Classification (1991): 68Q25, 90C27, 05C38, 05C40

1 Introduction

Due to the trend to high-capacity but sparse networks, survivability has become a major
issue in the design of telecommunication networks over the last decades. Motivated by this,
there has been a large amount of research in this area. Many different models of network
survivability as well as lots of different cost and capacity models have been studied; for a
survey see [AGW97]. In a variety of these models survivability is enforced by demanding a
certain number of disjoint paths between each pair of communicating nodes. Usually, these
paths have to fulfill additional requirements, e. g., transition time or router number limits,
that can be modeled by path length restrictions.
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We study two problems related to such survivability models in this article, namely finding
maximum sets of vertex-disjoint length-restricted paths between two communicating nodes
and finding weight-minimal such sets containing a given number of paths.

For both problems the input consists of a simple undirected graph G = (V,E) and two
distinct vertices s and t of G. We call an s, t-path in G �-bounded for some length restriction
� ∈ N if it contains � or less edges.

The first problem studied in this article, the Max-Disjoint-�-Bounded-Paths problem
denoted by MDBP(�), is the problem of finding the maximum number of vertex-disjoint �-
bounded paths between s and t in G.

The second problem considered here is theWeighted-Disjoint-�-Bounded-Paths prob-
lem, denoted by WDBP(�). In this problem we are additionally given non-negative weights
on the edges of G and a number k ∈ N ,1 ≤ k ≤ |V | − 1. The aim is to find a set of k
vertex-disjoint �-bounded s, t-paths with minimum total weight.

It was shown by Lovàsz, Neumann-Lara, and Plummer in [LNLP78] that for � ≥ 5 there
are no (tight) Menger-type results for vertex-disjoint paths of bounded length. The ratio
between the maximum number of vertex-disjoint �-bounded s, t-paths and the number of
vertices that have to be removed from G to increase the distance between s and t above �
or disconnect them is two already for � = 5 and increases with the size of G. Itai, Perl,
and Shiloach proved in [IPS82] that the problem of deciding whether there exist k vertex-
disjoint �-bounded s, t-paths in G is NP–complete for � ≥ 5 and polynomially solvable for
� ≤ 4. A two phase primal heuristic solving the Max-Disjoint-�-Bounded-Paths problem
to optimality for � ≤ 4 but without approximation guarantee for length bounds � ≥ 5 (except
the trivial factor of �− 1), was proposed by Perl and Ronen in [PR84].

In this article we study the computational complexity of approximating the optimal so-
lution values for the two optimization problems defined above. In Sections 2.1 and 2.2 we
prove that for � ≥ 5 the Max-Disjoint-�-Bounded-Paths and the Weighted-Disjoint-
�-Bounded-Paths problem are APX–complete and NPO–complete [Pap94, BC94], respec-
tively. Furthermore, we show that it is NP–complete to approximate the latter for � ≥ 5
within a factor of 2〈G〉ε for any constant ε > 0 or within 2〈φ〉ε for any 0 < ε < 1, even if
G is a complete graph. 〈G〉 and 〈φ〉 denote the encoding size of the graph G and of the
entire WDBP(�) instance, respectively. According to the definition of the class NPO of NP
optimization problems, we assume that there is no solution of total weight zero for WDBP(�).
If the graph G is not necessarily complete, it is NP–complete to approximate the problem
for � ≥ 5 within 2〈φ〉ε even for any fixed non-negative ε, i.e., WDBP(�) is not in exp–APX
[CKST96] for � ≥ 5. For length bounds � ≤ 4 the Max-Disjoint-�-Bounded-Paths prob-
lem and the semi-metric Weighted-Disjoint-�-Bounded-Paths problem are proven to be
polynomially solvable in Section 3. In the last section we extended our results to the cor-
responding problems where the path length restriction is replaced by the condition that all
paths must have length equal to � and to the corresponding edge-disjoint paths problems.

2 Inapproximability Results

In this section we will show that both problems introduced in the previous section are com-
putationally hard to approximate for length bounds � ≥ 5.

It is not in the scope of this article to introduce all concepts of computational complexity
theory needed in the following. We assume the reader to be familiar with the basic definitions
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and techniques in this area. For a formal definition of the complexity classes, an introduction
to the reduction techniques, and the basic structural results used in this article we refer the
reader to [OM87, PY88, PY91, BC94, Pap94, CKST96]. A regularly updated compendium
of the current knowledge on the complexity of specific problems can be found in [CK95].

2.1 Max-Disjoint-5-Bounded-Paths

In [IPS82] Itai, Perl, and Shiloach proved that the problem of deciding whether a graph
G contains a given number k of vertex-disjoint �-bounded s, t-paths is NP–complete for
� ≥ 5, presenting a reduction from a special version of 3-Sat. Although their construction is
sufficient to prove the NP–completeness of the decision problem, it cannot be used to show
the APX–completeness of MDBP(�). The construction only transforms feasible solutions of
the above decision problem to feasible solutions of 3-Sat. To prove the APX–completeness
of MDBP(�), we need a reduction that also maps approximate solutions of this problem to
approximate solutions of Max-3-Sat. Using gadgets similar to those introduced by Itai et. al.,
we construct such approximation preserving reductions to prove the APX–completeness of
MDBP(�) as well as the NPO–completeness of WDBP(�) for � ≥ 5.

In the following we show that approximating the maximum number of vertex-disjoint �-
bounded s, t-paths is APX–complete for � ≥ 5. First of all, it is easy to see that for any fixed
length bound � the Max-Disjoint-�-Bounded-Paths problem MDBP(�) is in APX .

Lemma 2.1 MDBP(�) is in APX for each � ∈ N .

Proof. Let P = {P1, . . . , Pk} be a set of vertex-disjoint �-bounded s, t-paths, such that there
exists no further �-bounded s, t-path in G that is disjoint to all P ∈ P. Obviously, such a set
of paths can be found in polynomial time by repeatedly applying a depth-bounded depth first
search starting in s. Let P′ = {P ′

1, . . . , P
′
k′} be a maximum set of vertex-disjoint �-bounded

s, t-paths. Since each P ′
i ∈ P′, except maybe the direct edge st, intersects with at least one

Pj ∈ P and all paths in P′ are vertex-disjoint, we have |P′| ≤ |{internal vertices in P|} ≤
(�− 1)|P| if G does not contain the direct edge st, and |P′| − 1 ≤ |{internal vertices in P|} ≤
(�− 1)(|P| − 1) otherwise. Hence, P is an (�− 1)-approximate solution. �

Second, to show that MDBP(�) is APX –complete for all length bounds � ≥ 5, we will
prove that MDBP(5) is APX–complete. Then, for � > 5 the APX–completeness follows by
replacing the edges emanating from s in the graph constructed in this reduction by a simple
path of length � − 4. We prove the APX–completeness of MDBP(5) by constructing an L–
reduction[PY88, PY91] from Max-3-Sat(3), which is known to be APX–complete due to
Papadimitriou and Yannakakis [PY88, PY91] and Ausiello et. al. [ACG+98].

The Max-3-Sat problem is, given a set X of boolean variables and a collection C of
disjunctive clauses of at most three literals per clause, to find a truth assignment for X
satisfying the maximum number of clauses. In our proof we use a restricted version Max-
3-Sat(3) of Max-3-Sat, where each variable occurs at most three times. Even with this
restriction the Max-3-Sat problem is still APX–complete, see [ACG+98].

We need the following simple lemma to prove that the reduction we are going to construct
below is approximation preserving

Lemma 2.2 Let φ be an instance of Max-3-Sat with r clauses and let Opt(φ) denote the
value of an optimal solution of φ. Then Opt(φ) ≥ 1

2r.
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Figure 2: Clause graph Hh

Proof. Let x be an arbitrary truth assignment for the variables in φ. If x satisfies less than
r/2 clauses, then the assignment −x, where each variable in X is negated, satisfies more than
r/2 clauses. On the other hand, an optimal assignment cannot satisfy more than r clauses. �

Theorem 2.3 MDBP(5) is APX–complete.

Proof. The proof consists of two parts. First, for a given instance φ of Max-3-Sat(3),
where q and r are the number of variables and the number of clauses in φ, respectively, we
construct a graph G that contains 3q + r vertex-disjoint 5-bounded s, t-paths if and only if
all clauses in φ are satisfiable. In the second part, we show that there are at least 3q vertex-
disjoint 5-bounded s, t-paths in G and that, for each truth assignment that satisfies r′ clauses,
there is a set of 3q + r′ such paths in G, and vice versa.

Let φ be the given instance of Max-3-Sat(3) with variables x1, . . . , xq and clauses
C1, . . . , Cr. For notational convenience we assume that the occurrences of each variable
xi are denoted by xji , 0 ≤ j ≤ 2 (or 0 ≤ j ≤ 1 if xi occurs only two times in φ).

The graph G is constructed by clipping together q+r gadget graphs, one for each variable
and one for each clause in φ.

For each variable xi in φ, we construct a “variable graph” Gi as shown in Figure 1.
This graph contains two s, t-paths for each 0 ≤ j ≤ 2, namely Pji = [s, uji , v

j
i , x

j
i , w

j
i , t] and

P̄ j
i = [s, uji , v

j
i , x̄

j
i , w

j′

i , t], with j
′ = (j + 1 mod 3). Obviously, these Pj

i and P̄ j
i are the only

5-bounded s, t-paths in Gi. Furthermore, all three Pj
i and all three P̄ j

i paths are vertex-
disjoint, respectively, and any collection of three vertex-disjoint 5-bounded s, t-paths in Gi
must consist either of all Pj

i paths or of all P̄ j
i paths.

We interpret choosing path Pi
j in Gi as setting xji to true in φ (if this occurrence of xi

exists in φ) and choosing path P̄ j
i as setting it to false. With this interpretation, having three

vertex-disjoint 5-bounded s, t-paths in Gi corresponds to setting all occurrences of variable xi
in φ uniformly.

For each clause Ch in φ, we introduce a “clause graph” Hh as shown in Figure 2. This
graph contains the vertices s, t and ch. Furthermore, for each xji that occurs in clause Ch,

this graph contains the vertices aji , b
j
i , and either vertex xji or vertex x̄ji (of Gi), depending

whether xji occurs negated or un-negated in Ch. If it occurs negated, then Hh contains vertex
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xji , if it occurs un-negated Hh contains vertex x̄ji . For each xji occurring in Ch, these vertices

form an s, t-path of length five, either Qj
i := [s, ch, x

j
i , a

j
i , b

j
i , t] or Q̄

j
i := [s, ch, x̄

j
i , a

j
i , b

j
i , t].

Since all these paths have the vertex ch in common, there is at most one “vertex-disjoint”
s, t-path within each Hh, which has length five.

We interpret choosing path Qj
i (or Q̄j

i ) as satisfying clause Ch by setting xji to false (or
true, respectively). Note that, as long as we have three vertex-disjoint 5-bounded paths within
Gi, this interpretation agrees with that of choosing path Pji or P̄ j

i in Gi.

Finally, all these gadget graphs are clipped together in s, t, and the appropriate xji and

x̄ji vertices, see Figure 3.
Formally, the instance ψ = ψ(φ) of MDBP(5) is defined as the problem of finding the

maximum number of vertex-disjoint 5-bounded paths from s to t in G. It is clear that the
above construction can be accomplished in polynomial time.

To transform the solutions of ψ back to solutions of φ preserving the approximation quality,
we need the following two lemmas.

Lemma 2.4 Let P be an arbitrary set of vertex-disjoint 5-bounded s, t-paths in G. Then
we can find (in polynomial time) a set P′ of vertex-disjoint 5-bounded s, t-paths in G with
|P′| ≥ |P| that contains either all three Pj

i or all three P̄ j
i paths within each Gi.

Proof. If P contains three paths within each Gi, then these paths must be either all Pj
i or

all P̄ j
i paths.
Now, suppose there is an i, 0 ≤ i ≤ q, such that P contains two or less paths within Gi.

We construct a new set P′ containing either all three Pj
i or all three P̄ j

i paths, modifying only
those paths in P that are contained within or do intersect with Gi.

First of all, we make sure that all paths of P containing one of the edges chx
j
i or chx̄

j
i for

some h and j are Qj
i or Q̄j

i paths, respectively. The only other 5-bounded paths in P that

might contain these edges are the paths [s, ch, x
j
i , w

j
i , t] and [s, ch, x̄

j
i , w

j′

i , t], respectively. But

these paths can be replaced by Qj
i or Q̄

j
i without decreasing the number of paths or destroying

the vertex-disjointness or 5-boundedness of P. After these exchanges, any 5-bounded path in
P is either contained within Gi or intersects Gi in exactly one vertex xji or x̄ji .
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In the second step, we simply drop all paths from P that are completely contained within
Gi. Then we compute a maximum set of parallel vertex-disjoint 5-bounded s, t-paths within
Gi, i.e., a set containing either only Pj

i paths or only P̄ j
i paths, that do not intersect with the

remaining paths in P. This can be done in constant time, because Gi is of fixed size. Since
each literal in φ is either negated or un-negated, but never both, for each j ∈ {0, 1, 2} only
one of the vertices xji and x̄ji can be contained in some clause graph. Hence, for each such j

at least one of xji and x̄ji is not contained in the remaining paths in P and, consequently, we
will always find at least two parallel paths in Gi that are disjoint to P.

If we find three such paths, we are done. Otherwise, assuming w.l.o.g. we found the two
paths P1

i and P 2
i , Pmust containQ3

i . Then, in the third step, we can replace Q3
i by P

3
i without

decreasing the number of paths or destroying the vertex-disjointness or 5-boundedness in P
and end up with all three Pj

i paths. �

Lemma 2.5

(i) Let x be a truth assignment for the variables in φ that satisfies r′ clauses. Then there
is a solution P of ψ that contains exactly 3q + r′ paths. In particular, P contains either
all three P j

i or all three P̄ j
i -paths in each Gi.

(ii) Let P be a solution of ψ and r′ := |P| − 3q. Then there is a truth assignment x for the
variables in φ that satisfies at least r′ clauses.

Proof.
(i): Given the truth assignment x for φ, we construct a set P of vertex-disjoint 5-bounded
s, t-paths in G as follows: For each i, 0 ≤ i ≤ q, we choose all three Pji paths, 0 ≤ j ≤ 2, if

variable xi is true in the assignment, otherwise we choose all three P̄ j
i paths. For each clause

satisfied by this assignment, we choose one of its literals that evaluates to true. If the chosen
literal is xji , i.e., the corresponding variable occurs un-negated, then we add the pathQ̄j

i to P,

if it is x̄ji we add Q
j
i . Since Q̄

j
i is chosen only if P j

i was (or Qj
i and P̄

j
i , respectively), all paths

in P are vertex-disjoint. Furthermore, if x satisfies r′ clauses of φ, then P contains 3q + r′

paths.

(ii): By Lemma 2.4 we may assume that P contains either all Pji or all P̄ j
i paths in each Gi

and, hence, |P| ≥ 3q. Given such a set of paths, we define the truth assignment x as follows:
For each i, 0 ≤ i ≤ q, we set the boolean variable xi of φ to true if P contains all Pj

i paths
within Gi, to false otherwise.

Since each of the remaining r′ paths in P is either an Q̄j
i or an Qj

i path that does not

intersect with the corresponding Pj
i or P̄ j

i paths, the literal that corresponds to the j-th
occurrence of variable xi in φ evaluates to true. By the construction of G, there can be
at most one “vertex-disjoint” path through each vertex ch, i.e., all these Q

j
i and Q̄j

i paths
correspond to literals in different clauses of φ. Hence, at least r′ clauses of φ are satisfied by
this assignment. �

Using this lemma, is easy to prove that the reduction constructed above is an L–reduction.
We have to show that there are two constants α, β > 0 (independent of φ), such that Opt(ψ) ≤
α ·Opt(φ) and |Opt(φ)−# clauses statisfied by x| ≤ β · |Opt(ψ) − |P||, for each solution P of
ψ and the corresponding solution x of φ.
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Lemma 2.5 (ii) implies that Opt(ψ) ≤ Opt(φ) + 3q. With q ≤ 3r and r ≤ 2 ·Opt(φ) (see
Lemma 2.2), it follows that Opt(ψ) ≤ (1 + 3 · 3 · 2)Opt(φ) = 19 · Opt(φ), i.e., the optimal
solution value is blown up by a factor of at most 19 in this reduction. That the absolute
errors of the solutions P of ψ and x of φ are equal follows directly from Lemma 2.5. Hence,
the second inequality holds for β = 1. This completes the proof of Theorem 2.3. �

Corollary 2.6 MDBP(�) is APX–complete for each � ≥ 5.

Proof. Replace every edge sv in the above construction by a path [s, v1, . . . , v�−5, v].

2.2 Weighted-Disjoint-5-Bounded-Paths

In this section we will show that the problem of finding a set of k vertex-disjoint �-bounded
s, t-paths of minimum total weight in a weighted graph G isNPO–complete for length bounds
� ≥ 5. Furthermore, we will see that, unless P = NP , this problem cannot be approximated
within a factor of 2〈φ〉ε for any ε > 0, i.e., it is not in exp–APX . The reason for this strong
inapproximability result is that it is already NP–complete to find k such paths, regardless of
the weights on the edges. But even if finding k vertex-disjoint �-bounded s, t-paths is easy,
for example, if G is a complete graph, the problem cannot be approximated within reasonable
bounds. We will show that in these cases it is NP–hard to approximate WDBP(�) for � ≥ 5
within a factor of 2〈φ〉ε for any 0 < ε < 1.

It is easy to see that WDBP(�) is in NPO for all � ∈ N . As in the previous section, it is
sufficient to prove that WDBP(5) is NPO-complete to show that WDBP(�) isNPO–complete
for all � ≥ 5.

Theorem 2.7 WDBP(5) is NPO-complete.

We construct a Strict reduction (see [OM87]) from Minimum-Weighted-3-Satisfiability
to WDBP(5) to prove this theorem.

The Minimum-Weighted-3-Satisfiability problem is defined as follows: Given a set
X of boolean variables, a collection C of disjunctive clauses of at most three literals per clause,
and a non-negative integer weight for each variable in X, the aim is to find a truth assignment
for X that satisfies all clauses in C and minimizes the sum of the weights of the true variables.
Due to Orponen and Mannila [OM87], this problem is known to be NPO–complete. As in
the unweighted satisfiability problem, we can restrict to the case where each variable occurs
at most three times, the problem will remain NPO–complete (see [ACG+98]). Although this
restriction is not necessary to prove Theorem 2.7, it allows us to reuse exactly the same graph
gadgets we had in the proof of Theorem 2.3.

Proof [2.7]. Let φ be an instance of Minimum-Weighted-3-Satisfiability(3) with
variables x1, . . . , xq, clauses C1, . . . , Cr, and nonnegative weights wi, 1 ≤ i ≤ q, associated
with the variables.

Except that we have to define edge weights here, the reduction is the same as the one used
to prove Theorem 2.3. We construct a graph G as described there and define the weights of
its edges as follows:

we :=

{
wi if e = v1i x

1
i for some i ∈ {1, . . . , q},

0 otherwise.
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Formally, the instance ψ = ψ(φ) of WDBP(5) is defined as the problem of finding 3q + r
vertex-disjoint 5-bounded paths from s to t in G with minimum total weight. Obviously, this
reduction can be accomplished in polynomial time. Note that, since inMinimum-Weighted-
3-Satisfiability(3) a feasible assignment must satisfy every clause, we have to find 3q + r
vertex-disjoint 5-bounded s, t-paths in G, i.e., three paths within each Gi and one path within
each Hh. A set P of less paths would not correspond to a feasible assignment in φ.

It is easy to see that

δG(s) =

q∑
i=1

δGi(s) +
r∑

h=0

δHh
(s) = 3q + r,

where δG(s) denotes the degree of vertex s with respect to (sub-) graph G. Hence, for each
set P of 3q + r vertex-disjoint 5-bounded s, t-paths in G, every subgraph Gi must contain
exactly three of these paths and every Hh exactly one of them. With Lemmas 2.4 and 2.5 it
follows that P corresponds to a feasible solution x of φ. On the other hand, these Lemmas
imply that for each feasible truth assignment x of φ there is a set P of 3q + r vertex-disjoint
5-bounded s, t-paths in G.

By our construction, P contains path P1
i if and only if variable xi is true in the corre-

sponding assignment x. Because, for each i ∈ {1, . . . , q}, this path is the only 5-bounded
s, t-path that contains edge v1i x

1
i in G, the total weight of P equals the total weight of this

assignment. �

Corollary 2.8 WDBP(�) is NPO-complete for all � ≥ 5.

It is known that for each NPO–complete problem there is some threshold ε > 0, such that
the problem cannot be approximated within 2〈φ〉ε [CK95], where 〈φ〉 denotes the coding size
of the given problem instance φ. Since, in our case, already the problem of finding a feasible
solution is NP–hard [IPS82], the minimization problem WDBP(5) cannot be approximated
within any such bound, unless P = NP .

Theorem 2.9 WDBP(�) is not in exp–APX for any � ≥ 5, unless P = NP .

Note that, due to the polynomial bound on the computation time of the objective function
for optimization problems in NPO, a classification of approximability beyond exp–APX does
not make sense in NPO. If we are able to find at least a feasible solution whenever one exists,
this solution will always be within a factor of 2〈φ〉ε of the optimum value for some fixed ε > 0.

Unfortunately, even if we are given an initial feasible solution for WDBP(�) or if we can
compute one in polynomial time, for example, if G is a complete graph, the problem remains
extremely hard to approximate.

Theorem 2.10 It is NP–complete to approximate WDBP(�) for complete graphs and � ≥ 5
within a factor of

(i) 2〈G〉ε for any ε > 0, or within

(ii) 2〈φ〉ε for any 0 < ε < 1.
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Proof. We show that any algorithm that approximates WDBP(�) within such a factor could
be used to find a set of k vertex-disjoint �-bounded s, t-paths in a graph G, which is NP–
complete. The basic idea is to guarantee the existence of k such paths by adding k extra
s, t-paths to G and assign astronomical weights to their edges.

We start with the proof of (i). Let n := |V |, m := |E|, and N := 〈G〉. Suppose we have a
polynomial time algorithmA that approximatesWDBP(�) within a factor of 2N

ε
for some fixed

ε > 0. Given instance φ = (G, s, t, k, �) of the decision problem of finding k vertex-disjoint
�-bounded s, t-paths in G, an instance ψ = (G′, s, t, k, �, w) of WDBP(�) is defined as follows:
We construct a new complete graph G′ = (V ′, E′) with vertex set V ′ := V ∪ {v1, . . . , vk}, see
Figure 4. We set the weights for the edges of G as follows:

we :=

{
1 if e = uv with u, v ∈ V ,

2N
ε ·m otherwise.

Obviously, G′ contains k vertex-disjoint �-bounded s, t-paths.
Note that this transformation is polynomial. Although the values of the weights of the

new edges are not polynomially bounded in N , their encoding size is. For the largest edge
weight wmax = 2N

ε
m we have 〈wmax〉 ≤ N ε + 〈m〉.

It is easy to see that algorithm A, which is supposed to approximate ψ within a factor
of 2N

ε
of the optimum value, could be used to solve φ: If A returns a solution of weight m

or less, this solution contains only edges inherited from G, i.e., it is a feasible solution of φ.
If the solution returned by A has weight larger than m, it must contain at least one of the
new edges. But this implies that the solution’s weight is even larger than 2N

ε
m and, by the

approximation guarantee of A, that no solution of weight less or equal to m exists. Hence,
there are no k vertex-disjoint �-bounded s, t-paths in G, since, otherwise, these paths would
define a solution of ψ containing no new edge, which implies that Opt(ψ) ≤ m.

Analogously, we can prove (ii), assigning weight one to the edges of G′ that are inherited
from G and weight 2p

ε
m to the new edges, where p is sufficiently large. With the same

arguments as above, this will show the inapproximability within a factor of 2p
ε
. To choose

an appropriate value for p, we need a bound on the encoding size of the new instance ψ of
WDBP(�).

〈ψ〉 = 〈G′〉+ 〈w〉
≤ 2n+ 4n2 + 4n2 · 〈2pε ·m〉
≤ 2n+ 4n2 + 4n2 · pε logm

9



Clearly, for each ε < 1, there exists a polynomial p(n,m) in n and m, such that 2n+ 4n2 +
4n2p(n,m)ε logm ≤ p(n,m). If we set the weights of the new edges in G′ to 2p(n,m)εm,
then 〈ψ〉 ≤ p(n,m), i.e., the encoding size of ψ is polynomially bounded in φ, and ψ is not
approximable within 2p(n,m)ε . �

Remark 2.11 For complete graphs WDBP(�) can be approximated within a factor of 2〈φ〉.

Since in the Weighted-Disjoint-�-Bounded-Paths the value of each solution is at most
the sum of all edge weights, any feasible solution yields a 2〈φ〉 approximation.

Differently from other natural optimization problems on weighted graphs, as for exam-
ple the traveling salesman problem or the steiner tree problem, it does not make sense to
consider metric instances of the Weighted-Disjoint-�-Bounded-Paths problem, i.e., in-
stances where G is complete and the weights satisfy the triangle inequality. In such graphs
an optimal solution is trivial: It will always contain the direct st-edge and the cheapest k− 1
paths of length 2.

On the other hand, the weighted problem is still hard to approximate if we restrict to
“semi–metric” instances, i.e., instances where G need not be complete, but for each cycle
C in G and each edge e ∈ C the inequality we ≤ ∑

f∈C−ewf holds. Furthermore, even if
we know an initial feasible solution, the same inapproximability results as for the complete
Weighted-Disjoint-�-Bounded-Paths problem hold.

Corollary 2.12 Theorems 2.7 to 2.10 hold for semi–metric instances of WDBP(�), too.

That Theorems 2.7 to 2.9 hold for semi-metric instances is trivial. The proof for the analogous
version of Theorem 2.10, where G need not be complete but semi-metric and an initial feasible
solution is given or can be found in polynomial time, can be easily obtained from the original
one by a simple modification and is left to the reader.

3 Polynomially Solvable Cases

In the previous section we have seen that both the Max-Disjoint-�-Bounded-Paths prob-
lem and the Weighted-Disjoint-�-Bounded-Paths problem are computationally hard to
approximate if the length bound � is five or more. Fortunately, in practical applications the
length bounds are usually very small. In the design of optical backbone telecommunication
networks, for example, one often restricts to paths containing not more than three or four
fiber-lines.

Trivially, both problems are polynomially solvable for � ≤ 2. It was shown by Itai et. al.
in [IPS82] that the Max-Disjoint-�-Bounded-Paths problem is also polynomially solvable
for lengths � = 3 and � = 4. As mentioned in the previous section, the metric Weighted-
Disjoint-�-Bounded-Paths problem is trivially solvable for any length bound � ∈ N .

Proposition 3.1 The metric Weighted-Disjoint-�-Bounded-Paths problem is polyno-
mially solvable for all length bounds � ∈ N .

In the following we will show that the semi-metric version of this problem is polynomially
solvable for any fixed length bound � ≤ 4. Recall that this problem is NPO–complete for
� ≥ 5.
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Figure 5: Graph G′ for � = 3 and � = 4

Theorem 3.2 The semi-metric Weighted-Disjoint-�-Bounded-Paths is polynomially
solvable for all � ≤ 4.

Proof. The cases � = 1 and � = 2 are trivial. In the following we present an algorithm that
solves WDBP(�) optimally for � = 3 and � = 4.

Let φ be a semi-metric instance of WDBP(�) with � = 3 or � = 4. By S we denote the
set of all neighbors of s, by T the set of all neighbors of t. Let A := S ∩ T , and, if � = 4,
let B be the set of all vertices in G− (S ∪ T ∪ {s, t}) that have a neighbor in both S and T .
For � = 3 we can restrict to the case where G− (S ∪ T ∪ {s, t}) is empty, since no s, t-path
containing a vertex in G − (S ∪ T ∪ {s, t}) can be shorter than four. Analogously, we can
assume G− (S ∪ T ∪B ∪ {s, t}) is empty and that B is a stable set if � = 4.

It is easy to see that there is an optimal solution P∗ of φ, such that any vertex v ∈ A is
either contained in a path of length two in P∗ or does not occur in P∗ at all. Otherwise, the
path containing v could be shortened to the path [s, v, t] without increasing the total weight,
using the fact that G is semi-metric. Hence, we can assume that A is a stable set and, with
the same argument, that S and T are stable sets, too.

In the first step of our algorithm we compute the set P12 consisting of all s, t-paths of
length one and two in G, i.e., the path [s, t] if edge st exists and all paths [s, v, t] with v ∈ A.
We denote k12 := |P12| and, for each j, 1 ≤ j ≤ min{k12, k}, we denote the set of the j
weight minimal paths of P12 by Pj

12. Let G′ be the digraph obtained from G after removing
the paths in P12 and all vertices in A and orienting the remaining edges from s to t as shown
in Figure 5. Obviously, each s, t-path in G′ corresponds to an s, t-path in G that has length
three or four an does not contain any vertex from A, and vice versa.

In the second step, we compute the maximum number k34 of vertex-disjoint �-bounded
s, t-paths in G′. For each i, 1 ≤ i ≤ min{k34, k}, we determine a set Pi34 of exactly i vertex-
disjoint �-bounded s, t-paths of minimum total weight in G′, applying minimum cost flow
techniques [Suu74]. Clearly, within each Pi34 all paths are of length three or four. Notice that
if k12 + k34 < k, then there is no feasible solution for φ and we can stop.

Finally, for each i, max{0, k − k34} ≤ i ≤ min{k34, k}, we construct a solution Pi of φ
consisting of the paths in Pi12 and in Pk−i

34 (their corresponding paths in G). If there exists
a feasible solution for φ, then, clearly, for all these i the sets Pi contain k vertex-disjoint
�-bounded s, t-paths. Furthermore, Pi is an optimal solution for at least one of these i. This
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is easy to see:
Let P∗ be an optimal solution of φ. We may assume that any vertex v ∈ A is either

contained in a path of length two in P∗ or does not occur in P∗ at all. Let P∗
12 be the set of

all paths of length one or two in P∗, P∗
34 be the set consisting of all paths of length three or

four in P∗, and j = |P∗
12|. Then w(P∗

12) ≥ w(Pj
12) and w(P∗

34) ≥ w(Pk−j
34 ), because Pj12 and

P
k−j
34 contain j vertex-disjoint s, t-paths of length one and two in G and k − j vertex-disjoint

s, t-paths of length three and four in G′ with minimum total weight, respectively. Hence,
w(P∗) ≥ w(Pj) and Pj is an optimal solution, too. �

Whether WDBP(3) and WDBP(4) are polynomially solvable for arbitrary edge weights is still
open.

4 Related Problems

In this last section we extend our results to several related problems. In the area of network
design, for example, one considers not only vertex-disjoint paths between communicating
nodes to model survivability, but edge-disjoint paths as well. Furthermore, in many cases it is
easier to model the network by a directed graph than by an undirected one, especially when
complex traffic routing is considered.

For the following unweighted maximization problems the underlying decision problems
have been studied by Itai et. al. in [IPS82]. Using the same techniques as in Section 2.1, we
modified the graph gadgets introduced there in order to prove the NP–completeness of the
decision problems to obtain appropriate gadgets for approximation preserving reductions for
the optimization problems. Most of the results stated below can be proven analogously to
the ones in Sections 2 and 3. Except for Theorem 4.1, we will only sketch the basic ideas and
modifications necessary.

4.1 Exact Path Lengths

The first group of problems we consider here is obtained by requiring that the paths are
of length equal to � instead of being �-bounded. We denote the resulting problems Max-
Disjoint-Exact-�-Length-Paths and Weighted-Disjoint-Exact-�-Length-Paths by
MDEP(�) and WDEP(�), respectively.

In [IPS82] it was shown that the problem of deciding whether a given number k of vertex-
disjoint s, t-paths of length equal to � exists in G is NP–complete for � ≥ 4 and polynomially
solvable for � ≤ 3. The APX - and NPO–completeness of MDEP(�) and WDEP(�), respec-
tively, can be proven for lengths � ≥ 4. The proofs are identical to those of the length bounded
problems, except we use the gadgets graphs shown in Figure 6. The corresponding version of
Theorem 2.9 for WDEP(�) with � ≥ 4 follows directly, the analogous version of Theorem 2.10
is proven by adding extra paths of length exactly � instead of length two, as in the proof of
Theorem 2.10, to the given graph.

For lengths � ≤ 3 both MDEP(�) and WDEP(�) are solvable in polynomial time. The cases
� = 1 and � = 2 are trivial, MDEP(3) and WDEP(3) can be reduced to a maximum matching
or a minimum weight cardinality k matching problem (see [Edm65, Gab90]), respectively:
Each s, t-path of length three in G corresponds to exactly one edge vw, where v is a neighbor
of s and w is a neighbor of t, and vice versa. Hence, computing a maximum matching in the
graph given by these edges yields a maximum set of such paths. If we set the weight for each
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of these edges to the weight of its corresponding path, we can solve WDEP(3) for arbitrary
weights using a minimum weight cardinality k matching algorithm.

4.2 Edge-Disjoint Paths

Replacing the vertex-disjointness constraint by edge-disjointness, we obtain another group
of problems similar to MDBP(�) and WDBP(�). We denote the corresponding edge-disjoint
paths problems Max-Edge-Disjoint-�-Bounded-Paths and Weighted-Edge-Disjoint-
�-Bounded-Paths by MEDBP(�) and WEDBP(�), respectively. If, additionally, the paths
are required to be of length equal to � instead of being �-bounded, we denote the respective
problems by MEDEP(�) and WEDEP(�).

One can show APX - and NPO–completeness for MEDBP(�) and WEDEP(�), respectively,
for all � ≥ 5. The corresponding exact path length problems MEDBP(�) and WEDEP(�) are
APX - and NPO–complete for all lengths � ≥ 4. The proofs are similar to the vertex-disjoint
case. We use the gadgets shown in Figure 7 for the problems with bounded length and
those in Figure 8 for the problems with exact path length. Literally following the proofs of
Theorems 2.9 to 2.12 yields the same inapproximability results as in the vertex-disjoint cases
for WEDBP(�) with � ≥ 5 and for WEDEP(�) with � ≥ 4.

Showing that all four edge-disjoint paths problems are polynomially solvable for lengths
� ≤ 3 takes a little more effort. This answers an open question in [IPS82], namely whether
the problem of deciding if a given number of edge-disjoint s, t-paths of length equal to three
exists in a graph is polynomially solvable. We will give a detailed proof here.

Theorem 4.1 The problems MEDEP(�), MEDBP(�), WEDEP(�), and WEDBP(�) are poly-
nomially solvable for each � ≤ 3.

Proof. Again, the cases � = 1 and � = 2 are trivial. Consider the case � = 3.
Let φ be the given problem instance with graph G = (V,E). If φ is an instance of

MEDEP(3) or WEDEP(3), we call an s, t-path in G valid if it contains exactly three edges, if
φ is an instance of MEDBP(3) or WEDBP(3), we call it valid if it contains no more than three
edges. By S we denote the set of all neighbors of s, by T the set of all neighbors of t, and
B := S ∩ T . We can assume that G contains only these vertices, because any other vertex
cannot be contained in a valid s, t-path. Furthermore, we may assume that G contains no
edge that is not contained in any valid s, t-paths.

We define a digraph D = (V ′, A) as follows: The vertex set V ′ contains the copies s′ and
t′ of the vertices s and t of G, one copy vS for each vertex v ∈ S, and one copy vT for each
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vertex v ∈ T . Note that for each vertex v ∈ B there are now two copies vS and vT in V ′.
Furthermore, V ′ contains two extra vertices ue and we for each edge e ∈ [S, T ]:

VS := {vS | v ∈ S} ,
VT := {vT | v ∈ T} ,
VU := {ue | e ∈ [S, T ]} ,
VW := {we | e ∈ [S, T ]} ,
V ′ := {s′, t′} ∪ VS ∪ VT ∪ VU ∪ VW ,

where [V1, V2] := {e | e = uv ∈ E,u ∈ V1, w ∈ V2}. If all paths must be of length equal to
three, i.e., φ is an instance of MEDEP(3) or WEDEP(3), the arc set A is defined as follows:
For each edge e = sv ∈ [s, S] or e = vt ∈ [T, t] the set A contains an arc ae = (s′, vS) or
ae = (vT , t

′) between the the corresponding vertices, respectively. For all other edges e ∈ E,
i.e., e = vv′ ∈ [S, T ], A contains an arc ae = (ue, we) between the two vertices associated
with this edge and the arcs (vS , ue) and (we, v

′
T ) that represent the incidences of this edge e.

If both v and v′ are in B, then we have four incidence arcs (vS , ue), (v
′
S , ue), (we, vT ), and

(we, v
′
T ) in D, see Figure 9.

A[s,S] :=
{
ae = (s′, vS) | e ∈ [s, S]

}
,

A[S,T ] := {ae = (ue, we) | e ∈ [S, T ]} ,
A[T,t] :=

{
ae = (v′, t′) | e ∈ [s, S]

}
,

AS := {(vS , ue) | v ∈ S, e ∈ δG(v)} ,
AT := {(we, vT ) | v ∈ T, e ∈ δG(v)} ,
A := A[s,S] ∪A[S,T ] ∪A[T,t] ∪AS ∪AT .

Otherwise, if also paths of length one and two are allowed, then A additionally contains an
arc (s′, t′) if edge st exists and an arc (vS , vT ) between the two copies vS and vT of each vertex
v ∈ B.

Ast := {ae = (s′, t′) | st ∈ E},
AB := {(vS , vT ) | v ∈ B},
A := A[s,S] ∪A[S,T ] ∪A[T,t] ∪AS ∪AT ∪Ast ∪AB.

For an example see Figure 9.
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Note that each edge in G has exactly one corresponding arc in D. Namely, the edges in
[s, S] correspond to the arcs in A[s,S], those in [S, T ] to the arcs in A[S,T ] and so on. Each
valid s, t-path in G corresponds to a directed s′, t′-path in D, and vice versa. The arcs in AB

are contained in those s′, t′-paths in D that correspond to paths of length two in G, the arc
(s′, t′) to the direct st edge in G. Clearly, if a set of valid paths in G is edge-disjoint, so are
the corresponding paths in D. On the other hand, if two paths share an edge in G, also their
corresponding paths in D must share an arc, because there is only one correspondence of the
common edge in D. If, in the weighted problems, we assign to the arcs in A[s,S], A[S,T ], A[T,t],
Ast, and AB the weights of their corresponding edges in G and weight zero to all other arcs,
the weight of a path in G equals the weight of its corresponding path in D.

This implies that any set of k valid edge-disjoint s, t-paths in G corresponds to a set of
k arc-disjoint directed s′, t′-paths in D of the same weight, and vice versa. Hence, applying
standard maximum flow or minimum cost flow techniques in D, all four edge-disjoint paths
problems can be solved in polynomial time. �

It remains open whether MEDBP(4) and WEDBP(4) are polynomially solvable.

4.3 Directed and Non-Simple Graphs

For all of the above problems we can define the corresponding directed version. It is not
hard to see that all results we obtained for undirected graphs also hold in the directed case.
In the proofs of the appropriate versions of Theorem 2.3 and Theorem 2.7 each edge in the
gadget graphs can be contained in only one “direction” in an s, t-path of bounded or exact
length. Replacing the edges with arcs that have exactly this direction yields the proofs of
the APX – and NPO–completeness for directed graphs. Note that we used gadget graphs
different from those proposed by Itai et. al. in [IPS82] to show the APX–completeness of
MEDEP(�) for � ≥ 4. In our gadget graphs no edge can be contained in both directions in
an s, t-paths of length four. Hence, these gadgets can be used to show that also the directed
version MEDEP(�) is APX–complete for � ≥ 4 and that its underlying decision problem is
NP–complete, a question that was left open in [IPS82].

On the other hand, the algorithms proposed to solve the polynomial cases of the undirected
problems implicitly solved the corresponding directed counterparts utilizing standard match-
ing or flow techniques. Hence, the the directed versions of these problems are polynomially
solvable.
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Allowing multiple edges (or arcs) and loops in the graph (or digraph) obviously does not
affect the complexity of the vertex-disjoint paths problems. When looking for vertex-disjoint
paths, we can remove all loops and all but the cheapest one from each set of parallel edges,
except for the parallel st edges, that define independent s, t-paths.

The results proven for edge-disjoint paths problems do not change either, if multiple edges
and loops are allowed. Trivially, all completeness and inapproximability results still hold. To
see that the problems remain polynomially solvable for non-simple graphs and lengths � ≤ 3,
one can literally follow the proof of Theorem 4.1. Remember, that for each edge in G there is
exactly one corresponding arc in D. Note that, however, the arcs that correspond to parallel
edges in [S, T ] are not parallel in D but independent (ue, we) arcs.

5 Conclusions

We have shown that the Max-Disjoint-�-Bounded-Paths problem is APX–complete for
� ≥ 5. That this problem is polynomially solvable for � ≤ 4 is due to [IPS82].

The Weighted-Disjoint-�-Bounded-Paths problem is proven to be NPO–complete
for length bounds � ≥ 5, even if the underlying weighted graph is semi-metric. In case an
initial feasible solution is given or can be found in polynomial time, f.e., if the underlying
graph is complete, it is NP–complete to approximate WDBP(�) for � ≥ 5 within a factor of
2〈G〉ε for any constant ε > 0, or within 2〈φ〉ε for any 0 < ε < 1.

For length bounds � ≤ 4 we can show that WDBP(�) can be solved in polynomial time for
semi-metric weighted graphs. Whether the problem is polynomially solvable for � = 3 and
� = 4, or at least approximable within reasonable bounds, remains open.

Finally, these results have been extended to the corresponding edge-disjoint paths prob-
lems and to the problems where the paths must have length exactly � instead of at most �.
As a by-product, some open questions concerning the corresponding edge-disjoint paths prob-
lems have been answered. Namely, it was proven that the problem of finding the maximum
number of edge-disjoint s, t-paths of length equal to � is polynomially solvable for � = 3 in
undirected graphs and NP–hard for � = 4 in directed graphs. However, the complexity of
the corresponding problem for 4-bounded edge-disjoint paths remains open.
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sitá di Roma ”La Sapienza”, 1995, latest version available via WWW:
http://www.nada.kth.se/∼viggo/problemlist/compendium.html.

[CKST96] P. Crescenzi, V. Kann, R. Silvestri, and L. Tresvisan, Structure in approximation
classes, SIAM Jounal on Computing (submitted, 1996).

[Edm65] J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices, Journal of
Research of the National Bureau of Standards B (1965), no. 69B.

[Gab90] H. N. Gabow, Data structures for weighted matching and nearest common an-
cestors with linking, Proceedings of the 1st Annual ACM–SIAM Symposium on
Discrete Algorithms, 1990.

[IPS82] A. Itai, Y. Perl, and Y. Shiloach, The complexity of finding maximum disjoint
paths with length constraints, Networks 12 (1982).
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