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Abstract

Fully adaptive solutions of imcompressible flow problems employ-
ing the discretization sequence first in time then in space are presented.
The time discretization is done by linearly implicit one–step methods
possibly of high order with automatic step size control. A posteri-
ori error estimates for the stabilized finite element discretization in
space are obtained by solving local Dirichlet problems with higher ac-
curacy. Once those estimates have been computed, we are able to
control time and space grids with respect to required tolerances and
necessary computational work. The devised method is applied to two
benchmark problems in 2D.

1 Introduction

Stabilization techniques for the finite element computation of incompressible
flows are well established in the literature. They are widely accepted to
prevent numerical instabilities forced by advection–dominated terms (i.e.,
high Reynolds number) and by inappropriate combinations of interpolation
functions for the velocity and pressure fields. Among others with interest in
stabilization methods, Hughes, Franca, Tezduyar, Johnson, Lube, and their
groups have been involved most.

One more general stabilization approach is the Galerkin/least–squares method
(GLS) where weighted residuals of the basic differential equations are added
locally to the Galerkin finite element discretization. This approach has been
successfully applied to Stokes flows, compressible and incompressible flows
as well, see [1] for an overview.
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To extend the GLS stabilization technique to time–dependent equations
space–time elements and semidiscretizations based on standard time inte-
gration methods have been considered in several papers (eg. [2, 3]). Addi-
tionally, these approaches can often be improved using adaptive techniques
based on a posteriori error estimates.

The aim of this paper is to present a general adaptive approach to solve
incompressible flow problems efficiently. It includes thermally coupled flows
satisfying the thermodynamic assumptions for the Boussinesq approxima-
tion. The equations governing this flow are

ρ0[∂tv + (v · ∇)v]− μ∇2v +∇p = ρ0g[1− β(T − T0)] + Fv,

∇ · v = 0,

ρ0cp[∂tT + (v · ∇)T ]− κ∇2T = FT ,

(1)

where v describes the velocity field, p is the pressure, ρ0 is the (constant)
density of the fluid, μ is the dynamical viscosity, T is the temperature, κ is
the thermal conductivity, g is the gravitational acceleration, cp is the specific
heat at constant pressure, Fv and FT are force terms. The parameter β is the
volume expansion coefficient and T0 refers to a reference temperature state.

We discretize first in time applying linearly implicit one–step methods pos-
sibly of high order with automatic step size control. These methods have
excellent stability properties and require only the solution of systems of lin-
ear equations in each time step. In the spirit of full adaptivity the arising
spatial problems are approximated by a self–adaptive multilevel finite ele-
ment method based on a GLS stabilization. To determine during the course
of time integration where spatial refinement is necessary and where coarse
meshes are sufficient, we compute a posteriori error estimates. Therefore, we
capture local discretization errors involving all variables of the model equa-
tions to solve Dirichlet problems on small subdomains with higher accuracy.
The mesh adaptation is done until a global prescribed tolerance is reached.
So, by repeated application of solving linear equations, error estimation, and
local refinement the final grid is well adapted to the required solution at
each time. Furthermore, computing the solution on grids of different scales
speeds up the iterations on each level due to the related multilevel decompo-
sition and gives optimal multigrid complexity. The implementation of those
complex algorithms requires modern software design and programming lan-
guages as C or C++. Our code KARDOS is based on the finite element
programming environment KASKADE [8].

The method has been successfully applied to reaction–diffusion problems
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[4, 5, 6] and now has been extended to instationary incompressible flow prob-
lems. The method and its implementation have shown to be satisfactory in
terms of flexibility with respect to the equations to be solved, the boundary
conditions, and the geometry. Steep gradients and moving fronts are handled
optimally.

2 Discretization in Time and Space

2.1 Stabilized Rosenbrock–Galerkin Finite Element
Methods

Equations (1) are a special case of a more general system of nonlinear equa-
tions

H∂tu = ∇ · (D(x, t, u)∇u) +B(x, t, u) · ∇u+ F (x, t, u)

x ∈ Ω ⊂ IRn, t > 0 ,
(2)

equipped with suitable initial and boundary conditions for the unknown
vector–valued function u. Setting u = (p, v, T ) we are able to describe the
Boussinesq approximation of an incompressible thermally coupled flow with
an appropriate choice of the matrix H , the tensors D and B, and the vector
F . For convenience, we restrict ourselves to the autonomous case and rewrite
(2) as an abstract Cauchy problem

H∂tu = f(u), u(0) = u0, (3)

where f represents the right–hand side in (2) and the function u0 is taken
as initial value. We discretize (3) in time employing linearly implicit one–
step methods proposed to achieve higher–order temporal discretizations for
stiff problems by working the Jacobian matrix directly into the integration
formula [7]. With variable time step τn > 0 a so–called s–stage Rosenbrock
method reads as follows

(
1

γτn
H − ∂uf(un−1)

)
lj = f(un−1 +

j−1∑
i=1

aji li) +
1
τn
H

j−1∑
i=1

cji li

un = un−1 +
s∑

i=1

bili , j = 1, . . . , s.
(4)
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Here, un stands for an approximation of u(t) at t= tn. The coefficients bi,
aji, cji, and γ are suitable chosen to obtain a desired order of consistency
and stability for stiff problems. Note, only linear systems with one and the
same operator have to be solved successively.

In the spirit of full adaptivity we solve the equations (4) by a multilevel
finite element method. According to finite element meshes T k

n at t= tn with
refinement level k, we choose finite dimensional subspaces S q

k consisting of all
continuous functions which are polynomials of order q on each finite element.
The standard Galerkin finite element solutions lkj ∈ Sq

k satisfy the equations

(Ak l
k
j , w) = (rkj , w) , ∀w ∈ Sq

k, j=1, . . . , s, (5)

with

Ak :=
1

γτn
H − ∂uf(u

k
n−1) , (6)

rkj := f(uk
n−1 +

j−1∑
i=1

aji l
k
i ) +

1

τn
H

j−1∑
i=1

cji l
k
i . (7)

It is a well–known inconvenience that the solutions lkj may suffer from numer-
ical oscillations caused by dominant convective and reactive terms as well.
We locally add weighted residuals to stabilize the discretization:

(Ak l
k
j , w) +

∑
T ∈T k

n

(Ak l
k
j , φ(w))T = (rkj , w) +

∑
T ∈T k

n

(rkj , φ(w))T . (8)

To define the function φ(w), we first have to describe more precisely the
differential form of the operator Ak, namely

Ak = −∇ · (d(x, uk
n−1)∇w) + b(x, uk

n−1) · ∇w + c(x, uk
n−1)w , w ∈ Sq

k. (9)

Using definition (6), the functions d, b, and c can be derived easily from
the given data. We consider now the general class of Galerkin/least–squares
methods with

φ(w)|T := δT1 (−∇ · (d∇w) + cw) + δT2 b · ∇w , ∀T ∈ T k
n , (10)
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where we allow, in addition, that the parameters δT1 and δT2 can be different
for each component of u. We set for the pressure

δT2,p = δ∗2
h�

2 V

Re√
1 + (Re)2

, Re :=
ρ0 h

� V

μ
. (11)

Here, V denotes a global reference velocity and h� is the diameter of the n–
dimensional ball which is area–equivalent to the element T . For the velocity
components and the temperature we choose

δT2,v = δ∗2
h

2 |v|
Re√

1 + (Re)2
, Re :=

ρ0 h |v|
μ

, (12)

and

δT2,T = δ∗2
h

2 |v|
Pe√

1 + (Pe)2
, Pe :=

ρ0cph |v|
κ

. (13)

The definitions of the local Reynolds and Peclet numbers are based on the
element length h taken in the direction of the local velocity v. In this paper
we choose δT1 =δT2 for simplicity. Obviously, we recover the standard Galerkin
method for δT1 =δT2 =0. In the case δT1 =0 and δT2 >0, we get the well–known
streamline upwind finite element method.

From the computational point of view it is attractive to use the same finite
element functions for all components of u. Unfortunately, as a consequence
of the Babuśka–Brezzi condition this simplification is not allowed in general.
If we do not satisfy this compatibility condition the discrete solution may
be affected by spurious pressure modes. Yet, there is a way to get stable
discretizations even in this case relaxing the incompressibility constraint at
the differential level as follows

∇·u = δ∇· (ρ0[∂tv+(v ·∇)v]−μ∇2v+∇p−ρ0g[1−β(T −T0)]−Fv) , (14)

where the parameter δ is chosen in such a way that the parasitic modes will
be eliminated. The term on the right–hand side is identically zero from (1).
Since this procedure aims at a stabilization of the pressure, we set δ = δ T

2,p

after spatial discretization and summation over all finite elements T ∈ T k
n .
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3 Adaptive Approach

In this section we briefly describe the basis of our fully adaptive approach.
For more details we refer to [4].
To estimate the error in time we apply an embedding strategy. Replacing
the coefficients bi in (4) by different coefficients b̂i a second solution ûn of
inferior order is derived. The difference

εn := ‖un − ûn‖ (15)

can be used for an efficient step size control. A new step size with respect to
a desired tolerance TOLt is selected by

τn =
τn−1

τn−2

(TOLt εn−2

εn−1 εn−1

)1/(p+1)

τn−1 . (16)

Here, p is the local order of the embedded solution ûn.

After computation of each intermediate stage value lkj in (8), an a posteriori
spatial error estimation has to be given for an assessment of the new solution

uk
n = uk

n−1 +
s∑

i=1

bi l
k
i . (17)

One common method is to compute local solutions with higher order on small
subdomains Θi ⊂ Ω, i = 1, . . . ,M, ∪Θi = Ω, which in general are unions of
several finite elements. Let us consider a local hierarchical decomposition

Sq+1
k (Θi) = Sq

k(Θi)⊕W q+1
k (Θi) (18)

where W q+1
k (Θi) contains all additional basis functions needed to enrich the

space Sq
k(Θi) to order q+1. Defining the spatial stage errors ej := lj−lkj , we

approximate them locally in W q+1
k (Θi) by ekj satisfying the equations

(Ake
k
j , w) +

∑
T ∈T k

n

(Ake
k
j − r̂kj , φ(w))T = (r̂kj , w), ∀w ∈ W q+1

k (Θi),

ekj = 0 , x ∈ ∂Θi ,

r̂kj := rkj (e
k
1 + lk1 , . . . , e

k
j−1 + lkj−1) − Ak l

k
j , j = 1, . . . , s .

(19)
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The local quantities ekj can be utilized to compute local error estimates for
each subdomain Θi. These estimates are then the basis for grid refinement
and coarsening until a prescribed tolerance TOLx in space is reached [4].

4 Numerical Examples

To illustrate the performance of the described method we solve two different
two–dimensional problems. We choose a Rosenbrock method of order 3 with
embedded order 2 (s=3) and use linear finite elements on unstructured trian-
gular grids (q=1). The small subdomains for spatial error estimation are all
unions of two neighboring triangles having one common edge. We set δ ∗

2=1
except for the stabilization of the incompressibility condition where δ ∗

2 =0.4
is used.

4.1 Laminar Flow Around a Cylinder

The flow past a cylinder is a widely solved problem. To make our computa-
tions comparable with the results of a benchmark [9], we skip the temper-
ature and solve the conservation equations of mass and momentum. The
fluid density is defined as ρ0 = 1.0kg/m3, and the dynamic viscosity is
μ=0.001m2/s. No force term Fv is considered. The computational domain
has length L= 2.2m and height H = 0.41m. The midpoint of the cylinder
with diameter D=0.1m is placed at (0.2m, 0.2m). The inflow condition at
the left boundary is

vx(0, y, t) = 4V y(H − y)/H2, vy = 0 ,

with a mean velocity V = 0.3m/s yielding a Reynolds number Re = 20.
We further use non-flux conditions at the right outflow boundary, and vx=
vy = 0 otherwise. The flow becomes steady and two unsymmetric eddies
develop behind the cylinder. We start with a very coarse approximation
of the given geometry (81 points) to test our automatic mesh controlling.
The resulting fine grid at the steady state contains 2785 points. The drag
and lift coefficients as well as the pressure difference 	p=p(0.15m, 0.2m)−
p(0.25m, 0.2m) are in good agreement with the results given in [9].
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KARDOS Benchmark

Drag coefficient cw 5.510 5.500
Lift coefficient ca 0.003 0.010
Pressure difference 	p 0.119 0.117

Fig. 1: Flow around a cylinder with Reynolds number Re=20;
coarse (81 points) and fine (2785 points) grid, comparison of
drag and lift coefficient, pressure difference

4.2 Thermoconvective Instability of Plane Poiseuille
Flow

Introducing suitable reference values, the system (1) may be written for the
so–called forced convection problem in dimensionless form as follows

∂tv + (v · ∇)v − 1
Re
∇2v +∇p = − 1

Fr
T ĝ ,

∇ · v = 0 ,

∂tT + (v · ∇)T − 1
Pe
∇2T = 0 ,

where source terms have been omitted. Fr is the Froude number and the
vector ĝ in the momentum equation denotes now the normalized gravity ac-
celeration vector. We consider a two–dimensional laminar flow in a horizontal
channel Ω=[0, 10]×[0, 1] suddenly heated from below with constant tempera-
ture T =1.0. At the opposite wall we choose T =0.0 and non–flux conditions
for the temperature at the inlet and outlet. The boundary conditions for
the velocity field are taken from the previous problem, but a parabolic inlet
profile is prescribed now by
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vx(0, y, t) = 6y(1− y), vy = 0 .

The dimensionless parameters have been taken as Re=10, Fr=1/150 and
Pe=40/9. The same setting was studied in [10]. Travelling transverse waves
can be observed (see Fig. 2). We plot also the transient evolution of the tem-
perature at the central point (5.0, 0.5). Comparing our curve with that given
in [10], we observe a smoother function due to the higher accuracy provided
by the devised adaptive approach.
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Fig. 2: Poiseuille flow; temperature field at t=1.4 and t=1.8,
evolution of temperature at central point (5.0,0.5)

5 Conclusion

In this paper we have presented a mesh–controlling algorithm based on
linearly–implicit time schemes and stabilized Galerkin/least–squares finite
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element methods in space to solve incompressible flows of viscous fluids. The
proposed method permits an efficient solution of the Navier–Stokes equations
and may also be a valuable tool for problems with more realistic physics. The
ability to handle the above prototype equations allows for generalization to
much broader sets of equations such as low Mach number flows with compli-
cated chemistry.
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and support in the field of efficient programming.
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