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Preface

Overview

Various problems in science and engineering lead to a differential equation containing
a small parameter ε, i.e.

d

dt
x = A(x) + εB(x; ε) ,

x ∈ Rn. Typically the solution to the problem is known when the parameter is equal
to zero and one would like to find an approximative solution for non-zero parameter
values. To be more precise, one is looking for a coordinate transformation from x ∈ Rn

to new coordinates x̄ ∈ Rn such that for the corresponding transformed system

d

dt
x̄ = A(x̄) + ε B̄(x̄; ε)

the two vector fieldsA and B̄ commute. This implies that the solutions of the modified
problem are given by integrating

d

dt
x̄ = A(x̄)

and

d

dt
x̄ = ε B̄(x̄; ε) (0.1)

separately. The transformed system in normal form is usually obtained in form of an
asymptotic expansion in the small parameter [60]. It is known that these expansions
diverge in general. However, starting with a paper by Nekhoroshev [89], one became
aware that the truncation error can be made exponentially small provided that the
asymptotic expansion is truncated at an optimal index related to the size of the small
parameter. Since then, the idea of optimal truncation of asymptotic expansions has
been applied in various areas (see, for example, [88],[13],[14],[15],[93],[91],[16]. The
importance of normal form transformations for numerical analysis rests upon the
fact that the system (0.1) is much easier to integrate numerically than the original
problem formulation. Asymptotic expansions play an important role in other fields
as well. For example, the approximation of maps by flows of vector fields. For these
problems estimates on the truncated asymptotic expansion are of equal importance.
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One of the main objective of this work is to provide a new proof for the exponential
smallness of the truncation error for the following two classes of problems:

(A) Numerical integrators (one step methods)

xn+1 = ΨΔt(xn) ,

tn+1 = tn +Δt ,

with the step-size Δt as the small parameter,

(B) Differential equations with two different time scales and the reciprocal of the
separation in the time scales as the small parameter.

For class (A), we look for a modified vector field X̃ such that its time-Δt-flow ΦΔt,X̃

is equivalent to the numerical Δt-approximation ΨΔt to the exact time-Δt-flow of
the given vector field Z. This approach is called backward error analysis. It has
been shown by Neishtadt [88] that the difference between the flow of the modified
differential equation and the numerical approximation can be made exponentially
small, i.e.

||ΨΔt(x)−ΦΔt,X̃(x) || ≤ c1 Δt e
−c2/Δt ,

c1, c2 > 0 appropriate constants. This result is of utmost importance for understanding
the behavior of symplectic methods for Hamiltonian differential equations and their
energy conserving property. Further papers on exponential estimates in the context of
backward error analysis include Benettin & Giorgilli [16] and Hairer & Lubich

[55]. Here we give a new proof that seems simpler than the existing ones and also
allows one to take the order of a method into account. This is achieved by defining a
new recursion for the asymptotic expansion of the modified vector field X̃(Δt) and by
providing a new approach to estimate the difference between the numerical one step
method ΨΔt and the flow map ΦΔt,X̃ . The assumptions are that (i) the given vector
field Z is real analytic and that (ii) the vector field is bounded by a constant on an
appropriate subset of Cn. Note that our approach is not restricted to a particular
representation of the one step method ΨΔt as required in [55] and works directly with
an estimate for the vector field Z instead of assuming certain estimates for the Taylor
series representation of the one step method ΨΔt as in [16].

Backward error analysis is used to explain the preservation of the adiabatic in-
variants associated with Hamiltonian systems with two different time scales under
symplectic discretization and to discuss the symplectic integration of ergodic Hamil-
tonian systems. In particular, we show that adiabatic invariants are preserved over
exponentially long periods of time and that, for ergodic systems, the time averages
computed along numerically generated trajectories converge to the exact time aver-
ages1. While the first result involves backward error analysis and normal form theory,
the second result requires backward and forward error analysis as well as the concept
of shadowing for hyperbolic mappings. Both results seem of great importance for a
better understanding of symplectic integration methods for Hamiltonian systems with
a complex solution behavior.

1To be more precise, we show this results for systems with a hyperbolic structure.
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We also show how variable step-size symplectic integration can be achieved by
scaling the given Hamiltonian function and by an appropriate discretization of the
resulting equations of motion. This opens up a possibility to overcome the constant
step-size restriction of standard symplectic methods.

In case of class (B), we look for a coordinate transformation that decouples the slow
and fast motion. For many problems, this transformation to normal form can be
achieved up to terms exponentially small. Corresponding estimates have been derived
for various special types of differential equations. For example, Nekhoroshev [89],
Pöschel [93], Perry & Wiggins [91] looked at perturbed integrable Hamiltonian
systems, Neishtadt [88] considered systems with a single fast degree of motion, and
Benetttin, Galgani & Giorgilli [14],[15] discuss Hamiltonian systems with linear
oscillators as fast degrees of motion coupled to a slow motion in some other variables.
Here we consider the normal form problem from a general point of view and derive an
exponentially small estimate for a rather broad class of problems. Using a different
normal form recursion, a similar result has been stated by Fassò in [36]. Our approach
is based on the observation that the coordinate transformation to normal form can be
defined as the time-one-flow map of an appropriate autonomous, i.e. time independent,
vector field W (ε) which leads to a particularly simple normal form recursion.

We apply our estimate to various special problems such as systems of coupled
linear oscillators with a slowly varying parameter, nonlinear systems with a single fast
degree of motion, and mechanical systems with highly oscillatory internal degree(s)
of motion. In particular, the normal form recursion and the exponential estimate for
general mechanical systems with a single fast degree of motion are novel and provide
much sharper results than those obtained previously by Rubin & Ungar [105] and,
more recently, by Bornemann & Schütte [24] via homogenization techniques.

We show how normal form theory can be used to derive new algorithms and provide
a deeper understanding of existing ones. In particular, we like to mention (i) the
preservation of adiabatic invariants under symplectic discretization, (ii) elimination
of highly oscillatory internal degrees of freedom and explicit symplectic integration
of systems of rigid bodies, (iii) the idea of soft constraints to model flexible water
molecules without having to include the high-frequency internal degrees of freedom,
and (iv) an improved multiple-time-stepping integrator that overcomes the resonance
induced instabilities of standard multiple-time-stepping applied to highly oscillatory
mechanical systems2.

2This improvement was inspired by reading the paper by Garcia-Archilla, Sanz-Serna & Skeel
[42]
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Notations

Symbol Meaning

R real numbers
C complex numbers
Z integers
I non-negative integers
Tn n-torus Tn = Rn/2πZn

x phase space variable, x ∈ Rn or x ∈ Cn

q vector of position coordinates
p vector of conjugate momenta
i imaginary unit
Φt,X time-t-flow map of a vector field X
Φt,H time-t-flow map corresponding to a Hamiltonian H
Δt time step-size
ΨΔt numerical time-Δt-step map (one step method)
∇x gradient with respect to vector x
∂x partial derivative with respect to vector x
||x|| max-norm of vector x ∈ Rn, x ∈ Cn respectively
Br(x) complex ball of radius r > 0 around a point x
K,U ,V subsets of phase space Rn

BrK union of all complex balls of radius r around each x ∈ K
||G ||r sup-norm of function G on complex domain Br(x)
|G |r norm of function G on complex domain BrK
[X,Y ] Lie bracket of two vector fields X and Y
{G,F} Poisson bracket of two functions F and G
Φ∗

1,WY pull-back of vector field Y under Φ1,W

f ◦ g composition of map f with map g
[g]n n-fold composition of a mapping g
X · Y vector product of two vector fields, i.e. X · Y (x) =X(x) · Y (x)
δ(x) Dirac’s delta distribution
〈f, g〉 L2 inner product of two functions f and g
〈A〉T time average of an observable A
SO(3) Lie group of orthogonal 3× 3 matrices
so(3) Lie algebra of skew-symmetric 3× 3 matrices
M, TM, T ∗M manifold, tangent manifold, cotangent manifold
G submanifold of the Frechet manifold of smooth diffeomorphisms
g linear subspace in the Lie algebra of smooth vector fields
id identity map, i.e. id(x) = x

A−1 inverse of matrix A

AT transpose of matrix A
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Mappings Near the Identity

In this chapter, we discuss the approximation of mappings (diffeomorphisms) near the
identity by flows of autonomous vector fields. The approximating vector fields will
be given in terms of an asymptotic expansion which is defined by a simple recursion.
Optimal truncation of this series yields an exponentially small remainder. The proof
of this result is fundamental in the sense that similar techniques will be used in the
chapters on backward error analysis and normal form theory. The question on how
to interpolate a (symplectic) map close to the identity by an autonomous vector field
was apparently first posed by Moser [85]. The first “direct” proof for the exponential
smallness of the difference between the map and the best interpolating vector field was
given by Benettin & Giorgilli [16].

1.1 The Asymptotic Expansion

Let G : U ⊂ Rn → Rn be a real analytic map on an open subset U of Rn. We assume
that

||G(x)− x || < ε (1.1)

for all x ∈ K, K ⊂ U a compact subset of U ; || . || the l∞-norm on Rn. Here ε > 0
is a small number. In other words, G is a real analytic map ε close to the identity
map on K ⊂ U . Our aim is to find a real analytic vector field X̂ : V ⊂ Rn → Rn

on an appropriate open subset V of Rn such that the corresponding time-t-flow map
Φt,X̂ : V → Rn satisfies

Φt=1,X̂ (x) ≈ G(x)

for all x ∈ K. For that reason, let us consider the recursion

ΔX̂i+1 := G−Φ1,X̂i
, (1.2)

X̂i+1 := X̂i +ΔX̂i+1 (1.3)

with X̂0 = 0 and i = 0, 1, . . . , s.

1



2 CHAPTER 1. MAPPINGS NEAR THE IDENTITY

Remark 1.1. Note that (1.2)-(1.3) can be considered as a simplified Newton method
applied to the “nonlinear equation”

0 = G−Φ1,X̂ (1.4)

in the “unknown” X̂. The exact Newton method would lead to the equation (see, for
example, [32])

G(x0)−Φ1,X̂i
(x0) =

∫ 1

0

W (1, s;x0)ΔX̂i+1 (x(s)) ds , (x0 ∈ U) . (1.5)

Here x(t) denotes the solution of the differential equation

d

dt
x = X̂i (x)

with initial value x(0) = x0 andW (t, s;x0) is the Wronskian matrix of the variational
equation

d

dt
u =

[
∂

∂x
X̂i (x(t))

]
u , u(s) = In .

Note that (1.5) is, in general, not solvable for ΔX̂i+1 [58]. However, it would
be certainly of interest to identify cases for which (1.4) has a solution. In some
cases, this question is related to Kolmogorov’s method of proving KAM theory [29]. �

In the sequel, we will use the vector fields

Y (ξ) := ξ Y 0 and Y 0 := (G− id)/ε ,

||Y 0(x)|| < 1 on K. This allows us to introduce the one parametric family of mappings

Gξ := id+ Y (ξ) = id+ ξ Y 0 , ξ ≥ 0 ,

with

G = Gξ=ε .

Thus, we can formally consider the vector fields X̂i and ΔX̂i, 1, . . . , s, as functions
of ξ. Obviously, we have

ΔX̂1(ξ) = ξ Y 0 (1.6)

and, using Taylor series representation of the flow map Φt,X̂1
with respect to time t,

i.e.,

Φ1,X̂1
= id+ ξ Y 0 +

ξ2

2
LY 0

Y 0 +O(ξ3) = id+ Y +
1

2
LY Y +O(ξ3) ,

we obtain

ΔX̂2(ξ) = −ξ
2

2
LY 0Y 0 +O(ξ3) = −1

2
LY Y +O(ξ3) .
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Here LY 0
Y 0 denotes the Lie derivative of Y 0 with respect to Y 0 [119], i.e.,

LY 0
Y 0 (x) =

∂

∂x
Y 0(x) · Y 0(x) .

Continuing this process, we obtain

Lemma 1.1. The vector fields X̂i(ξ), i = 1, 2, . . . , s, satisfy

Gξ −Φ1,X̂i
= O(ξi+1) .

�

Proof. We have to show that, if

Gξ −Φ1,X̂i
= O(ξi+1) ,

then

Gξ −Φ1,X̂i+1
= O(ξi+2) .

Now, with ΔX̂i+1 = O(ξi+1),

Φ1,X̂i+1
= Φ1,X̂i+ΔX̂i+1

= Φ1,ΔX̂i+1
◦Φ1,X̂i

+O(ξi+2)

= (id+ΔX̂i+1) ◦Φ1,X̂i
+O(ξi+2)

= Φ1,X̂i
+ΔX̂i+1 +O(ξi+2)

and

Gξ −Φ1,X̂i+1
= Gξ −Φ1,X̂i

−ΔX̂i+1 +O(ξi+2)

= (ΔX̂i+1 −ΔX̂i+1) +O(ξi+2)

= O(ξi+2) .

�

From Lemma 1.1 it follows that

ΔX̂i = −ξ
i

i!

[
∂i

∂ξi
Φ1,X̂i−1

]
ξ=0

+O(ξi+1) .

From now on we will drop the higher order ξ terms in ΔX̂i and use the modified
recursion

ΔXi := −ξ
i

i!

[
∂i

∂ξi
Φ1,Xi−1

]
ξ=0

, (1.7)

Xi+1 := Xi +ΔXi+1 (1.8)

with X1 = ξ Y 0 and i = 1, 2, . . . , s.
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instead of (1.2)-(1.3). The result of Lemma 1.1 also applies to the modified recursion.
All we need is that

Gξ −Φ1,Xi = ΔXi+1 +O(ξi+1)

which follows from standard Taylor series expansion.

The sequence {ΔXi(ξ = ε)}i≥1 does not, in general, converge to zero. Thus we are
looking for the integer i∗ such that

||G−Φ1,Xi∗ ||∞ = Min!

where || . ||∞ denotes the supremum norm on K, i.e.,

||G−Φ1,Xi ||∞ := sup
x∈K

||G (x)−Φ1,Xi(x) ||

and

Xi(ε) :=

i∑
j=1

ΔXj(ξ = ε) .

1.2 The Theorem on the Exponential Estimate

Let BR(x0) ⊂ Cn denote the complex ball of radius R > 0 around x0 ∈ Rn and define

|| z || := max
i=1,... ,n

|zi| , (z ∈ Cn) .

Under the assumption that the real analytic vector field

Y 0 := (G− id)/ε

is bounded by one on a complex ball of radius R > 0 around each x0 ∈ K ⊂ Rn, i.e.,

||Y 0 ||R = sup
x∈BR(x0)

||Y 0(x) || ≤ 1 , (x0 ∈ K) ,

one can prove the following result:

Theorem 1.1. Let G : U ⊂ Rn → Rn be a real analytic map ε close to the identity
on a compact set K ⊂ U , i.e.,

||G(x)− x || < ε , for all x ∈ K .

Then there exists a real analytic vector field X : V ⊂ Rn → Rn such that

||G(x)−Φ1,X (x) || ≤ 6 ε b e−γ/ε , for all x ∈ K . (2.9)

Here γ = R/(2ce), b = 10, c = 150, and R > 0 such that, for all x0 ∈ K,

||G (x)− x || ≤ ε

on the complex ball of radius R around x0 ∈ K. �
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1.3 Proof of the Theorem

Let us recall the following result for analytic functions: Let f : R → R be a real
analytic function on a complex ball of radius r > 0 around 0 ∈ R. Cauchy’s inequality
[64] yields then, under the assumption that

| f(y) | ≤ m

for all |y| ≤ y0, 0 < y0 ≤ r, the estimate

| ∂jyf(y = 0) | ≤ j!my−j
0 .

for the jth derivative of f at y = 0. We will also use the following notation: Let X be
a real analytic vector field on a complex ball of radius R > 0 around a point x0 ∈ Rn.
Then one denotes

||X ||r = sup
x∈Br(x0)

||X(x) ||

where Br(x0) ⊂ Cn is the complex ball of radius r, R ≥ r ≥ 0, around x0 ∈ Rn.

The real analytic vector field

Y (ξ) := ξ Y 0 with Y 0 := (G− id)/ε

satisfies

||Y (ξ) ||R ≤ ξ (3.10)

with R > 0 appropriately chosen and x0 ∈ K. We also define Gξ = id + Y (ξ)
which allows us to formally consider the vector fields Xi and ΔXi, i = 1, . . . , s, as
functions of ξ.

Lemma 1.2. The Lie derivative LY Y satisfies the estimate

1

2
||LY Y ||αR ≤ ξ

(
ξ

(1 − α)R

)
for α ∈ [0, 1). �

Proof. Since

||Φt,Y (x)− x || ≤
∫ |t|

0

||Y (Φτ,Y (x)) || |dτ | ,

and (3.10), the flow map Φt,Y certainly satisfies

Φt,Y (x) ∈ BR (x0)

for all

|t| ≤ (1− α)R

ξ
=: t0
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and all x ∈ BαR(x0). For x ∈ BαR(x0), define

f (t,x) := Φt,Y (x)− x .
Since f is real analytic in t,

||f (t,x) || = ||Φt,Y (x)− x || ≤ (1− α)R

for |t| ≤ t0, as well as

LY Y (x) =
∂2

∂t2
Φt=0,Y (x) =

∂2

∂t2
f (t = 0,x) ,

it follows from Cauchy’s estimate that

1

2
||LY Y (x) || ≤ (1 − α)R t−2

0 ,

≤ ξ

(
ξ

(1 − α)R

)
for all x ∈ BαR(x0). �

Remark 1.2. A slightly better estimate than the one given in Lemma 1.2
can be obtained by applying Cauchy’s estimate to LY Y (x) = ∂tf(t = 0,x),
f(t,x) := Y (x + tY (x)) [16]. However, the “flow map technique” introduced in the
proof of Lemma 1.2 is essential for the proof of Lemma 1.3 below. �

Next we have to derive an estimate for ||ΔXi(ξ)|| (1.7), i = 1, . . . , s. According to
(1.6), (1.7), and Lemma 2, we have

||ΔX1(ξ) ||αR = ||Y ||αR ≤ ξ

and

||ΔX2 ||αR =
1

2
||LY Y ||αR ≤ ξ

(
ξ

(1 − α)R

)
for α ∈ [0, 1).

Lemma 1.3. The vector fields ΔX i(ξ) (1.7) satisfy

||ΔXi ||αR ≤ b ξ

(
c (i − 1) ξ

(1− α)R

)i−1

(3.11)

for i ≥ 3 and α ∈ [0, 1). The constants b and c can be chosen as

b = 10 and c = 150 .

�
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Proof. We know that ΔXi(ξ) and Xi(ξ), i = 1, . . . , s, are analytic functions of ξ.
Let us assume that (3.11) holds for i = 3, . . . , j. Then

||Xj (ξ) ||αR ≤
j∑

i=1

||ΔXi (ξ) ||αR

≤ ξ

[
1 +

ξ

(1− α)R
+

j∑
i=3

b

(
c (i− 1) ξ

(1− α)R

)i−1
]

(3.12)

which implies

||Xj (ξ) ||αR ≤ b ξ0 = δ(1 − α)R

for

ξ ≤ (1− α)R

c j
=: ξ0 ,

b ≥ 9, c ≥ 1, and

δ :=
b

c j
.

Here we have used that

j∑
i=3

(
i− 1

j

)i−1

≤ 0.85

for j ≥ 3 which implies that[
1 +

ξ0
(1− α)R

+

j∑
i=3

b

(
c (i− 1) ξ0
(1 − α)R

)i−1
]

= 1 +
1

c j
+ b

[
j∑

i=3

(
i− 1

j

)i−1
]

≤ b

for j ≥ 3, b ≥ 9, and c ≥ 1. Next we chose b ≥ 9 and c ≥ 1 large enough (for example,
b = 10 and c = 150) such that

||Xj(ξ) ||(α+δ(1−α))R ≤ b ξ0 = δ(1− α)R (3.13)

for ξ ≤ ξ0 as well. In other words, we chose b and c such that

1 +
1

(1 − δ) c j
+ b

j∑
i=3

(
i− 1

(1− δ) j

)i−1

≤ b

where we have used (3.12) with α replaced by α+ δ(1− α) and

1− (α+ (1 − α) δ) = (1− α) (1 − δ) .
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In particular, for b = 10 and c = 150, we obtain δ < 0.067/j and

j∑
i=3

(
i− 1

(1− δ) j

)i−1

≤
j∑

i=3

(
i− 1

j − 0.067

)i−1

,

≤ 0.891

for j ≥ 3. Let us now consider the real analytic function

f (ξ,x) := Φ1,Xj (x)− x
for x ∈ BαR(x0). Since

||Φ1,Xj (x)− x || ≤
∫ 1

0

||Xj (Φτ,Xj (x)) || |dτ |

and (3.13), we have

Φ1,Xj (x) ∈ Bδ(1−α)R (x)

and, therefore,

||f (ξ,x) || ≤ δ (1 − α)R = b ξ0 (3.14)

for |ξ| ≤ ξ0 and x ∈ BαR(x0). The function f is real analytic in ξ. Thus, by Cauchy’s
estimate, we obtain

||ΔXj+1(ξ) (x) || =
ξj+1

(j + 1)!
|| ∂j+1

ξ f (ξ = 0,x) || ,

≤ b ξ0

(
ξ

ξ0

)j+1

, (3.15)

≤ b ξ

(
c j ξ

(1− α)R

)j

, (3.16)

x ∈ BαR(x0), and the desired estimate for ||ΔXj+1||αR follows. �

Next we need an estimate for the difference between G(x0) = Gξ=ε(x0) and the flow
map Φ1,Xi (x0), x0 ∈ K, for ξ = ε. This is the subject of the following

Lemma 1.4. Whenever the constant ε in (1.1) satisfies

ε ≤ R

2 c i
,

then

||G(x0)−Φ1,Xi(x0) || ≤ 2 ε b

(
2 c i ε

R

)i

, x0 ∈ K ,

with b = 10 and c = 150. �
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Proof. According to standard Taylor series expansion, we have

||Gε (x0)−Φ1,Xi (x0) || ≤ εi+1

(i+ 1)!
sup

0≤ξ̂≤ε

|| ∂i+1
ξ f (ξ = ξ̂,x0) ||

with, as in the proof of Lemma 1.3,

f (ξ,x0) := Φ1,Xi(x0)− x0 .

This requires an estimate for ||∂i+1
ξ f(ξ = ξ̂,x0)||, 0 ≤ ξ̂ ≤ ε. Following the proof of

Lemma 1.3, i.e., taking α = 0 in (3.14), we know that

||f(ξ,x0) || ≤ b ξ0

for |ξ| ≤ ξ0 := R/(ci). Assume that ε ≤ ξ0/2. Then

||f(ξ,x0) || ≤ b ξ0

for |ξ − ξ̂| ≤ ξ0/2 and ξ̂ = ε ≤ ξ0/2. Thus, Cauchy’s estimate implies

1

(i+ 1)!
|| ∂i+1

ξ f (ξ = ξ̂,x0) || ≤ b ξ0

(
2

ξ0

)i+1

,

≤ 2 b

(
2 c i

R

)i

and, for ε ≤ R/(2ci), the desired estimate

||G(x0)−Φ1,Xi (x0) || ≤ 2 ε b

(
2 c i ε

R

)i

follows. �

Starting with i = 1, Lemma 1.4 yields now

||G(x0)−Φ1,Xi(x0) || ≤ 2 ε b

(
2 i c ε

R

)i

, (x0 ∈ K) ,

provided ε ≤ R/(2ic) for all i = 1, . . . , s. Let i∗(ε) be the integer part of

io(ε) :=
R

2 c ε e
.

Note that this choice of i∗(ε) certainly implies

ε ≤ R

2 c i∗
.

Then, for all x0 ∈ K,

||G(x0)−Φ1,Xi∗ (x0) || ≤ 2 ε b e−i∗ ,

≤ 2 ε b e−io+1

≤ 6 ε b e−γ/ε
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where γ = ioε = R/(2ce). Thus we have proved Theorem 1.1.

Remark 1.3. It was not our intention to provide an optimal estimate for the constants
b and c. Instead we tried to keep the proof as simple as possible. A better estimate
can, for example, be obtained by replacing the estimate (3.11) in Lemma 1.3 by

||ΔXi ||αR ≤ bi ξ

(
ci (i − 1) ξ

(1− α)R

)i−1

.

Here ci and bi are appropriate constants. For example, one can chose c3 = 1.5,
c4 = 2.0, c5 = 2.5, c6 = 3.0, c7 = 3.5, and

ci = 3.5 + 0.3
[
e−(i−8)/10

]1/4
, for i ≥ 8

and the constants bi such that

1 +
1

cj+1 (j − bj+1

cj+1
)
+

j∑
i=3

bi

⎛⎝ ci (i − 1)

cj+1 (j − bj+1

cj+1
)

⎞⎠i−1

≤ bj+1 .

The above choice implies ci < 16 and bi < 4.5 for all i ≥ 3. Of course, this is still not
optimal. Further improvements could be obtained by slightly decreasing α ∈ [0, 1) in
||Xi||αR in each step. �

1.4 A First Application

Let us consider the following “rapidly forced” differential equation

d

dt
x = εZ(x, s) ,

d

dt
s = 1 ,

where Z is 1-periodic in s and ||Z(x, s)|| < 1 for s ∈ [0, 1] and all x ∈ U ⊂ Rn. Let
G denote the time-1-flow map of the differential equation. Then the map G certainly
satisfied ||G(x)−x|| < ε for x ∈ K ⊂ U and Theorem 1.1 can be applied provided Z is
analytic. Thus the time-1-flow of the rapidly forced differential equation is equivalent
to the time-1-flow of an autonomous differential equation up to terms exponentially
small in ε. This result was first stated by Neishtadt in [88]. The first term in the
asymptotic expansion of the autonomous (interpolating) vector field is given by

X1(x) = ε

∫ 1

0

Z(x, s) ds .



2

Backward Error Analysis

In this chapter, we consider the relationship between solutions to a given system of
ordinary differential equations

d

dt
x = Z(x) ,

numerical approximations

xn+1 = ΨΔt (xn) (0.1)

to them, and solutions to associated modified equations

d

dt
x = X̃i (x; Δt) (i ≥ 1) .

The vector fields X̃i(Δt) are formulated in terms of an asymptotic expansion in Δt,
i.e., are chosen such that the numerical solution can formally be interpreted, with
increasing index i, as the more and more accurate solution of the modified equation.
Previous papers on backward error analysis for differential equations include those by
Warming & Hyett [123], Griffiths & Sanz-Serna [48], Beyn [18], Feng [37],
Fiedler & Scheurle [38], and Sanz-Serna [108].

More recently, general formulas for the computation of the modified vector fields X̃i

have been derived by Hairer [53], Calvo, Murua & Sanz-Serna [28], Benettin

& Giorgilli [16], and Reich [94]. In papers by Neishtadt [88], Benettin

& Giorgilli [16], and Hairer & Lubich [55], the question of closeness of the
numerical approximations and the solutions of the modified equations has been
addressed. It has also been shown by Hairer [53], Calvo, Murua & Sanz-Serna

[28], Reich [94], and Benettin & Giorgilli [16] that for symplectic discretizations,
the modified vector fields X̃i are Hamiltonian. For special cases see also the papers
by Auerbach & Friedman [9] and Yoshida [124].

2.1 Perturbed Vector Fields for Numerical Integra-

tion

Let us now consider a real analytic vector field

d

dt
x = Z (x) , (1.2)

11
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Z : U ⊂ Rn → Rn and its discretization by a one step method [56],[32]

xn+1 = ΨΔt (xn) = xn +Δtψ(xn,Δt) . (1.3)

We assume that ΨΔt : U ⊂ Rn → Rn is a method of order p ≥ 1, i.e.

||ΦΔt,Z(z)−ΨΔt(z) || = O(Δtp+1) ,

z ∈ U , and that there exists an appropriate constant M > 0 such that

||ΨΔt(x)− x || ≤ ΔtM

for all x in a compact subset K of U and all Δt > 0 sufficiently small. As in the
previous chapter, we look for a vector field X such that

Φ1,X ≈ ΨΔt

or, equivalently,

ΦΔt,X̃ ≈ ΨΔt with X̃ :=
1

Δt
X .

Upon defining

Gξ = id+ ξ Y 0 , ξ ∈ [0, ε] ,

with

Y 0(x) :=
1

M
ψ(x,Δt) ≤ 1 and ε := ΔtM ,

we can apply the recursion (1.7)-(1.8) from Chapter 1. Thus, with G = ΨΔt and
ε = ΔtM , we can also apply Theorem 1.1. Specifically:

Corollary 2.1. Let ΨΔt : U ⊂ Rn → Rn be a real analytic map close to the
identity on a compact set K ⊂ U , i.e.,

||ΨΔt(x)− x || < ΔtM for all x ∈ K

and all Δt > 0 sufficiently small. Then there exists a family of real analytic vector
fields X̃(Δt) : V ⊂ Rn → Rn such that

||ΨΔt(x)−ΦΔt,X̃(x) || ≤ 6Δt bM e−γ/Δt , for all x ∈ K .

Here γ = R/(2cMe), b = 10, c = 150, and R > 0 such that, for all x0 ∈ K and all
Δt > 0 sufficiently small,

||ΨΔt(x)− x || ≤ ΔtM (1.4)

on the complex ball of radius R around x0 ∈ K. �
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Remark 2.1. Theorem 1.1 yields the exponential estimate for the time one flow map
of an appropriate vector field X. This is equivalent to the time-Δt-flow of the vector
field X̃ :=X/Δt. Furthermore, for a method GΔt of order p ≥ 1, we have

Z(x)− X̃(x,Δt) = O(Δtp) .

�

Remark 2.2. The discrete evolution (1.3) can now be considered as the discretization
of the modified vector field X̃ (as long as the numerical solution does not leave the
compact set K). According to Corollary 2.1 and standard results in numerical analysis
[56],[32], the global error

en (x) := ΦnΔt,X̃(x)− [ΨΔt ]
n
(x)

after n steps with step-size Δt is bounded by

|| en (x) || ≤ 2 bM

L̃

(
enΔtL̃ − 1

)
e−γ/Δt

where L̃ ≥ 0 is the Lipschitz constant of the modified vector field X̃ on K. Thus the
global error en remains exponentially small over a time interval T = nΔt < γ/(2ΔtL̃)
[16]. �

Remark 2.3. In [38], Fiedler & Scheurle show that ΨΔt is equivalent to the
time-Δt-flow of a non-autonomous differential equation

d

dt
z = Z(x) + F (x, t; Δt) (1.5)

with F (Δt) a vector field Δt-periodic in t and

||F (x, t; Δt) || = O(Δtp) ,

p ≥ 1 the order of ΨΔt. In view of Corollary 2.1, we can use the same construction to
show that ΨΔt is equivalent to the time-Δt-flow of the non-autonomous differential
equation

d

dt
x = X̃(x) + e−γ/Δt F̃ (x, t; Δt)

where X̃ is the modified vector field of Corollary 2.1 and F̃ is a vector field Δt-periodic
in t. Furthermore, because of Corollary 2.1, there exists a constant c > 0 such that

|| F̃ (x, t; Δt) || ≤ c

for x ∈ K, t ∈ [0,Δt], and Δt sufficiently small. In fact, equation (1.5) was taken as
the starting point by Neishtadt in his paper [88] and averaging in time was used to
show that the non-autonomous perturbation can be made exponentially small in Δt.
To the knowledge of the author, this was the first mentioning of a result as stated in
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Corollary 2.1. �

Remark 2.4. In some cases stronger results than the one presented in Corollary
2.1 can be derived. We like to mention the behavior of a numerical discretization
near a hyperbolic fixed point [35], the “numerical” flow box theorem [40], and the
discretization of flows on domains of attraction [41]. �

Let us now discuss the Taylor series expansion of the modified vector field X̃(Δt)
in terms of Δt in more detail. This will be useful in Section 2.2 when we consider
geometric properties of X̃. In this context, it is more appropriate to use G = ΨΔt

and X̂0 = ΔtZ in the recursion (1.2)-(1.3) from Section 2 which immediately implies
ΔX̂1 = O(Δtp+1). More generally, similar to the proof of Lemma 1.1, it is easy to
show that we have

ΔX̂i+1 := ΨΔt −Φ1,X̂i
= O(Δti+p+1) , (i ≥ 0) ,

where X̂i+1 := X̂i +ΔX̂i+1 as before. Thus we consider the limit

lim
τ→0

1

τ i+p+1
ΔX̂i+1(τ) = lim

τ→0

Ψτ −Φ1,X̂i(τ)

τ i+p+1

where

X̂i(τ) := X̂i(Δt = τ)

and

Ψτ (x) := ΨΔt=τ = x+ τ ψ(x, τ) .

This yields

ΔX̂i+1(Δt) := Δtp+i+1 lim
τ→0

Ψτ −Φ1,X̂i(τ)

τ i+p+1
+O(Δtp+i+2) .

Since

lim
τ→0

Ψτ −Φ1,X̂i(τ)

τ i+p+1
=

1

(i + p+ 1)!

[
∂i+p+1

∂τ i+p+1
Ψτ − ∂i+p+1

∂τ i+p+1
Φ1,X̂i(τ)

]
τ=0

,

we are led to the modified recursion [94]:

ΔXi+1 :=
Δtl

l!

[
∂l

∂τ l
Ψτ − ∂l

∂τ l
Φ1,Xi(τ)

]
τ=0

, l = p+ i + 1, (1.6)

Xi+1 := Xi +ΔXi+1 (1.7)

with X0 := ΔtZ.
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The modified vector fields X̃i are defined by

X̃i :=
1

Δt
Xi

and we have

ΨΔt −ΦΔt,X̃i
= O(Δtp+i+1) , i ≥ 0 .

Using the same notations as in Chapter 1, the proof of Theorem 1.1 can be adjusted
to also cover the recursion (1.6)-(1.7). The major difference is that we also have
to provide an estimate for the derivatives ∂iτΨτ , i ≥ 1, which is the subject of the
following lemma.

Lemma 2.1. Let us assume that the vector field Z in (1.2) is real analytic and that
there is a compact subset K of phase space and constants K, R > 0 such that, for all
x0 ∈ K,

||Z(x) || ≤ K

on the complex ball of radius R around x0 ∈ K. We also assume that the numerical
method ΨΔt is real analytic. Then there exists a constant M ≥ K such that (i)

||ΨΔt − id ||αR ≤ ΔtM for |Δt| ≤ (1 − α)R

M
,

α ∈ [0, 1), and (ii)

Δti+1

(i+ 1)!
|| ∂

i+1

∂τ i+1
Ψτ=0 ||αR ≤ ΔtM

(
ΔtM

(1− α)R

)i

. (1.8)

�

Proof. Under the given assumptions, the flow map Φt,Z satisfies

||ΦΔt,Z − id ||αR ≤ ΔtK for |Δt| ≤ (1− α)R

K
,

α ∈ [0, 1). Consistency of the numerical method implies that there exists a ΔK ≥ 0
such that

||ΨΔt − id ||αR ≤ Δt (K +ΔK) for |Δt| ≤ (1− α)R

K +ΔK
.

The estimate (ii) follows from Cauchy’s estimate. �

Remark 2.5. Let us consider a Runge-Kutta method with coefficients {aij} and {bi}
[56] satisfying ∑

j

|aij | ≤ d and
∑
i

|bi| ≤ d ,
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d ≥ 1, and assume that the Runge-Kutta method uniquely1 defines a real analytic
map ΨΔt for all step-sizes Δt ≤ R/K. Then we have M = dK in Lemma 2.1. This
follows from the fact that, under the stated assumptions, all the stage variables will
be in BR(x0), x0 ∈ K, where the vector field Z is bounded by the constant K. �

Theorem 2.1. Let the assumption of Lemma 2.1 be satisfied. Then there exists
a family of real analytic vector fields X̃(Δt) : V ⊂ Rn → Rn, K ⊂ V ⊂ U , such that,
for all x0 ∈ K,

||ΨΔt −ΦΔt,X̃ ||R/2 ≤ 6Δt bM e−p e−γ/Δt

with γ = R/(4cMe), b = 12, c = 40, and p ≥ 1 the order of the method. The modified
vector fields X̃(Δt) satisfy the estimate

|| X̃(Δt) −Z ||R/2 ≤ dp bM

(
2 cΔtM

R

)p

with dp ≥ 1 a constant depending on the order p of the method. For example,
d1 = 1.0, d2 = 1.0, d3 = 1.0, and d4 = 1.3. �

Proof. With ε := ΔtM , the estimates for the recursion (1.6)-(1.7) are similar to the
ones given in the proof of Theorem 1.1. Thus we only point out the differences. We
know that X0 = ΔtZ. Thus ||X0||R ≤ ΔtM . For ΔX1 we obtain the estimate

||ΔX1 ||αR ≤ Δtp+1

(p+ 1)!

[
|| ∂

p+1

∂τp+1
Φ1,X0(τ=0) ||αR + || ∂

p+1

∂τp+1
Ψτ=0 ||αR

]
,

≤ 2ΔtM

(
ΔtM

(1− α)R

)p

.

Here we have used (1.8) with i = p and (compare Lemma 1.2)

Δtp+1

(p+ 1)!
|| ∂

p+1

∂τp+1
Φ1,X0(τ=0) ||αR ≤ ΔtM

(
ΔtM

(1 − α)R

)p

.

The estimate of Lemma 1.3 is now replaced by the estimate

||ΔXi ||αR ≤ Δt bM

(
c (i − 1)ΔtM

(1 − α)R

)p+i−1

. (1.9)

Thus

||Xj(Δt) ||αR ≤
j∑

i=0

||ΔXi(Δt) ||αR ,

≤ ΔtM

[
1 + 2

(
ΔtM

(1− α)R

)p

+

j∑
i=2

b

(
c (i− 1)ΔtM

(1− α)R

)p+i−1
]
.

1For an implicit method, the solution can be obtained by fixpoint iteration for Δt sufficiently
small.
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Following the proof of Lemma 1.3, we obtain

||Xj(Δt) ||(α+δ(1−α))R ≤ (b− 1)Δt0M ≤ δ (1− α)R , δ :=
b− 1

j c
,

for all

Δt ≤ (1− α)R

c j M
=: Δt0 ,

b ≥ 12, and c ≥ 40. Here we have used that

j∑
i=2

(
i− 1

(1− δ) j

)i

≤ 0.82

for δ ≤ 0.3/j and all j ≥ 2. This implies that

1 + 2

(
1

(1− δ) c j

)p

+ b

j∑
i=2

(
i− 1

(1− δ) j

)p+i−1

≤ b− 1

for all p ≥ 1, j ≥ 2, b ≥ 12, and c ≥ 40. Next we introduce the vector-valued function

f(x, τ) := Φ1,Xj(τ) (x)− x ,

=

∫ 1

0

Xj (Φt,Xj (x)) dt ,

and observe that

||f (τ) ||αR ≤ δ (1− α)R

for |τ | ≤ Δt0. Following the proof of Lemma 1.3 and taking into account that ΔXj+1

is defined by (1.6), we obtain

||ΔXj+1 ||αR ≤ Δtp+j+1

(p+ j + 1)!
|| ∂

p+j+1

∂τp+j+1
Φ1,Xj(τ=0) ||αR +

+
Δtp+j+1

(p+ j + 1)!
|| ∂

p+j+1

∂τp+j+1
Ψτ=0 ||αR ,

≤ Δtp+j+1

(p+ j + 1)!

[
|| ∂

p+j+1

∂τp+j+1
fτ=0 ||αR + || ∂

p+j+1

∂τp+j+1
Ψτ=0 ||αR

]
,

≤ (b− 1)ΔtM

(
c jΔtM

(1− α)R

)p+j

+ΔtM

(
ΔtM

(1− α)R

)p+j

,

≤ bΔtM

(
c jΔtM

(1− α)R

)p+j

which verifies our claim. Lemma 1.4 and the choice of the “optimal” number of
iterations i∗(Δt) carry over to Theorem 2.1 and

||ΨΔt −Φ1,Xi∗ ||R/2 ≤ 2Δt bM e−p e−i∗ ,

≤ 2Δt bM e−p e−io+1 ,

≤ 6Δt bM e−p e−io
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where i∗(Δt) is the integer part of

io(Δt) :=
R

4 cΔtM e
.

We define

X̃(Δt) :=
1

Δt
Xi∗(Δt)

which completes the first part of the proof.
The difference between the modified vector fields X̃(Δt) and Z is given by

|| X̃ −Z ||R/2 ≤ M

(
2 cΔtM

R

)p
[
2 +

i∗∑
i=2

b (i− 1)p
(
2 c (i− 1)ΔtM

R

)i−1
]
.

Next we use

Δt ≤ R

4 c i∗M e

to obtain

|| X̃ −Z ||R/2 ≤ M

(
2 cΔtM

R

)p
[
2 + b

i∗∑
i=2

(i− 1)p

(2e)i−1

(
i− 1

i∗

)i−1
]
,

≤ M

(
2 cΔtM

R

)p

[2 + b dp 0.89] ,

≤ dp bM

(
2 cΔtM

R

)p

.

Here dp ≥ 1 is chosen such that

dp ≥ ip

(2e)i

for all i ≥ 1. �

Remark 2.6. Again it was not our intention to provide an optimal estimate for the
constants b and c. A better estimate can, for example, be obtained by replacing the
estimate (1.9) in the proof of Theorem 2.1 by

||ΔXi ||αR ≤ bi ξ

(
ci (i− 1) ξ

(1− α)R

)p+i−1

.

Here ci and bi are appropriate constants. Similar to Remark 1.3, one can, for example,
choose these constants such that ci ≤ 16, bi ≤ 4.1 for i ≥ 2 and

1 + 2

⎛⎝ 1

cj+1(j − bj+1

cj+1
)

⎞⎠p

+

j∑
i=2

bi

⎛⎝ ci(i− 1)

cj+1(j − bj+1

cj+1
)

⎞⎠p+i−1

≤ bj+1 −
(

1

cj+1j

)p+j

for all j ≥ 2. Thus Theorem 2.1 is also valid with c = 16 and b = 4.1. �
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2.2 Geometric Properties of Backward Error Anal-

ysis

In this section, we consider differential equations (1.2) whose corresponding vector
field Z belongs to a certain linear subspace g of the infinite dimensional Lie algebra2

of smooth vector fields on Rn [58],[1].

Assumption. Given a linear subspace g of the infinite dimensional Lie algebra of
smooth vector fields on Rn, let us assume that there is a corresponding subset G of
the infinite dimensional Frechet manifold [58] of diffeomorphisms on Rn such that

g = TidG .

Here TidG is defined as the set of all vector fields X := ∂τΨτ=0 for which the
one-parametric family of diffeomorphisms Ψτ ∈ G is smooth in τ and Ψτ=0 = id. �

For the linear space (Lie algebra) of Hamiltonian vector fields on Rn this is, for
example, the subset of canonical transformations [1]. An important aspect of those
differential equations is that the corresponding flow map Φt,Z forms a one-parametric
subgroup in G [58],[1]. Especially in the context of long term integration, it is
desirable to discretize differential equations of this type in such a way that the
corresponding iteration map ΨΔt belongs to the same subset G as Φt,Z . We will call
those integrators geometric integrators.

The following result concerning the backward error analysis of geometric integrators
can be derived [94]:

Theorem 2.2. Let us assume that the vector field Z in

d

dt
x = Z(x)

belongs to a linear subspace g of the Lie algebra of all smooth vector fields on Rn. Let
us assume furthermore that

xn+1 = ΨΔt (xn) = xn +Δtψ(xn,Δt)

is a geometric integrator for this subspace g, i.e., ΨΔt ∈ G for all Δt ≥ 0 sufficiently
small. Then the perturbed vector fieldsXi, i = 1, . . . , s, defined through the recursion
(1.6)-(1.7) belong to g, i.e.

Xi ∈ g ,

and the vector field X̃ in Theorem 2.1 satisfies X̃ ∈ g. �

Proof. The statement is certainly true for X0 = ΔtZ. Let us assume that it also
holds for Xi, i.e., Xi(Δt) ∈ g for all Δt ≥ 0 sufficiently small. Since

Ψτ (x) = x+ τ ψ(x, τ) ∈ G

2The algebraic operation is the Lie bracket [X,Y ] of two vector fields X and Y [6].
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and

Φ1,Xi(τ) ∈ G ,

as well as

Ψτ=0 = Φ1,Xi(τ=0) = id,

we have

ΔXi+1 = Δti+p+1 lim
τ→0

Ψτ −Φ1,Xi(τ)

τ i+p+1
∈ TidG .

and ΔXi+1(Δt) ∈ g for all Δt ≥ 0 sufficiently small. This implies Xi+1(Δt) ∈ g as
required. �

Remark 2.7. Often the linear subspace g is, in fact, a subalgebra under the Lie
bracket [6]

[X,Y ] :=
∂

∂x
X · Y − ∂

∂x
Y ·X , (2.10)

i.e., X,Y ∈ g implies [X,Y ] ∈ g. But this property is not needed in Theorem 2.2.
�.

Let us discuss four examples:

Example 2.1. Consider the subspace g of all vector fields that preserve a particular
first integral F : Rn → R. In fact, this space is a subalgebra under the Lie bracket
(2.10). In other words

∂xF ·X = 0 (2.11)

and

∂xF · Y = 0 (2.12)

imply that

∂xF · [X,Y ] = 0 . (2.13)

To show this we differentiate (2.11) w.r.t. x which gives

XT · ∂xxF + ∂xF · ∂xX = 0 .

The same procedure is applied to (2.12). Using these identities and the definition
(2.10) in (2.13) yields the desired result. The corresponding subset G is given by the
F -preserving diffeomorphisms Ψ, i.e.

F ◦Ψ = F .
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In fact, let Ψτ be a smooth family of F -preserving diffeomorphisms with Ψτ=0 = id,
then X := ∂τΨτ=0 ∈ g since

∂τF ◦Ψτ=0 = ∂xF ·X = 0 .

Thus, TidG = g and we can apply Theorem 2.2. In particular, if a numerical method
ΨΔt satisfies

F ◦ΨΔt = F ,

then the modified vector field X̃ possesses F as a first integral. The same result was
recently derived by Gonzales & Stuart [49] by a contradiction argument. �

Example 2.2. Consider the Lie subalgebra of all divergence-free vector fields Z, i.e.
divZ = 0. The corresponding subset G are the volume preserving diffeomorphisms,
i.e.

det

[
∂

∂x
Ψ(x)

]
= 1

Again we have TidG = g. Namely:

0 = ∂τ det

[
∂

∂x
Ψτ=0(x)

]
= trace [∂x∂τΨτ=0(x)]

= divX(x),

X := ∂τΨτ=0. Thus, if the numerical method ΨΔt is volume conserving, then the
modified vector field X̃ is divergence-free. �

Example 2.3. Let an involution3 S be given and consider the subspace g of vector
fields Z on Rn that satisfy the time-reversal symmetry

−Z(x) = SZ(Sx).

This subspace is not a subalgebra under the Lie bracket (2.10). The corresponding
subset G is given by the time-reversible diffeomorphisms Ψ, i.e. Ψ−1(x) = SΨ(Sx).
Let Ψτ ∈ G be smooth in τ with Ψτ=0 = id, then

0 = ∂τ
[
SΨτ=0 ◦ S − [Ψτ=0]

−1
]
,

= SX ◦ S +X

which implies that X := ∂τΨτ=0 ∈ g. It follows that TidG = g and we can apply
Theorem 2.2. Thus, if a numerical method ΨΔt satisfies the time-reversal symmetry,
then the modified vector field X̃ is time-reversible. The same result has been first
stated by Hairer & Stoffer in [57]. �.

3An involution is a non-singular matrix that satisfies S�1 = S.
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Example 2.4. Let {., .} denote the Poisson bracket of a (linear) Poisson manifold
P = Rn. Then the Lie algebra of Hamiltonian vector fields on P is given by

d

dt
x = { id, H } (x)

where H : P → R is a smooth function. The corresponding subset G is given by the
set of smooth diffeomorphisms on P that preserve the Poisson bracket {., .} [1]. Let
Ψτ be a family of maps in G with Ψτ=0 = id. Then

0 = ∂τ [{F ◦Ψτ , G ◦Ψτ} − {F,G}]τ=0

= {F,∂xG ·X}+ {∂xF ·X, G}
for all smooth functions F,G : P → R, X := ∂τΨτ=0. This is the condition for a
vector field X to be locally Hamiltonian. Since P is simply connected, the vector field
is also globally Hamiltonian [6].

If the discrete evolution (1.3) satisfies ΨΔt ∈ G for all Δt > 0, then ΨΔt is called a
symplectic method and it follows from Theorem 2.2 that the modified vector fields X̃i

are Hamiltonian vector fields on P . If we assume furthermore, that the Hamiltonian
H is analytic and the discrete evolution ΨΔt satisfies the conditions of Theorem 2.1,
then one has (i)

| H̃(x)−H(x) | = O(Δtp) ,

H̃ the Hamiltonian of the modified vector field X̃, i.e. X̃ = {id, H̃}, p ≥ 1 the order
of the method, and (ii)

| H̃(xn)− H̃(x0) | ≤ c e−γ/(2Δt) , xn = [ΨΔt]
n(x0) , (2.14)

γ, c > 0 appropriate constants, over time intervals

T = Δt n ≤ eγ/(2Δt) .

The estimate (2.14) follows from the fact that the global error in H̃(xn) grows only
linearly with n ≥ 1 [16],[55] and that after one step

| H̃(ΨΔt(x))− H̃(x) | = | H̃(ΨΔt(x))− H̃(ΦΔt,X̃(x)) | ,
= O(Δt e−γ/Δt) .

Thus

| H̃(xn)− H̃(x0) | = O(T e−γ/Δt)

and the desired estimates follow. �

2.3 An Application: Adiabatic Invariants

Let us consider a time-dependent Hamiltonian system on R2 with real analytic Hamil-
tonian H(q, p, t), q, p ∈ R. Using the extended Hamiltonian

E(q, p, s, e) := H(q, p, s)− e ,
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the corresponding equations of motion

d

dt
q = +∇pE(q, p, s, e) = +∇pH(q, p, s) ,

d

dt
p = −∇q E(q, p, s, e) = −∇qH(q, p, s) ,

d

dt
e = +∇sE(q, p, s, e) = +∇sH(, q, p, s) ,

d

dt
s = −∇eE(q, p, s, e) = 1

are Hamiltonian in the extended phase space R4. We assume that the Hamiltonian H
is of the form

H(q, p, s) =
1

2
p2 + V (q, s) .

For example,

V (q, s) =
1

2
ω(s)2 q2 . (3.15)

Then the equations of motion can be discretized by a generalization of the well-known
Verlet method [56], i.e.,

qn+1 = qn +Δt pn+1/2 ,

pn+1/2 = pn − Δt

2
∇q V (qn, sn) ,

pn+1 = pn+1/2 − Δt

2
∇q V (qn+1, sn+1) ,

en+1 = en +
Δt

2
[∇s V (qn, sn) +∇s V (qn+1, sn+1)] ,

sn+1 = sn +Δt .

This discretization is symplectic and, therefore, according to Theorem 2.2, there exists
a modified Hamiltonian vector field X̃ with modified Hamiltonian Ẽ, i.e. X̃ = {id, Ẽ},
such that its time-one-flow map is exponentially close to the discrete evolution ΨΔt

given by the Verlet discretization. Furthermore, because the equation of motion in
the variable s is integrated exactly, the modified Hamiltonian Ẽ is again of the form

Ẽ(q, p, s, e) = H̃(q, p, s; Δt) + e ,

H̃(q, p, s) an appropriate function. Since the Verlet method is second order, we also
have

H̃(q, p, s; Δt)−H(q, p, s) = O(Δt2) .
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Let us assume now that, for fixed s, the Hamiltonian H(q, p, s) has periodic solutions
with period T (s) and that H(q, p, s) varies slowly in time compared to the periodic
motion in (q, p), i.e.,

T (s) | ∂
∂s

H(q, p, s) | ≤ ε � 1

for all s. Then the corresponding equations of motion possess an adiabatic invariant J
which is defined as the area enclosed by the periodic motion (q(t), p(t)), t ∈ [0, T (s)],
for fixed s [7]. The adiabatic invariant J remains almost constant over an exponentially
long period of time [88] (see also Section 4.6.1), i.e.,

| J(q(t), p(t), t) − J(q(0), p(0), 0) | ≤ c1 t e
−c2/ε +O(ε) , (3.16)

c1, c2 > 0 appropriate constants. Now, for fixed s, the perturbed Hamiltonian
H̃(q, p, s; Δt) will also possess periodic solutions with period T̃ (s) and H̃(q, p, s; Δt)
varies slowly in time compared to the periodic motion in (q, p), i.e.,

T̃ (s) | ∂
∂s

H̃(q, p, s) | ≤ ε̃

with |ε̃ − ε| = O(Δt2) since the Verlet method is second order. Thus the perturbed
Hamiltonian equations of motion has a modified adiabatic invariant J̃ (the area en-
closed by the periodic motion of the modified Hamiltonian H̃). Application of normal
form theory implies [88] (see also Section 4.6.1) that there exists a slightly perturbed
Ĵ such that Ĵ is preserved along solution curves (q(t), p(t)) of X̃ up to exponentially
small terms, i.e.

| Ĵ(q(t), p(t), t) − Ĵ(q(0), p(0), 0) | ≤ c̃1 t e
−c̃2/ε̃ ,

c̃1, c̃2 > 0 appropriate constants, and J̄(q, p, t) − J̃(q, p, t) = O(ε̃). Let us write
x = (q, p, t)T and xn = [ΨΔt]

n(x0). Then, along numerically computed solutions
xn = (qn, pn, tn)

T ,

|Ĵ(xn)− Ĵ(x0)| ≤
n−1∑
j=0

|Ĵ(xj+1)− J̄(xj)|

≤
n−1∑
j=0

|Ĵ(ΨΔt(xj))− Ĵ(ΦΔt,X̃(xj)) + Ĵ(ΦΔt,X̃(xj))− Ĵ(xj)|

≤ n
[
λ c3 Δt e

−c4/Δt + c̃1 Δt e
−c̃2/ε̃

]
,

with c3, c4 > 0 appropriate constants and λ > 0 the Lipschitz constant of Ĵ . This
implies

|J(xn)− J(x0)| ≤ n
[
λ c3 Δt e

−c4/Δt + c̃1 Δt e
−c̃2/ε̃

]
+O(ε) +O(Δt2)

for the adiabatic invariant J which is to be compared to (3.16). Thus, for Δt suffi-
ciently small, one can conclude that symplectic integrators do not only approximately
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conserve total energy over exponentially long periods of time but adiabatic invariants
are approximately conserved over exponentially long periods of time as well. Compare
the numerical experiments conducted by Shimada & Yoshida [112] and Example
2.5 below. For further results on the preservation of adiabatic invariants under a
symplectic discretization, see Section 4.7.

Example 2.5. Let us consider a one-dimensional harmonic oscillator with a slowly
varying frequency. The Hamiltonian is

H(q, p, εt) =
1

2
p2 +

1

2
ω(εt)2 q2

where

ω (εt) = 1 + δ sin (εt)

with δ = 0.1 and ε ≤ 0.1 [112]. The adiabatic invariant is

J(q(t), p(t), t) =
H(q(t), p(t), εt)

ω (εt)
.

We integrated the corresponding equations of motion by the symplectic implicit
midpoint rule with step-sizes Δt ≤ 16.0. Note that the period of the “fast” oscillations
in (q, p) is T ≈ 2π. For a step-size Δt = 1.0, the fast oscillations are accurately
reproduced and one obtains the typical ε-dependence in the variation of the adiabatic
invariant (Fig. 2.1). For step-sizes Δt > 1, the fast oscillations are no longer correctly
resolved. However, the implicit midpoint rule is stable for arbitrary step-sizes
when applied to an unperturbed harmonic oscillator and one could expect that one
can also use larger step-sizes for the harmonic oscillator with slowly varying fre-
quency. However, as our numerical results indicate, one has to be very cautious with
this statement (Fig. 2.2). This has been explained by Ascher & Reich [8] as follows:

First rescale time t to τ = εt. Then the equations of motion are

d

dτ
q = ε−1p

d

dτ
p = −ε−1ω(τ)2q .

Define

α :=
Δτ2

4ε

and consider the midpoint equations

(qn − qn−1)/Δτ = ε−1(pn + pn−1)/2

(pn − pn−1)/Δτ = −ε−1ω(τn−1/2)
2(qn + qn−1)/2

Let un := (−1)nqn, vn := (−1)n+1pn. Note that the Hamiltonian H , and therefore
also the adiabatic invariant J , satisfy

H(qn, pn, τn) = H(un, vn, τn), J(qn, pn, τn) = J(un, vn, τn)
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For the new variables we get

(un + un−1)/Δτ = −ε−1(vn − vn−1)/2

(vn + vn−1)/Δτ = ε−1ω(τn−1/2)
2(un − un−1)/2

Multiplying both equations by Δτ/2 and rearranging we get

(un + un−1)/2 = −α(vn − vn−1)/Δτ

(vn + vn−1)/2 = αω(τn−1/2)
2(un − un−1)/Δτ

Now observe what approximation we get as Δτ → 0 for a fixed α. In fact, this is again
the midpoint scheme(!) applied to the “ghost ODE”

−α d

dτ
v = u

αω(τ)2
d

dτ
u = v

or,

d2

dτ2
v = −(ω(τ)α)−2v (3.17)

The features of u and v therefore depend in the limit only on α (and of course ω).
Whenever α � 1, the modified system (3.17) describes again a highly oscillatory
system with slowly varying frequency. Its frequency is

ω̃(τ) = (ω(τ)α)−1

and its Hamiltonian is

H̃(u, v, τ) = (ω2(τ)α)−1v2/2 + α−1u2/2 .

Thus the corresponding adiabatic invariant is

J̃(u, v, τ) = ω−1(τ)v2/2 + ω(τ)u2/2

and so, similarly to the original problem formulation, we obtain

J̃(u(τ), v(τ), τ) − J̃(u(0), v(0), 0) = O(α)

over a time-interval
T̃ = c̃1e

c̃2/α ,

c̃1, c̃2 > 0 appropriate constants, provided that α is small enough. Finally note that

J̃(un, vn, τn) = J̃(qn, pn, τn) = J(qn, pn, τn) .

Thus, for step-sizes large compared to ε, the implicit midpoint rule is equivalent to
the exact solution of a harmonic oscillator with lower frequency and the adiabatic
invariance condition [112]

α � 1

2 π δ
≈ 1.6
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Figure 2.1: Variation in the adiabatic invariant J for different values of ε and (small)
constant step-size Δt = 1.0.

is not necessarily satisfied anymore. Thus the quantity J(τ) can start to drift. For
the results presented in Fig. 2.2, the corresponding α’s are α = 0.2, 0.8, 3.2 and the
O(α) dependence of J(t)−J(0) is approximately satisfied. (Note that the calculations
were carried out in slow time t and that α is then given by α = εΔt2/4!) For a more
detailed numerical study see [8]. �

2.4 Symplectic Variable Step-Size Integration

According to a result by Stoffer & Nipp [114], classical variable step-size methods
asymptotically reduce to a sequence of mappings

xn+1 = ΨΔt(xn) (xn) , (4.18)

tn+1 = tn +Δt (xn) (4.19)

with Δt(x) an appropriate function determined by the step-size selection criteria.
Typically, we have

Δt (x) = δ s(x, δ)

with δ = TOL1/p, TOL � 1 a given parameter and p the order of the method ΨΔt.
Let us now take a different point of view: The variable step-size method (4.18)-(4.19)
can be viewed as a constant step-size discretization with step-size δ applied to the
scaled differential equation

d

dτ
x = ρ(x)Z(x) , (4.20)
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Figure 2.2: Variation in the adiabatic invariant J for constant ε = 0.05 and different
(large) step-sizes Δt.

ρ(x) ≈ s(x, δ). As advocated by Huang & Leimkuhler [62] in the context of time-
reversible integration, one could, in fact, take (4.20) as the starting point, i.e., define
an appropriate scaling function ρ(x) and discretize the scaled differential equation by,
for example, a time-reversible method. That this can lead to highly efficient methods
has been demonstrated in [62] for time-reversible Hamiltonian systems of the form

d

dt
q = M−1p ,

d

dt
p = −∇q V (q) ,

q,p ∈ Rn, with Hamiltonian

H(q,p) =
pTM−1p

2
+ V (q) .

As suggested in [62], the scaling function is defined by

ρ (q,p) =
1√

pTM−2p+ (∇qV (q))T∇qV (q)
. (4.21)

Note that this choice makes a lot of sense in the context of Theorem 2.1: The constant
M there is proportional to the supremum of ||Z(x)||, x ∈ BRK, || . || the l∞-norm in
Cn. Replacing the l∞-norm by the Euclidian norm and using (4.20) with the scaling
function (4.21), which corresponds to ρ(x) = 1/||Z(x)||, yields that the constant M
for the scaled differential equation (4.20) is equal to one on the compact set K. (Of
course, we need an estimate for ||Z(x)|| on a complex neighborhood BRK of K. Thus
scaling of the vector field does not imply that the constantM in Theorem 2.1 is equal
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to one.)

It has not been shown yet that reversible (non-symplectic) methods show the same
excellent long-term behavior as symplectic methods do; namely: conservation of en-
ergy over exponentially long periods of time. They also do not preserve volume. Thus
it seems reasonable to look for a symplectic discretization of the scaled Hamiltonian
equations of motion: Following Zare & Szebehely [125], we introduce the modified
Hamiltonian function

E (q,p, t, e) := ρ(q,p) (H(q,p)− e)

with corresponding equations of motion

d

dτ
q = ρ(q,p)M−1p+ (H(q,p)− e)∇p ρ(q,p) ,

d

dτ
p = −ρ(q,p)∇q V (q)− (H(q,p)− e)∇q ρ(q,p) ,

d

dτ
t = ρ(q,p) ,

d

dτ
e = 0

in extended phase space R2n × R2. In particular, let us consider the case e =
H(q(0),p(0)) and ρ only a function of q. Then

d

dτ
q = ρ(q)M−1p ,

d

dτ
p = −ρ(q)∇q V (q)− (H(q,p)− e)∇q ρ(q) = −ρ(q)∇q V (q) ,

d

dτ
t = ρ (q) ,

d

dτ
e = 0

which is just our scaled Hamiltonian vector field and can be discretized by the sym-
plectic Euler method, i.e.

qn+1 = qn +Δτ ρ(qn)M
−1pn+1 ,

pn+1 = pn −Δτ ρ(qn)∇q V (qn)−Δτ (H(qn,pn+1)− e)∇q ρ(qn) ,

tn+1 = tn +Δτ ρ (qn) .

Note that, for symplecticity, one has to keep the term (H(qn,pn+1) − e)∇q ρ(qn).
Let us now define our scaling function ρ. For simplicity, we set M = I which can
always be achieved by an appropriate scaling of the positions q and the momenta p.
According to (4.21), we obtain

ρ (q) =
1√

pTp+ (∇qV (q))T∇qV (q)

=
1√

2(e− V (q)) + (∇qV (q))T∇qV (q)
. (4.22)
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Figure 2.3: Error in energy (a) and actual step-size Δt (b) as a function of time.

The method is explicit in the variable q. Unfortunately this implies that the method
is only first order in Δt. However, the method is symplectic and, therefore, the
Hamiltonian E = (H(q,p) − e)ρ(q) is conserved to O(Δt) over exponentially long
periods of time. This impliesH(qn,pn)−e = O(Δτ) over exponentially long periods of
time. Thus the proposed method seem suitable for long term, relatively low precision,
variable step-size simulations as they occur, for example, in systems with an ergodic
behavior. A second-order symplectic discretization could be obtained by using the
second-order Lobatto IIIa-b partitioned Runge-Kutta formula [115], i.e.

pn+1/2 = pn −Δτ
[
ρ(qn)∇qV (qn)− [H(qn,pn+1/2)− e]∇qρ(qn)

]
,

qn+1 = qn +
Δt

2
[ρ(qn+1) + ρ(qn)]pn+1/2 ,

pn+1 = pn+1/2 −Δτ
[
ρ(qn+1)∇qV (qn+1)− [H(qn+1,pn+1/2)− e]∇qρ(qn+1)

]
,

tn+1 = tn +
Δτ

2
[ρ(qn) + ρ(qn+1)] .

The resulting scheme is implicit in ρ(q). However, in many cases the scaling function
ρ(q) can be greatly simplified and its evaluation is cheap compared to the evaluation
of the force field F (q) = −∇qV (q). Independently of us, the same approach to
symplectic variable step-size integration has been formulated by Hairer [54].

Example 2.6. As a numerical example, we look at the following modified Kepler
problem:

d

dt
q = p ,

d

dt
p = −∇qV (q) ,
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q,p ∈ R2, and

V (qx, qy) = − 1√
(qx/10)2 + (qy)2

.

The problem is non-integrable and, in fact, the dynamics is chaotic, i.e., can be
reduced to the Bernoulli shift [52, 69]. We chose initial values q = (0, 1) and
p = (1, 0). The equations of motion are integrated using the “variable” step-size
symplectic Euler method with scaling function (4.22) and Δτ = 0.05. The error in
energy ΔH = |H(q,p) − e | and the variation in the actual step-size Δt = ρ(q)Δτ
can be found in Fig. 2.3.

2.5 Another Application: Ergodic Hamiltonian Sys-
tems

Let us consider a (real analytic) Hamiltonian system

d

dt
q = M−1p , (5.23)

d

dt
p = −∇qV (q) , (5.24)

q,p ∈ Rn, together with a smooth function A : R2n → R. We are interested in
evaluating the time-average of A along a trajectory (q(t),p(t)) of the Hamiltonian
system (5.23)-(5.24), i.e

〈A〉T :=
1

T

∫ T

0

A(q(t),p(t)) dt , T  1 .

We assume that

〈A〉T=∞ := lim
T→∞

〈A〉T

exists and is equal to the micro-canonical ensemble average corresponding to the
Hamiltonian

H(q,p) =
pTM−1p

2
+ V (q) ,

i.e., we assume that the system (5.23)-(5.24) is ergodic4 (or even mixing [81],[122]).
Thus

〈A〉T=∞ =

∫
A(q,p) δ(E −H(q,p))dqdp∫

δ(E −H(q,p))dqdp
=:

1

C
〈A, δ(E −H)〉

4To be more precise: Ergodicity of a system implies that the time average is equivalent to the
ensemble average except for, at most, a set of initial conditions of measure zero.
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with E = H(q(0),p(0)), δ(x) Dirac’s delta distribution,

C :=

∫
δ(E −H(q,p))dqdp ,

and

〈A, δ(E −H)〉 :=

∫
A(q,p) δ(E −H(q,p))dqdp

the inner product of A and δ(E −H).

Let us write the equations (5.23)-(5.24) in more compact form as

d

dt
x = J∇xH(x) = {id, H}(x) ,

x := (qT ,pT )T ∈ R2n. The Hamiltonian H is preserved under the flow map Φt,H .
Let us assume that the hypersurface M0 of constant energy H = 0,

M0 := {x ∈ R2n : H(x) = 0} ,

is a compact subset of R2n. We also assume that there is a constant γ1 > 0 such
that ||∇xH(x)||2 > γ1 for all x ∈ M0. This implies that M0 is a smooth (2n − 1)
dimensional compact submanifold. Furthermore, the family of hypersurfaces

ME = {x ∈ R2n : H(x) = E} , E ∈ (−ΔE,+ΔE) ,

ΔE > 0 sufficiently small, are smooth and compact as well (in fact diffeomorph to
M0). We define the open subset U of phase space by

U :=
⋃

E∈(−ΔE,+ΔE)

ME .

So far we have made fairly generic assumptions. In the sequel, we become more specific
to ensure that the Hamiltonian system (5.23)-(5.24) is ergodic/mixing.

In a first step we construct a Poincaré return map [51]. Let ψ : U → R be a smooth
function and γ2 > 0 a positive constant such that |{ψ,H}(x)| > γ2 on the level sets

Ss := {x ∈ U : ψ(x) = s} , s ∈ (−Δs,+Δs) ,

Δs > 0 sufficiently small. Let us assume that Ss defines a Poincaré section for each
s ∈ (−Δs,+Δs) in the following way: For all x ∈ Ss, there is a positive number
tp(x) > 0 such that the solution x(t), t ≥ 0, with initial condition x(0) = x satisfies
x(tp) ∈ Ss and there is no 0 < t′p < tp such that x(t′p) ∈ Ss. The positive number
tp(x) is called the Poincaré return time of the point x ∈ Ss. Knowing the Poincaré
return time for each x ∈ Ss, we define the “global” Poincaré map Π : V → V by

Π(x) := Φtp(x),H(x)
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and

x ∈ V :=
⋃

s∈(−Δs,+Δs)

Ss .

We assume that the Poincaré return times tp(x), x ∈ V , are bounded by some mod-
erate constant K > 0.

We are interested in the solutions on a particular level set of constant energy. For
simplicity, we take the level set M0. Then it is sufficient to consider the “restricted”
Poincaré map Π0 which is defined as the restriction of Π to

D := S0 ∩M0 .

Thus we have reduced the study of the dynamical properties of the Hamiltonian
system (5.23)-(5.24) on the energy shell M0 to the study of the properties of the
Poincaré map Π0. If Π0 is an ergodic (mixing) map, then the Hamiltonian system is
ergodic (mixing) on M0. Note that Π0 is volume preserving, i.e. det∂xΠ0(x) = 1.

From now on we assume that Π0 is a uniformly hyperbolic map, i.e., for each x ∈ D,
the linearization ∂xΠ0(x) at x possesses strictly expanding and contracting directions
only [51],[121]. The “stochastic” behavior of such a (deterministic) map has been
investigated in [79],[121]. Here we only point out the four main results:

• There is a unique invariant density μ0 on D that is invariant under Π0. Fur-
thermore, μ0 is given by the Lebesgue measure on D.

• The autocorrelation function 〈A ◦ [Π0]
n, A〉 decays exponentially fast, i.e.

| 〈A ◦ [Π0]
n, A〉 − (〈A, μ0〉)2 | ≤ C Λn , 0 < Λ < 1 ,

C > 0 an appropriate constant.

• The time-averages

〈A〉N =
1

N

N∑
i=1

A(xi)

of A along trajectories {xi}i=1,... ,N of Π0 satisfy a central limit theorem.

• The time-average 〈A〉N of A along trajectories of Π0 with initial value x0 ∈ D
satisfy a large deviation theorem. To be more specific: Given any c > 0 there is
a h(c) > 0 such that

μ0({x0 ∈ D : |〈A〉N − 〈A, μ0〉| > c}) ≤ e−Nh(c) (5.25)

for all large N ≥ 1.

These results can be proven (see, for example, [121]) by carefully studying the prop-
erties of the corresponding Frobenius-Perron operator P 0 : L1(D) → L1(D) defined
by

P 0 μ := μ ◦ [Π0]
−1
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μ ∈ L1(D).

Definition. We call a Hamiltonian system (5.23)-(5.24) with the above introduced
properties Poincaré hyperbolic5 . In particular, we assume (i) that the level sets ME ,
E ∈ (−ΔE,+ΔE), of constant energy are compact submanifolds, (ii) that there is a
constant γ1 > 0 such that ||∇xH(x)||2 > γ1 for all x ∈ U , (iii) that a global Poincaré
map Π can be defined on

V =
⋃

s∈(−Δs,+Δs)

Ss

which is uniformly hyperbolic as a map restricted to D = S0 ∩ M0, (iv) that the
Poincaré return times tp are bounded by some moderate constant K > 0, and (v)
that there is a constant γ2 > 0 such that |{ψ,H}(x)| > γ2 on V . �

Lemma. The property of being Poincaré hyperbolic is stable under sufficiently small
perturbations6 of the Hamiltonian H . �

Proof. The assumption ||∇xH(x)||2 > γ1 on the level sets ME implies that these
sets are persistent under small perturbations. Furthermore, there exists a constant
γ̃2 > 0 such that |{ψ, H̃}(x)| > γ̃2 for a perturbed Hamiltonian H̃ and x ∈ V . Thus a
Poincaré map is also defined for the perturbed Hamiltonian H̃ . Uniform hyperbolicity
is also stable under small perturbations of the Poincaré map [5]. �

Let us discretize (5.23)-(5.24) by a symplectic (real analytic) integrator ΨΔt of order
p ≥ 1.

Assumptions. We assume that backward error analysis can be applied on a compact
subset K with U ⊂ K. The corresponding perturbed Hamiltonian is denoted by H̃ .
Let the step-size Δt be sufficiently small such that the perturbed Hamiltonian system
is also Poincaré hyperbolic. �

Let us introduce a couple of notations for the perturbed system. As for the unper-
turbed system, we define the compact level sets M̃E and the open set Ũ (replacing H
by H̃ in the definition). Furthermore,

S̃s := {x ∈ Ũ : ψ(x) = s} ,

s ∈ (−Δs,+Δs). The corresponding sets Ṽ and D̃ are now defined in the obvious

way. Finally, the global Poincaré map Π̃ and the reduced Poincaré map Π̃0 are
introduced as for the unperturbed system.

We extend the discrete time map ΨΔt to a map Ψt, t ∈ [0,Δt], by using the exact
flow Φt,H̃ of the modified problem as an interpolation for t ∈ [0,Δt). The map is then

5For example, the modified Kepler problem from Example 2.6 is Poincaré hyperbolic.
6Small perturbation means that |H(x) − H̃(x)|+ ||∇xH(x) − ∇xH̃(x)||2 is uniformly small on

U , H̃ the perturbed Hamiltonian.
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extended to t ≥ Δt in the obvious way as the composition of k steps with ΨΔt and
one step with Φdt,H̃ where t = kΔt+ dt, Δt > dt ≥ 0. Thus, in correspondence with
the definition of the global Poincaré map

Π̃(x) := Φt̃p(x),H̃
(x) ,

we define

Π̂(x) := Ψt̃p(x)(x) .

Here the Poincaré return times t̃p(x) are the same as in the definition of Π̃. We
assume that

sup
x∈eV

t̃p(x) ≤ K̃ ,

K̃ > 0 some moderate constant.

It follows from backward error analysis that there are constants c1, c2 > 0 such that

|| Π̃(x)− Π̂(x) || ≤ c1 e
−p e−c2/Δt

for Δt sufficiently small. More importantly, let {xi}i=1,... ,N be a sequence of points

with xi+1 = Π̂(xi) and let {x̃i}i=1,... ,N be the corresponding sequence under the

map Π̃ with x0 = x̃0 ∈ D̃. The sequence {xi} generates two sequences {Ei} and {si}
which are defined by Ei = H̃(xi) and si = ψ(xi). For the sequence {x̃i} we obviously
have Ei = 0 and si = 0. The “drift” in the values of Ei, si per step is exponentially
small and sums up linearly with the number of steps. The energy conserving property
of a symplectic map has already been discussed in Example 2.4. The same property
follows for the sequence of values {si} from

|ψ(xN )− ψ(x0)| ≤
N∑
i=1

|ψ(xi)− ψ(xi−1)|

≤
N∑
i=1

|ψ(Π̃(xi−1))− ψ(Π̂(xi−1))|

≤ N λc1 e
−p e−c2/Δt ,

λ > 0 the Lipschitz constant of ψ on Ṽ .
In other words, if we start initially on D̃, then the points computed (“numerically”)

with the Poincaré map Π̂ will stay in an exponentially small neighborhood of D̃ over
exponentially many iterates of Π̂. Now, since our numerical method is of order p ≥ 1,
the compact manifolds M̃E and ME are O(Δtp) away from each other. Thus the
sequence {xi} will also stay in a O(Δtp) neighborhood of D as long as the number of
iterates N satisfies

N ≤ c3 e
c4/Δt , (5.26)



36 CHAPTER 2. BACKWARD ERROR ANALYSIS

c3, c4 > 0 appropriate constants.

Now the Shadowing Lemma [110] is applied to the sequence {xi}i=1,... ,N .

Proposition 2.1. There exists an exact trajectory {x̂i}i=1,... ,N of the Poincaré
map Π0 on D such that the “numerically” computed sequence {xi}i=1,... ,N stays in
a O(Δtp) neighborhood of the (shadowing) exact trajectory if the number of iterates
N satisfies (5.26). �

Proof. We first project the sequence {xi}i=1,... ,N down onto D. The projected
sequence and the sequence {xi} are O(Δtp) close to each other provided N satisfies
(5.26). The “local” error per step between the “exact” Poincaré map Π and the

“numerical” Poincaré map Π̂ is also of order p in the step-size Δt. This follows from
standard forward error analysis. Thus the Shadowing Lemma [110] for uniformly
hyperbolic maps can be applied to the Poincaré map Π0 : D → D and the projected
sequence on D. The shadowing distance is O(Δtp). This shadowing result also
applies to the sequence {xi}. �

Let us now assume that we want to compute the ensemble average of an observable A
up to a certain accuracy c > 0. The large deviation theorem (5.25) for hyperbolic maps
tells us that the probability to obtain the ensemble average in the desired accuracy as
the time average along a single trajectory goes to one exponentially fast as the lengthN
of the trajectory is increased. If we numerically compute an approximative trajectory
for the system (5.23)-(5.24), then we know from Proposition 2.1 that this trajectory
is O(Δtp) close to some exact trajectory over exponentially many integration steps
N . Let us denote the time average of A along this exact trajectory by 〈A〉eN and the
numerically computed time average by 〈A〉N , then

〈A〉N − 〈A〉eN = O(Δtp) (5.27)

for all N satisfying a bound of type (1.9). Thus we obtain the following:

Proposition 2.2. Let (5.23)-(5.24) be a Poincaré hyperbolic (real-analytic) system
which we discretize by a symplectic method of order p ≥ 1 in the step-size Δt. Then
the time-average 〈A〉N of an observable A along a “numerically” computed trajectory
{xn}n=1,... ,N ,

xn+1 = ΨΔt(xn) ,

satisfies (5.27) where 〈A〉eN is the time-average along some exact trajectory and the
number of steps N satisfies a bound of type (5.26). Furthermore, assume we want
to compute the ensemble average of A within a given accuracy7 c > 0. Then the
probability to obtain the average in the desired accuracy as the time average along
a numerically computed trajectory goes to one exponentially fast as the number of
integration steps N is increased. Taking the maximum number (5.26) of steps, the

7We assume, for simplicity, that the constant c is larger than the difference between the time
averages (5.27) which is always true for sufficiently small step-sizes Δt.
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Figure 2.4: Numerical orbits for one particle with identical initial data over a time
period T ≤ 20 and different step-sizes Δt = 0.1 and Δt = 0.025.

probability can be made double exponentially close to one in (5.25) as Δt → 0. �

Example 2.7 Let us consider a planar “billiard” system of three particles with unit
mass and interaction potential U(r) = 1/r, r > 0 the mutual distance of two particles.8

To keep the particles in a finite area, we also add a potential energy term

U(qx, qy) = e(qx/4)
2

+ e(qy/4)
2 − 2e

for each particle. The equations of motion are discretized by the Verlet method [120].
As observable A, we chose the mean distance between the particles. In Fig. 2.4, we
have plotted the computed orbits of one particle for identical initial data over a time
period T ≤ 20 and step-sizes Δt = 0.1, Δt = 0.025 respectively. The fast divergence
of the numerical orbits is clearly seen [2]. However, as shown in Fig. 2.5, the error
in the energy remains bounded and the typical O(Δt2) is observed. Note the spikes
in the energy error. These are due to close interactions of particles and could be
resolved with a variable step-size integrator. See the previous section. Finally, in
Fig. 2.6, the time evolution of the time-average AT is shown for step-sizes Δt = 0.1
and Δt = 0.025. The average AT still fluctuates for T ≈ 3.0e + 05 with a standard
deviation σ of approximately σ(AT ) = 0.004 (see Fig. 2.7) [2],[30]. However, it is
obvious that the expectation value of A is well approximated. �

8There is no proof that we know off that this system is Poincaré hyperbolic.
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Figure 2.5: Error in energy vs. time T for two different step-sizes.
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Figure 2.6: Time evolution of the average AT vs. time T for two different step-sizes.
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3

Normal Form Theory

In this chapter, we discuss normal form theory and exponentially small truncation
errors for differential equations

d

dt
x = Y (x; ε) ,

= A(x) + εB(x; ε) , (0.1)

where ε is a small parameter, x ∈ Rn. The aim is to find a coordinate transformation
(diffeomorphism)

x = Ψ(x̄; ε) (0.2)

to new coordinates x̄ ∈ Rn such that the transformed vector field

Ȳ (x̄; ε) :=

[
∂

∂x̄
Ψ(x̄; ε)

]−1

· Y (ε) ◦Ψ(x̄; ε) , (0.3)

is of “simpler” form than the original problem formulation (0.1). With

d

dt
x̄ = Ȳ (x̄, ε) ,

= A(x̄) + ε B̄(x̄; ε) ,

“simpler” means that the two vector fields A and B̄ commute up to terms of order
p ≥ 1, i.e.

[A, B̄] = O(εp) ,

while, for the original problem (0.1), we only have

[A,B] = O(1) ,

in general. Here [X,Y ] denotes the Lie bracket (commutator) of two vector fields X
and Y , i.e.

[X,Y ] (x) :=
∂

∂x
X(x) · Y (x)− ∂

∂x
Y (x) ·X(x) .

(In many references, the Lie bracket is defined as the negative of the above formula
on the right hand side [90],[6].) The ultimate goal is to make [A, B̄] as small as

41
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possible.

Normal theory (or the principle of averaging) has a long history. In the context of
planetary motion it goes back to Lagrange and Laplace. It was subsequently redis-
covered by van der Pol and used by him to solve problems in the theory of nonlinear
oscillations. The wide-scale application of the averaging principle was stimulated by
the investigations of Mandel’shtam, Papaleski, N.M. Krylov, Bogolyubov, &

Mitropol’skii [72],[22]. There are various approaches to derive the asymptotic nor-
mal form expansion and its corresponding coordinate transformation [5],[7],[80]. For
example: (i) The coordinate change is sought as a composition of successive coordinate
changes. This seems the most popular method to date. (ii) The coordinate transfor-
mation (0.2) is defined as the time-one-flow map of an appropriate non-autonomous
differential equation

d

dε
x = εW (x; ε) , x(ε = 0) = x̄ .

This approach is due to Kamel [67]. (iii) Same as (ii) except that the time-one-flow
map of an autonomous vector field

d

dτ
x = εW (x; ε) , x(τ = 0) = x̄

is used. This approach was suggested by Hori [61]. (iv) Formal expansion of the
coordinate transformation (0.2) in terms of ε (Linstedt series). All three methods
lead to an asymptotic expansion in the parameter ε that, in general, diverges. Thus
one is interested in the truncation error introduced by only considering finitely many
terms in the asymptotic expansion. Recently, exponentially small estimates for the
truncation error have become important. Such estimates were first popularized
through the work of Nekhoroshev [89] on perturbed integrable Hamiltonian
systems. A similar estimate was subsequently derived by Neishtadt [88] for systems
with rapidly rotating phase. Since then exponentially small estimates have been
derived for various other systems. In particular, we like to mention the work of
Benettin, Giorgilli & Galvani [13],[14],[15] on conservative mechanical systems
with highly oscillatory internal degrees of freedom and the work by Fassò [36] on Lie
series methods of type (i) for general vector fields (0.1).

Our approach to the normal form recursion is of type (iii). Using Theorem 1.1 from
Chapter 1, we know that any diffeomorphism ε-close to the identity can be approxi-
mated by the time-one-flow map of an autonomous vector field up to terms exponen-
tially small in ε. Thus we look for an appropriate vector field W (ε) : U ⊂ Rn → Rn

and define the sought change of coordinates by means of

x = Φ1,W (ε)(x̄) , (0.4)

U an appropriate subset of Rn. In our opinion, the main advantage of (0.4) lies in the
simplicity of the recursive definition of the vector field W (ε) which also allows one
to derive simple estimates for the normal form truncation error. More specifically:
In Section 3.1, we will give the recursive definition of the transforming vector field
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W (ε) in terms of an asymptotic series expansion. We show in Section 3.2 that, under
fairly general assumptions, the truncation error in this series expansion can be made
exponentially small. In this form, the proof seems to be novel and more elementary
than existing proofs for special systems of type (0.1). Note that our approach is close
to the method discussed by Fassò in [36]. However, while Fassò considers normal
forms defined by a sequence of time-one-flow maps (which is, therefore, an approach
of type (i)), we define the normal form by a single flow map – see Remark 3.1 in
Section 3.1 for more details.

Applications are discussed in Section 3.3. In particular, we consider systems of time-
varying oscillators and discuss the existence of adiabatic invariants. The results are
of interest for discussing the solution behavior of the (truncated finite-dimensional)
time-varying Schrödinger equation [74]. We also show that Neishtadt’s result on
systems with rapidly rotating phase follows from our proof of Section 3.2 as a special
case. We then apply our results to conservative mechanical systems with a single fast
degree of motion as discussed, for example, by Rubin & Ungar in [105] (see also
Takens [116] and Bornemann & Schütte [24]). Our approach to this problem is
novel in the sense that we give a canonical coordinate transformation that makes the
problem accessible to normal form theory. This allows us to get sharper results than
those previously derived by means of different techniques such as homogenization
(see Bornemann & Schütte [24]). In particular, we investigate the existence
of an adiabatic invariant and show that the adiabatic invariant is preserved over
exponentially long periods of time. Finally, in Section 3.7, we discuss implications for
the numerical treatment of systems of type (0.1) and show that symplectic methods
preserve adiabatic invariants associated with Hamiltonian systems of type (0.1).

The following example will serve as a guide through the rather abstract formulations
used in the subsequent sections.

Example 3.1. Let us consider the system of differential equations

d

dt
φ = ω + ε f(φ, I) (0.5)

d

dt
I = ε g(φ, I) , (0.6)

φ ∈ Td, I ∈ Rd, and the functions f , g are 2π-periodic in the argument φ. Here
Td denotes the d-dimensional standard torus, i.e. Td = Rd/2πZd. The system (0.5)-
(0.6) describes the motion of d harmonic oscillators coupled to a small non-linear
perturbation. With x = (φT , IT )T , this corresponds to

A(x) :=

[
ω
0

]
and

B(x) :=

[
f(x)
g(x)

]
.
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We would like to find a coordinate transformation such that, in the new coordinates
(φ̄, Ī), the equations of motion are

d

dt
φ̄ = ω + ε f̄(Ī; ε) +O(εp+1) ,

d

dt
Ī = ε ḡ(Ī ; ε) +O(εp+1) .

Thus

B̄(x̄) :=

[
f̄(Ī; ε)
ḡ(Ī; ε)

]
+O(εp)

and [A, B̄] = O(εp). In other words, the motion decouples into fast oscillations in φ̄
and a slow motion in Ī governed by a differential equation solely in the variable Ī. �

3.1 The Normal Form Recursion

We start with a definition.

Definition. Let Y be a vector field on Rn and let Ψ be a diffeomorphism on an
appropriate subset U of Rn. Then we define the pull-back Ψ∗Y of Y under Ψ by

Ψ∗Y (x̄) :=

[
∂

∂x̄
Ψ(x̄)

]−1

· Y ◦Ψ (x̄) .

In other words,

Ȳ (x̄) := Ψ∗Y (x̄)

is the vector field obtained by applying the coordinate transformation

x = Ψ(x̄)

to the vector field Y (x). Note that the pull-back Ψ∗Y can also be defined by [36]

Ψ∗Y =

[
∂

∂x
Ψ−1 · Y

]
◦Ψ . (1.7)

To be more precise:

Ψ∗Y (x̄) =
∂

∂x
Ψ−1(x) · Y (x) , with x = Ψ(x̄) .

Throughout this chapter, we will use this definition of the pull-back. �

Using the above notation, our normal form recursion can now be stated as follows: We
define a sequence of transforming vector fieldsW i(ε), i ≥ 1, by means of the following
recursion:

W i+1(ε) := W i(ε) + εi+1 ΔW i+1 , W 0(ε) = 0 .
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Let us assume that we have already obtained W i(ε). The vector field ΔW i+1 will
be defined below. The transformed vector field Y i(ε) is then given by the pull-back of
Y (ε) under the time-one-flow map of W i(ε), i.e.

Y i(ε) := Φ∗
1,W i(ε)Y (ε) ,

= A+

i∑
j=1

εj ΔXr
j +O(εi+1) .

The vector fields ΔXr
j , j = 1, . . . , i, are defined in the following way: First we

introduce the vector fields ΔXj by

ΔXj :=
1

j!

[
∂j

∂εj
Y j−1

]
ε=0

,

Then we split the vector field ΔXj into two parts ΔXr
j and ΔXn

j , i.e.

ΔXj =: ΔXn
j +ΔXr

j ,

such that the linear partial differential equation

[A,ΔW j ] +ΔXn
j = 0 (1.8)

is solvable for ΔW j . The vector field ΔXr
j is called the resonant part of ΔXj while

ΔXn
j is called the non-resonant part of ΔXj with respect to the vector field A.

The partial differential equation (1.8) is called the homological equation. Upon taking
j = i+ 1, we obtain a defining equation for ΔW i+1 which closes our recursion.

Normal Form Recursion

Initial data:

W 0(ε) := 0 (1.9)

For i ≥ 0:

Y i(ε) := Φ∗
1,W i(ε)Y (ε) , (1.10)

ΔXi+1 :=
1

(i+ 1)!

[
∂i+1

∂εi+1
Y i

]
ε=0

, (1.11)

ΔXi+1 =: ΔXr
i+1 +ΔXn

i+1 , (1.12)

0 = [A,ΔW i+1] +ΔXn
i+1 , (1.13)

W i+1(ε) := W i(ε) + εi+1ΔW i+1 . (1.14)

The splitting (1.12) of the vector field ΔXi+1 is determined by two requirements:

(i) The homological equation (1.13) has to be solvable for ΔW i+1.
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(ii) The vector field ΔXr
i+1 should commute with the vector field A, i.e.

[A,ΔXr
i+1] = 0 .

This is not always possible. So the minimal requirement would be that the
sup-norm of the commutator is bounded by some small constant ν ≥ 0.

Example 3.1 (cont.) Any analytic function u(φ, I) that is 2π-periodic in φ ∈ Td

can be written as a multi-dimensional Fourier series

u(φ, I) =
∑
k∈Zd

uk(I)e
ikTφ .

Let us assume that the vector ω ∈ Rd of frequencies ωi > 0 satisfies a non-resonance
condition

|ωTk| ≥ γ > 0 , for all k ∈ Zd
K \ {0} ,

where Zd
K = {k ∈ Zd : |k| ≤ K}. Here K  1 is a positive integer sufficiently large

and |k| = |k1|+ . . .+ |kd|. Then we define the non-resonant part of u by

un(φ, I) :=
∑

k∈Zd
K\{0}

uk(I)e
ikTφ

and the resonant part by

ur(φ, I) := u(φ, I)− un(φ, I) .

Note that ur consists of u0 and terms that are exponentially small in K. This follows
from the exponentially fast decay of the Fourier coefficients uk as K = |k|  1.
Vector-valued functions u can be treated the same way by considering each component
separately. Solving the homological equation (1.13) is equivalent to solving equations
of the form

∂

∂φ
s(φ, I)ω + un(φ, I) = 0

In terms of Fourier expansion, the solution

s(φ, I) =
∑

k∈Zd
K\{0}

sk(I)e
ikTφ

is given by

sk(I) :=
uk(I)

−iωTk
.

Note that, by definition of un, |ωTk| ≥ γ. The commutator of A with the resonant
part ur is exponentially small in K, i.e. ν ∼ e−cK , c > 0 some constant. �
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Remark 3.1. In contrast to the normal form recursion (1.10)-(1.14), the method
considered by Fassò [36] defines transformed vector fields Y i(ε) recursively by

Y i(ε) := Ψ∗
i (ε)Y i−1(ε)

where Ψi(ε) is the time-one-flow map of an appropriate vector field. Thus the overall
coordinate transformation is given by the composition of the transformations Ψi(ε),
i.e.

Ψ(ε) = Ψ1(ε) ◦Ψ2(ε) ◦ . . . .

The normal form truncation error for this method has been discussed by Fassò in
[36]. �

For simplicity of notation, we will often write W i, Y i, etc. instead of W i(ε), Y i(ε),
etc. Next we show that the above recursion (1.10)-(1.14) indeed defines a normal
form in terms of an asymptotic expansion.

Lemma 3.1. The vector fields Y i, i ≥ 1, satisfy

Y i = A+
i∑

j=1

εjΔXr
j +O(εi+1) .

�

Proof. The statement is certainly true for i = 1. For i > 1, we have (for simplicity,
we suppress the arguments)

Y i := Φ∗
1,W i

Y ,

= Φ∗
1,εiΔW i

[
Φ∗

1,W i−1
Y
]
+O(εi+1)

= Φ∗
1,εiΔW i

Y i−1 +O(εi+1)

= Y i−1 + [Y i−1, ε
iΔW i] +O(εi+1) ,

= Y i−1 + [A, εiΔW i] +O(εi+1) ,

= A+

i−1∑
j=1

εjΔXr
j + εi (ΔXi + [A,ΔW i]) +O(εi+1) ,

= A+
i−1∑
j=1

εjΔXr
j + εi (ΔXi −ΔXn

i ) +O(εi+1) ,

= A+

i−1∑
j=1

εjΔXr
j + εiΔXr

i +O(εi+1) ,

= A+

i∑
j=1

εjΔXr
j +O(εi+1) .
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�

Thus, given the transformed vector field Y i, we also consider its truncation to normal
form of order i

Ȳ i := A+

i∑
j=1

εjΔXr
j

This truncation introduces an error of size O(εi+1). We will denote the truncation
error by

T i := Y i − Ȳ i . (1.15)

The following considerations will be useful for estimating the truncation error in the
normal form recursion: Let us define the family of vector fields

Y i(t) := Φ∗
t,W i

Y , t ∈ [0, 1] .

Then [36]

∂

∂t
Y i(t = τ) = Φ∗

τ,W i
[Y ,W i] ,

[Y ,W i] the Lie bracket (commutator) [90] of the two vector fields Y , W i, and the
defining equation (1.10) is equivalent to

Y i = Y +

∫ 1

0

Φ∗
t,W i

[Y ,W i] dt . (1.16)

Upon introducing

Xi :=
i∑

j=1

εjΔXj (1.17)

and the corresponding splitting into the resonant and non-resonant part, i.e.

Xi =: Xr
i +X

n
i ,

the equations (1.13)-(1.14) in the normal form recursion can now be replaced by

0 = [A,W i] +X
n
i (1.18)

and (1.16) becomes equivalent to

Y i = Y +

∫ 1

0

Φ∗
t,W i

(−Xn
i + ε [B,W i]) dt . (1.19)



3.2. COMMENTS ON THE HOMOLOGICAL EQUATION 49

Furthermore, let us introduce the function f(ε) by

f(ε) :=

∫ 1

0

Φ∗
t,W i

[Y ,W i] dt .

Then, for i ≥ 1,

ΔXi+1 :=
1

(i + 1)!

[
∂i+1

∂εi+1
Y i

]
ε=0

=
1

(i + 1)!

[
∂i+1

∂εi+1
Y

]
ε=0

+
1

(i+ 1)!

[
∂i+1

∂εi+1
f

]
ε=0

. (1.20)

3.2 Comments on the Homological Equation

The solvability of the homological equation depends on the solution properties of the
vector field A in (0.1). In many applications, the vector field A possesses d ≥ n/2
first integrals Ij , j = 1, . . . , d. Furthermore, the manifolds

Mc := {x ∈ Rn : I(x) = c } , (c ∈ V ⊂ Rd) ,

V an appropriate open subset of Rd, are diffeomorph to the (n− d)-torus Tn−d. Then
the vector field A can be transformed (locally) to

d

dt
φ = ω(I) ,

d

dt
I = 0 .

Next we assume that the motion in φ is ergodic. Then the ensemble average of a vector
field X and the time-average of X along trajectories are equal. This also implies the
solvability of the homological equation

[A,W ] +Xn = 0 ,

where Xr denotes the ensemble average of X and Xn :=X −Xr. Note that, in this
case, [A,Xr] = 0. This is basically Anosov’s averaging principle [4],[7]. To see this,
let us consider the time-dependent coordinate transformation

x = Φt,A(u) .

In the new coordinate u, the system (0.1) is equivalent to

d

dt
u = ε B̃(u, t, ε)

with

B̃(u, t, ε) = Φ∗
t,AB .
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This system is highly oscillatory in the variable t. These oscillations can be eliminated
by averaging in time, i.e.

B̄(u, ε) := lim
T→∞

1

2T

∫ +T

−T

B̃(u, t, ε) dt .

Upon assuming ergodicity, this time-average is equivalent to the ensemble average and
we obtain

ΔXr
1 = B̄(ε = 0) .

Often the motion in φ is not completely ergodic (resonances) or only over very
long periods of time (problem of small denominators), then we first have to find
a truncation Xt of X for which the time average and the ensemble average are
identical, converge faster respectively. Denote the ensemble average of the truncation
Xt by Xa. Then the resonant part of X is defined by Xr := (X −Xt) +Xa and
the non-resonant part by Xn := Xt −Xa. This again insures the solvability of the
homological equation. Unfortunately we have [A,Xr] = [A,X −Xt] �= 0, in general.
However, we can often make the truncation “error” X −Xt exponentially small (see
Example 3.1 below).

Example 3.1 (cont.) If the vector ω of frequencies is resonant, i.e., there exists a
k ∈ Zd \ {0} such that ωTk = 0, then the system

d

dt
φ = ω

is not ergodic. Even if ωTk �= 0 for all k ∈ Zd \ {0}, we typically have an estimate

|ωTk| ≥ σ

Kd−1
, K = |k| , 0 < σ ≤ 1 ,

and ωTk can become arbitrarily small for |k| large enough.
Thus ergodicity will hold only when averaging over extremely long periods of time.

This motivates the use of a truncated Fourier expansion in the definition ofXn. Since
the Fourier coefficients decay exponentially fast with K = |k|  1, [A,Xr] can be
made exponentially small in K. �

3.3 The Theorem on the Exponential Estimate

3.3.1 Definitions and Assumptions

Let K ⊂ Rn be a compact subset of Rn. Then BRK ⊂ Cn denotes the complex
neighborhood of radius R > 0 around K with respect to the norm

||x|| := max
i=1,... ,n

||xi|| x ∈ Cn ,

||xi|| :=
(
[Re(xi)]

2 + [Im(xi)]
2
)1/2

,
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x = (x1, . . . , xn)
T . In other words,

BRK :=
⋃

x0∈K
BR(x0)

and

BR(x0) := {x ∈ Cn : ||x− x0|| ≤ R} .

Let X : U ⊂ Rn → Rn, K ⊂ U , be a real analytic function. Then the usual sup-norm
on BRK is defined by

||X||R := sup
x∈BRK

||X(x)|| .

Assumptions. We assume that there is a second norm1 |X|R of X on BRK such
that

(i) ||X||R ≤ |X|R,
(ii) the splitting ofX into its resonant partXr and it non-resonant partXn satisfies

|Xn|R ≤ |X|R and |Xr|R ≤ |X|R,
(iii) The solution of the homological equation

[A,W ] +Xn = 0

satisfies

|W |R ≤ 1

γ
|Xn|R . (3.21)

Here γ > 0 is some positive constant.

We assume that the vector field B in (0.1) satisfies

|B(ε) |R ≤ 1 (3.22)

for all ε ≤ γR/3. �

We will also need the following two estimates:

Lemma 3.2. Let X and Y be two real analytic vector fields with |X |r+σ ≤M1 and
|Y |r+σ ≤M2, then the vector field Z = [X ,Y ] satisfies

|Z|r ≤ 2M1M2

σ
.

1This norm is first defined for scalar-valued functions on BRK. The corresponding norm for vector-
valued functions is obtained by taking the maximum over the norm of all components. See Example
3.1 below.
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�

Proof. This estimate follows from Cauchy’s estimate [64],[93].

Lemma 3.3. Let W be a real analytic vector field with |W |r+kσ ≤ σ where r, σ > 0
and k > 1. Consider a second real analytic vector field Z with |Z|r ≤ m. Then

|∂xΦt,W ·Z |r ≤ k

k − 1
|Z |r (3.23)

for all t ∈ [0, 1]. �

Proof. Let us define the function

f(x, t, λ) := Φt,W (x+ λZ(x))− x .

Note that f can also be written as

f(x, t, λ) = λZ(x) +

∫ t

0

W (Φτ,W (x+ λZ(x))) dτ .

Next we derive an estimate for |f (t, λ)|r for t ∈ [0, 1] and |λ| ≤ λ0 with λ0 > 0 still to
be specified. First we obtain

|f(t, λ) |r ≤ λ |Z |r +
∫ t

0

|W (Φτ,W (id+ λZ)) |r dτ .

From this we get

|f(t, λ) |r ≤ λ0m+ σ = k σ

for

|λ| ≤ λ0 :=
(k − 1)σ

m
.

Here λ0 was determined from the requirement that

x+ λZ(x) ∈ Br+(k−1)σK

for all x ∈ BrK. This implies

Φτ,W (x+ λZ(x)) ∈ Br+kσK

for all τ ∈ [0, 1] and all x ∈ BrK. Finally, we apply the usual Cauchy inequality [93]
to obtain

|∂xΦt,W ·Z |r = | ∂λf (t, λ = 0) |r ,
≤ σ k λ−1

0 =
k

k − 1
|Z |r .
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�

Example 3.1 (cont.) For a problem of type (0.5)-(0.6), the following exponentially
weighted norm is suitable: If u is a real analytic function on BrK = BrT

d × BrK̃,
K̃ ⊂ Rd a compact subset, 0 < r ≤ 1, with Fourier expansion

u(φ, I) =
∑
k∈Zd

uk(I)e
ikTφ ,

then

|u|r := supI∈BrK̃
∑
k∈Zd

||uk(I)|| e|k|r

and [93]

||u||r ≤ |u|r ≤ cothdσ ||u||r+σ .

For vector-valued functions u = (u1, . . . , ud)
T we define

|u|r := max
j=1,... ,d

|uj|r .

If the vector ω of frequencies satisfies the non-resonance condition

|ωTk| ≥ γ , for all k ∈ Zd
K \ {0} , (3.24)

then the solution s of the homological equation

∂

∂φ
s(φ, I)ω + un(φ, I) = 0 (3.25)

satisfies

|s|r ≤ γ−1|un|r ≤ γ−1|u|r
with

un(φ, I) :=
∑

k∈Zd
K\{0}

uk(I) e
ikTφ .

The truncated expansion term

ut(φ, I) :=
∑

|k|>K

u(I)eikTφ

can be estimated by

|ut|r/2 ≤ |u|r e−Kr/2 .
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One could also work in the ||u||r norm and use an estimate due to Rüssman [91].
Namely, if the vector of frequencies ω satisfies the diophantine condition

|ωTk | >
σ

|k|d−1
, for allk ∈ Zd \ {0} ,

then the corresponding homological equation (3.25) has solution s with

|| s ||r−δ ≤ c

σ δd−1
||un ||r

where c =
√
(2d− 2)! and

un(φ, I) :=
∑

k∈Zd\{0}
uk(I) e

ikTφ .

The application of this estimate would require some minor modifications in the result
and the proof of Theorem 3.1 (Proposition 3.1, respectively). �

3.3.2 The Theorem

We would like to have an estimate for the difference between the transformed vector
field Y i and its normal form truncation of order i

Ȳ i := A+

i∑
j=1

εjΔXr
j .

As for the backward error analysis, the key to the solution is to find an optimal
truncation index i = i∗(ε).

Theorem 3.1. Let us assume that the Assumptions made in Section 3.3.1 hold for
a given system (0.1). Define i∗(ε) as the integer part of

io(ε) :=
γ R

4 c e ε
.

Then

||T i∗ ||R/2 = ||Y i∗ − Ȳ i∗ ||R/2 ,

≤ 6 ε b e−μ/ε

with μ = γR/(4ce), b = 60, and c = 36000.
The transforming vector field W i∗ satisfies the estimate

||W i∗ ||R/2 ≤ b ε γ−1

while for the corresponding time-one-flow map Φ1,W i∗ the estimate

||Φ1,W i∗ − id ||R/4 ≤ b ε γ−1
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holds. �

Example 3.1 (cont.) Let the vector ω of frequencies satisfy a non-resonance con-
dition (3.24). Then it follows from Theorem 3.1 that the system (0.5)-(0.6) can be
transformed to normal form

d

dt
φ̄ = ω + ε f̄(Ī; ε) ,

d

dt
Ī = + ε ḡ(Ī; ε)

up to terms exponentially small in ε and terms exponentially small in K, K  1 the
truncation index in the Fourier series expansion. �

3.4 Proof of the Theorem

3.4.1 The First Two Estimates

The estimate (3.22) and the assumption (3.21) imply that

|ΔX1|R ≤ 1 and |ΔW 1|R ≤ γ−1 . (4.26)

It follows that ||W 1||R ≤ |W 1|R ≤ ε γ−1 and

Φt,W 1(x̄) ∈ BαR+(1−α)R/3K

for all t ∈ [0, 1], all x̄ ∈ BαRK, and all

ε ≤ ε0 :=
γ (1 − α)R

3
.

Let us define the family of functions f(ε) by

f (x̄; ε) :=

∫ 1

0

[
∂

∂x
Φt,−W 1 · [Y ,W 1]

]
◦Φt,W 1 (x̄) dt

with

Y = A+ εB(ε) .

Then, because of (1.20),

ΔX2 =
1

2!

[
∂2

∂ε2
εB

]
ε=0

+
1

2!

[
∂2

∂ε2
f

]
ε=0

which we find an estimate for by applying Cauchy’s estimate. In particular, since

|εB|αR ≤ ε0
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for all ε ≤ ε0 ≤ γR/3, and (3.23) with r = αR+ σ,

σ = ε0/γ =
1

3
(1 − α)R ,

and k = 2, we obtain

|f |αR ≤ max
t∈[0,1]

|∂xΦt,−W 1 · [Y ,W 1] |αR+σ ,

≤ 2 | [Y ,W 1] |αR+σ ,

≤ 2 | [A,W 1] |αR+σ + 2 ε0 | [B,W 1] |αR+σ ,

≤ 2 ε0 |ΔX1|R + 2 ε0
2 |B|R |W 1|R

2 σ
,

≤ 2 ε0 + 2 ε0
2 σ

2 σ
,

≤ 4 ε0

for all |ε| ≤ ε0. Thus Cauchy’s estimate yields

|ε2ΔX2|αR ≤ ε0

(
ε

ε0

)2

+ 4 ε0

(
ε

ε0

)2

,

≤ 15 ε2

γ (1− α)R
. (4.27)

3.4.2 The General Estimate

Lemma 3.4. The vector fields ΔX i (1.11) satisfy

εi |ΔXi |αR ≤ b ε

(
c (i− 1) ε

γ (1− α)R

)i−1

(4.28)

for i ≥ 3 and α ∈ [0, 1). The constants b and c can be chosen as

b = 60 and c = 36000 .

�

Proof. Let us assume that (4.28) holds for i = 3, . . . , j. Then

|Xj |αR ≤
j∑

i=1

εi |ΔXi |αR

≤ ε

[
1 +

15 ε

γ (1− α)R
+

j∑
i=3

b

(
c (i− 1) ε

γ (1 − α)R

)i−1
]

(4.29)

which implies

|Xj |αR ≤ 0.95 b ε0 ≤ δ γ (1− α)R (4.30)
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for

ε ≤ ε0 :=
γ (1− α)R

c j
,

b ≥ 60, c ≥ 36000, and

δ :=
0.95 b

c j
.

Here we have used that

j∑
i=3

(
i− 1

j

)i−1

≤ 0.85

for j ≥ 3 which implies that

1 +
15 ε0

γ (1− α)R
+

j∑
i=3

b

(
c (i− 1) ε0
γ (1− α)R

)i−1

= 1 +
15

c j
+ b

[
j∑

i=3

(
i− 1

j

)i−1
]

≤ 0.95 b

for j ≥ 3, b ≥ 60, and c ≥ 36000. From (4.30) and (3.21), we obtain immediately

|W j |αR ≤ γ−1|Xj |αR ≤ δ (1− α)R .

Next we verify that for b ≥ 60 and c ≥ 36000

|W j |(α+40δ(1−α))R ≤ δ(1− α)R (4.31)

for ε ≤ ε0 as well. In other words, we chose b and c such that

1 +
15

(1− 40δ) c j
+ b

j∑
i=3

(
i− 1

(1 − 40δ) j

)i−1

≤ 0.95 b

where we have used (4.29) with α replaced by α+ 40δ(1− α) and

1− (α+ (1 − α) 40δ) = (1− α) (1 − 40δ) .

In particular, for b = 60 and c = 36000, we obtain

j∑
i=3

(
i− 1

(1 − 40δ) j

)i−1

≤ 0.89

for j ≥ 3. Let us now consider the vector-valued function

f (x̄; ε) :=

∫ 1

0

[
∂xΦt,−W j · [Y ,W j ]

] ◦Φt,W j (x̄) dt ,

= Y j(x̄; ε)− Y (x̄; ε)
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for x̄ ∈ BαRK. Since (4.31), we have

||W j ||αR+40σ ≤ σ , σ := δ (1− α)R .

Thus

Φt,W j (x̄) ∈ BαR+σK
for t ∈ [0, 1], x̄ ∈ BαRK. Next we use (3.23) with r = αR + σ, σ = δ(1 − α)R, and
k = 39 to obtain

|f |αR ≤ max
t∈[0,1]

|∂xΦt,−W j · [Y ,W j ] |αR+σ ,

≤ (39/38) | [Y ,W j ] |αR+σ

≤ 1.027 | [A,W j ] |αR+σ + 1.027 ε0 | [B,W j ] |αR+σ .

≤ 1.027 |Xj |αR+σ + 1.027 ε0
2 |B|R |W j |αR+40σ

39 σ
,

≤ 1.027 ε0 (0.95 b+ 2/39) ,

≤ ε0 (b − 1)

for all |ε| ≤ ε0, and, by Cauchy’s estimate,

|εj+1 ΔXj+1|αR = | εj+1

(j + 1)!

[
∂j+1

∂εj+1
εB

]
ε=0

|αR + | εj+1

(j + 1)!

[
∂j+1

∂εj+1
f

]
ε=0

|αR

≤ ε0

(
ε

ε0

)j+1

+ (b− 1) ε0

(
ε

ε0

)j+1

,

≤ b ε

(
c j ε

γ (1 − α)R

)j

.

as required. �

3.4.3 Optimal Truncation Index

We need an estimate for the difference between Y i and its normal form truncation

Ȳ i = A+
i∑

j=1

εjΔXr
j .

By standard Taylor series expansion, we know that

||Y i(x̄; ε)− Ȳ i(x̄; ε) || = || εi+1 ΔXi+1(x̄) ||+O(εi+2) ,

≤ εi+1

(i+ 1)!
sup

0≤ε̂≤ε
|| ∂i+1

ε Y i(x̄; ε = ε̂) || .

This requires an estimate for ||∂i+1
ε Y i(x̄; ε = ε̂)||, 0 ≤ ε̂ ≤ ε. Following the proof of

Lemma 3.4 and taking α = 1/2, we obtain

||Y i(ε)−A ||R/2 ≤ b ε0
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for |ε− ε̂| ≤ ε0/2, ε̂ ≤ ε0/2, and ε0 = γR/(2ci). Thus Cauchy’s estimate implies

εi+1

(i+ 1)!
|| ∂i+1

ε Y i(ε = ε̂) ||R/2 ≤ b ε0

(
2 ε

ε0

)i+1

for ε̂ ≤ ε0/2 and the estimate

||Y i(x̄; ε)− Ȳ i(x̄; ε) || ≤ 2 b ε

(
4 c i ε

γ R

)i

, (x̄ ∈ BR/2K) ,

follows for ε ≤ ε0/2. We now determine an “optimal” number of iterations i∗(ε): Let
io(ε) be defined by

4 c ε io
γ R

= e−1

and take i∗(ε) as the integer part of io(ε), i.e.,

i∗(ε) :=

[
γ R

4 e c ε

]
were [x] denotes the integer part of a positive real number x. Finally, we use e−i∗ ≤
e−io+1 < 3e−μ/ε. This concludes the first part of the proof.

The transforming vector field W i∗ satisfies

||W i∗ ||R/2 ≤ ε γ−1

[
1 +

30 ε

γ R
+

i∗∑
i=3

b

(
2 c (i− 1) ε

γ R

)i−1
]
.

With

ε ≤ γ R

4 e c i∗

the estimate

||W i∗ ||R/2 ≤ b ε γ−1

follows. Since b ε γ−1 < R/4, the desired estimate for the time-one-flow map Φ1,W i∗
is obvious. �

One often encounters problems where the parameter γ depends in the iteration index
i. For example, the vector ω of frequencies in Example 3.1 typically satisfies

|ωTk| ≥ σ

Kd−1
, K = |k| , σ > 0 .

Then, working with truncated Fourier expansions, we chose K as K = ioL. L > 0
an integer sufficiently large such that the exponentially small truncation error in the
Fourier expansion is negligible. However this implies that io(ε) is now determined by

4 c ε io
γ(io)R

=
4 c ε ido L

d−1

σ R
= e−1
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and, therefore,

i∗(ε) :=

[(
σ R

4 e c ε Ld−1

)1/d
]
.

Thus Theorem 3.1 has to be replaced by:

Proposition 3.1. Let us assume that the assumptions made in Section 3.3.1 hold
for a given system (0.1). Let us also assume that the parameter γ in (3.21) satisfies

γ(i) =
δ

id−1
,

δ > 0, d ≥ 1 some appropriate constants and i the iteration index of the normal form
iteration (1.10)-(1.14). Define i∗(ε) as the integer part of

io(ε) :=

(
δ R

4 c e ε

)1/d

.

Then

||T i∗ ||R/2 = ||Y i∗ − Ȳ i∗ ||R/2 ,

≤ 6 ε b e−(μ/ε)1/d (4.32)

with μ = δR/(4ce), b = 60, and c = 36000.

The transforming vector field W i∗ satisfies the estimate

||W i∗ ||R/2 ≤ bR

4 c e

(
4 c e ε

δ R

)1/d

while for the corresponding time-one-flow map Φ1,W i∗ the estimate

||Φ1,W i∗ − id ||R/4 ≤ bR

4 c e

(
4 c e ε

δ R

)1/d

holds. �

Remark 3.2. Note that d is typically proportional to the degrees of freedom in the
system. Thus, for many degrees of freedom systems, exponential estimates of type
(4.32) are probably not as useful.

As for backward error analysis, better estimates can be obtained by making the
constants c, b, and γ dependent on the normal form iteration index i. Using the
exponentially weighted norm from Example 3.1, one might even be able to obtain
results qualitatively similar to the Jeans-Teller-Landau approximation [12]. �
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3.5 Geometric Properties of the Normal Form

Truncation

If the vector fields A and B belong to a certain sub-algebra g of the algebra of all
vector fields on Rn, then the transforming vector fieldsW i can be chosen to be in the
same sub-algebra. This only requires that the vector fields ΔXi ∈ g are split such
that ΔXn

i ∈ g. Then the transformed vector fields satisfy Y i ∈ g as well. This is
particularly important for Hamiltonian vector fields. Since it often implies severe and
important restrictions on the possible solution behavior of the normal form equations.

Example 3.1 (cont.) If the system (0.5)-(0.6) is Hamiltonian and satisfies a non-
resonance condition (3.24), then all the transforming vector fields can be chosen to be
Hamiltonian as well. This implies that the truncated normal form system

d

dt
φ̄ = ω + ε f̄(Ī; ε) ,

d

dt
Ī = + ε ḡ(Ī; ε)

is Hamiltonian. In particular, the functions f̄ and ḡ are the gradients of a Hamiltonian
h̄, i.e. f̄ = ∇Ī h̄ and ḡ = ∇φ̄h̄. This and the fact that h̄ would have to be 2π-periodic

in the argument p̄hi immediately yield that h̄ depends only on Ī and

ḡ(Ī; ε) = 0 !

Thus each entry of the vector-valued variable I is an adiabatic invariant that is
preserved over exponentially long periods of time up to small fluctuations. This
problem has, for example, been discussed in detail by Perry & Wiggins in [91]. �

For Hamiltonian systems one could also transform the corresponding Hamiltonian
instead of transforming the vector field [61],[7]. The crucial observation is that the
Lie bracket of two Hamiltonian vector fields XF and XG with Hamiltonian F , G
respectively, satisfies

[XF ,XG] = X{F,G} ,

where {G,F} is the Lie-Poisson bracket of the two functions F and G. Thus, for a
Hamiltonian

H(x; ε) = Ω(x) + ε h(x; ε)

the normal form recursion is:
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Hamiltonian Normal Form Recursion

Initial data:

S0(ε) := 0

For i ≥ 0:

W i(ε) := {id, Si(ε)} , (5.33)

Hi(ε) := H(ε) ◦Φ1,W i(ε) , (5.34)

Δhi+1 :=
1

(i + 1)!

[
∂i+1

∂εi+1
Hi

]
ε=0

, (5.35)

Δhi+1 =: Δhri+1 +Δhni+1 , (5.36)

0 = {Ω,ΔSi+1}+Δhni+1 , (5.37)

Si+1(ε) := Si(ε) + εi+1 ΔSi+1 . (5.38)

The truncated normal form is then

H̄i(x̄; ε) = Ω(x̄) +

i∑
j=1

εiΔhri (x̄) .

This or similar recursions are often used. However, the corresponding estimates for
the truncation error Ti = Hi − H̄i are slightly more difficult to prove. (Knowing an
estimate for the Hamiltonian Si, we need an additional estimate for the vector field
W i. This can be obtained from Cauchy’s estimate. See, for example, Pöschel [93].)
Otherwise the proof of Theorem 3.1 can also be applied to the Hamiltonian normal
form recursion.

Another interesting class of problems with strong geometric properties is provided by
reversible differential equations [86].

3.6 Applications

3.6.1 Linear Time-Varying Systems

We consider the system of linear time-varying differential equations

d

dτ
ũ =

i

ε
S(τ)ũ , (6.39)

ũ ∈ Cn and S(τ) a real symmetric positive definite matrix. Such equations arise in
the finite-dimensional truncation of the time-varying Schrödinger equation [74]. Let
Ψ(τ) denote the orthogonal matrix of eigenvectors of S(τ) and assume that S and Ψ
are analytic in τ . Then upon rescaling time by 1/ε, i.e. t = τ/ε, and using the linear
time-varying coordinate transformation

ũ = Ψ(τ)u ,
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the system (6.39) is equivalent to the analytic system

d

dt
u = iD(τ)u + εE(τ)u ,

d

dt
τ = ε ,

with D = Ψ−1SΨ a diagonal matrix and E = −Ψ−1∂tΨ skew-symmetric. Thus we
have obtained a system of type (0.1). In particular,

A(x) :=

[
iD(τ)u

0

]
and

B(x) :=

[
E(τ)u

1

]
,

x = (uT , τ)T . The homological equation

[A,ΔW 1] +ΔXn
1 = 0 , ΔXn

1 (τ) =

[
E(τ)u

0

]
is solvable whenever the diagonal entries dii(τ) of D(τ) satisfy dii(τ) �= djj(τ) for all
i �= j. Note that

ΔXr
1 :=

[
0
1

]
.

The corresponding transformed system is again linear and time-varying. Thus we can
continue and solve in each step the homological (matrix) equation

[A(τ),ΔW i(τ)] +ΔXn
i (τ) = 0

with ΔXr
i the diagonal part and ΔXn

i the off-diagonal part of ΔXi corresponding
to the matrix representation of ΔXi. Let us look at this equation in more detail:
First we write A, ΔW i and ΔXi in matrix form, i.e.

A(x) = iD(τ)u , ΔW i = ΔF i(τ)u , ΔXi = ΔEi(τ)u .

Then the solution of the homological equation is given by

Δf i
kl(τ) =

−Δeikl(τ)

i [dkk(τ) − dll(τ)]
, k �= l .

Here Δf i
kl denotes the matrix entries of ΔF i etc. Let us now introduce an appropriate

norm on BrK, K = 0× I, I ⊂ R: For

Y (x) = T (τ)u ,
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we define

|Y |r = supτ∈BrI
∑
i,j

|tij(τ)| r .

Let us assume that

|dii(τ) − djj(τ)| ≥ γ , i �= j , τ ∈ I . (6.40)

Then the solution ΔW i of the homological equation certainly satisfies the estimate

|ΔW i|r ≤ γ−1|ΔXr
i |r ≤ γ−1|ΔXi|r

and ||ΔW i||r ≤ |ΔW i|r. Thus, by virtue of Theorem 3.1, we know then that there
exists a time-dependent linear coordinate transformation such that the problem (6.39)
is equivalent to

d

dτ
ū =

i

ε
D̄(τ ; ε)ū

up to terms exponentially small. Here D̄(τ ; ε) is a real diagonal matrix with D̄ =
D + O(ε2). Thus, for ε small enough, the system (6.39) effectively decouples into n
time-varying harmonic oscillators each of which gives rise to a first integral

J̄i = [Re(ūi)]
2 + [Im(ūi)]

2 , i = 1, . . . , n .

The adiabatic invariance of the Ji’s has already been discussed by Born & Fock

[23]. For previous results on exponentially small transition rates see [66].

If the system (6.39) is discretized by a unitary integrator

ũn+1 = GΔt(τ) ũn ,

GΔt(τ) ∈ Cn×n a unitary matrix, then backward error analysis implies that the
numerical solutions are equivalent to the solutions of a perturbed problem of type
(6.39) up to terms exponentially small. Applying normal form theory to this system,
we obtain the adiabatic invariance of the corresponding Ji’s over exponentially long
periods of time. The specific arguments behind this result will be discussed in Section
3.7 in more detail.

In case of resonances, i.e., dii(τ) = djj(τ) for some i �= j, the normal form D̄(τ)
contains off-diagonal elements that lead to an energy exchange between Ji and Jj .
Still the normal form truncation is valid up to terms exponentially small in ε and
the sum of Ji and Jj is an adiabatic invariant. The specific evolution of Ji and Jj
under the constraint Ji + Jj = const. depends now on the corresponding terms in the
normal form.

Let us mention another interesting point: Assume that D(τ) is 2π-periodic in τ .
Then the normal form D̄(τ) is also 2π-periodic in τ . However the time evolution
corresponding to D(τ), to D̄(τ) respectively, will show a phase difference after one
period τ = 2π (assuming identical phase at τ = 0). This phase is called the Berry
phase and has many interesting consequences in quantum mechanics [17],[33].
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3.6.2 Non-Linear Systems With a Single Fast Degree

Systems

d

dt
φ = ω(I) + ε f(φ, I) ,

d

dt
I = ε g(φ, I)

with one fast degree φ ∈ T and slow degrees I ∈ Rd are among the best understood
[5],[7]. This is because the corresponding homological equation

[A,W ] +Xn = 0

is alway solvable if ω(I) ≥ d1 > 0. Here the resonant part Xr of a function X is
defined by

Xr(I) :=
1

2π

∫ 2π

0

X(φ, I) dφ .

Let us write the functions Xn and W in terms of a Fourier series, i.e.

Xn(φ, I) =

[ ∑
k 	=0X

n
1,k(I) e

ikφ∑
k 	=0X

n
2,k(I) e

ikφ

]
and

W (φ, I) =

[ ∑
k 	=0W1,k(I) e

ikφ∑
k 	=0W 2,k(I) e

ikφ

]
.

Thus the homological equation is equivalent to

iω(I) kW1,k(I)−
[
∂

∂I
ω(I)

]
·W 2,k(I) = Xn

1,k(I) ,

iω(I) kW 2,k(I) = Xn
2,k(I) ,

k �= 0. For each k �= 0, this system is solvable for W1,k and W 2,k in terms of Xn
1,k

and Xn
2,k. Furthermore, if ∂Iω is bounded from above by some constant d2 and all

the involved functions are real analytic, then we certainly obtain a bound

|W |r ≤ γ−1|Xn|r ≤ γ−1|X |r , γ−1 = (d1)
−1 + d2(d1)

−2 ,

with |.|r the exponentially weighted norm introduced in Example 3.1. Thus we can
apply Theorem 3.1 which implies the existence of a coordinate transformation such
that the transformed system is

d

dt
φ̄ = ω(Ī) + ε f̄(Ī ; ε) ,

d

dt
Ī = ε ḡ(Ī; ε)

up to terms exponentially small, i.e., the truncation error satisfies

||T (φ̄, Ī) ||∞ ≤ ε c1 e
c2/ε ,

c1, c2 > 0 appropriate constants. An exponential estimate for this class of problems
was first stated by Neishtadt in [88] by means of a different recursion.
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Time-Varying Harmonic Oscillator

Let us consider the time-varying harmonic oscillator

d

dt
q = p ,

d

dt
p = −ω(τ)2q ,

d

dt
τ = ε

with ε > 0 a small parameter. We introduce action-angle variables (J, φ) [78],[6] via
the generating function [78],[33]

S(q, φ, τ) :=
1

2
ω(τ) q2 cotφ .

Thus the new coordinates are implicitly defined by

p =
∂S

∂q
= ω(τ) q cotφ ,

J =
∂S

∂φ
=

1

2
ω(τ) q2

1

sin2 φ
,

or, solved for (q, p):

q =

√
2J

ω
sinφ ,

p =
√
2ωJ cosφ .

The corresponding transformed Hamiltonian is [33]

H =
1

2

(
p2 + ω(τ)2q2

)
+
∂S

∂t
(q, φ, τ) ,

= ω(τ)J +
ε

2

ω′(τ)
ω(τ)

J sin(2φ)

and the equations of motion become

d

dt
φ = ω(τ) +

ε

2

ω′(τ)
ω(τ)

sin(2φ) ,

d

dt
J = − ε

ω′(τ)
ω(τ)

J cos(2φ) ,

d

dt
τ = ε .
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If ω is real analytic in τ ∈ R, ω(τ) > c1, |ω′(τ)| < c2, and both constants c1, c2 are of
moderate size, then the system can be brought into normal form2

d

dt
φ̄ = ω(τ) + εΔω(J̄ , τ, ε) ,

d

dt
J̄ = 0 ,

d

dt
τ = ε

up to terms exponentially small with respect to ε. Note that this result was used in
Section 2.3.1 to show that a symplectic integrator will preserve the adiabatic invariant
J over an exponentially long period of time. The trick is that the result holds for all
Hamiltonian functions of type

H = ω(τ)J + ε h(J, φ, τ, ε) ,

h an arbitrary (bounded, real analytic) function 2π-periodic in φ.

Let us mention another interesting point: Assume that we have a system of two
perturbed time-varying oscillators described by the Hamiltonian

H(J ,φ, τ, ε) := ω(τ)TJ + ε h(J ,φ, τ, ε)

with the vector ω(τ) ∈ R2 of frequencies satisfying

ω1(τ) + ω2(τ) > 0 for all τ . (6.41)

Due to resonances, the individual action variables Ji will not be adiabatic invariants.
However, an appropriate linear combination of the action variables Ji will be preserved
while passing through a resonance. For example, let as assume that ω1(τ0) = ω2(τ0)
at some time τ0. Then, upon introducing new angles

ψ1 =
1

2
(φ1 + φ2) ,

ψ2 = φ1 − φ2

with corresponding action variables

I1 =
1

2
(J1 + J2) ,

I2 = J1 − J2 ,

we can treat the resulting system with Hamiltonian

H =
1

2
(ω1(τ) + ω2(τ))I1 + (ω1(τ) − ω2(τ))I2 + ε h̃(I1, I2, ψ1, ψ2, τ, ε)

2In each step, the normal form transformation is constructed by formally fixing τ and taking J as
the slow variable I.
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as a single frequency system in the variable ψ1 as long as ω1(τ) − ω2(τ) stays small
enough (for example, |ω1(τ)−ω2(τ)| ≤ √

ε). Thus we perform a normal form recursion
where we only averages over the variable ψ1. For that reason, we use the Fourier series
expansion

h(J ,φ, τ, ε) =
∑
k∈Zd

hk(J , τ, ε) e
ikTφ

of h. This immediately yields the corresponding expansion in ψ1. The corresponding
homological equation is solvable due to (6.41) and the variable conjugate to ψ1, i.e.
I1, is an adiabatic invariant up to terms exponentially small in

√
ε. �

Hamiltonian Systems with a Stiff Spring

Let us consider a diatomic molecule where two atoms with unit mass are “bonded”
by a stiff spring and move under an external conservative (real analytic) force field.
In terms of external coordinates (Q,P ) ∈ R4 and internal coordinates (r, pr) ∈ R2

(r > 0 the distance between the two atoms) the corresponding Hamiltonian function
is

H =
p2r + ε−2(r − r0)

2

2
+ h(Q,P ) + (r − r0) f(r − r0, pr,P ,Q)

with h and f real analytic functions and ε−2 the spring constant of the “chemical
bond”. The equations of motion are then derived from H and the Lie-Poisson bracket

{F,G} = {F,G}r,pr + {F,G}Q,P , (6.42)

where {F,G}r,pr and {F,G}Q,P are the standard canonical brackets. Upon introduc-
ing new canonical variables

R := ε−1/2(r − r0) ,

PR = ε1/2pr ,

the Hamiltonian becomes

H =
1

2ε
(P 2

R +R2) + h(Q,P ) + ε1/2Rf(ε1/2R, ε−1/2PR,Q,P ) .

Next we introduce action-angle variables (J, φ) ∈ R+ × T by means of

R =
√
2 ε J cosφ ,

PR =
√
2 ε J sinφ .

This defines a symplectic coordinate transformation from the variables (R,PR,Q,P )
and the canonical Poisson bracket (6.42) to the new variables (J, φ,Q,P ) and the
scaled Lie-Poisson bracket

{F,G}s := ε−1{F,G}φ,J + {F,G}Q,P . (6.43)
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The transformed Hamiltonian is

H = J + h(Q,P ) + ε f̃(φ, J,Q,P , ε) .

Upon rescaling time by ε, i.e. t = ετ , the resulting equations of motion are

d

dτ
φ = 1 + ε∇J f̃(φ, J,Q,P , ε) ,

d

dτ
J = −ε∇φf̃(φ, J,Q,P , ε) ,

d

dτ
Q = ε∇P h(Q,P ) + ε2∇P f̃(φ, J,Q,P , ε) ,

d

dτ
P = −ε∇Qh(Q,P )− ε2 ∇Qf̃(φ, J,Q,P , ε) .

These equations are certainly amenable to Theorem 3.1 and the previous remarks in
this subsection (with I = (J,QT ,P T )T ). We only have to be careful to not include
J = 0 into the domain BRK. Since the function f̃ will, in general, be not analytic at
J = 0. Thus, for J > 0, there exists a symplectic coordinate transformation such that
the transformed Hamiltonian system is

d

dτ
φ̄ = 1 + ε∇J̄ f̄(J̄ , Q̄, P̄ , ε) ,

d

dτ
J̄ = −ε∇φ̄f̄(J̄ , Q̄, P̄ , ε) = 0 ,

d

dτ
Q̄ = ε∇P̄ h(Q̄, P̄ ) + ε2 ∇P̄ f̄(J̄ , Q̄, P̄ , ε) ,

d

dτ
P̄ = −ε∇Q̄h(Q̄, P̄ )− ε2 ∇Q̄f̄(J̄ , Q̄, P̄ , ε)

up to terms exponentially small in ε.

Remark 3.3. A comment is necessary at this point. We can associate a sequence
of Hamiltonian functions Si with the sequence of transforming vector fields W i.
However, because of the non-trivial Poisson structure (6.43), the standard relation
W i = {id, Si}s has to be modified. This modification is discussed in the Appendix. �

The action J is an adiabatic invariant and, therefore, the system can effectively be
reduced to its motion in the external degrees of freedom (Q,P ). Note that J corre-
sponds to the energy in the fast bond stretching motion. Furthermore, upon neglecting
terms of order ε2, the stiff spring can be replaced by a rigid rod, i.e., with t = ετ , the
reduced equations of motion are

r = r0 ,

pr = 0

d

dt
Q̄ = +∇P̄h(Q̄, P̄ ) ,

d

dt
P̄ = −∇Q̄h(Q̄, P̄ ) .
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In Cartesian coordinates (q,p) ∈ R6×R6 the motion of the diatomic molecule is given
by

d

dt
q = p ,

d

dt
p = −∇qV (q)− ε−2(r(q)− r0)∇q r(q) .

Replacing the stiff spring by a rigid rod results in the constrained system

d

dt
q = p ,

d

dt
p = −∇qV (q)−∇q r(q)λ ,

0 = r(q)− r0 .

Exponential estimates where first derived by Benettin, Galgani & Giorgilli

[14]. They derive a normal form for the Hamiltonian in a different set of coordinates
without using a non-canonical Poisson bracket. This implies that they could not
apply Neishtadt’s proof for systems with rapidly rotating phase [88]. More recently,
Benettin, Carati & Gallavotti [12] have given a rigorous justification for
the so called Jeans-Landau-Teller approximation for adiabatic invariants [75]. This
approach also yields exponentially small estimates but the derivation is different from
the Nekhoroshev-type approaches used in this chapter. The Jeans-Landau-Teller
approximation is more intuitive and yields sharper estimates [12]. However, so far,
only special cases have been treated.

Again it can be shown by means of backward error analysis that a symplectic
discretization of the equations of motion will result in an adiabatic invariance of the
energy in the fast degree of motion over exponentially long periods of time. See
Section 3.7 for details. �

The Rubin & Ungar Problem

In the previous subsection, we considered a mechanical system with one fast degree
of motion which, in appropriate coordinates, reduces to a harmonic oscillator with
constant frequency. Here we look at a Hamiltonian system with a fast degree of
motion whose frequency depends on the slowly changing solution components, i.e.

H =
ω2(Q̃) p2r + ε−2(r − r0)

2

2
+ h(Q̃, P̃ ) + (r − r0) f(r − r0, pr, P̃ , Q̃)

with ω, h, and f real analytic functions and ε−2 the force constant of the fast oscillator.
The equations of motion are then derived from H and the Lie-Poisson bracket

{F,G} = {F,G}r,pr + {F,G}Q̃,P̃ ,

where {F,G}r,pr and {F,G}Q̃,P̃ are the standard canonical brackets. This problem
and its reduced dynamics in the limit ε → 0 was first discussed by Rubin & Ungar
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[105]. For a more recent account see Bornemann & Schütte [24]. Upon introducing
the canonical variables

R := ε−1/2(r − r0) ,

PR = ε1/2pr ,

the Hamiltonian becomes

H =
1

2ε
(ω2(Q̃)P 2

R +R2) + h(Q̃, P̃ ) + ε1/2Rf(ε1/2R, ε−1/2PR, Q̃, P̃ ) .

Next we introduce another set of variables (Ĵ , φ,Q,P ) ∈ R+×T×Rm×Rm by means
of the generating function

S = Q̃
T
P +

ω(Q̃)

2
P 2
R cotφ .

From this generating function, we obtain the equations [6]

R =
∂S

∂PR
= ω(Q̃)PR cotφ ,

Ĵ =
∂S

∂φ
=

ω(Q̃)

2
P 2
R sin−2φ ,

Q =
∂S

∂P
= Q̃ ,

P̃ =
∂S

∂Q̃
= P +∇Q̃

ω(Q̃)

2
P 2
R cotφ .

Using the manipulations described in [33] (page 54ff.) and Ĵ = εJ , this is equivalent
to

R =
√
2 ε ω(Q)J cosφ ,

PR =

√
2 ε J

ω(Q)
sinφ ,

Q̃ = Q ,

P̃ = P +
ε

2
∇Qln[ω(Q)] J sin(2φ) .

The transformation is symplectic from the variables (R,PR, Q̃, P̃ ) and the canonical
Lie-Poisson bracket to the new variables (φ, J,Q,P ) and the scaled Lie-Poisson bracket

{F,G}s := ε−1{F,G}φ,J + {F,G}Q,P .

The new transformed Hamiltonian is

H = ω(Q)J + h(Q,P ) + ε f̃(φ, J,Q,P , ε)
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with f̃ appropriately defined. Upon rescaling time by ε, i.e. t = ετ , the resulting
equations of motion become

d

dτ
φ = ω(Q) + ε∇J f̃(φ, J,Q,P , ε) ,

d

dτ
J = − ε∇φf̃(φ, J,Q,P , ε) ,

d

dτ
Q = + ε∇Ph(Q,P ) + ε2 ∇P f̃(φ, J,Q,P , ε) ,

d

dτ
P = − ε∇Qh(Q,P )− ε2 ∇Qf̃(φ, J,Q,P , ε)− ε∇Qω(Q)J .

These equations are certainly amenable to Theorem 3.1 (with I = (J,QT ,P T )T ) and
the comments made in the Appendix. Thus, for J > 0, there exists a symplectic
coordinate transformation such that the transformed Hamiltonian system is

d

dτ
φ̄ = ω(Q̄) + ε∇J̄ f̄(J̄ , Q̄, P̄ , ε) ,

d

dτ
J̄ = − ε∇φ̄f̄(J̄ , Q̄, P̄ , ε) = 0 ,

d

dτ
Q̄ = + ε∇P̄h(Q̄, P̄ ) + ε2 ∇P̄ f̄(J̄ , Q̄, P̄ , ε) ,

d

dτ
P̄ = − ε∇Q̄h(Q̄, P̄ )− ε2∇Q̄f̄(J̄ , Q̄, P̄ , ε)− ε∇Q̄ ω(Q̄) J̄

up to terms exponentially small in ε. Note that the action J̄ is a first integral and that,
therefore, the system can effectively be reduced to its motion in the external degrees
of freedom (Q̄, P̄ ). Furthermore, upon neglecting terms of order ε2, the motion in the
slow variable (Q̄, P̄ ) is given by

d

dτ
Q̄ = +ε∇P̄h(Q̄, P̄ ) ,

d

dτ
P̄ = −ε∇Q̄h(Q̄, P̄ )− ε∇Q̄ ω(Q̄) J̄ .

Note the additional force term ∇Q̄ω(Q̄) J̄ . This term was first derived by Rubin

& Ungar [105]. More recently, the same term was derived by Bornemann &

Schütte [24] using homogenization techniques. However, neither Rubin & Ungar

nor Bornemann & Schütte gave exponentially small estimates for the remainder in
the normal form truncation which implies the preservation of the adiabatic invariant
J̄ over exponentially long periods of time. In [100], we have discussed the influence
of a heat-bath (Langevin dynamics) on the slow dynamics. It turns out that, in the
limit ε→ 0 and for sufficiently strong coupling to the heat bath, a different correction
term appears (the so called Fixman potential [39],[100]). See also the paper by
Helfand [59].
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3.7 Numerical Conservation of Adiabatic Invariants

In this section, we discuss the effect of a symplectic discretization on a system of type

d

dt
x = A(x) + εB(x; ε) (7.44)

where both A and B are real analytic Hamiltonian vector fields on R2n, n ≥ 1.
We give a detailed treatment for the case satisfying the assumptions below.
But the described approach can certainly be applied to more general problems
which can be treated by Theorem 3.1 or Proposition 3.1, respectively, and which
lead to adiabatic invariants that are conserved over exponentially long periods of time.

Assumptions. We assume (i) that A possesses periodic solutions with action
variable J (the area3 enclosed by the periodic motion) and (ii) that (7.44) satisfies
the conditions of Theorem 3.1 for some R > 0, γ > 0, and some compact set K. �

Let us discretize the system (7.44) by a symplectic integrator of order p ≥ 1, i.e.

xn+1 = ΨΔt(xn) , (7.45)

tn+1 = tn +Δt .

Backward error analysis implies that there exists a modified Hamiltonian differential
equation

d

dt
x = X̃(x,Δt)

such that its time-Δt-flow map is exponentially close to the discrete time map ΨΔt.
More specifically, let us introduce the vector field

Y (ε) = A+ εB(ε)

By our assumptions, Y is real analytic on BRK (using the notations of Section 3.3)
and an estimate

||Y (ε) ||R ≤ M , M > 0 ,

holds for all ε > 0 small enough. Then, according to Theorem 2.1, there exist constants
ci > 0, i = 1, 2, 3, 4, such that

||ΨΔt −ΦΔt,X̃ ||R/2 ≤ c1MΔt e−p e−c2/(MΔt) (7.46)

and

|| X̃(Δt)− Y ||R/2 ≤ c3M (c4MΔt)p .

Next we define εB̃ := X̃ −A or, in other words,

X̃(ε,Δt) := A+ εB̃(ε,Δt) . (7.47)

3The periodic solutions are assumed, for simplicity, to lie on a plane.
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We conclude that

|| B̃ ||R/2 ≤ 1 + ε−1c3M (c4MΔt)p

and apply Theorem 3.1 to the modified vector field (7.47). We only have to replace ε
by

ε̃ := ε+ c3M (c4MΔt)p (7.48)

and R by R/2. Our assumptions and Theorem 3.1 imply that there exists a function
Ĵ(x) which is ε̃-close to the action variable J and is a first integral of the vector field
X̃(Δt) up to terms exponentially small in ε̃. Thus there exist constants c5, c6 > 0
such that

| Ĵ(x)− Ĵ(ΦΔt,X̃(x)) | ≤ c5 ε̃Δt e
−c6/ε̃ (7.49)

for all x ∈ K.

Theorem 3.2. Let us assume (i) that the Assumptions hold, (ii) that the equations
are discretized by a symplectic method of order p ≥ 1, and (iii) that the numerically
computed solutions stay in the compact subset K of phase space. Then there exist
the above introduced constants ci, i = 1, . . . , 6, and a transformed action Ĵ which is
ε̃-close to the action J of the vector field A such that the numerical solution xn after
n integration steps satisfies

| Ĵ(xn)− Ĵ(x0) | ≤ nΔt
[
λ c1M e−p e−c2/(MΔt) + c5 ε̃ e

−c6/ε̃
]

with ε̃ defined by (7.48) and λ > 0 the Lipschitz constant of Ĵ on K. This implies

| J(xn)− J(x0) | ≤ nΔt
[
λ c1M e−p e−c2/(MΔt) + c5 ε̃ e

−c6/ε̃
]
+ c7 ε̃, (7.50)

c7 > 0 an appropriate constant such that

| Ĵ(x)− J(x) | ≤ c7 ε̃

on K. �

Proof. We have already shown (7.46) and (7.49). Thus

|Ĵ(xn)− Ĵ(x0)| ≤
n−1∑
j=0

|Ĵ(xj+1)− Ĵ(xj)| ,

≤
n−1∑
j=0

|Ĵ(ΨΔt(xj))− Ĵ(ΦΔt,X̃(xj)) + Ĵ(ΦΔt,X̃(xj))− Ĵ(xj)|

≤ n
[
λ c1M Δt e−p e−c2/(MΔt) + c5 Δt ε̃ e

−c6/ε̃
]
.

�
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Figure 3.1: Time evolution of the adiabatic invariant J for three different values of ε
and step-size Δt = ε/10.

We conclude from Theorem 3.2 that, for sufficiently small step-sizes Δt, ε ≈ ε̃ and
the adiabatic invariant J is conserved under symplectic discretization in the same
manner as it is for the analytic solutions. See also [102].

Example 3.2. Let us consider the stiff “reversed” pendulum [25]

d

dt
q = p , (7.51)

d

dt
p = −ε−2(φ(q)− φ0)∇q φ(q)− (r(q)− r0)∇q r(q) (7.52)

where q,p ∈ R2, r(q) = |q| =
√
q21 + q22 and φ(q) = acos (q1/|q|). The Hamiltonian is

H(q,p) =
1

2
[pTp+ ε−2(φ(q)− φ0)

2 + (r(q)− r0)
2]

The equations of motion (7.51)-(7.52) can be transformed to (r, φ)-coordinates by
introducing corresponding conjugate momenta pr, pφ ∈ R. It can be directly verified
that

∇q r(q) =
1

r
q =:GT , ∇q φ(q) =

1

r2
(−q2, q1)T =: BT

Hence

p = GT pr +B
T pφ = pr∇q r + pφ∇q φ .

(Note that BGT = 0.) The transformed Hamiltonian is

H(p, q) = E(r, φ, pr , pφ) =
1

2
[p2r + r−2p2φ + ε−2(φ − φ0)

2 + (r − r0)
2]
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and the transformed equations of motion are

d

dt
r = pr ,

d

dt
pr = −(r − r0) + p2φr

−3 ,

d

dt
φ = r−2pφ ,

dt

dt
pφ = −ε−2(φ− φ0) .

Note that this system is of the type considered in Section 3.6.2. Here (φ, pφ) takes

the role of (r, pr) and (Q̃, P̃ ) is given by (r, pr)! (That’s why we call it the reversed
pendulum.) Thus, in (r, φ)-coordinates the fast and slow motion can be separated.
Here we are interested in the Cartesian formulation of the problem. First note that,
in the limit ε → 0, the dynamics of (7.51)-(7.52) does not reduce to the constrained
system

d

dt
q = p ,

d

dt
p = −(r(q)− r0)∇q r(q)−∇q φ(q)λ ,

0 = φ(q)− φ0

unless the energy in the (fast) (φ, pφ) degree of motion is zero. Instead an additional
force term has to be added and the dynamics reduces to the modified constrained
system [105],[25]

d

dt
q = p ,

d

dt
p = −(r(q)− r0)∇q r(q)− c∇q r(q)

−1 −∇q φ(q)λ ,

0 = φ(q)− φ0 .

The constant c ≥ 0 depends on the initial energy and frequency in the (φ, pφ) degree
of motion and is related to the existence of an adiabatic invariant for the fast (φ, pφ)
degree of motion. This adiabatic invariant is given by

J = r

[
pTV TV p

2 r2
+

1

2ε2
(φ− φ0)

2

]
, V := (−q2, q1) ,

and c = J(0). The adiabatic invariant is correctly reproduced by the symplectic Verlet
method [120] as shown in Fig. 3.1 provided the step-size Δt is chosen sufficiently
small. For a more detailed numerical study on a related model problem, see [102]. �
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3.8 Appendix

Let us consider a Hamiltonian of type

H := ω(Q)J + h(Q,P ) + εf(φ, J,Q,P , ε) ,

φ ∈ T, J ∈ R+, Q,P ∈ Rm, and the scaled Lie-Poisson bracket

{F,G}s := {F,G}φ,J + ε {F,G}Q,P .

Problems of this type were considered in Section 3.6.2 (for the Hamiltonian system
with a stiff spring we have ω(Q) = 1). Because of the non-standard Lie-Poisson
bracket, the Hamiltonian normal form recursion (5.33)-(5.38) has to be modified.
We use the same notations and point out only the differences. First, we define the
transformed Hamiltonian

Hi := H ◦Φ1,Ŵ i

with Ŵ i := {id, Si}s and Si = Si−1 + εiΔSi. The Hamiltonian Δhi+1 is defined as
before, i.e.

Δhi+1 :=
1

(i+ 1)!

[
∂i+1

∂εi+1
Hi(ε)

]
ε=0

.

The homological equation is now replaced by

{Ω,ΔSi+1}φ,J +Δhni+1 = 0

with Ω = ω(Q)J + h(Q,P ). Using

Hi+1 = H ◦Φ1,Ŵ i
◦Φ1,εi+1ΔŴ i+1

+O(εi+2) ,

= Hi + {H, εi+1ΔSi+1}s +O(εi+2) ,

= Hi + εi+1{Ω,ΔSi+1}φ,J +O(εi+2) ,

it follows that this modified recursion indeed leads to the desired normal form, i.e.

Hi(φ, J,Q,P ) = ω(Q)J + h(Q,P ) +

i∑
j=1

εjΔhrj(J,Q,P ) +O(εi+1) .

Let us now relate this modified Hamiltonian normal form recursion to the vector field
normal form recursion (1.10)-(1.14). We make the ansatz

W i = {id, Si−1}s + εi{id,ΔSi}φ,J , (8.53)

i.e. Ŵ i −W i = εi+1{id,ΔSi}Q,P . This yields the identities

Y i = Φ∗
1,W i

Y ,

= Φ∗
1,W i−Ŵ i

Φ∗
1,Ŵ i

{id, H}s +O(εi+2) ,

= {id, Hi}s + εi+1 [{id,ΔSi}Q,P , {id,Ω}φ,J ] +O(εi+2) .
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where we have used Y = {id, H}s. Thus

ΔXi+1 = {id,Δhri }Q,P + {id,Δhi+1}φ,J + [{id,ΔSi}Q,P , {id,Ω}φ,J ] .

The corresponding homological equation (1.14) with A = {id,Ω}φ,J and

ΔXn
i+1 = {id,Δhni+1}φ,J + [{id,ΔSi}Q,P , {id,Ω}φ,J ]

is solved by

ΔW i+1 = {id,ΔSi+1}φ,J + {id,ΔSi}Q,P

and W i+1 =W i + εi+1ΔW i+1 satisfies the ansatz (8.53) with i replaced by i+ 1 as
desired.



4

Highly�Oscillatory Systems

This chapter is about highly-oscillatory mechanical systems that, in the limit, reduce
to rigid bodies. In the first part, we review theoretical results on the elimination of
fast internal vibrations. In particular, we give a new proof for Jean’s conjecture on
the exponentially decoupling of slow rigid body motions and fast internal vibrations.
A rigorous proof of this result was first given by Benettin, Galgani & Giorgilli

[15]. In the second part, we discuss effective integrators for rigid bodies, the con-
cept of soft-constraints, and a modified multiple-time-stepping method that avoids
the resonance problems associated with standard multiple-time-stepping [19]. The
explicit symplectic integrator for rigid body motion was first derived by the author
in [101]. The concept of soft constraints was introduced in [126],[97],[99]. Here a new
implementation is suggested that is easier and cheaper to implement. The suggested
projected multiple-time-stepping method was inspired by reading the paper [42] by
Garćia-Arcgilla, Sanz-Serna & Skeel.

4.1 Theoretical Results

4.1.1 Systems Near an Equilibrium Point

In this section, we consider systems

d

dt
x̃ = Ax̃+ f(x̃) , (1.1)

x̃ ∈ Cn, A ∈ Cn×n a diagonal matrix, and f : Br{0} ⊂ Cn → Cn an analytic function
with f(0) = 0 and Jacobian ∂x̃f(0) = 0. Here Br{0} denotes the complex ball of
radius r > 0 around 0 ∈ Cn. We denote by es, s = 1, . . . , n, the basis vectors in Rn.
Then the Taylor expansion of f can be written as

f (x̃) =
∑
s

∑
k∈In

fk,sx̃
kes .

Here x̃k denotes the monomial

x̃k = x̃k1
1 x̃

k2
2 · · · x̃kn

n ,

x̃ = (x̃1, x̃2, . . . , x̃n)
T , k = (k1, k2, . . . , kn)

T , k ∈ In, I the set of non-negative integers.
The function space PK is the space of all analytic functions f : Br{0} ⊂ Cn → Cn

whose Taylor series representation contains only monomials x̃k with |k| ≤ K, i.e.

k ∈ InK := {k ∈ In : |k| ≤ K } ,

79
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|k| = k1 + · · ·+ kn. For a bounded analytic function f : Br{0} ⊂ Cn → Cn, we also
introduce the norm

|f |r :=
∑
s

∑
k∈In

|fk,s| r|k|

on a complex ball of radius r > 0 around x̃ = 0. Since we are interested in the normal
form of (1.1) near the equilibrium x̃ = 0, we scale x̃ by the small parameter ε, i.e.
x := x̃/ε, and obtain the scaled differential equation

d

dt
x = Ax+ ε−1f(εx) , (1.2)

= Ax+ εB(x, ε) .

This scaled system is of the type considered in the previous chapter. The corresponding
homological equation

[A,ΔW ] +ΔXn = 0

can be solved in terms of the Taylor expansions of ΔW and ΔXn: Let λ =
(λ1, λ2, . . . , λn)

T denote the vector of eigenvalues of the matrix A. Then we define
the resonance module Ms ⊂ In, s = 1, . . . , n, by

Ms := {k ∈ In : λs = λ
Tk } .

We assume that the given ΔX is an element of PK , K ≥ 2. The resonant part ΔXr

of

ΔX(x) =
∑
s

∑
k∈InK

ΔXk,s x
kes

is defined by

ΔXr(x) =
∑
s

∑
k∈Ms

ΔXk,s x
kes

and the non-resonant part by ΔXn = ΔX −ΔXr. The solution of the homological
equations is now given by (in terms of the Taylor series coefficients) [5]:

ΔWk,s =
−ΔXk,s

λs − λTk
, k ∈ InK \Ms ,

and ΔWk,s = 0 for k ∈ Ms. Note that ΔW ∈ PK with

ΔW (x) =
∑
s

∑
k∈InK

ΔWk,s x
kes .

We assume that the estimate [5]

|λTk − λs| ≥ δ

(K − 1)d−1
, k ∈ InK \Ms
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holds for all s = 1, . . . , n and all K ≥ 2 as well as

|λTk − λs| ≥ δ , k ∈ InK \Ms , K = 0, 1 .

Here δ > 0 and d ≥ 0 are appropriate constants depending on the eigenvalues of A.
Then the solution ΔW satisfies the estimate

|ΔW |r ≤ γ−1 |ΔX|r , γ =
δ

(K − 1)d−1
. (1.3)

With this, we can now start the normal form recursion (1.10)-(1.14). In fact, it is
easier to first look at the system

d

dt
εx = Aεx+ f (εx) ,

=: Ŷ (εx) .

For this Ŷ , the normal form recursion yields vector fields ΔX̂i(x) that are obviously
elements of the space Pi, i.e. ε

iΔX̂i(x) = ΔX̂i(εx, ε). Now Ŷ and Y are related by
Ŷ = εY and, thus, we have ΔX̂i+1 = ΔXi. This implies that ΔXi(x) must be an
element of Pi+1 and

εiΔXi(x) = ε−1ΔXi(εx, ε) .

Let us now apply Theorem 3.1. With K = {0} the compact set and ε−1f(εx) satisfying
an estimate

ε−1|f(ε)|R ≤ ε , R > 0 ,

we could, in principle, apply Theorem 3.1. We have to be a bit carefully though:
Since ΔXi ∈ Pi+1, the parameter γ in (1.3) depends on the iteration index i with
K = i + 1. In other words, we have to use the estimate (4.32) of Proposition 3.1 for
the error in the normal form truncation

Ȳ i∗(x̄, ε) = Ax̄+

i∗∑
i=1

ε−1Δfr
i (εx̄, ε) , (x̄ ∈ BR/2K) ,

i.e., the truncation error T (x̄, ε) satisfies

||T (ε) ||R/2 ≤ c1 ε e
−(c2/ε)

1/d

,

c1, c2 > 0 appropriate constants and d proportional to the number of non-resonant
eigenvalues of A. Here

ε−1Δfr
i (εx, ε) := εiΔXr

i (x) .

Remark 4.1. For the subsequent sections, it is important to note that (i) the linear
vector field Ax̄ commutes with all the resonant vector fields Δfr

i and (ii) d = 1 in
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(1.3) if either n = 1, i.e., the system has one-degree of freedom, or λi = λ, i.e., all the
eigenvalues of A are identical. If the vector field Ax̄ is oscillatory, then d is equal to
the number of non-resonant frequencies in the system. �

Remark 4.2. The normal form expansion converges if all the eigenvalues of A are
in the Poincaré domain [29],[5]. �

Example 4.1. Let us consider a system of fast linear oscillators subject to a slow
non-linear perturbation, i.e.,

d

dτ
q̃ = M(q̃)−1 p ,

d

dτ
p = −ε−2q̃ −∇q̃V (q̃)−∇q̃

pTM(q̃)−1p

2
,

q̃,p ∈ Rn. We write

M(q̃)−1 = Ω0 +Ω1(q̃)

and assume that Ω0 is a positive diagonal matrix. Furthermore, we scale q̃ such that

ε−1q̃ =: q

and transform time by a factor of ε, i.e. τ = εt. Thus the scaled equations of motion
are

d

dt
q = M (εq)−1 p ,

d

dt
p = −q −∇qV (εq)−∇q

pTM (εq)−1p

2
.

These equations of motion are still Hamiltonian. Note that we have used

ε∇εqV (εq) = ∇qV (εq) .

For simplicity, we assume that the gradient and the Hessian of V are identical equal
to zero at q = 0. Let us now introduce the new variable x̃ = (qT ,pT )T . Then the
above system can be written as

d

dt
x̃ = Ãx̃+ ε−1f̃(εx̃) ,

where

Ã :=

(
0 Ω0

−I 0

)
and

ε−1f̃(εx̃, ε) = ε−1

(
Ω1(εq)εp

−ε∇qV (εq)−∇q
(εp)TΩ1(εq)(εp)

2 ε

)
.
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Note that taking∇q yields a factor ε and that the equations are Hamiltonian. Next we

complexify and transform the matrix Ã to diagonal form by a unitary transformation
T . Introducing the new variable x = T x̃, we end up with a system of type (1.2)
to which normal form theory can be applied. In particular, let us assume that the
function f is analytic in a complex ball of radius R > 0 around 0 ∈ C2n such that

|ε−1f(ε)|R ≤ ε .

Furthermore, let us assume that dx/dt = Ax decomposes into d ≥ 1 blocks of oscilla-
tors with equal frequency ±ωl. Let us denote the corresponding vector of frequencies
by ω ∈ Rd. Then we assume that

|kTω| ≥ δ

Kd−1
, |k| ∈ Zd

K \ {0} .

This implies that the eigenvalues of A satisfy the estimate (1.3) with the resonance
modules Ms defined appropriately. Thus we can apply Proposition 3.1 and (4.32)
to estimate the error in the normal form truncation. What are the consequences on
the dynamics of the perturbed system of harmonic oscillators? With each block of
oscillators of equal frequency ωl, we can associate the energy

El =
∑
i

ω2
l

2
p2i +

1

2ε2
q2i

where the index i runs over all the oscillators in the block. The corresponding energy
term Ēl in normal form coordinates is a first integral of the truncated normal form
system. Thus, El is an adiabatic invariant and is preserved up to fluctuations of size
O(ε1/d) over a time period [0, T ] with

T ≤ c1 ε e
(c2/ε)

d

,

c1, c2 > 0 appropriate constants, provided that the solutions x(t) stay in BR/2{0}.
The energy exchange between the oscillators within one block of equal frequency is
non-zero, in general, and is determined by the resonant terms in the normal form.

Hamiltonian systems near an equilibrium are typically discussed in terms of the
Birkhoff normal form of the corresponding Hamiltonian (see Birkhoff [20], Siegel
[113], de Almeida [29]). A proof for the exponentially smallness of the truncation
error in the asymptotic expansion has already been given by Giorgilli & Gal-

gani [47], Giorgilli, Delshams, Frontich, Galgani & Simó [46], Delshams &

Gutiérrez [31]. �

4.1.2 Elimination of Fast Internal Vibrations

Our interest is now in systems that have fast and slow degrees of freedom. In partic-
ular, we are interested in highly oscillatory Hamiltonian systems of type

d

dτ
q = M−1p ,

d

dτ
p = −∇qV (q)− ε−2∇qg(q) g(q) ,
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q,p ∈ R3N , g : R3N → Rm, m < 3N . We assume that the m × m matrix
∂qg(q)M

−1∇qg(q) is invertible. The Hamiltonian is

H(q,p) =
pTM−1p

2
+ V (q) +

g(q)Tg(q)

2ε2
.

We like to see under which conditions the highly oscillatory system can be replaced
by the constrained system

d

dτ
q̄ = M−1p̄ ,

d

dτ
p̄ = −∇q̄V (q̄)−∇q̄g(q̄)λ ,

0 = g(q̄) ,

λ ∈ Rm the vector of Lagrange multipliers. Here we will only consider those systems
that, as a constrained system, reduce to a system of decoupled rigid bodies. In other
words, we assume that the matrix ∂qg(q)M

−1∇qg(q) is constant along solution
curves of the constrained system. Note that the case m = 1, i.e., a single fast degree
of motion has been discussed in Section 3.6.2. There a single diatomic molecule was
considered. Here we are interested in systems of diatomic or other small molecular
systems like, for example, water. We assume that the internal bonded interactions
are modeled by stiff harmonic forces. The question is under which conditions these
harmonic forces can be replaced by rigid constraints.

Let us introduce local coordinates

r̃ = g(q) ∈ Rm , Q = b(q) ∈ R3N−m ,

and corresponding conjugate momenta p̃r ∈ Rm and P ∈ R3N−m [97],[99]. Here
b : R3N → R3N−m is an appropriate function with

∂qb(q)M
−1 ∇qg(q) = 0 .

In these coordinates, the highly oscillatory system becomes

d

dτ
r̃ = M 1(r̃) p̃r ,

d

dτ
p̃r = −ε−2r̃ −∇r̃V (r̃,Q)−∇r̃

[
p̃r

T M1(r̃) p̃r
2

+
P T M 2(r̃,Q)P

2

]
,

d

dτ
Q = M 2(r̃,Q)P ,

d

dτ
P = −∇QV (r̃,Q)−∇Q

P T M 2(r̃,Q)P

2
.

Here M1 := ∂qgM
−1∇qg and M2 := ∂qbM

−1∇qb.

Remark 4.3. In general, the matrix M 1 will also depend on the slow degrees of
freedom Q. (See Section 3.6.2 for an example with a single fast degree of motion.)
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But this case is not considered here. Let us just mention a few points: IfM1 depends
on the slow variable Q, then the gradient of the corresponding kinetic energy term
with respect to Q leads to a force on the slow degrees of motion that depends on
the energy and the frequency of the fast degrees of motion. As long as there are no
resonances, the ratio of energy and frequency is an adiabatic invariant for each fast
degree of motion. However, as Q varies, the fast system will undergo resonances
which lead to a drift in the corresponding adiabatic invariants. Generically, this drift
will be slow [7], i.e. of order O(

√
ε), but cannot be neglected over exponentially long

periods of time. Thus, it seems impossible to decouple the slow and fast degrees of
motion over exponentially long periods of time. �

Concerning the fast degrees of freedom (r̃, p̃r) ∈ R2m, we make the same assumptions
as in Example 4.1. Thus we can apply the same transformations: (i) define r := ε−1r̃,
pr = p̃r and consider (Q,P ) as a parameter, (ii) rescale time: τ = εt and arrive at
the system

d

dt
r = M 1(εr)pr ,

d

dt
pr = −r −∇rV (εr,Q)−∇r

[
pr

T M1(εr)pr
2

+
P T M2(εr,Q)P

2

]
,

d

dt
Q = εM2(εr,Q)P ,

d

dt
P = −ε∇QV (εr,Q)− ε∇Q

P T M 2(εr,Q)P

2
.

This system is Hamiltonian with respect to the non-standard Lie-Poisson bracket

{F,G}s := {F,G}r,pr + ε {F,G}Q,P

where {F,G}r,pr is the canonical bracket in the (r,pr) variable and {F,G}Q,P is the
canonical bracket in the (Q,P ) variable. We write

M1(εr) = Ω0 +Ω1(εr) .

Let us introduce the new variables x̃ = (rT ,pr
T )T ∈ R2m and y = (QT ,P T )T ∈

R6N−2m. Then the above system can be written as

d

dt
x̃ = Ãx̃+ ε−1 f̃(εx̃,y, ε) ,

d

dt
y = + ε g̃(εx̃,y, ε)

with

Ã :=

(
0 Ω0

−I 0

)
.

To such a system we like to apply normal form theory. We are mainly interested in
the rate of energy exchange between the fast (internal) degrees of freedom x̃ and the
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slow (external) degrees of freedom y. The energy in the fast degrees of freedom is
given by

Ef =
pr

TΩ0pr
2

+
rTr

2
.

To be able to apply normal form theory, we complexify the system, i.e. x̃ ∈ C2m

and y ∈ C6N−2m, and transform Ã to diagonal form by a unitary transformation T .
Thus, with x = T x̃, we obtain a (complexified) system of type

d

dt
x = Ax+ ε−1 f(εx,y, ε) ,

d

dt
y = + ε g(εx,y, ε) ,

with x ∈ C2m standing for the fast (internal) degrees of freedom and y = (QT ,P T )T ∈
C6N−2m.

The Benettin/Galgani/Giorgilli (BGG) Result

Let us assume that, on BRK, K = {0} × V ⊂ C6N , V ⊂ R6N−2m a compact subset,
we have

|ε−1f(ε)|R ≤ ε and |εg(ε)|R ≤ ε .

An appropriate norm |.|R will be defined in the following subsection. Let us also
assume that dx/dt = Ax decompose into d ≥ 1 blocks of oscillators with equal
frequency ±ωl. Let us denote the corresponding vector of frequencies by ω ∈ Rd.
Then we assume that

|kTω| ≥ δ

Kd−1
, |k| ∈ Zd

K .

This implies that the eigenvalues of A satisfy the estimate (1.3) with the resonance
modules Ms defined appropriately. Benettin, Galgani & Giorgilli [13],[15] show
then that there exists a coordinate transformation such that in the new coordinates

d

dt
x̄ = Ax̄+ ε−1

∑
i

Δfr
i (εx̄, ȳ, ε) ,

d

dt
ȳ = ε g(0, ȳ) + ε

∑
i

Δgri (εx̄, ȳ, ε)

up to terms T (x̄, ȳ, ε) satisfying an estimate of type (4.32), i.e.

||T (ε) ||R/2 ≤ c1 ε e
−(c2/ε)

1/d

,

c1, c2 > 0 appropriate constants. To be more precise, Benettin, Galgani & Giorgilli
show that the truncation error in the normal form expansion of the Hamiltonian can
be made exponentially small. This, of course, implies a corresponding estimate for
the equations of motion in normal form.
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What are the consequences on the dynamics of the perturbed system? With each
block of fast (internal) oscillators of equal frequency ωl, we can associate the energy

El =
∑
i

ω2
l

2
p2i +

1

2ε2
q2i

where the index i runs over all the oscillators in the block. The corresponding energy
term Ēl in normal form coordinates is a first integral of the truncated normal form
system. Thus, El is an adiabatic invariant and is preserved up to fluctuations of size
O(ε1/d) over a time period [0, T ] with

T ≤ c−1
1 e(c2/ε)

1/d

(assuming that the solutions stay in BR/2K). The energy exchange between the os-
cillators within one block is non-zero, in general, and is determined by the resonant
terms in the normal form. Furthermore, the total internal vibrational energy is also
an adiabatic invariant which is preserved over the same period of time T . Thus, for
low initial internal vibrational energy, the solutions will stay close to the constraint
manifold

M := {q ∈ R3N : g(q) = 0 }
and the external degrees of freedom move on a surface of constant energy. Thus
the system effectively decouples; the fast degrees of motion can be replaced by rigid
constraints and the slow external degrees of motion are approximately described by
the Hamiltonian system

d

dτ
Q̄ = M2(0, Q̄) P̄ ,

d

dτ
P̄ = −∇Q̄V (0, Q̄)−∇Q̄

P̄
T
M2(0, Q̄) P̄

2
.

Of course, in doing so we have neglected all terms of order O(ε) or higher in the
normal form expansion. But the reduced model is justified, for example, if the motion
of the slow (external) degrees of motion is ergodic and ergodicity is robust with respect
to small perturbations. The decoupling of the internal and external energy over an
exponentially long period of time was already conjectured by Boltzmann and Jean.

A New Derivation of the BGG-Result

The proof by Benettin, Galgani & Giorgilli (BGG) is based on transforming a
Hamiltonian to normal form. Since they do not use a modified Lie-Poisson bracket,
the Hamiltonian and the normal form iteration are different. Here we outline a new
proof based on the normal form theory developed in Chapter 4 and the discussion in
Section 4.1.1.

We first introduce an appropriate norm for functions on BRK, K = {0} × V ⊂ C6N ,
V ⊂ R6N−2m a compact subset. Let f : BRK ⊂ C2m × C6N−2m → C be an analytic
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function. Then f can be written as

f(x,y) =
∑

k∈I2m
fk(y)x

k ,

x ∈ BR{0}, y ∈ BRV . Here xk denotes the monomial

xk = xk1
1 x

k2
2 · · ·xk2m

2m ,

x = (x1, x2, . . . , x2m)T , k = (k1, k2, . . . , k2m)T , k ∈ I2m, I the set of non-negative
integers. For vector-valued functions f : BRK ⊂ C2m × C6N−2m → Cn the same
expansion is applied to

f(x,y) =

n∑
s=1

fs(x,y) es ,

es, s = 1, . . . , n, basis vectors in Rn. The corresponding terms in the Taylor expansion
are denoted by fk,s(y). The function space PK is the space of all (bounded) analytic

functions f : BRK ⊂ C2m×C6N−2m → Cn whose Taylor series representation contains
only monomials xk with |k| ≤ K, i.e.

k ∈ I2mK := {k ∈ I2m : |k| ≤ K } ,
|k| = k1 + · · · + k2m. For an analytic function f : BRK ⊂ C2m × C6N−2m → Cn,
f ∈ PK , we also introduce the norm

|f |r := supy∈BrV
∑
s

∑
k∈I2mK

|fk,s(y)| r|k| ,

R ≥ r > 0, on BRK = BR({0} × V).
Let us now rewrite

d

dt
x = Ax+ ε−1 f(εx,y, ε) ,

d

dt
y = + ε g(εx,y, ε)

as

d

dt
z = Az + ε−1B(z, ε) , (1.4)

z = (xT ,yT )T ∈ C6N . The matrix A in (1.4) is the same as before except that it
has been augmented by zeros so as to be in C6N×6N . The corresponding homological
equation

[A,ΔW ] +ΔXn = 0

can be solved in terms of the Taylor expansions of ΔW and ΔXn.
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At this point we have basically reduced the problem to a special case of systems near
an equilibrium point as considered in Section 4.1.1. We only have to take into account
that 6N − 2m eigenvalues of the matrix A are zero and that the corresponding
eigenvectors are determined by the variable y. This implies that we do not need the
Taylor expansion with respect to the variable y to solve the homological equation.

Let λs, s = 1, . . . , 6N , denote the eigenvalues of the matrix A. Note that A has
6N − 2m zero eigenvalues. Then we define the resonance module Ms ⊂ I2m, s =
1, . . . , 6N , by

Ms := {k ∈ I2m : λs = λ
Tk } .

Here λTk contains only those eigenvalues of A that are non-zero. Thus λ ∈ C2m and
k ∈ I2m. We assume that the given ΔX is an element of PK , K ≥ 2 with respect to
its Taylor expansion in x. Then the resonant part ΔXr of

ΔX(x,y) =
∑
s

∑
k∈I2mK

ΔXk,s(y)x
kes

is defined by

ΔXr(x,y) =
∑
s

∑
k∈Ms

ΔXk,s(y)x
kes

and the non-resonant part by ΔXn = ΔX −ΔXr. The solution of the homological
equations is now given by (in terms of the Taylor series coefficients):

ΔWk,s(y) =
−ΔXk,s(y)

λs − λTk
, k ∈ I2mK \Ms ,

ΔWk,s(y) = 0 for k ∈ Ms. Note that ΔW ∈ PK with

ΔW (x,y) =
∑
s

∑
k∈I2mK

ΔWk,s(y)x
kes .

We assume that the estimate

|λTk − λs| ≥ δ

(K − 1)d−1
, k ∈ I2mK \Ms

holds for all s and all K ≥ 2 as well as

|λTk − λs| ≥ δ , k ∈ I2mK \Ms , K = 0, 1 .

Here δ > 0 and d ≥ 0 are appropriate constants depending on the non-zero eigenvalues
of A. Then the solution ΔW satisfies the estimate

|ΔW |r ≤ γ−1 |ΔX|r , γ =
δ

(K − 1)d−1
, (1.5)
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R ≥ r > 0. With this, we can now start the normal form recursion (1.10)-(1.14). For
the system (1.4), the normal form recursion yields vector fields ΔXi(x,y) that are
elements of the space Pi+1 and

εi ΔXi(x,y) = ε−1ΔXi(εx,y, ε) .

With K = {0} × V a compact set and ε−1B(εx,y, ε) satisfying an estimate

ε−1|B(ε)|R ≤ ε ,

we could, in principle, apply Theorem 3.1. Again we have to be a bit carefully: Since
ΔXi ∈ Pi+1, the parameter γ in (1.5) depends on the iteration index i with K = i+1.
In other words, we have to use the estimate (4.32) of Proposition 3.1 for the error in
the normal form truncation

Ȳ i∗(z̄, ε) = Az̄ +

i∗∑
i=1

εiΔXr
i (z̄) , (z̄ ∈ BR/2K) ,

i.e., the truncation error T (z̄, ε) satisfies

||T (ε) ||R/2 ≤ c1 ε e
−(c2/ε)

1/d

,

c1, c2 > 0 appropriate constants and d proportional to the number of non-resonant
eigenvalues of A. Note that the linear differential equation

d

dt
z = Az

commutes with all the other terms in the truncated normal form. For Hamiltonian
systems this implies that the corresponding energy in the fast degrees of motion
commutes with the Hamiltonian of the system in normal form truncation and is,
therefore, a first integral. This implies the adiabatic invariance of the internal
vibrational energy of the Hamiltonian system over an exponentially long period of
time (provided the solutions stay in BR/2K).

A final word on the non-resonance condition

|λTk − λs| ≥ δ

(K − 1)d−1
, k ∈ I2mK \Ms .

If the eigenvalues of the matrix Â are ±iωl, l = 1, . . . ,m, then this condition is
equivalent to

|ωTk| ≥ δ

Kd−1
, k ∈ Zm

K \M

with

M := {k ∈ Zm
K : ωTk = 0 } .
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Figure 4.1: Time evolution of the total energy in all stiff degrees of freedom (a) and
energy in one particular stiff degree of freedom (b).

Here d ≥ 1 is the number of non-resonant frequencies in the spectrum of the matrix
A. For example, d = 1 for a system of identical diatomic molecules and d = 2 for
water molecules.

Example 4.2. We consider a one-dimensional chain of N = 21 particles with
equal mass m = 1. The particles interact alternating with their nearest neighbor
on the one side via a stiff harmonic spring and with the nearest neighbor on the
other side via a (soft) Lennard-Jones-type potential. In Fig. 4.1, it is shown that
the total energy in the stiff harmonic degrees of freedom is an adiabatic invariant.
We also show the evolution of the energy in one particular stiff degree of freedom.
Due to the complete resonance of all the stiff degrees of freedom, this energy is not
constant. For further numerical results see Benettin, Galgani & Giorgilli [13]. �

4.2 Numerical Methods

In this section we discuss three different approaches to the numerical integration of
highly oscillatory mechanical systems that reduce in the limit to rigid bodies. Namely:
(i) We derive an explicit symplectic method for rigid bodies. Our starting point is
the following one: It is well-known that the motion of a rigid body is characterized by
the superposition of a translation and a rotation and that the differential equations
describing the translation of the center of mass and the rotation about the center of
mass are Hamiltonian. Based on this Hamiltonian formulation, we derive an explicit
symplectic scheme for rigid bodies moving under the influence of external conservative
forces. The basic ideas were first published by the author in [101]. The special splitting
method for water molecules is new. (ii) To take finite stiffness effects into account, the
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concept of soft-constraints was introduced in [126],[97],[99]. Here we suggest a different
approach that modifies the force field instead of the constraint functions. An effective
implementation is given. (iii) Inspired by the paper [42], a projected multiple-time-
stepping method is suggested for the integration of mechanical systems with highly
oscillatory internal vibrations. In contrast to formulations using constraints, multiple-
time-stepping methods resolve the high frequency motions with a small step-size while
the slowly varying components of the force field (“slow forces”) are integrated with a
much larger step-size. This is the standard multiple-time-stepping approach. To avoid
resonance problems, projected multiple-time-stepping uses modified “slow forces” that
are obtained from the original “slow forces” by projecting away the highly oscillatory
solution components. This projection is done in a way similar to the SHAKE projec-
tion step [106].

4.2.1 Symplectic Integration of Rigid Bodies

Equations of Motion for a Single Rigid Body

In this subsection we give the Hamiltonian formulation for the equations of motion for
a single rigid body moving in R3 under the influence of an external force. This result
naturally extends to unconstrained systems of rigid bodies moving in an external force
field.

Consider a rigid body free to move in R3. A reference configuration B of the body
is the closure of an open set in R3. Points in B, denoted by ξ ∈ B, are called material
points. A configuration of B is a mapping φ : B → R3 which is smooth, orientation
preserving, and invertible on its image. The points of the target space R3 of φ are
called spatial points and denoted by x ∈ R3. A motion of B is a time dependent
family of configurations, written x(t) = φ(ξ, t) = φt(ξ). Rigidity of the body means
that the distance between points of the body are fixed as the body moves. Let us
assume that the center of mass of B is at the origin and let us denote the motion of
the center of mass by q(t) = φt(0). Then any motion of B is the superposition of q(t)
and a rotation about the center of mass; i.e.

x(t) = Q(t)ξ + q(t) (2.6)

where Q(t) ∈ SO(3).
Let m ∈ R+ be the total mass of the rigid body andM ∈ R3×3 the inertial tensor

which, for simplicity, we assume to be diagonal. Furthermore, let a conservative force

F (xo(t)) = −∇qV (xo(t)) (2.7)

V : R3 → R, act on the rigid body where

xo(t) = Q(t)ξo + q(t)

and ξo ∈ B is a fixed point in B. Upon introducing canonical momenta p = mdq/dt
and P = dQ/dtJ where the diagonal matrix J ∈ R3×3 is defined by

M−1
ii =

1

2

∑
i	=j

J−1
jj ,
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the motion of the rigid body in R3 is Hamiltonian with the Hamiltonian function

Hc(q,p,Q,P ) =
1

2
(pTm−1p) +

1

2
tr(PJ−1P T ) + (2.8)

= +V (q,Q) +
1

2
tr ({QTQ− I}Λ)

where tr denotes the trace operator and Λ ∈ R3×3 is a symmetric matrix implicitly
determined by the holonomic constraint Q ∈ SO(3), i.e.

0 = QTQ− I . (2.9)

[82],[84]. Thus the motion for the center of mass is simply given by

d

dt
q = m−1p (2.10)

d

dt
p = −∇qV (q,Q) (2.11)

where V (q,Q) is defined by

V (q,Q) = V (Qξo + q) .

and the corresponding equations of motion for the variable Q are

d

dt
Q = PJ−1 (2.12)

d

dt
P = −∇QV (q,Q)−QΛ (2.13)

0 = QTQ− I (2.14)

which define a Hamiltonian vector field on the phase space

M = {(Q,P ) : QTQ− I = 0, QTPJ−1 + J−1P TQ = 0 }

Note that ∇qV (q,Q) = −F (q,Q) and ∇QV (q,Q) = −F (q,Q)ξTo .
Now M �= T ∗SO(3) in general. However, as shown by McLachlan and Scovel [84],

the motion on T ∗SO(3) can be obtained from the motion on M by putting Q̃ = Q
and P̃ = Pr(Q)P where Pr(Q) is the orthogonal projector onto T ∗

QSO(3) ⊂ R3×3.
To make the equations (2.12)-(2.14) more transparent, let us rewrite them on

SO(3) × so(3)∗. Here so(3)∗ denotes the dual of the Lie algebra of skew-symmetric
matrices [119]. This transformation can be achieved by introducing the body angular
momentum Π = QTP ∈ so(3)∗ [82]. Using the standard isomorphism between R3

and so(3)∗ denoted by skew : R3 → so(3)∗, we identify Π ∈ so(3)∗ with π ∈ R3,
[QTF (q,Q)ξTo −ξoF (q,Q)TQ]/2 with QTF (q,Q)×ξo, and [J−1Π+ΠJ−1]/2 with
M−1π where M is the inertial tensor. Then we obtain the equations

d

dt
π = π ×M−1π + {QTF (q,Q)} × ξo (2.15)
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and

d

dt
Q = Q skew (M−1π) (2.16)

Note that for F = 0, (2.15) becomes the standard Euler equation for the free rigid
body [82].

In the following subsection we will discuss numerical methods for the symplectic
integration of the constrained Hamiltonian system corresponding to (2.8)-(2.9).

Symplectic Integration of a Single Rigid Body

A Hamiltonian system on Rn × Rn with holonomic constraints of the form g(q) = 0,
where g : Rn → Rm is a smooth map with full rank Jacobian in the neighborhood of
its zero-set g−1(0), is characterized by the equations

d

dt
q = ∇pH(q,p) (2.17)

d

dt
p = −∇qH(q,p)−G(q)Tλ (2.18)

0 = g(q) (2.19)

where H : Rn × Rn → R is the Hamiltonian of the unconstrained system, G(q) =
∂qg(q), and

Hc = H + λT g

the Hamiltonian of the constrained system. The solutions of (2.17)-(2.19) define a
symplectic flow [6] on the constraint manifold

M = {(q,p) : g(q) = 0, G(q)∇pH(q,p) = 0 }
Recently it has been shown by Jay [65] and Reich [98] that for arbitrary Hamil-

tonian functions H there exist discretizations of (2.17)-(2.19) which preserve the con-
straint manifold M and are symplectic. Even more recently, McLachlan & Scovel

[84] extended this result to the symplectic integration of the corresponding constrained
system on the cotangent manifold

T ∗N = { (q,p) : g(q) = 0, G(q)p = 0 }
In case that the Hamiltonian H is separable, i.e. of the form

H(q,p) = T (p) + V (q) ,

we can, e.g., use the scheme RATTLE [3] which is a generalization of the Verlet scheme
for unconstrained systems. It was shown to be symplectic and constraint-preserving
by Leimkuhler & Skeel [76].

Since the Hamiltonian (2.8) is separable, the RATTLE discretization can be di-
rectly applied to the symplectic integration of the corresponding constrained Hamil-
tonian system. To see this, we have to use the correspondences q �→ (q,Q) and
p �→ (p,P ) and the constraint function g is given by (2.9). Thus we obtain the
following algorithm:
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Semi-Explicit Rigid Body Integrator

Step 1.

qn+1 = qn +Δtm−1pn+1/2

pn+1/2 = pn + (Δt/2)F (qn,Qn)

Step 2.

Qn+1 = Qn +ΔtP n+1/2J
−1

P n+1/2 = P n + (Δt/2) [F (qn,Qn)ξ
T
o +QnΛn]

0 = QT
n+1Qn+1 − I

Step 3.

P n+1 = P n+1/2 + (Δt/2) [F (qn+1,Qn+1)ξ
T
o +Qn+1μn+1]

0 = QT
n+1P n+1 + P

T
n+1Qn+1

Step 4.

pn+1 = pn+1/2 + (Δt/2)F (qn+1,Qn+1)

where F (q,Q) = ∇qV (q +Qξo).

Step 2 requires the solution of a nonlinear system of equations in 6 variables (since
Λ is assumed to be symmetric). This can be avoided by applying recent results by
McLachlan [83] and Reich [94] on the explicit symplectic integration of the Euler
equations on the so(3)∗. Specifically:

Step 2 and 3 represent a second order symplectic integrator for the Hamiltonian

Hr(Q,P ) =
1

2
tr (PJ−1P T ) + V (q,Q) +

1

2
tr ([QTQ− I]Λ)

where q is treated as a parameter. Upon rewriting Hr as

Hr(Q,P ) = He(Q,P ,Λ) + V (q,Q) (2.20)

with

He(Q,P ,Λ) =
1

2
tr (PJ−1P T ) +

1

2
tr ([QTQ− I]Λ)

we see that He is the Hamiltonian of a free rigid body fixed at the origin and the
potential V corresponds to an external force acting on the body. Using the notation
introduced in the previous subsection, the equations of motion of a free rigid body in
terms of the body angular momentum are

dt

dt
π = π ×M−1π (2.21)
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where the Hamiltonian is now the kinetic energy of the body; i.e.

T (π) =
1

2
πTM−1π

As pointed out by McLachlan [83] and Reich [94], (2.21) can be integrated numer-
ically by rewriting (2.21) as the sum of three Euler equations dπ/dt = π × ∇Ti(π)
where Ti(π) =

1
2π

2
iM

−1
ii . For each of these equations we have πi = const. and therefore

each equation can be solved exactly. The solutions, denoted by

Φt,Ti(π) = exp(tXTi) · π ,
are rotations about the πi-axis with constant angular velocity πiM

−1
ii , i.e.

exp(tXTi) ∈ SO(3). For example, for i = 1, we have to solve the system of lin-
ear differential equations

π̇1 = 0

π̇2 = +π1M
−1
11 π3

π̇3 = −π1M−1
11 π2

By applying the Baker-Campbell-Hausdorff formula [119], one can show that the
scheme

πn+1 = AΔt(πn)πn

with

AΔt(π) = exp(Δt/2XT1) · exp(Δt/2XT2) · exp(ΔtXT3) ·
· exp(Δt/2XT2) · exp(Δt/2XT1)

is of second order in the step-size Δt and naturally preserves the Lie-Poisson structure
of the Euler equation [82]. Note that each ΦΔt,Ti requires the evaluation of a sine and
cosine function. This can be avoided by using the Cayley transformation to obtain an
approximate rotation matrix Ri(Δt) with

exp(ΔtXTi) = Ri(Δt) +O(Δt3) .

Let us now return to the symplectic integration of the corresponding Hamiltonian
system on T ∗SO(3). We make use of the same splitting of the kinetic energy T (π).
But now we have to solve for each Ti(π) the system of linear differential equations

d

dt
π = π ×∇πTi(π)

d

dt
Q = Q skew (∇πTi(π))

Composing the single steps as done above for the Euler equation, we finally obtain
the second-order symplectic scheme

Qn+1 = Qn [AΔt(πn)]
T (2.22)

πn+1 = AΔt(πn)πn (2.23)
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with AΔt as above.
The motion due to the potential V in (2.20) is given by the differential equation

d

dt
π = [QTF (q,Q)]× ξo (2.24)

d

dt
Q = 0 (2.25)

This differential equation can be solved exactly and Step 2 and 3 in the previous
algorithm can now be replaced by a proper composition of (2.22)-(2.23) and the exact
time-Δt-flow of the differential equation (2.24)-(2.25). Thus we obtain the following
explicit algorithm:

Explicit Rigid Body Integrator

Step 1.

qn+1 = qn +Δtm−1pn+1/2

pn+1/2 = pn + (Δt/2)F (qn,Qn)

Step 2.

π̄n = πn + (Δt/2)[QT
nF (qn,Qn)]× ξo

Qn+1 = Qn[AΔt(π̄n)]
T

π̄n+1 = AΔt(π̄n) π̄n

πn+1 = π̄n+1 + (Δt/2)[QT
n+1F (qn+1,Qn+1)]× ξo

Step 3.

pn+1 = pn+1/2 + (Δt/2)F (qn+1,Qn+1)

If necessary, P n+1 can be computed from Qn+1 and πn+1 by means of

P n+1 = Qn+1Πn+1

where, using the standard isomorphism between R3 and so(3)∗, we transform πn+1 ∈
R3 back into Πn+1 ∈ so(3)∗. Let us denote the resulting scheme by⎛⎜⎜⎝

qn+1

Qn+1

pn+1

P n+1

⎞⎟⎟⎠ = ΨΔt

⎛⎜⎜⎝
qn
Qn

pn
P n

⎞⎟⎟⎠ (2.26)
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Note that this scheme is now explicit in Q and P . The scheme is of second order. This
can be seen from the time reversibility of the scheme. Furthermore, by construction,
the scheme is symplectic (also if the exact rotations are replaced by the Cayley
transformations) and preserves the constraint Q ∈ SO(3). Systems of rigid bodies
can be treated by applying the scheme to each rigid body.

Remark 4.3. Both algorithms have been implemented in codes for simulation of
molecular systems. See A. Kol, B. Laird & B. Leimkuhler [70] and A. Dullwe-

ber, B. Leimkuhler & R. McLachlan [34] for details. �

Water Molecules

A water molecule is typically modeled as a planar rigid body. For planar rigid bodies
the moments of inertia Mii, i = 1, 2, 3, satisfy

M33 = M11 +M22

(provided the body’s reference configuration is appropriately placed in the x-y plane).
Thus the rotational kinetic energy is

T (π) =
∑
i

M−1
ii π2

i ,

=
M22(M11 +M22)π

2
1 +M11(M11 +M22)π

2
2 +M11M22π

2
3

M11M22(M11 +M22)
,

=
M11M22π

Tπ

M11M22(M11 +M22)
+

M22π
2
1

M11(M11 +M22)
+

M11π
2
2

M22(M11 +M22)
,

=
M22

M11M33
π2
1 +

M11

M22M33
π2
2 +

1

M33
πTπ ,

=: T̃1(π) + T̃2(π) + T̃3(π) .

Each of the corresponding systems

d

dt
π = π ×∇πT̃i(π) ,

d

dt
Q = Q skew (∇πT̃i(π)) ,

i = 1, 2, 3 can be solved exactly. In particular, π(t) = const. for the Hamilto-
nian T̃3! A second-order integrator can be obtained as before by the appropriate
composition of the corresponding flow maps. Again, the exact rotations can be
replaced by the corresponding Cayley transformations. Upon using this in the explicit
rigid body integrator, a very efficient method for simulation of water has been derived.
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4.2.2 Soft Constraints and Modified Force Fields

The approximation of a flexible system by a constrained system (rigid bodies)

d

dτ
q̄ = M−1p̄ ,

d

dτ
p̄ = −∇q̄V (q̄)−∇q̄g(q̄)

Tλ ,

0 = g(q̄)

neglects contributions of order O(ε2) [97]. The idea of soft constraints is to par-
tially include those terms (see Brooks, Zhou & Reich [126], Reich [97], Reich

[99]). (Note that this modification is close to what is discussed by Kopell in [71].)
However, the modified constraint functions are costly to implement. Here we suggest
a different approach: Instead of modifying the constraint functions we modify the
potential energy function such that the modified potential energy function is more
accurate then V (q̄) for ε > 0. The basic idea is to introduce a near to the identity
transformation

q̃ := φ(q̄)

by means of

q̃ := q̄ +M−1 ∇q̄g(q̄)μ ,

0 = ∂q̄g(q̄)M
−1
[∇q̃V (q̃) + ε−2∇q̃g(q̃) g(q̃)

]
. (2.27)

Note that q̄ satisfies g(q̄) = 0. Thus ||q̃ − q̄|| = O(ε2).
The modified potential energy function is defined by

W (q̃) := V (q̃) +
1

2ε2
g(q̃)Tg(q̃) ,

= W (φ(q̄)) .

The mapping φ can be understood as a partial approximation to the O(ε2) term in
the normal form expansion. In other words, instead of enforcing

r := g(q) = 0 ,

we note that the unconstrained system will oscillate about the minimum of the total
potential energy with respect to the variable r, i.e., will oscillate about the manifold
defined by

∇rW (q̃) ≈ ∂q̄g(q̄)M
−1
[∇q̃V (q̃) + ε−2∇q̃g(q̃) g(q̃)

]
,

= 0

(upon neglecting velocity dependent contributions). But this is what has been used
in (2.27). The trick is to keep the evaluation of the corresponding gradient

∇q̄W (q̃) = [∂q̄φ(q̄)]
T∇q̃

[∇q̃V (q̃) + ε−2∇q̃g(q̃) g(q̃)
]
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cheap. It is indeed easily checked that the evaluation of the gradient does not require
the computation of the Hessian of V but only needs the computation of the second
derivative of g. In other words

dq̃ := ∂q̄φ(q̄)dq̄ ,

= dq̄ +M−1 ∇q̄g(q̄)dμ+M−1
∑
i

μi ∂
2
q̄g

i(q̄)dq̄ ,

but dμ is not needed because of

∂q̄g(q̄)M
−1
[∇q̃V (q̃) + ε−2∇q̃g(q̃) g(q̃)

]
= 0 .

RATTLE Algorithm with Modified Force Field

Step 1.

q̃n = φ(q̄n) ,

F n = −[∂q̄φ(q̄n)]
T ∇q̃W (q̃n) .

Step 2.

q̄n+1 = q̄n +ΔtM−1p̄n+1/2 ,

p̄n+1/2 = p̄n +
Δt

2
[F n −∇q̄g(q̄n)λn] ,

0 = g(q̄n+1) .

Step 3.

q̃n+1 = φ(q̄n+1) ,

F n+1 = −[∂q̄φ(q̄n+1)]
T ∇q̃W (q̃n+1) .

Step 4.

p̄n+1 = p̄n+1/2 +
Δt

2

[
F n+1 −∇q̄g(q̄n+1)λn+1

]
,

0 = ∂q̄g(q̄n+1)M
−1 p̄n+1 .

Note that the modified forces could also be used in the rigid body integrators
described in the previous section. We also like to point out that the modified force
field requires additional force field evaluations. However, these additional force
evaluations can be restricted to nearest neighborhood interactions. For a more
detailed description of the modified force field approach see [103]. Below we report
about simulation results for water molecules and fluctuating charge force fields.

Example 4.3. We simulated the collision of two water molecules. The force field
was taken from the CHARMM package [27]. Initial conditions were chosen such
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Figure 4.2: Time evolution of cosφ− cosφ0 for free dynamics (a) and dynamics with
modified force field/soft constraints (b).
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Figure 4.3: Time evolution of the total energy for “correct” modified force field (a)
and “simplified” modified force field (b).
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that no internal vibrations were excited. Fig. 4.2 gives a comparison of the free
dynamics and the dynamics with soft constraints in the bond-angle of one of the
water molecules. Note the excellent agreement (standard constrained dynamics would
yield cosφ − cosφ0 = 0). In Fig. 4.3, we demonstrate the importance of the correct
modification of the force field. As shown in (b), the simplified force field

F n = −∇q̃W (q̃n)

leads to a drift in energy after one collision. �

Example 4.4. Various models to include polarizability in classical MD simulations
have been suggested. Here we will discuss the approach due to Rick, Stuart &

Berne [104]. In their approach the charges Q are considered as dynamical variables
and the resulting equations of motion are

ε2
d2

dt2
Q = −J(q)Q− c ,

M
d2

dt2
q = −∇qV (q)−∇q

QTJ(q)Q

2
.

Introducing conjugate momenta P and p, the equations are Hamiltonian with Hamil-
tonian

H =
P TP

2ε2
+
pTM−1p

2
+ V (q) + cTQ+

QTJ(q)Q

2
.

We assume that the symmetric matrix J(q) and the vector c are chosen such that the
total charge of the system is preserved, i.e.

1T (J(q)Q+ c) = 0 ,

1T = (1, 1, . . . , 1). The equations of motion are highly oscillatory in the charges Q.
In particular, the charges will oscillate about their equilibrium value

Q(q) = −[J(q)]−1c .

Thus the elimination of the high-frequency oscillations can be achieved by means of
the following modified Hamiltonian

H̃ =
pTM−1p

2
+ V (q)− cT [J(q)]−1c

2
,

=
pTM−1p

2
+ V (q)− Q(q)TJ(q)Q(q)

2
!

To derive the corresponding equations of motion in (q,p), let us take a different point
of view: We define Q(q) by

J(q)Q(q) + c = 0 .



4.2. NUMERICAL METHODS 103

0 2 4 6 8 10 12 14 16 18 20
−0.45

−0.44

−0.43

−0.42

−0.41

−0.4

−0.39

(a), time t
ch

ar
ge

 Q
1

0 2 4 6 8 10 12 14 16 18 20
−4

−2

0

2

4

6
x 10

−4

(b), time t

dQ
1

Figure 4.4: Time evolution of the partial charge Q1 for the reduced model (a) and
difference in the partial charge Q1 between the dynamic fluctuating charge model and
our reduced model (b).

Then the electrostatic force on the atomic positions is given by

F elec(q) = ∇q
Q(q)TJ(q)Q(q)

2
,

= ∇q
QTJ(q)Q

2
+∇qQ

TJQ(q)

where suppressed arguments mean that we do not take the gradient with respect to
those expressions. Now

∇qJ(q)Q+∇qJ Q(q) = 0

and, thus,

F elec(q) = −∇q
QTJ(q)Q

2
.

This is “equivalent” to the electrostatic force we would obtain from the fluctuating
charge model. The equations of motion are now

M
d2

dt2
q = −∇qV (q) + F elec(q,Q) ,

0 = J(q)Q+ c , 1TQ = const.

which are equivalent to the classical equations of motion plus a linear system of
equations.
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In a numerical experiment, we considered two charged particles with mass m = 1
interacting through a Lennard-Jones potential

ULJ(r) := 4 δ

[(σ
r

)12
−
(σ
r

)6]
,

δ = 0.15, σ = 3.5, and a Coulomb potential

UC(r) := J12
Q1Q2

r
,

J12 = 10. The partial charges Q1, Q2 are created via

E(Qi) := ±ξ Qi +
1

2
J Q2

i ,

J = 5, ξ = 1. Thus the partial charges are given by the linear system

0 = +ξ + J Q1 +
J12
r
Q2 ,

0 = −ξ + J Q2 +
J12
r
Q1 .

Note that Q1 + Q2 = 0 is automatically satisfied. We implemented the dynamic
fluctuating charge model with ε = 0.1. The resulting partial charges were compared
to our reduced model. See Fig. 4.4. �

4.2.3 Projected Multiple-Time-Stepping

Let us come back to highly oscillatory Hamiltonian systems of type

d

dt
q = M−1p ,

d

dt
p = −∇qV (q)− ε−2∇qg(q) g(q) ,

q,p ∈ R3N , g : R3N → Rm, m < 3N . We assume that the m × m matrix
∂qg(q)M

−1∇qg(q) is invertible. The Hamiltonian is

H(q,p) =
pTM−1p

2
+ V (q) +

g(q)Tg(q)

2ε2
.

As in standard multiple-time-stepping [19],[118], we define the fast system by

ε−1A(q,p) =

(
M−1p

−ε−2∇qg(q) g(q)

)
and the “slow” vector field B by

B(q) =

(
0

−∇qV (q)

)
.

This leads to the following multiple-time-stepping scheme:
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Standard Multiple-Time-Stepping

Step 1.

p̄n = pn − Δt

2
∇qV (qn)

Step 2.

Integrate the fast system

d

dt
q = M−1p

d

dt
p = −ε−2∇qg(q) g(q)

using Verlet with a step-size δt = Δt/N , N  1, and initial conditions
(qn, p̄n). Denote the result by (qn+1, p̄n+1).

Step 3.

pn+1 = p̄n+1 −
Δt

2
∇qV (qn+1)

This formulation suffers from resonance induced instabilities [19],[21]. In [42],
Garćia-Arcgilla, Sanz-Serna & Skeel suggested to combine averaging with
multiple-time-stepping. Here we use informations on the analytical solution behavior
to define an approximation to the average B̄ of B along solution curves of ε−1A. Note
that, by energy considerations, g(q) = O(ε). Furthermore, the motion is (almost) har-
monic and highly oscillatory in r := g(q). Thus we approximate the averaged vector
field B̄ by

B̄(q) =

(
0

−∇qV (ρ(q))

)
.

The function ρ is defined by the nonlinear system of equations

ρ(q) = q +M−1∇qg(q)μ ,

0 = g(ρ(q))

in the variable μ ∈ Rm. Note that ρ basically projects the r = g(q) solution com-
ponent away. This choice of B̄ introduces an error of size O(ε). For some of the
components of the potential energy function V this might be not tolerable. Then we
simply split V into two parts V1 and V2, include the “troublesome” V1 in the fast
part ε−1A that is solved with a small step-size δt, and only keep V2 in the vector
field B. Again we have [ε−1A, B̄] = O(1), and the corresponding modified multiple-
time-stepping method can be used with a macro step-size ε � Δt � 1. To be more
precise, the step-size Δt is only determined by the slowly varying solution components
and is independent of ε. One final remark: To implement our approach, we need the
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Jacobian ∂qρ of ρ. This requires the computation of the second derivative of g and
the solution of a linear system of equations, i.e.,

dq̃ = dq +M−1∇qg(q)dμ+M−1
m∑
i=1

μi ∂qg
i(q)dq ,

0 = ∂q̃g(q̃)dq̃ ,

with q̃ = ρ(q) and dq̃ = ∂qρ(q)dq, or, in other words,

∂qρ(q) =
[
I −M−1 ∇qg(q)N ∂q̃g(q̃)

] [
I +M−1

m∑
i=1

μi ∂
2
qg

i(q)

]
.

with
N := [∂q̃g(q̃)M

−1 ∇qg(q)]
−1 .

For a system with Hamiltonian

H(q,p) =
pTM−1p

2
+ V1(q) + V2(q) +

g(q)T g(q)

2ε2
,

where the gradient of V2 is much more expensive to compute than the other forces,
we suggest the following scheme:
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Projected Multiple-Time-Stepping

Step 1.

q̃n = ρ(qn) ,

F n = −[∂qρ(qn)]
T ∇q̃V2(q̃n)

Step 2.

p̄n = pn +
Δt

2
F n

Step 3.

Integrate the fast system

d

dt
q = M−1p

d

dt
p = −ε−2∇qg(q) g(q)−∇qV1(q)

using Verlet with a step-size δt = Δt/N , N  1, and initial conditions
(qn, p̄n). Denote the result by (qn+1, p̄n+1).

Step 4.

q̃n+1 = ρ(qn+1) ,

F n+1 = −[∂qρ(qn+1)]
T ∇q̃V2(q̃n+1)

Step 5.

pn+1 = p̄n+1 +
Δt

2
F n+1

This symplectic (!) scheme should avoid the resonance problems typically encountered
in standard multiple-time-stepping and should be useful whenever the evaluation of
∇qV2(q) (long-range forces) is much more expensive than the evaluation of ∇qV1(q).

Example 4.5. The modified multiple-time-stepping method of Garcia-Archilla,

Sanz-Serna & Skeel as well as our projected multiple-time-stepping method have
been successfully tested for a box of water. Both methods allow one to increase the
step-size Δt from 1 − 2 femtoseconds to 5 − 7 femtoseconds without any additional
evaluation of the long-range forces. However, the projected multiple-time-stepping
method seems more robust (less drift in total energy) [63]. �
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