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Abstract

In [9], a variable step-size, semi-explicit variant of the explicit Störmer-Verlet method has
been proposed for the time-reversible integration of Newton’s equations of motion. Here we
propose a fully explicit version of this approach applicable to explicit and symmetric integration
methods for general time-reversible differential equations. As applications, we discuss the vari-
able step-size, time-reversible, and fully explicit integration of rigid body motion and reversible
Nosé-Hoover dynamics.

1 Introduction

We consider the numerical treatment of differential equations

d

dt
x = f (x) (1)

which we assume to satisfy a time-reversal symmetry [19, 18], i.e., there exists an involution1 S such
that

f (x) = −Sf(Sx).

An example of such a differential equation is provided by the Newtonian equations of motion

d

dt
q = M−1p, (2)

d

dt
p = −∇qV (q) (3)

with M a symmetric, positive-definite mass matrix and V (q) a potential energy function. The
equations are time-reversible under the involution (q,p) → (q,−p). Thus a solution (q(t),p(t)) of
(2)-(3) forward in time (t ≥ 0) with initial condition (q0,p0) at t = 0 satisfies

(q(t),p(t)) = (q̄(−t),−p̄(−t)), (t ≥ 0),

where q̄(t), p̄(t)) is the solution of (2)-(3) backward in time (t ≤ 0) with initial condition (q0,−p0) at
t = 0. The time-reversible symmetry implies important restrictions on the possible solution behavior
of time-reversible systems (1) [18]. For that reason it seems important to preserve this symmetry
under numerical discretization. In fact, any symmetric partitioned Runge-Kutta method [4] will
respect the time-reversal symmetry of (2)-(3) when used with a constant step-size [19]. In many
applications, however, the use of a constant step-size would lead to enormous computational expense
that could be avoided by the application of a variable step-size integrator. As first demonstrated by
Stoffer [19] and Hut, Makino & McMillan [8], variable step-size, time-reversible integration
methods can be devised. The implementation of these methods leads, in general, to implicit methods
even though the underlying constant step-size method is explicit. Significant progress has been
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achieved for the Newtonian equations of motion (2)-(3) by Huang & Leimkuhler [9] by deriving
a semi-explicit, variable step-size, time-reversible modification of the Störmer-Verlet discretization
[22, 4]

qn+1 = qn +ΔtM−1pn+1/2, (4)

pn+1/2 = qn − Δt

2
∇qV (qn), (5)

pn+1 = pn+1/2 −
Δt

2
∇qV (qn+1). (6)

The purpose of this paper is twofold. First we derive a fully explicit, variable step-size, and time-
reversible methods for classical mechanical systems (2)-(3) based on the Störmer-Verlet method.
Second we discuss our approach in the context of general time-reversible differential equations (1)
and second order symmetric methods. We also show how to obtain higher order, variable step-size,
and time-reversible methods.

As examples, we discuss the Euler equations describing the motion of rigid bodies [11] and the
Nosé-Hoover formulation for constant temperature molecular dynamics [7].

2 Time-reversible, constant step-size integration

For compactness of notation, we discuss the essential concepts of time-reversible integration in terms
of general one step methods

xn+1 = ΦΔt(xn) (7)

applied to a time-reversible differential equation (1).
Let us denote the time-τ -flow map of a differential equation (1) by Ψτ , i.e.

x(t+ τ) = Ψτ (x(t)).

The time-reversibility of (1) under the involution S implies that

Ψ−τ (x) = SΨτ (Sx) (8)

for all τ and all x in the domain of definition. Furthermore, since any flow map satisfies

[Ψτ ]
−1 = Ψ−τ , (9)

it follows that time-reversible differential equations generate time-reversible flow maps, i.e.

[Ψτ ]
−1(x) = SΨτ (Sx) (10)

for all τ and all x in the domain of definition. Here [Ψτ ]
−1 denotes the inverse of the map Ψτ (τ

fixed).

Definition. A one step method (7) is said to be time-reversible if the map ΦΔt is reversible, i.e.

[ΦΔt]
−1(x) = SΦΔt(Sx) (11)

for all Δt and all x in the domain of definition.

Most numerical one step methods, in particular all partitioned Runge-Kutta methods, satisfy

Φ−Δt(x) = SΦΔt(Sx)

when applied to a reversible differential equation. However, only so called symmetric methods also
satisfy

[ΦΔt]
−1 = Φ−Δt
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For example, the Störmer-Verlet method is symmetric while the following first order method

qn+1 = qn +ΔtM−1pn+1, (12)

pn+1 = pn −Δt∇qV (qn) (13)

is not symmetric (and thus not time-reversible).
Given a non-symmetric method, a symmetric method can be derived as follows [4]: First we

define the adjoint method Φ∗
Δt of a given method ΦΔt by

Φ∗
Δt := [Φ−Δt]

−1

(For symmetric methods we clearly have Φ∗
Δt = ΦΔt.) Then a new method Φ̃Δt is defined via the

concatenation

Φ̃Δt := Φ∗
Δt/2 ◦ΦΔt/2. (14)

This method is symmetric as seen from

Φ̃
∗
Δt =

[
Φ∗

−Δt/2 ◦Φ−Δt/2

]−1

=
[
[ΦΔt/2]

−1 ◦ [Φ∗
Δt/2]

−1
]−1

= Φ∗
Δt/2 ◦ΦΔt/2

= Φ̃Δt.

For example, the adjoint method of the first oder method (12)-(13) is given by

qn+1 = qn +ΔtM−1pn, (15)

pn+1 = pn −Δt∇qV (qn+1), (16)

and the corresponding method (14) is equivalent to the Störmer-Verlet method. We also like to
point out that both methods (12)-(13) and (15)-(16) are explicit. The Störmer-Verlet method is
an example of an explicit partitioned Runge-Kutta method but it can also be viewed as a second-
order composition method [17]. Higher order, explicit, and symmetric composition methods can, for
example, be found in [12]. All these methods can be written as a concatenation (14) of a lower order
composition method with its adjoint. This will become important in the following section when we
derive variable step-size methods.

3 Explicit variable step-size methods

As shown by Stoffer & Nipp [20], general variable step-size one step methods reduce asymptoti-
cally to the integration of a scaled differential equation

d

ds
x =

1

U(x)
f (x) (17)

with a constant step-size Δs. However, the corresponding scaling function U does, in general, not
satisfy the condition

U(x) = U(Sx). (18)

Thus the differential equation (17) is no longer time reversible and the corresponding numerical
method will not be reversible either.

A natural way to avoid this problem is to start out with an appropriate scaling function U that
satisfies (18) and to discretize the corresponding scaled differential equation (17) by a symmetric
method and with constant step-size Δs. In terms of the original time variable t this is equivalent
to integrating (1) with a variable step-size Δtn ≈ Δs/U(xn). This approach to variable step-
size integration is appealing but leads, in general, to implicit methods even though the underlying
method applied to the unscaled equation (1) is explicit. For example, consider a classical mechanical
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system (2)-(3) and a scaling function U(q). A proper (symmetric) modification of the Störmer-Verlet
method [4] would yield

qn+1 = qn +
Δs

2U(qn) + 2U(qn+1)
M−1pn+1/2,

pn+1/2 = pn − Δs

2U(qn)
∇qV (qn),

pn+1 = pn+1/2 −
Δs

2U(qn+1)
∇qV (qn+1)

which is implicit in U(qn+1).
It was the idea of Huang & Leimkuhler to derive a variable step-size modification of the Störmer-

Verlet method by considering an additional fictive variable ρ related to the scaling function U . The
resulting variable step-size Störmer-Verlet method, suggested in [9], is explicit if U depends only
on q and semi-explicit if U also depends on p. The method proposed next is a generalization (and
simplification) of the Huang & Leimkuhler approach.

We describe our method for general systems (17). We assume2 that we have an explicit, second

order, and symmetric method Φ̃Δt that can be written as the concatenation (14) of a method ΦΔt

and its adjoint Φ∗
Δt.

Then, using the fictive variable ρ, the following method is an explicit, symmetric, and second
order discretization of the scaled differential equation (17):

xn+1/2 = Φ Δs
2ρn

(xn), (19)

ρn+1 + ρn = 2U(xn+1/2), (20)

xn+1 = Φ∗
Δs

2ρn+1

(xn+1/2). (21)

Here

Φ Δs
2ρn

(xn) = Φ 1
2Δtn(xn), with Δtn :=

Δs

ρn
(22)

and

Φ∗
Δs

2ρn+1

(xn+1/2) = Φ∗
1
2Δtn+1

(xn+1/2), with Δtn+1 :=
Δs

ρn+1

If the scaled differential equation (17) is time-reversible, then (19)-(21) is a time-reversible method.
Let us write out this compact notation for the Störmer-Verlet method. Using the two first order

methods (12)-(13) and (15)-(16), we obtain

qn+1/2 = qn +
Δs

2ρn
M−1pn+1/2, (23)

pn+1/2 = pn − Δs

2ρn
∇qV (qn), (24)

ρn+1 + ρn = 2U(qn+1/2,pn+1/2), (25)

pn+1 = pn+1/2 −
Δs

2ρn+1
∇qV (qn+1), (26)

qn+1 = qn+1/2 +
Δs

2ρn+1
M−1pn+1/2. (27)

This method is fully explicit and symmetric. Thus it is time-reversible if the scaling function U
satisfies U(q,p) = U(q,−p). It can be shown to be equivalent to the variable step-size Störmer-
Verlet method suggested in [9] if U depends only on q. The general semi-explicit formulation of [9]
is recovered from (23)-(27) by replacing the update (25) by

ρn+1 + ρn = U(qn+1/2,pn+1) + U(qn+1/2,pn).

2This assumption is, for example, satisfied for symmetric composition methods based on the Strang splitting and
generalizations thereof [21, 12, 17].
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To start the integration, one can use ρ0 = U(x0) as initial value for the fictive variable ρ. As
discussed in [2] for the variable step-size Störmer-Verlet method, this choice of the initial ρ0 might
lead to “wobbles” in the numerically computed ρn’s. This can be avoided by an appropriately
modified initialization of ρ0 [2].

Another crucial issue is the choice of the scaling function U . As suggested in [9], one possibility is
U(x) = ||f(x)||2. Other choices can, for example, be found in [5]. In particular, a scaling function,
based on a local error estimator for the Störmer-Verlet method, has been derived for the Newtonian
equations of motion (2)-(3); namely

U(q,p) =

√
V ′(q)V ′(q)T + pTM−1V ′′(q)V ′′(q)M−1p

with V ′(q) = ∇qV (q)T the Jacobian and V ′′(q) the Hessian of the potential energy V at q.
The original time variable t is recovered from the update

tn+1 = tn +
Δs

2ρn + 2ρn+1

which is a discretization of

dt

ds
=

1

U(x)
.

Note that the suggested symmetric, variable step-size method (19)-(21) is not restricted to second
order methods. Often higher order methods for time-reversible differential equations are based on
an appropriate concatenation of a symmetric second order method. For example, let ΦSV

Δt denote
the map defined by (4)-(6). Then, following Yoshida [23], the following concatenated method

Φ̃Δt := ΦSV
c1Δt ◦ΦSV

c2Δt ◦ΦSV
c1Δt

with c1 = (2− 23/2)−1 and c2 = 1− 2c1 is symmetric and of fourth order in Δt. In a corresponding
variable step-size method, the symmetric, variable step-size variant of the Störmer-Verlet method
(23)-(27) could be used as a building block. Thus, denoting the variable step-size method (23)-(27)
by ΦASV

Δs , the concatenated method

Φ̃Δt := ΦASV
c1Δs ◦ΦASV

c2Δs ◦ΦASV
c1Δs

yields a symmetric and fourth order (in Δs) discretization of the scaled differential equation (17).
More generally, higher order methods can be obtained by using the symmetric composition methods
described, for example, in [12] and the second order symmetric method (19)-(21) as the basic method.

4 Examples

4.1 Rigid body dynamics

For classical mechanical systems, the variable step-size Störmer-Verlet method (23)-(27) is basically
equivalent to the method of Huang & Leimkuhler. The advantage of the approach suggested in
this paper becomes clear when looking at systems that cannot (or should not) be discretized by the
Störmer-Verlet method. An example is the Euler equation [11]

d

dt
π = π × I−1π + τ (Q), (28)

d

dt
Q = Q̂I−1π (29)

for the rotation of a rigid body with fixed center of mass and applied torque τ . Here π ∈ R3,
Q ∈ SO(3), I the diagonal moment of inertia matrix, and v̂ the skew-symmetric 3 × 3-matrix
associated with a vector v ∈ R3 such that v × u = v̂u [11].

The equations (28)-(29) are time-reversible under the involution (Q,π) → (Q,−π).
An explicit second order method based on an appropriate splitting of the equations of motion

into integrable subsystems has been proposed by Reich [15] and Dullweber, Leimkuhler &
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Figure 1: Motion of a material point on the rigid body over time which is “non-regularly” distributed
over the unit sphere.

McLachlan [3]. This method is also time-reversible and preserves the orthogonality of the nu-
merically computed matrices Qn, i.e. Qn ∈ SO(3). The basic idea is to use a special first order
integrator for the free rigid body equations

d

dt
π = π × I−1π, (30)

d

dt
Q = Q̂I−1π (31)

and its adjoint method. See the Appendix for details. Let us denote these methods by ΦRB
Δt , Φ

RB∗
Δt

respectively. Then a symmetric, constant step-size method for the equations (28)-(29) is given by

π̄n = πn +
Δt

2
τ (Qn),

(π̄n+1,Qn+1) = ΦRB∗
Δt/2 ◦ΦRB

Δt/2 (π̄n,Qn),

πn+1 = π̄n+1 +
Δt

2
τ (Qn+1).

This method can be turned into a variable step-size method. Following (19)-(21), we obtain

π̄n = πn +
Δs

2ρn
τ (Qn),

(πn+1/2,Qn+1/2) = ΦRB
Δs
2ρn

(π̄n,Qn),

ρn+1 + ρn = 2U(πn+1/2,Qn+1/2),

(π̄n+1,Qn+1) = ΦRB∗
Δs

2ρn+1

(πn+1/2,Qn+1/2),

πn+1 = π̄n+1 +
Δs

2ρn+1
τ (Qn+1).

In general, the equations (28)-(29) have to be supplemented by the equations for the center of
mass motion [15, 3]. Since these are of type (2)-(3), they can be discretized by the variable
step-size Störmer-Verlet method (23)-(27) and the overall variable step-size integrator for rigid
body dynamics is second order and time-reversible.

Numerical Example. As an illustration, we consider the motion of a rigid body with moment of
inertia matrix

I =

⎡
⎣ 2 0 0

0 3 0
0 0 4.5

⎤
⎦

6



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.62

1.625

1.63

1.635

1.64

1.645

time−step

to
ta

l e
ne

rg
y

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−3

10
−2

10
−1

10
0

time−step
st

ep
−

si
ze

Figure 2: Top: Total energy E for Δs = 0.1 (10000 integration steps). Buttom: Step-size Δt for the
variable step-size integrator with Δs = 0.1 (2000 integration steps).

and applied torque

τ (Q) = μ(Q33)

⎡
⎣ −Q32

+Q31

0

⎤
⎦

with

μ(Q33) = −(β +Q33)
−2 + 10σ(β +Q33)

−11,

β = 1.1, and σ = 0.001. This represents a torque coming from an attractive (Coulombic) potential
coupled with a repulsive “soft” wall, relative to a plane situated just below the rigid body. The rigid
body is repeatedly drawn towards the plane, then repelled sharply from the “wall”.

The repelling torque has to be resolved by a relatively small step-size and provides a good test
example for the variable step-size method. As the scaling function U , we chose

U(Q) = 0.5 + (β +Q33)
−4.

The corresponding equations of motion possess the total energy

E =
πT I−1π

2
− (β +Q33)

−1 + σ(β +Q33)
−10

as a first integral. The initial conditions are π0 = [2, 2, 2] and

Q0 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ .

The computed motion of a material point on the rigid body can be found in Fig. 1. The error in
the total energy E and the actual step-size Δtn = Δs/ρn is given in Fig. 2. The conservation of
total energy is comparable to constant step-size, time-reversible integration. However, many fewer
integration steps are needed. The average step-size Δt in Fig. 2 is about 0.0439 while a constant
step-size implementation would have to use a step-size of Δt = 0.0038.

4.2 Reversible Nosé-Hoover Dynamics

Often, molecular dynamics is treated in the so-called constant temperature ensemble. The equations
of motion are given in a time-reversible formulation due to Nosé and Hoover.
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The derivation begins with the canonical Nosé extended Hamiltonian which, for a system of
particles, takes the form3 [14]:

HNosé =
1

2z2
pTM−1p+ V (q) +

1

2Q
π2
z +

g

β
ln z.

The equations of motion are thus

d

dt
q =

1

z2
M−1p,

d

dt
p̂ = −∇V (q),

dz

dt
= πz/Q,

dπz

dt
=

1

z

(
1

z2
pTM−1p− g

β

)
.

The Hoover formulation is typically derived via a time-transformation followed by a coordinate
transformation. We begin here instead with a coordinate transformation:

ξ =
1

Q
πz , p̂ =

p

z
.

The definition of ξ appears to have a slightly different form at this point than that used by Hoover,
since the time and coordinate transformation do not commute. In these new variables, the equations
of motion become

d

dt
q =

1

z
M−1p̂, (32)

d

dt
p̂ = −1

z
∇V (q)− 1

z
ξp̂, (33)

dz

dt
= ξ, (34)

dξ

dt
= π̇z/Q,

= (
1

z2
pTM−1p− g

β
)/(Qz),

= (p̂TM−1p̂− g

β
)/(Qz). (35)

Finally a time transformation dt/dτ = z results in the system

d

dτ
q = M−1p̂, (36)

d

dτ
p̂ = −∇V (q)− ξp̂, (37)

dξ

dτ
= (p̂TM−1p̂− g

β
)/Q, (38)

dz

dτ
= ξz, (39)

which are identical to the equations arrived at in [7]. A symmetric second order discretization has
been suggested in [6].

The system (36)-(39) is time-reversible under the involution

S

⎛
⎜⎜⎝
⎡
⎢⎢⎣

q
p̂
z
ξ

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
⎡
⎢⎢⎣

q
−p̂
z
−ξ

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .

3The variable z is equivalent to the variable s in [14, 7].
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and the time-transformation dt/dτ = z obviously preserves the symmetry.
In analogy to rigid body motion, a fully explicit, symmetric, and second order discretization of

the equations (36)-(39) can be obtained by an appropriate splitting of the differential equation into
integrable subproblems. For example, one could use the splitting

d

dτ
q = M−1p̂,

d

dτ
p̂ = 0,

dξ

dτ
= (p̂TM−1p̂− g

β
)/Q,

dz

dτ
= 0,

and

d

dτ
q = 0,

d

dτ
p̂ = −∇V (q)− ξp̂,

dξ

dτ
= 0,

dz

dτ
= ξz,

A first order approximation ΨΔτ to the time-Δτ -flow map of (36)-(39) is now given by the concate-
nation of the exact time-Δτ -flow maps of these two differential equations. Its adjoint method Ψ∗

Δτ

is obtained by reversing the order in the concatenation of these two exact flow maps.
Using these two methods and a scaling function U(q, z), i.e. a time transformation

dτ/ds = U(q, z), a time-reversible and variable step-size method for the Nosé-Hoover dy-
namics (36)-(39) can now be constructed using the general recipe (19)-(21). Note that Δt has to be
replaced by Δτ , i.e. Δτn := Δs/ρn in (22). In particular, a second order method for the equations
(32)-(35) is obtained upon using U(q, z) = z.

Other applications of the variable step-size method described in §3 include constrained mechanical
systems [1] and regularized perturbed Kepler motion [10].

Acknowledgements. We thank Peter Deuflhard for his interest and stimulating remarks.

Appendix

Since the moment of inertia matrix I in (30)-(31) is assumed to be diagonal, we can write

I−1 = J1 + J2 + J3

with J i having zero entries except for the diagonal element Jii, i = 1, 2, 3. Thus the Euler equation
(30)-(31) can be considered as the sum of the three Euler equations

d

dt
π = π × J iπ, (40)

d

dt
Q = QĴ iπ, (41)

i = 1, 2, 3, each of which can be solved exactly and corresponds to a planar rotation over a fixed
axis. As suggested in [13, 16], a first order approximation ΦRB

Δt to the time-Δt-flow map of (30)-(31)
is now given by concatenation of the time-Δt-flow maps of (40)-(41) using the sequence i = 1, 2, 3.
Its adjoint method ΦRB∗

Δt is obtained by using the reverse sequence i = 3, 2, 1.

9



References

[1] E. Barth, B. Leimkuhler, and S. Reich, A semi-explicit, variable step-size, time-reversible
integrator for constrained dynamics, submitted, 1997.

[2] S. Cirilli, E. Hairer, and B. Leimkuhler, Asymptotic error analysis of the adaptive Verlet
method, technical report, Geneva, 1998.

[3] A. Dullweber, B. Leimkuhler, and R. McLachlan, Split-Hamiltonian methods for rigid
body molecular dynamics, J. Chem. Phys., 107 (1997), pp. 5840–5852 .

[4] E. Hairer, S.P. Norsett, and G. Wanner, Solving Ordinary Differential Equations, Vol.
I, second revised edition, Springer-Verlag, 1993.

[5] Th. Holder, Strukturerhaltende Integration Hamiltonscher Systeme unter besonderer Berück-
sichtigung der Dynamik starrer Körper, diploma thesis (in german), Freie Universität Berlin,
1997.

[6] B. Holian, A.J. De Groot, W.G. Hoover, and C.G. Hoover Phys. Rev. A, 41 (1990),
pp. 4552–5443.

[7] W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, 31
(1985), pp. 1695–1697.

[8] P. Hut, J. Makino, and S. Mcmillan, Building a better leapfrog, Astrophysical Journal
Letters, 443 (1995), p. 93.

[9] W. Huang and B. Leimkuhler, The adaptive Verlet method, SIAM J. Sci. Comp., 18 (1997),
pp. 239–256.

[10] B. Leimkuhler, Reversible adaptive regularization: perturbed Kepler motion and classical
atomic trajectories, Phil. Trans. Roy. Soc. A, (1998) to appear.

[11] J.R. Marsden and T. Ratiu, An Introduction to Mechanics and Symmetry, Springer-Verlag,
New York, 1994.

[12] R. McLachlan, On the numerical integration of ordinary differential equations by symmetric
composition methods, SIAM J. Sci. Comput. 16 (1995), pp. 151–168.

[13] R. McLachlan, Explicit Lie-Poisson integration and the Euler equations, Phys. Rev. Lett.,
71 (1993), pp. 3043–3046.
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