
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ALEXANDER MARTIN AND ROBERT WEISMANTEL

Conjunctive Cuts for Integer Programs

Preprint SC 98-18 (July 1998)

Conjunctive Cuts for Integer Programs

Alexander Martin Robert Weismantel�

July 6, 1998

Abstract

This paper deals with a family of conjunctive inequalities. Such inequalities
are needed to describe the polyhedron associated with all the integer points
that satisfy several knapsack constraints simultaneously. Here we demonstrate
the strength and potential of conjunctive inequalities in connection with lifting
from a computational point of view.

1 Introduction

The solution of general mixed integer programs is one of the challenging problems
in discrete optimization. The problems that can be modeled as mixed integer pro-
grams arise in science, technology, business, and environment, and their number is
tremendous and increasing. Such developments go side by side with the develop-
ment of tools for tackling mixed integer programs. One important breakthrough
that still drives the current activities in this field was the code of Crowder, John-
son, and Padberg [1983] that was able to solve real-world 0/1 integer programs
that many researchers considered untracktable by this time. Their main idea was
to interpret each single row of the constraint matrix as a knapsack constraint and
to strengthen the original integer program by adding inequalities associated with
relaxations in form of knapsack problems. An analysis of other important relax-
ations of an integer program allows to incorporate odd hole and clique inequalities
for the stable set polyhedron (Padberg [1973]) or flow cover inequalities for certain
mixed integer models (Padberg, Roy, and Wolsey [1985], Roy and Wolsey [1987]).
Further recent examples of this approach are given in Ceria, Cordier, Marchand,
and Wolsey [1998], Marchand and Wolsey [1997].

Instead of deriving combinatorial relaxation one may derive general cutting
planes that do not exploit the underlying structure. Examples are (mixed) integer
Chvátal-Gomory cuts or disjunctive cutting planes. The idea to derive disjunctive
cutting planes is to split a polyhedron into two or more disjoint polyhedra, study
these polyhedra individually and convexify the individual descriptions. In Balas,
Ceria, and Cornuéjols [1993], [1996] it is shown that disjunctive cutting planes help
solving general mixed integer programs.

We introduce here a somewhat contrary approach. Instead of breaking an integer
program apart we study the convex hull of integer points that lie in the intersec-
tion of several polyhedra simultaneously. These polyhedra are deduced from the
individual rows of the constraint system. In this respect, our approach is an exten-
sion of the idea of Crowder, Johnson and Padberg. Inequalities that are necessary
to describe the “intersection polyhedron” by means of inequalities will be called
conjunctive cutting planes.

�Supported by a “Gerhard Hess-Forschungsförderpreis” of the German Science Foundation
(DFG).

1

We have incorporated a family of conjunctive cuts, called feasible set inequal-
ities, in our general mixed integer programming solver. This algorithm includes
tools for decomposing an integer program into blocks of moderate sizes. With each
of these blocks there is associated a smaller integer program that may be viewed
as the intersection of several knapsack constraints in general integer variables. In
a companion paper we have studied this polyhedron by means of valid inequalities.
Here we show how to turn this polyhedral knowledge into a practical separation
algorithm. This separation algorithm has two major ingredients: One is a search
procedure for feasible solutions of an integer program that we use to derive valid
conjunctive inequalities associated with these feasible solutions. The other ingredi-
ent is an effective algorithm for lifting general integer variables, i. e., for turning low
dimensional faces of an integer program into faces of higher dimension. Our com-
putational results demonstrate the benefits and practical potential of this family of
conjunctive cuts when used within a general mixed integer programming solver.

2 Feasible Set Inequalities: A Family of Conjunc-
tive Cuts

Consider some finite sets N,M ⊂ N, some matrix A ∈ RM×N , vectors b ∈ RM , u ∈
R
N , and the polytope

P (N,M,A, b, u) := conv{x ∈ ZN : Ax ≤ b, 0 ≤ x ≤ u},

that is the convex hull of all integral vectors x satisfying Ax ≤ b and 0 ≤ x ≤ u.
Throughout this paper we use the following notation. We will assume N =

{1, . . . , n} and M = {1, . . . ,m} for n,m ∈ N. For v ∈ R
N , we denote by v+ the

vector with v+i = vi if vi ≥ 0 and v+i = 0, otherwise. Accordingly, v− is the vector
with v−i = −vi if vi ≤ 0 and v−i = 0, otherwise. If v ∈ R

N , then supp(v) denotes
the support of v; in formulas, supp(v) := {i ∈ N : vi �= 0}. For I ⊆ M and J ⊆ N ,
we denote by AI,J ∈ R

I×J the submatrix with entries (aij)i∈I,j∈J . We abbreviate
AI,N by AI· and AM,J by A·J . For j ∈ N , we write A·j instead of A·{j} to denote
the j-th column of A. Accordingly, Ai· denotes the i-th row of A, for i ∈ M . For
some vector x ∈ R

N and S ⊆ N , we denote by xS := (xi)i∈S the vector restricted
to the components in S. We abbreviate P (N,M,A, b, u) by P if it is clear from the
context. For convenience, we also use the symbol P (S) to abbreviate the polytope
P (S,M,A·S , b, uS).

Definition 2.1 Let T ⊆ N such that
∑

i∈T A·ivi ≤ b for all v ∈ R
T with v ≤ uT .

T is called a feasible set. Let w : T �→ Z+ be some non-negative weighting of the
elements of T . For j ∈ N \ T with

∑
i∈T A·iui +A·juj �≤ b , the inequality

∑
i∈T

wixi + wjxj ≤
∑
i∈T

wiui(1)

is called a feasible set inequality associated with T (and {j}) if

wj ≤ min
l=1,... ,uj

1

l
min
x

∑
i∈T

wixi

∑
i∈T

A·ixi ≥ A·j − r(T)

0 ≤ xi ≤ ui, xi ∈ Z, i ∈ T,

(2)

where r(T) := b−∑
i∈T A·iui.

2

Proposition 2.2 Feasible set inequalities are valid for P (T ∪ {j}).

Proof. Let γ =
∑

i∈T wiui and γl := max {∑i∈T wixi :
∑

i∈T A·ixi + A·j l ≤
b, 0 ≤ xi ≤ ui, xi ∈ Z, i ∈ T }. After complementing variables xi to ui − xi

for i ∈ T we obtain that the right-hand side of (2) is minl=1,... ,uj

1
l (γ − γl). For

some integer solution x̄ ∈ P (T ∪ {j}) with x̄j ≥ 1 we have
∑

i∈T wix̄i + wj x̄j ≤
γx̄j + x̄j minl=1,... ,uj

1
l (γ − γl) ≤ γx̄j + (γ − γx̄j) = γ. In case x̄j = 0 the statement

is clearly true.
Proposition 2.2 states the validity of the feasible set inequality for P (T ∪ {j}).

To obtain a (strong) valid inequality for P we resort to lifting, see Padberg [1975].
Consider some permutation π1, . . . , πn−|T |−1 of the set N \ (T ∪ {j}). For k =
1, . . . , n− |T | − 1 and l = 1, . . . , uπk

let

γ(k, l) = max
∑

i∈T∪{j}
wixi +

∑
i∈{π1,... ,πk−1}

wixi

∑
i∈T∪{j}

A·ixi +
∑

i∈{π1,... ,πk−1}
A·ixi +A·πk

l ≤ b

0 ≤ xi ≤ ui, xi ∈ Z for i ∈ T ∪ {j, π1, . . . , πk−1}.

(3)

With γ =
∑

i∈T wiui the lifting coefficients are

wπk
:= min

l=1,... ,uπk

γ − γ(k, l)

l
.(4)

The following statement is immediate.

Proposition 2.3 The (lifted) feasible set inequality wTx ≤ ∑
i∈T wiui is valid for

P .

Note that the right-hand side of (2) coincides with (4) applied to variable j
if we substitute in (3) the set T ∪ {j} by T . In other words, a lifted feasible
set inequality associated with T and {j}, where the variables in N \ (T ∪ {j})
are lifted according to the sequence π1, . . . , πn−|T |−1, coincides with the inequality
associated with T , where j is lifted first, and the remaining variables N \ (T ∪ {j})
are lifted in the same order π1, . . . , πn−|T |−1. Thus, instead of speaking of a feasible
set inequality associated with T and {j}, we speak in the sequel of a feasible set
inequality associated with T and view j as the variable that is lifted first.

Examples of feasible set inequalities include (1, k)-configuration, minimal-co-
ver, and extended weight inequalities that are known for the knapsack polytope
PK (N, a, α) = conv{x ∈ {0, 1}N : aTx ≤ α} with a ∈ R

N
+ , α > 0. Let S ⊆ N be a

minimal cover, i. e., a(S) > α and a(S\{i}) ≤ α for all i ∈ S, and partition S into T
and {j} for some j ∈ S. Set wi := 1 for all i ∈ T . The feasible set inequality reads∑

i∈T xi +wjxj ≤ |T | = |S| − 1 with wj ≤ min{|V | : V ⊆ T,
∑

i∈V ai ≥ aj − r(T)}.
Since

∑
i∈T ai + r(T) = α and

∑
i∈S ai > α, this minimum is greater than or

equal to one. Therefore, under the regularity condition imposed in Padberg [1980],
the feasible set inequality is always a (1, k)-configuration inequality. In case the
coefficient happens to be one we get a minimal cover inequality (Wolsey [1975]).
Moreover, feasible set inequalities are just the extended weight inequalities for the
knapsack polytope if we choose weights wi = 1 for i ∈ T (Weismantel [1997]).

Odd hole- and clique inequalities (Padberg [1973], [1975]) for the set packing
polytope are further examples of lifted feasible set inequalities. For some 0/1 matrix
A ∈ {0, 1}M×N , consider the set packing polytope P (N,M,A, 1l, 1l) = conv{x ∈
{0, 1}N : Ax ≤ 1l}, where 1l denotes the all one vector. Let GA = (V,E) denote

3

the associated column intersection graph whose nodes correspond to the columns
of A and nodes i and j are adjacent if and only if the columns associated with
i and j intersect in some row. Let Q ⊆ V be a clique in GA, then the clique
inequality

∑
i∈Q xi ≤ 1 is valid for P . To see that this inequality is a lifted feasible

set inequality, let T = {i} for some i ∈ Q. The feasible set inequality xi ≤ 1 is
valid for P ({i}). Lifting the remaining variables k ∈ Q \ {i} by applying formula
(4) yields wk = 1, and the clique inequality follows.

3 Some Properties of Feasible Set Inequalities

In this section we summarize some theoretical properties of feasible set inequalities.
In particular, we give lower and upper bounds on the exact lifting coefficients and
point out a connection to Chvátal-Gomory cutting planes. For a detailed discussion
of these issues including proofs we refer to Martin and Weismantel [1998].

Lower an Upper Bounds on the Lifting Coefficients

This is an important issue from a computational point of view, since the calculation
of the exact lifting coefficients requires the solution of the integer programs in (3).
It is thus desirable to have lower and upper bounds on the lifting coefficient that
are easier to compute in certain situations. We assume throughout this section that
A ≥ 0.

Definition 3.1 Let T ⊆ N be a feasible set and w : T �→ R
T
+ a weighting of T . For

v ∈ Rm we define the

Covering Number

φ≥(v) := min {
∑
i∈T

wixi :
∑
i∈T

A·ixi ≥ v, 0 ≤ xi ≤ ui, xi ∈ Z, i ∈ T },

≤-Incomparability Number

φ�≤(v) := min {
∑
i∈T

wixi :
∑
i∈T

A·ixi �≤ v, 0 ≤ xi ≤ ui, xi ∈ Z, i ∈ T },

where we set φ�≤(v) := 0 for v ≤ 0.

Consider a (lifted) feasible set inequality wTx ≤ ∑
i∈T wiui associated with T ,

where the variables in N \ T are lifted in the sequence π1, . . . , πn−|T |.

Theorem 3.2

(a) wπ1 = minl=1,... ,uπ1

1
l φ

≥(A·π1 l − r(T)).

(b) wπk
≤ minl=1,... ,uπk

1
l φ

≥(A·πk
l − r(T)), for k = 2, . . . , n− |T |.

(c) wπk
≥ minl=1,... ,uπk

φ �≤(A·πk
l−r(T))

l −max {wi : i ∈ T }, for k = 2, . . . , n−|T |.

Theorem 3.2 applies, in particular, if we set the coefficient of the first lifted
variable wπ1 to the upper bound of Theorem 3.2 (a). There are examples where the
lower bounds given in Theorem 3.2 are tight.

4

Connection to Chvátal-Gomory Cuts

In our derivation of feasible set inequalities we have not subsumed any assumptions
on the matrix A with the exception that with uT also every vector v ≤ uT is valid
for P . Thus a comparison to Chvátal-Gomory cutting planes that do not rely on
any particular structure of A is natural. Recall that Chvátal-Gomory inequalities
for the system Ax ≤ b, 0 ≤ x ≤ u, x ∈ Z

n are cutting planes dTx ≤ δ such that

di = �λT Â·i�, i = 1, . . . , n, and δ = �λT b̂� for some λ ∈ R
m+n
+ , where Â =

[
A
I

]

and b̂ =

[
b
u

]
.

Consider a (lifted) feasible set inequality wTx ≤ ∑
i∈T wiui associated with T ,

whose remaining variables N \ T are lifted in the sequence π1, . . . , πn−|T |. This
lifted feasible set inequality is compared to Chvátal-Gomory inequalities resulting
from multipliers λ ∈ Rm+n

+ that satisfy �λT Â·i� = wi for i ∈ T .

Proposition 3.3

(a) �λT b̂� ≥ ∑
i∈T uiwi.

(b) If �λT b̂� = ∑
i∈T uiwi, let j be the smallest index with �λT Â·πj� �= wπj . Then,

�λT Â·πj� < wπj .

As soon as the first two coefficients differ, for k ∈ {πj+1, . . . , πn−|T |}, no further
statements on the relations of the coefficients are possible, in general. A feasible set-
and a Chvátal-Gomory cutting plane sometimes coincide. In these cases it follows
that the resulting (lifted) feasible set inequality is independent on the sequence in
which the lifting coefficients wj for the items in N \ T are computed.

4 Separating Feasible Set Inequalities

When it comes to incorporate feasible set inequalities into a general mixed integer
programming solver many difficulties and questions arise. First, how to find a
feasible set T ? Consider some general mixed integer program

min cTx
s.t. Ax ≤ b

l ≤ x ≤ u
x ∈ ZN × R

C ,

(5)

where N,C and M are finite sets, N and C are disjoint, A ∈ R
M×(N∪C) , and

l, u, c and b are vectors of appropriate dimension. In general, the given constraint
matrix A contains positive and negative entries, and it is a-priori not clear, how
to guarantee, for some subset T ⊆ N , that every vector v ≤ uT is feasible for (5).
Second, once one determined a feasible set T , what is a suitable weighting w for
T as proposed in Definition 2.1? In principle, every vector non-negative w ∈ Z

T
+

is possible. Third, how to perform the lifting? The calculation of the exact lifting
coefficient for some variable xj requires the solution of uj many integer programs,
which might be very expensive to compute. Fourth, what are good substructures
of A to start with and look for feasible set inequalities. It is pointless to begin with
the whole constraint matrix A, since in the same time we find one cutting plane we
probably would solve the entire problem. Desirable would be to have the matrix
A in so-called bordered block diagonal form, where the matrix consists of a set of

5

small independent blocks that are possibly connected by some linking constraints
(the border). For such a structure the blocks are independent of each other and,
assuming they are small, we might even perform the lifting exactly. Questions over
questions.

It goes without saying that most of these questions can only be answered by
computational experiences. We discuss some of the options below. Some properties
of feasible set inequalities, however, leave us no choice and restrict our search for
good substructures of A. Let us call a substructure of A a block. One such property
of a feasible set inequality is that it is defined for integer variables with finite
lower and upper bounds only. Thus, we remove from our considerations all rows
that contain continuous variables or variables with infinite lower or upper bound.
Furthermore, we can restrict ourselves to fractional variables. If we are faced with
some block containing only variables whose current LP values are integer, there
cannot exist a violated feasible set inequality. Thus, in our choice of the block
we only take fractional variables into account. The remaining, currently integer
variables, will be lifted afterwards. This fact has an important advantage, since the
number of fractional variables is usually only some fraction of the total number of
variables (often below 10%), and restricts our search for possible blocks to a small
part of A.

In detail, we proceed as follows in order to find a reasonable substructure Bx ≤ d
of Ax ≤ b, i. e., subsets I ⊆ M, J ⊆ N with B = AI,J and d = bJ . As outlined
possible candidates for I are rows that solely contain integer variables with finite
lower and upper bounds and that contain at least one variable whose current LP
value is fractional. Second, we restrict ourselves to rows whose number of non-zeros
lies between three and some upper bound σ. ‘Three’ is not really a restriction, since
if some row has only two non-zero entries a complete description of the associated
integer knapsack polytope is readily available. The number σ is a parameter, which
basically is used to control the size of the final block. We have experimented with
this parameter a lot, and a reasonable setting on our test set is σ = 20. We
also exclude rows from further consideration that are not tight for the current LP
solution. Let us denote by Ic ⊆ M the set of candidate rows. We now construct the
so-called row intersection graph, i. e., the graph that is obtained by introducing a
node for each row in Ic and an edge whenever two rows intersect in some fractional
column. It turns out that due to the fact that usually the number of fractionals is
small the row intersection graph for most problems decomposes into components of
small size. ‘Small’ here means no more than three/four rows and up to thirty/forty
variables per component. For only very few instances the row intersection graph
contains big components. In the latter case, we decompose the big components
heuristically. Motivated by the success of the greedy-type algorithms in Borndörfer,
Ferreira, and Martin [1997] we start with a row of a component that has largest
degree and iteratively add further rows in order of decreasing intersection with the
already selected rows. Our current setting allows at most ten rows or around fifty
variables in a block. If one of the limits is reached we stop.

After applying this procedure we obtain index sets I1 and J1 that define a
substructure Bx ≤ d of Ax ≤ b that contains at most ten rows and up to fifty
variables. We delete the rows from Ic whose support intersects with J1. With
the remaining rows we apply the same procedure as described, and we end up
with mutually disjoint sets I1, . . . , Iβ ⊆ M and mutually disjoint sets J1, . . . , Jβ ⊆
N . For each block AIb,Jb

xJb
≤ bIb we call our separation algorithm to derive

violated feasible set inequalities. The following algorithm outlines our procedure
and provides our answers to the questions raised at the beginning of the section.
An explanation of the steps will be given afterwards.

6

Algorithm 4.1 Separation algorithm for feasible set inequalities.

Input: A block AI,JxJ ≤ bI , lJ ≤ xJ ≤ uJ of Ax ≤ b, l ≤ x ≤ u with I ⊆ M and
J ⊆ N ; an optimal solution x̄ of the current LP.

1. Fix all variables that are integer.

fi =

{
x̄i, if x̄i ∈ Z;
FREE, if i ∈ Fr(x̄) := {j ∈ J : x̄j /∈ Z}.

2. Solve

max
∑

i∈Fr(x̄)
x̄i

ui
zi∑

i∈Fr(x̄) A·izi ≤ b−∑
i/∈Fr(x̄) A·ifi

0 ≤ z ≤ uFr(x̄), z ∈ ZFr(x̄)

(6)

3. If (6) is infeasible, try to derive a violated bound inequality.
Else let y be an optimal solution of (6).
Set T := supp(y).

4. Assign weights wj for j ∈ T according to

wj =

{
+1, if |{i ∈ I : aij > 0}| ≥ |{i ∈ I : aij < 0}|;
−1, else,

and set fi := li for i ∈ Fr(x̄) \ T .
5. Solve

ω = max
∑

i∈T wizi∑
i∈T A·izi ≤ b−∑

i∈J\T A·ifi
0 ≤ z ≤ uT , z ∈ ZT .

(7)

6.
∑
i∈T

wixi ≤ ω is the basic feasible set inequality.

7. Determine a lifting sequence π1, . . . , π|J|−|T | of J \ T such that all fractional
variables come first, i. e., {π1, . . . , π|Fr(x̄)\T |} = Fr(x̄) \ T .

8. For k = 1, . . . , |J | − |T | perform the following steps.
Determine lifting coefficient wπk

for variable xπk
.

If k > |Fr(x̄) \ T | and the current feasible set inequality is
not violated – Stop (no violated inequality found).

9. Check whether the lifted feasible set inequality wTx ≤ ω is violated.
10. Stop.

Steps 2, 3 and 5 of Algorithm 4.1 show our choice of determining a “feasible”
set T . The integer program (6) is solved to optimality using our general mixed in-
teger programming solver, called SIP. A description of this algorithm can be found
in Martin [1998]. Note that as outlined above the number of fractional variables
is usually very small resulting in integer programs of small size. Thus, the ex-
pected time to solve this integer program is small, and our computational results
in the next section confirm this. For the integer program (7) we supply a limit on
the number of branch-and-bound nodes of 1000. If we are not able to solve the
problem within this limit we use ω = �ω̂�, where ω̂ is the best upper bound after
1000 branch-and-bound nodes. We experimented with several different objective
functions in (6), the one here performed best on average. Note that the set T as
defined in Step 3 need not be “feasible” as required in Definition 2.1, since it is not
guaranteed that every vector v ≤ uT is feasible. This strong requirement is hardly
satisfied in practice. To guarantee validity of the basic feasible set inequality a
much weaker condition suffices, namely, every feasible solution v of (7) must satisfy∑

i∈T wivi ≤
∑

i∈T wiui. This is one reason for solving (7), which determines the

7

maximal possible right-hand side. Note that this value ω might be greater or less
than

∑
i∈T wiui, since wi = ±1 for i ∈ T . However, if w ≥ 0 the number ω is often

much smaller than
∑

i∈T wiui, especially if some integer variables have large upper
bounds. Although the set T might not satisfy the requirements of Definition 2.1, we
call it still feasible in the following. Our weighting w is restricted to take ±1 values
only. We also tried different weightings with limited success. Note also that if (6)
does not have a feasible solution, see Step 3, and if all currently integer variables
are fixed at their lower or upper bounds, i. e., fi ∈ {li, ui} for all i /∈ Fr(x̄), the
inequality

∑
{i:fi=li}

(xi − li) +
∑

{i:fi=ui}
(ui − xi) ≥ 1,(8)

called bound inequality, is valid for P = conv{x ∈ R
N∪C : x feasible for (5)}. This

inequality is also violated by the current LP solution x̄ and we return with this
violated inequality from Algorithm 4.1.

It remains to discuss the lifting, Steps 7 and 8. The lifting sequence starts with
all remaining fractional variables, sorted in non-increasing order of their LP value,
followed by all integer variables that are not at one of their bounds, i. e., li < fi < ui,
and last, we lift all integer variables that are currently at one of their bounds. For
the elements in these two latter sets we do not impose any particular order. The
lifting of one variable basically follows the standard scheme (Padberg [1975]) with
some adjustments. First, we have to take into account that certain variables are
fixed to some non-zero value. This can easily be achieved as outlined below. A
more serious problem is the lifting of variables that are currently neither fixed on
their lower nor on their upper bound. In this case, it might be possible that the
lifted inequality is no longer valid. Before discussing this difficulty in detail, let us
describe the overall algorithm.

Algorithm 4.2 Lifting variable xπk
.

Input: An inequality
∑

i∈S wixi ≤ ω valid for P (I, S,AI,S , b −
∑

i∈N\S A·ifi, uS),

where S := T ∪ {π1, . . . , πk−1}.
Output: Lifting coefficient wπk

for xπk
and (new) right-hand side ω such that

∑
i∈S∪{πk}

wixi ≤ ω(9)

is valid for P (I, S ∪ {πk}, AI,S∪{πk}, b−
∑

i∈N\(S∪{πk}) A·ifi, uS∪{πk}).

1. For l = li, . . . , ui compute

ωl = max
∑

i∈S wizi∑
i∈S A·izi +A·πk

· l ≤ b−∑
i∈N\S A·ifi

0 ≤ z ≤ uS, z ∈ ZS.

(10)

2. Let

w− = max
l=lπk

,... ,fπk
−1

ω − ωl

l − fπk

w+ = min
l=fπk

+1,... ,uπk

ω − ωl

l − fπk

(11)

3. If fπk
= lπk

set

wπk
= w+

ω = ω + w+fπk

(12)

8

4. If fπk
= uπk

set

wπk
= w−

ω = ω + w−fπk

(13)

5. If lπk
< fπk

< uπk
perform the following steps:

If w− ≤ w+ return with (12) or (13).
If w− > w+ return with

wπk
= w−

ω = ω + w−fπk
+ (uπk

− fπk
)(w− − w+)

(14)

or with

wπk
= w+

ω = ω + w−fπk
− lπk

(w− − w+)
(15)

or with

wπk
=

uπk
− lπk

− fπk

uπk
− lπk

(w+ − w−) + w−

ω = ω + w−fπk
− uπk

− lπk
− fπk

uπk
− lπk

(w+ − w−)lπk
,

(16)

the latter is only valid if lπk
+ fπk

≤ uπk
.

6. Stop.

The following proposition shows that the settings in Steps 3 and 4 of Algorithm
4.2 are correct.

Proposition 4.3

(a) If fπk
∈ {lπk

, uπk
}, the settings in (12) and (13) yield a valid inequality.

(b) If lπk
< fπk

< uπk
and w− ≤ w+, both (12) and (13) yield a valid inequality.

Proof. Let x̄ ∈ P (I, S ∪ {πk}, AI,S∪{πk}, b −
∑

i∈N\(S∪{πk}) A·ifi, uS∪{πk}) be
integer.

Consider part (a) and the case fπk
= lπk

and denote by ω̄ = ω+w+fπk
the new

right-hand side. Note that the lifted inequality (9) can be rewritten as∑
i∈S

wixi + wπk
(xπk

− lπk
) ≤ ω

Thus, if x̄πk
= lπk

, the inequality is trivially valid. If x̄πk
= l for some lπk

< l < uπk
,

we obtain
∑

i∈S wix̄i+wπk
(x̄πk

− lπk
) ≤ ∑

i∈S wix̄i+
ω−ωl

l−lπk

(l− lπk
) ≤ ωl+(ω−ωl) =

ω. The same proof applies if fπk
= uπk

.

We show (b) for the settings in (12), i. e., we prove validity of
∑

i∈S wixi +
w+(xπk

− fπk
) ≤ ω. (13) can be shown analogously. If x̄πk

∈ {fπk
, . . . , uπk

}
the validity follows by part (a). If x̄πk

∈ {lπk
, . . . , fπk

− 1}, we get
∑

i∈S wix̄i +
w+(x̄πk

− fπk
) ≤ ∑

i∈S wixi+w−(xπk
− fπk

) ≤ ω. The first inequality follows from

x̄πk
− fπk

< 0 and w− > w+, the second from part (a).
It remains to discuss the case lπk

< fπk
< uπk

and w− > w+. In this case none
of the two settings (12) and (13) needs to be valid as the following example shows.

Example 4.4 Consider the integer program

min 4200 x1+1500 x2+2700 x3

0.9 x1 + x2 − x3 = 5.7
0 ≤ x1 ≤ 15
0 ≤ x2 ≤ 18
0 ≤ x3 ≤ 18, x ∈ Z3.

9

This is a substructure of example flugpl from the Miplib(see the description
in Section 5). Running SIP for this problem yields an optimal solution for an
LP encountered during the solution process, where the three variables have values
x1 = 5.5, x2 = 3.75, and x3 = 3. Thus we fix variable x3 to three, i. e., f3 = 3.
The inequality x1 + x2 ≤ 9 is valid for conv{x ∈ Z

2 : 0.9x1 + x2 = 8.7, 0 ≤ x1 ≤
15, 0 ≤ x2 ≤ 18}. Now in order to lift x3 we compute w+ and w− in (11). We get
w+ = − 4

3 and the associated inequality (12) reads x1 + x2 − 4
3x3 ≤ 5. It is violated

by the feasible solution x = (3, 3, 0)T . Similarly, w− = −1 and the inequality
x1 + x2 − x3 ≤ 6 from (13) is violated by the feasible solution x = (13, 0, 6)T .

The problem discussed in Example 4.4 is not new. Balas, Ceria, Cornuéjols, and
Natraj [1996] give another example in conjunction with Chvátal-Gomory cuts. Here
the same difficulty arises, when Chvátal-Gomory cuts are generated at some node,
which is not the root note. When integer variables are involved these inequalities
are usually only locally valid for this node and its descendants, but not for the entire
branch-and-bound tree. Balas, Ceria, Cornuéjols, and Natraj [1996] show that cuts
are indeed globally valid if all integer variables are binary.

Algorithm 4.2 gives one possible answer to the general integer case. The idea
is to consider two polytopes P+ and P−. P+ is the original polytope intersected
with the inequality using formula (12) and the bound constraints fπk

≤ xπk
≤ uπk

.
P− is defined accordingly, i. e.,

P− = {x ∈ P :
∑

i∈S wixi + w−xπk
≤ ω + w−fπk

, lπk
≤ xπk

≤ fπk
}.

P+ = {x ∈ P :
∑

i∈S wixi + w+xπk
≤ ω + w+fπk

, fπk
≤ xπk

≤ uπk
}.(17)

Now we can apply the idea of disjunctive programming and determine conv(P−∪
P+) to derive a valid inequality for P (S ∪ {πk}).

Let us briefly summarize the concept of disjunctive programming applied to our
case, for more details see Balas, Ceria, and Cornuéjols [1993] and the references
therein. Suppose for the ease of exposition that P+ = {x ∈ R

N : A1x ≤ b1} and
P− = {x ∈ RN : A2x ≤ b2}. Now

conv(P− ∪ P+) = {x ∈ RN : there exist ȳ1, ȳ2, λ1, λ2 such that:
(a) x = λ1ȳ1 + λ2ȳ2

(b) A1ȳ1 ≤ b1

(c) A2ȳ2 ≤ b2

(d) λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0}.

(18)

(18) (a) contains quadratic terms. Multiplying (18) with λi and setting yi := λiȳ
i

for i = 1, 2 yields the polyhedron

Q = {x ∈ RN : there exist y1, y2, λ1, λ2 such that:
(a) x = y1 + y2

(b) A1y1 ≤ λ1b1

(c) A2y2 ≤ λ2b2

(d) λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0}.

(19)

Q still coincides with conv(P− ∪P+) if we guarantee that yi = 0 whenever λi = 0.
This is true, since P+ and P− are bounded implying that {yi ∈ R

n : Ayi ≤ 0} =
{0} for i = 1, 2.

Let us abbreviate the set of vectors x, y1, y2, λ1, λ2 satisfying (19) (a) – (d)
by L = {(x, z)T : Dx + Bz ≤ d}, where z = (y1, y2, λ1, λ2)T and B,D, d are
appropriate matrices and vectors. Q, and conv(P− ∪ P+), is the projection of L
onto the x-space, i. e.,

conv(P− ∪ P+) = {x ∈ RN : there exists z such that (x, z)T ∈ L}.

10

In order to obtain from L a description of conv(P− ∪ P+) by means of linear
inequalities, we need to eliminate the z-variables. With

C = {v : vTB = 0, v ≥ 0}(20)

we get
conv(P− ∪ P+) = {x ∈ RN : (vTD)x ≤ vTd for all v ∈ C}.

In order to find a valid inequality that cuts off the LP solution x̄ we solve the
linear program

max (Dx̄− d)T v
v ∈ C.

(21)

Note that if there is a violated inequality in C, then (21) is unbounded, since C is
a polyhedral cone. For algorithmic conveniences C is often truncated by bounding
the vector v with respect to some norm. Solving the linear program in (21) yields
an inequality that is valid for P . If the optimum in (21) is zero, there exists no
violated inequality, otherwise (v̄TD)x ≤ v̄Td yields the desired inequality, where v̄
is an optimal solution (extreme ray) of (21).

We apply this scheme in our implementation to the following two polytopes

P̃− = {x ∈ RN :
∑

i∈S wixi + w−xπk
≤ ω + w−fπk

, lπk
≤ xπk

≤ fπk
},

P̃+ = {x ∈ RN :
∑

i∈S wixi + w+xπk
≤ ω + w+fπk

, fπk
≤ xπk

≤ uπk
}.(22)

That is, we consider a relaxation of the polytopes defined in (17) by neglecting
the constraints defining P . The advantage of using this relaxation is that – as we
will see in a moment – we can solve the resulting linear program (21) explicitly. The
drawback, of course, is that we might get a weaker inequality. The linear program
(21) that results when using P̃− and P̃+ in (22) has (after some obvious variable
substitutions) seven variables and two constraints. We fix the variable vi to one
that corresponds to the constraint

∑
i∈S wixi +w−xπk

≤ ω+w−fπk
. This way, we

guarantee that the coefficients wi for i ∈ S stay unchanged in the resulting lifted
inequality. After doing some calculations it turns out this linear program, with now
six variables and two constraints, has only three possible optimal solutions. The
three LP solutions yield three different inequalities as stated in (14), (15), and (16).
We use the one that maximizes the slack.

5 Computational Results

In this section we report on our computational experience with Algorithm 4.2 for
the feasible set inequalities. We have incorporated this algorithm in SIP, and tested
it on the instances of the mixed integer programming library, Miplib (see Bixby,
Ceria, McZeal, and Savelsbergh [1998]). We compared SIP with the default pa-
rameter setting and SIP where in addition the separation algorithm for feasible set
inequalities has been turned on. We use a time limit of 3600 CPU seconds and limit
the number of branch-and-bound nodes to one million. The tests were performed
on a Sun Enterprise 3000 with a 168 MHz UltraSPARC processor and 1024 MB
main memory.

It turns out that for 48 out of 59 Miplib-problems we do not find feasible
set inequalities and the overhead for applying our separation algorithm is below
1% of the total running time. For the remaining 11 problems we find feasible
set inequalities or our separation routine uses more than 1% of the computation
time. Tables 1 and 2 show the results for these examples. Column 1 gives the
problem name followed by the number of branch-and-bound nodes in Column 2.

11

The next two columns give the number of cuts found, Others include all cuts that
are separated by default in SIP. A significant amount of these cuts are 0/1-knapsack
inequalities. Column FS give the number of feasible set inequalities found. Columns
5 and 6 show timings, the time used in Algorithm 4.2 and the total running time. If
we cannot solve the problem within the time limit of 3600 seconds, the last Column

Gap % shows a non-zero gap (= 100 |upper bound - lower bound|
|lower bound|).

Example B & B Cuts Time Gap %

Others FS FS Total

fiber 783 372 0 0.0 16.9 0.000

gesa2 209525 33 0 0.0 3600.0 0.048

gesa3 o 74472 0 0 0.0 1144.7 0.000

misc03 699 14 0 0.0 4.1 0.000

misc07 35585 0 0 0.0 378.8 0.000

p0033 57 32 0 0.0 0.1 0.000

p0201 507 136 0 0.0 5.0 0.000

p2756 23151 6923 0 0.0 3600.2 0.891

seymour 1947 0 0 0.0 3601.8 7.770

stein27 4666 0 0 0.0 8.0 0.000

stein45 54077 0 0 0.0 277.7 0.000

Total (11) 405469 7510 0 0.0 12637.3 8.709

Table 1: SIP without feasible set inequalities

Example B & B Cuts Time Gap %

Others FS FS Total

fiber 771 358 1 3.3 19.4 0.000

gesa2 211168 33 4 9.0 3600.0 0.047

gesa3 o 74472 0 0 70.7 1218.4 0.000

misc03 703 14 11 1.1 5.4 0.000

misc07 20962 0 365 54.1 333.0 0.000

p0033 75 40 5 0.6 0.7 0.000

p0201 507 136 1 2.0 7.1 0.000

p2756 23041 6842 6 4.9 3600.9 0.803

seymour 2146 0 10 5.4 3600.0 5.726

stein27 3660 0 142 1.6 10.0 0.000

stein45 47612 0 783 23.6 308.5 0.000

Total (11) 385117 7423 1328 176.4 12703.4 6.576

Table 2: SIP with feasible set inequalities

Comparing Tables 1 and 2 we see that we can significantly reduce the gap for
test problem seymour and slightly for gesa2 and p2756, resulting in a total reduc-
tion of about 25%. We also recognize that basically no time is spent for separating
feasible set inequalities. This is very astonishing, since almost all integer programs
that come up in Algorithm 4.2 (and these are thousands) are solved to optimality,
where we use an upper bound on the branch-and-bound nodes of 1000. The suc-
cess of the feasible set inequalities relies on the fact that we can solve small integer
programs to optimality in general very fast. There are other interesting facts that
can be read from Table 2. The “stein”-problems, where we find a considerable
amount of cuts, and example seymour, where we improve the quality substantially,
are set covering problems. There seem to be virtually no efficient separation algo-
rithms for set covering problems. To the best of our knowledge the only exceptions
are the cutting planes from conditional bounds by Balas and Ho [1980], a class of
k-projection inequalities by Nobili and Sassano [1992], and aggregated cycle inequal-
ities by Borndörfer and Weismantel [1997]. It is therefore even more astonishing

12

that our general separation algorithm for feasible set inequalities finds violated in-
equalities for this type of problems.

The only example where we spent a significant amount of time in Algorithm 4.2
and fail to find any violated cut is example gesa3 o. We looked at this example in
detail and it turned out that the inequalities of the identified blocks already give
a complete description of the polytope induced by this block. These means, that
the fractional solution must be a convex combination of feasible integer solutions
and we fail to find violated cuts. The question is, of course, how to avoid this case.
One way to overcome this difficulty is to first check, whether the current fractional
solution is a convex combination of feasible integer solutions, and then to start the
search for violated cuts. This approach has been successfully used by Applegate,
Bixby, Chvátal, and Cook [1998] for the solution of traveling salesman problems
and there is good hope that their ideas might be carried over to our case, i. e., to
general integer programs.

References

Applegate, D., Bixby, R., Chvátal, V., and Cook, W. (1998). Project-and-lift (a
paradigm for finding cuts). Draft.

Balas, E., Ceria, S., and Cornuéjols, G. (1993). A lift-and-project cutting plane
algorithm for mixed 0− 1 programs. Mathematical Programming, 58:295–324.

Balas, E., Ceria, S., Cornuéjols, G., and Natraj, N. (1996). Gomory cuts revisited.
Operations Research Letters, 19:1 – 9.

Balas, E. and Ho, A. (1980). Set covering algorithms using cutting planes, heuristics,
and subgradient optimization: A computational study. Mathematical Program-
ming, 12:37–60.

Bixby, R., Ceria, S., McZeal, C., and Savelsbergh, M. (1998). An updated mixed
integer programming library: Miplib 3.0. Paper and Problems available at
WWW Page: http://www.caam.rice.edu/∼bixby/miplib/miplib.html.

Borndörfer, R., Ferreira, C., and Martin, A. (1997). Decomposing matrices into
blocks. Preprint SC 97-15, Konrad-Zuse-Zentrum Berlin. To appear in SIAM
Journal on Optimization.

Borndörfer, R. and Weismantel, R. (1997). Relations among some combinatorial
programs. Technical Report Preprint SC 97-54, Konrad-Zuse-Zentrum für In-
formationstechnik Berlin.

Ceria, S., Cordier, C., Marchand, H., and Wolsey, L. (1998). Cutting planes for
integer programs with general integer variables. Mathematical Programming,
81:201 – 214.

Crowder, H., Johnson, E., and Padberg, M. (1983). Solving large-scale zero-one
linear programming problems. Operations Research, 31:803–834.

Marchand, H. and Wolsey, L. (1997). The 0 − 1 knapsack problem with a single
continuous variable. Technical Report CORE DP9720, Université Catholique
de Louvain, Louvain-la-Neuve, Belgium.

Martin, A. (1998). Integer programs with block structure. Habilitations-Schrift,
Technische Universität Berlin.

Martin, A. and Weismantel, R. (1998). The intersection of knapsack polyhedra
and extensions. In Bixby, R., Boyd, E., and Ríos-Mercado, R., editors, Integer
Programming and Combinatorial Optimization, Proceedings of the 6th IPCO
Conference, pages 243 – 256.

13

Nobili, P. and Sassano, A. (1992). A separation routine for the set covering polytope.
In Balas, E., Cornuéjols, G., and Kannan, R., editors, Integer Programming and
Combinatorial Optimization, Proceedings of the 2nd IPCO Conference, pages
201 – 219.

Padberg, M. (1973). On the facial structure of set packing polyhedra. Mathematical
Programming, 5:199–215.

Padberg, M. (1975). A note on zero-one programming. Operations Research, 23:833–
837.

Padberg, M. (1980). (1, k)-configurations and facets for packing problems. Mathe-
matical Programming, 18:94–99.

Padberg, M., Roy, T. V., and Wolsey, L. (1985). Valid inequalities for fixed charge
problems. Operations Research, 33:842 – 861.

Roy, T. V. and Wolsey, L. (1987). Solving mixed integer programming problems
using automatic reformulation. Operations Research, 35:45 – 57.

Weismantel, R. (1997). On the 0/1 knapsack polytope. Mathematical Programming,
77:49–68.

Wolsey, L. (1975). Faces of linear inequalities in 0-1 variables. Mathematical Pro-
gramming, 8:165 – 178.

14

