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THE GENERALIZED BAUES PROBLEM FOR CYCLIC
POLYTOPES

JÖRG RAMBAU AND FRANCISCO SANTOS

ABSTRACT. The Generalized Baues Problem asks whether for a given
point configuration the order complex of all its proper polyhedral sub-
divisions, partially ordered by refinement, is homotopy equivalent to a
sphere. In this paper, an affirmative answer is given for the vertex sets
of cyclic polytopes in all dimensions. This yields the first non-trivial
class of point configurations with neither a bound on the dimension, the
codimension, nor the number of vertices for which this is known to be
true. Moreover, it is shown that all triangulations of cyclic polytopes
are lifting triangulations. This contrasts the fact that in general there are
many non-regular triangulations of cyclic polytopes. Beyond this, we
find triangulations of C�11�5� with flip deficiency. This proves—among
other things—that there are triangulations of cyclic polytopes that are
non-regular for every choice of points on the moment curve.

1. INTRODUCTION

Polyhedral subdivisions of point configurations and their combinatorial
properties have attracted a considerable attention during the past decade.
One direction of research is the so-called Generalized Baues Problem posed
by Billera, Kapranov, and Sturmfels [4]. This is a question arising in the
theory of fiber polytopes [5], [22, Lecture 9] and connected with several
classical objects of study in polytope theory such as monotone paths, zono-
topal tilings, and triangulations. See [15] and the recent survey [18] for an
overview.

The Generalized Baues Problem—as it is investigated in this paper—
asks whether for a given point configuration the order complex of all its
proper polyhedral subdivisions, partially ordered by refinement, is homo-
topy equivalent to a sphere. In [8] it is shown that the Generalized Baues
Problem has an affirmative answer for cyclic polytopes in dimensions not
exceeding three. We show that this is actually true in all dimensions.

Theorem 1.1. For all d > 0 and n > d the Baues poset ω(C(n,d)) of all
proper polyhedral subdivisions of the cyclic polytope C(n,d) is homotopy
equivalent to an (n−d−2)-sphere.

The proof is done in Section 4 by generalizing to arbitrary subdivisions
of cyclic polytopes the deletion construction for triangulations in [16].

∗
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The cyclic polytope C(n,d) is the convex hull of any n points on the mo-
ment curve {(t, t2, . . . , td) : t ∈ R} in Rd . Its combinatorial type does not
depend on the choice of the points along the moment curve, since its face
lattice is combinatorially determined by Gale evenness condition (see [22,
p. 14]). In fact, not only the face lattice of C(n,d) is independent of the
choice of points along the moment curve but also the oriented matroid of
affine dependences between its vertices. It is the so-called alternating uni-
form oriented matroid of rank d + 1 on n elements (cf. [7, Section 9.4]).
This has some importance for us since the concepts appearing in this paper
depend only on the oriented matroid. Thus, our results hold for any poly-
tope whose vertices have the alternating oriented matroid, although we will
assume our cyclic polytopes to be realized with vertices along the moment
curve in some of the proofs. Observe that not every polytope combinato-
rially equivalent to a cyclic polytope has the oriented matroid of a cyclic
polytope. Our proofs would not be valid for those polytopes.

Cyclic polytopes have been important in polytope theory because they
are neighbourly and because they have the largest number of faces of every
dimension among all polytopes of a fixed dimension and number of ver-
tices. In the context of triangulations and the Baues problem the vertex sets
of cyclic polytopes are the best understood non-trivial point configurations
so far. Edelman and Reiner [9] introduced a natural poset structure (actu-
ally two natural poset structures, which are conjectured to coincide: the two
Stasheff-Tamari posets) on the collection of triangulations of C(n,d). Us-
ing this structure Rambau [16] has proved that the set of triangulations of
a cyclic polytope is connected under bistellar flips and that every triangula-
tion of C(n,d) is shellable. More recently, Edelman et al. have used these
ideas to proof our Theorem 1.1 for the case d ≤ 3 (and a similar statement
on the Stasheff-Tamari posets valid in every dimension and codimension).
Finally, Athanasiadis et al. [1] have studied the fiber polytopes produced by
projections between cyclic polytopes and, among other things, have deter-
mined exactly for what values of n, d and d′ (n > d′ > d) is the Baues poset
of the natural projection C(n,d′)→C(n,d) isomorphic to the face lattice of
a polytope.

∗

However, triangulations of cyclic polytopes also present “bad behavior”
sometimes. For example, starting with C(9,3), C(9,4) and C(9,5)—as the
minimal cases with respect to dimension and/or codimension—cyclic poly-
topes have non-regular triangulations [1]. Even more, the number of non-
regular triangulations of the cyclic polytope C(n,n− 4) is known to grow
exponentially with n, while the number of regular ones grows polynomi-
ally [13]. One of our results insists on this bad behavior:

Theorem 1.2. There are 4 (out of 51,676) triangulations of C(11,5) with
only four bistellar flips.
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We provide one example in Section 5, found by a computer program.
This result is important because of the following: The secondary polytope
of a point configuration with n points in d-space is a (n− d− 1)-polytope
whose vertices are in one-to-one correspondence to the regular triangula-
tions of the configuration and whose edges are in one-to-one correspon-
dence to the bistellar operations (flips). In particular, every regular triangu-
lation has at least n−d−1 bistellar neighbors. A non-regular triangulation
may have fewer bistellar neighbors (see [14] and [20]); in this case, we
say that it has flip deficiency. For us, the fact that triangulations of cyclic
polytopes may have flip deficiency implies that flip deficiency has to be
considered a natural thing to occur in a Baues poset and not a “pathology”
of some “bad polytopes”.

It is interesting to observe that cyclic polytopes are “universal” subpoly-
topes of every point configuration: for any given integers n > d ≥ 2 there
is an integer N = N(n,d) such that any generic point configuration in Rd

with at least N points contains the vertices of a cyclic polytope C(n,d) ([7,
Proposition 9.4.7]). The case d = 2 is the classic Erdös-Szekeres theorem
(1935). This has for example the following consequence: since C(d+6,d)
has non-regular triangulations for every d ≥ 3, every generic point configu-
ration in Rd with at least N(d+6,d) points has non-regular triangulations.
Our Theorem 1.2 seems to indicate that any generic point configuration in
R

5 with more than N(11,5) points has triangulations with flip-deficiency,
although this is not a straightforward conclusion.

∗
Our third result concerns the class of lifting subdivisions, introduced

in [7, Section9.6] and studied in [19]. This class is a combinatorial analo-
gue—and a generalization—of regular subdivisions. It turns out that all
triangulations of cyclic polytopes belong to this class:

Theorem 1.3. Every triangulation of C(n,d) is a lifting subdivision.

We will prove this result in Section 3 by using a characterization Theo-
rem from [19], which we state in Section 2 below. Although this result is
probably true for arbitrary subdivisions and not only triangulations, we do
not have a proof of it.

This result and Theorem 1.1 are related to the extension space of alternat-
ing oriented matroids, studied by Sturmfels and Ziegler [21]. The extension
space of an oriented matroid M is the poset of all single-element extensions
of M, ordered by weak-maps (see [7, Chapter 7]). It is conjectured that this
poset is homotopy equivalent to a sphere of dimension one less the rank
of M for a realizable oriented matroid (non-realizable oriented matroids for
which this is not true are known). For the relation of this conjecture to
the Generalized Baues conjecture see [19, Section 4] or [18]. Sphericity
of the extension space is proved in [21] for the class of strongly Euclidean
oriented matroids, which include the cases of rank at most 3 and also the
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alternating oriented matroids of arbitrary rank or number of elements—i.e.
the oriented matroids of cyclic polytopes, as well as their duals.

Let P be a polytope with vertex set A and let M denote the oriented ma-
troid of affine dependences of A. Lifting subdivisions of P are defined via
the so-called lifts of the oriented matroid M. Since lifts and extensions are
dual concepts in oriented matroid theory, there is a natural order preserv-
ing map form the extension space of the oriented matroid M∗ dual to M
and the Baues poset of P, whose image is precisely the sub-poset of lifting
subdivisions of P (compare with Exercise 9.30, in [7, page 414]).

For cyclic polytopes, our results that all the triangulations are lifting and
that the Baues poset is spherical suggest the conjecture that all the sub-
divisions are lifting as well and that the order-preserving map mentioned
above is a homotopy equivalence (if all the subdivisions are lifting then the
map is automatically surjective). This would follow if we had proved what
Reiner [18] calls “strong generalized Baues conjecture” for cyclic poly-
topes, namely that the subposet of regular subdivisions—i.e. the face poset
of the secondary polytope—is a deformation retract of the Baues poset.

In the same context, we have to mention that our proof of Theorem 1.1
reminds (and is inspired by) the proof of sphericity in [21]. In fact, ana-
lyzing our proof one finds that it is based upon the following two particular
properties of cyclic polytopes, apart from induction on the number of ver-
tices:

• The existence of inseparable pairs of vertices in the polytope, which
provides two pushing subdivisions corresponding to “almost oppo-
site” extensions of the dual oriented matroid. This is used to create
a suspension of a sphere in Definition 4.1 —while [21] uses two op-
posite extensions for doing this same thing.

• The property of “stackability in a certain direction” proved in Corol-
lary 4.5 and used in Theorem 4.6—which reminds strong Euclidean-
ness.

Incidentally, for proving sphericity of a Baues poset of dimension d we
use the second of the properties mentioned above (stackability) in dimen-
sion d − 1. Since stackability is trivially true in dimension 2, the ideas
in Section 4 might be useful for proving sphericity of the Baues poset in
dimension 3, a case which is still open. However, inseparability is a rather
restrictive property even in dimension 3, so some new ideas are still needed.

∗
There are the following immediate consequences of our results. The first

and the second item answer questions recently posed in [1].

Corollary 1.4. (i) There are triangulations of C(11,5) that are non-re-
gular for every choice of points on the moment curve.

(ii) There are lifting triangulations with flip deficiency.
(iii) There are spherical Baues posets containing triangulations with flip

deficiency.
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2. PRELIMINARIES

We consider the following combinatorial framework for subdivisions. If
A ⊂ R

d is a point configuration, we will use the words independent, span-
ning, and basis applied to subsets of A meaning that the subset is affinely
independent, that it affinely spans A, or both things at the same time, respec-
tively. A subset τ of a subset σ ⊆ A is a face of σ if it is the set of all points
where the maximum over σ of some linear functional in (Rd )∗ is attained.
Note that it is not sufficient for τ to be contained in such a maximizing set.
In other words, τ is a face of σ if it is the intersection of σ with a face of
the polytope conv(σ). For convenience, the empty set is always considered
a face.

Following [3] and [10], we call subdivision of A a collection S of span-
ning subsets (cells) of A satisfying:

• The union of all conv(σ) for σ ∈ S equals conv(A),
• σ∩ τ is a face of both σ and τ for all σ,τ ∈ S and conv(τ∩ σ) =

conv(τ)∩ conv(σ) (σ and τ intersect properly).
A triangulation is a subdivision all of whose elements are bases. A subdi-
vision of a polytope is a subdivision of its vertex set.

We say that a subdivision S1 refines a subdivision S2 if

S1 ≤ S2 : ⇐⇒ ∀σ1 ∈ S1 ∃σ2 ∈ S2 : σ1 ⊂ σ2.

Refinement of subdivisions is a partial order. The poset of subdivisions
of A has a unique maximal element which is the trivial subdivision {A}.
The poset of all the non-trivial subdivisions of A is called the Baues poset
of A and noted ω(A). The generalized Baues conjecture posed by Billera,
Kapranov, and Sturmfels had as one of its implications that the poset ω(A)
is homotopically equivalent to a sphere of dimension #A−dim(A)−2. The
conjecture itself has been disproved by Rambau and Ziegler [17], but this
particular consequence is still open.

Every subdivision can be refined to a triangulation. This is true in gen-
eral, but specially obvious when A is in general position; in this case, in
order to refine a subdivision we can just triangulate each of its cells inde-
pendently.

The following lemma gives a combinatorial characterization of subdivi-
sions:

Lemma 2.1. Let A be a point configuration. Let S be a collection of full-
dimensional subsets of A which intersect pairwise properly. Then, the fol-
lowing conditions are equivalent:

(i) S is a subdivision (i.e., S covers conv(A)).
(ii) For every σ ∈ S and for every facet τ of σ, either τ lies in a facet of A

or there is another σ′ ∈ S of which τ is a facet.

Proof. Easy (see, e.g., [16, Proposition 2.2]. Observe that the cell σ′ in
part (ii) will automatically be unique and lie in the opposite side of τ as σ,
or otherwise σ and σ′ do not intersect properly.
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The characterization of lifting subdivisions of A concerns subdivisions of
subconfigurations of A [11, 19]. More precisely, let S = {SB : B ⊂ A} be
a collection of subdivisions, one for each subset B ⊂ A. We say that the
collection S is consistent if for every subset B ⊂ A the following properties
are satisfied:

(i) For every cell τ ∈ SB and for every B′ ⊂ B the set τ∩B′ is a face of a
cell of SB′.

(ii) If σ is an affine basis of Rd which is contained in B and contained in
a cell of Sσ∪{b} for every b ∈ B\σ, then σ is contained in a cell of SB
as well.

We can now state the following theorem from [19]. The form of the
theorem we state below appears in [11].

Theorem 2.2. Let S be a subdivision of a point configuration A. Then,
S is a lifting subdivision if and only if there is a consistent collection of
subdivisions {SB : B ⊂ A} with SA = S.

For our purposes, it will be useful to reformulate the definition of consis-
tency:

Lemma 2.3. Conditions (i) and (ii) in the definition of a consistent collec-
tion of subdivisions are equivalent to:

(i’) For every cell τ ∈ SB and for every b ∈ B the set τ\{b} is a face of a
cell of SB\{b}.

(ii’) If σ is an affine basis of Rd which is contained in B and contained in
cells of both SB\{b} and SB\{c} for some pair of elements b,c ∈ B\σ
with b �= c, then σ is contained in a cell of SB as well.

Proof. That (i) implies (i’) is obvious. Also, (i) easily follows from (i’) and
(ii) from (ii’) by recursion. We have to proof that (i) and (ii) imply (ii’).

Let σ be an affine basis contained in B and let b,c ∈ B\σ, with b �= c.
Condition (i) applied to B\{b} implies that for every b′ ∈ B\σ other than b,
σ lies in a cell of Sσ∪{b′}. Condition (i) applied to B\{c} implies the same
for b′ = b, and then condition (ii) implies that σ is in a cell of SB.

We will only be interested in the case where A is generic (no d+1 points
lie in a hyperplane). In this case property (i’) can be simplified further:

Lemma 2.4. If the point configuration A is generic, then condition (i’) of
Lemma 2.3 is equivalent to the following one:

(i”) For every cell τ ∈ SB and for every b ∈ B, if τ\b is spanning then it is
a cell of SB\b.

Proof. That statement (i’) implies (i”) is trivial. For the converse, let τ ∈
SB be a (spanning) cell in SB. If τ\b is spanning, then statement (i”) is
equivalent to (i’).

If τ\b is not spanning then it has codimension 1 and τ is a basis (a simplex
in SB). We have two possibilities: if there is a σ ∈ SB containing τ\b other
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than τ, then σ cannot contain b (otherwise it contains τ) and thus τ\b=σ∩τ
is a facet of σ. Property (i”) implies that σ ∈ SB\b; thus, (i’) holds for τ.

Otherwise τ is the unique cell of SB containing τ\b. By Lemma 2.1, τ\b
lies in a facet of B and since B is generic τ\b is a facet of B. But then it is
a facet of B\b as well, so that it is a facet of a cell of every subdivision of
B\b.

3. ALL TRIANGULATIONS OF C(n,d) ARE LIFTING TRIANGULATIONS

In this section we present a commutative family of deletion constructions
for subdivisions of cyclic polytopes, based on the deletion construction for
triangulations which appears in [16]. As a consequence we get a canonical
collection of subdivisions of the cyclic polytope C(n,d) from any subdi-
vision S of C(n,d), and we will prove this collection to be consistent if S
is a triangulation. This implies that all triangulations of cyclic polytopes
are lifting triangulations. Although the construction of the family is valid
for non-simplicial subdivisions as well, its consistency is not. Thus, we do
not have a proof of liftingness for non-simplicial subdivisions. However,
some of the constructions in this section will be used in Section 4 in the
non-simplicial case.

First we recall the deletion of n in a triangulation of C(n,d). In the fol-
lowing statement, lkT (n) and astT (n) denote, respectively, the link and an-
tistar of the vertex n in the triangulation T . Observe that lkT (n) is a trian-
gulation of C(n−1,d−1) and, in this sense, astlkT (n)(n−1) has a meaning.
The ∗ denotes a join.

Theorem 3.1 (Deletion of n [16]). Let T be a triangulation of C(n,d). Then

T\n := astT (n)∪
(
astlkT (n)(n−1)∗{n−1})

is a triangulation of C(n− 1,d) that coincides with T on the deletion of n
in T .

Moreover, T\n may be obtained by sliding vertex n to vertex n−1 in T .

This result motivates the following generalization to subdivisions and to
arbitrary vertices.

For sets S, T of cells σ ⊆ A we define

spanning(S) := {σ ∈ S : σ is spanning} ,
astS(i) := {σ ∈ S : i /∈ σ} ,
lkS(i) := {σ\i : σ ∈ S, i ∈ σ} ,
S ∗T := {σ∪ τ : σ ∈ S,τ ∈ T } .

In the rest of this section it will be crucial the fact that any subset of the
vertices of a cyclic polytope C(n,d) is the set of vertices of a cyclic polytope
as well. For any subset A ⊂ [n] we denote by C(A,d) the cyclic polytope
having as vertices those vertices of C(n,d) with labels in A (here we are
assuming a particular embedding of C(n,d), although what the embedding
is will not really be important).
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Theorem 3.2 (Deletion in Subdivisions). Let S be a subdivision of C(n,d).
Then

Si→i−1 := astS(i)∪ spanning
(
lkS(i)∗{i−1})

is a subdivision of C([n]\i,d for all 1 < i ≤ n,

Si→i+1 := astS(i)∪ spanning
(
lkS(i)∗{i+1})

is a subdivision of C([n]\i,d for all 1 ≤ i < n.

Observe that if T is a triangulation and i = n, then the definition of
T n→n−1 coincides with that of T\n in Theorem 3.1. Even if S is not a
triangulation we will denote S\n := Sn→n−1 in Section 4.

Proof. We will only prove the case of Si→i−1. The other one is analogous.
The set of cells Si→i−1 may be constructed from S in the following geo-
metric way: slide vertex i continuously to vertex i−1 in C(n,d) along the
moment curve to obtain C([n]\i,d). Let the time interval in which this hap-
pens be [0,1]. At any time 0 ≤ t < 1, the point configuration is still a cyclic
polytope C(n,d) and the subdivision S combinatorially stays the same. At
time t = 1

• all cells not containing i are still the same;
• all cells containing i and i− 1 have collapsed to cells with one ver-

tex less, where d-simplices of this type have collapsed to (d − 1)-
simplices;

• in cells containing i and not i−1, i is replaced by i−1.
To see that the final stage of the slide yields a subdivision consider the
following two d-volumes:

• the d-volume of the part of C(n,d) resp. C([n]\i,d) that is covered by
the interior of more than one d-cell;

• the d-volume of the part of C(n,d) resp. C([n]\i,d) that is covered by
the interior of less than one d-cell.

Both volumes are continuous functions of the vertex coordinates, thus of
the slide time t. Since both volumes are zero for S, both volumes are zero
for all 0 ≤ t < 1. By continuity, both volumes are zero for t = 1 as well.
But this, together with genericity of the set of vertices of a cyclic polytope,
means that S\i− is a subdivision.

Let S be a subdivision of the cyclic polytope C(n,d). We can now define
a collection of subdivisions of the subsets of vertices of C(n,d) recursively:
we define S[n] = S and for each subset A = {a1, . . . ,a#A} ⊂ [n] and ai ∈ A
we define SA\ai

= Sai→ai−1
A if i �= 1 and SA\a1

= Sa1→a2 . We will call DEL(S)
the collection of subdivisions so obtained. The following commutativity
relations imply that SA is well-defined in the sense that it is independent of
the order in which we eliminate the elements of [n] in order to arrive to A.
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Theorem 3.3. Let A = {a1, . . . ,a#A} ⊆ [n] and let S be a subdivision of
C(A,d). Then

(Sai→ai−1)a j→a j−1 = (Saj→a j−1)ai→ai−1 for all 2 ≤ i < j−1 ≤ #A−1;

(Sai→ai−1)ai−1→ai−2 = (Sai−1→ai−2)ai→ai−2 for all 3 ≤ i ≤ #A;

(Sai→ai−1)a1→a2 = (Sa1→a2)ai→ai−1 for all 3 ≤ i ≤ #A;

(Sa2→a1)a1→a3 = (Sa1→a2)a2→a3.

Proof. The assertions are easily observed by considering the corresponding
slides.

Lemma 3.4. Let S be a subdivision of the cyclic polytopeC(n,d). For every
B ⊆ A, every B′ ⊆ B, and every (spanning) cell σ′ in SB′ there is a unique
cell σ in SB containing σ′.

Proof. By definition of our sliding process in subdivisions, every cell σ′ ∈
SB′ is contained in (at least) a cell of SB. Since σ′ is spanning, it can only be
contained in one cell of SB.

Theorem 3.5. If S is a triangulation of a cyclic polytope C(n,d), then the
collection of subdivisions DEL(S) obtained in this way from S is consistent.
Thus, any triangulation of a cyclic polytope is a lifting subdivision.

Proof. We first observe that if S is a triangulation then the construction
Si→i−1 (same for Si→i+1) produce triangulations as well. This is true be-
cause the cells in Si→i−1 are either cells of S or spanning sets of the form
τ∪ i−1 where τ∪{i} is a (simplicial) cell in S.

Thus, the family DEL(S) is, in fact, a family of triangulations. We
will prove that it satisfies property (i”) of Lemma 2.4 and property (ii’)
of Lemma 2.3.

For a triangulation SB and a cell τ ∈ SB the only way in which a τ\b can
be spanning is that b �∈ τ. In this case, τ ∈ astSB(i) ⊂ SB\b. Thus, property
(i”) holds.

For proving property (ii’) of Lemma 2.3, let B ⊂ [n] and let b,c ∈ B.
Moreover, let σ ⊆ B be a basis contained in cells of both SB\b and SB\c.
By property (i”) it follows that σ is also contained in a cell of SB\{b�c}.
By Lemma 3.4, there is a cell σ′ ∈ SB containing σ, so that property (ii)
holds.

This proves Theorem 1.3.

Remark 3.6. Let us see with a simple example that the construction of the
family of subdivisions is not consistent, if the original subdivision S is not
a triangulation. Let n = 5, d = 2 and let S = {1235,345} be the original
subdivision of C(5,2). Then, the slide of the vertex 5 to 4 produces the
trivial subdivision S5→4 = {1234} of C(4,2). If we now take B = {12345},
τ = {1235} ∈ SB = S and B′ = {1234} we find that condition (i) of the Def-
inition of consistency (or any of its equivalents (i’) and (i”)) is not satisfied:
τ∩B′ = {123} is not a face of any cell of SB′ = S5→4 = {1234}.
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The geometric idea behind this example is that SB′ is not consistent with
SB because SB′ can only be obtained by a lift in which 1, 2, 3 and 4 are
coplanar and SB by one in which they are not coplanar.

∗
Remark 3.7. In even dimensions we can define the commutative family in a
uniform way by using the cyclic group action on C(n,2d). For completeness
we state the corresponding Theorem.

Lemma 3.8. Let A ⊆ [n] and let S be a subdivision of C(A,2d) Further, let
π be a cyclic permutation. Then π(S) is a subdivision of C(A,2d) as well.

Theorem 3.9. Let A ⊆ [n] and let S be a subdivision of C(A,2d). Further,
let i be an index in A and π the cyclic permutation with π(ai) = a#A. Then

S\ai := π−1(π(S)\a#A)

is a subdivision of C(A\ai,2d) that coincides with S on the deletion of ai
in S.

Moreover, S\ai may be obtained by sliding vertex ai to vertex (ai−1) in S
(here, vertex a1 slides to vertex a#A), and this deletion is commutative.

4. THE BAUES POSET OF SUBDIVISIONS OF C(n,d) IS SPHERICAL

In this section we consider the poset of all the subdivisions of a cyclic
polytope C(n,d). We are going to see that it is homotopy equivalent to the
(n−d−2)-sphere, thus proving Theorem 1.1.

The idea is to use induction on the number of vertices and to show that
the poset ω(C(n,d)) of subdivisions of C(n,d) is homotopy equivalent to
the suspension of the poset ω(C(n−1,d)) of subdivisions of C(n−1,d).

The crucial map that provides us with an inductive argument is the dele-
tion for subdivisions at n, which was defined in the previous section. Through-
out this section we will denote by S\n the subdivision Sn→n−1 of C(n−1,d)
obtained by sliding the vertex n to n−1 in a subdivision S of C(n,d). An-
other property that we will use is that the vertex figure of a cyclic polytope
C(n,d) on the last vertex n is a cyclic polytope C(n−1,d−1). This is not
always geometrically true if we require our cyclic polytopes to be realized
with vertices along the moment curve (although it can be made true by a
particular choice of points in the curve; see [1, Lemma 4.8]) but is true at
the oriented matroid level, which is good enough for our purposes. In par-
ticular, the link at the vertex n of a subdivision of C(n,d) is a subdivision of
C(n−1,d−1).

Let ω̂(C[n−1],d) be the poset of non-trivial subdivisions of C(n−1,d)
augmented with two extra elements Sn and Sn−1 which are incomparable
and above every other element of ω(C(n− 1,d)). Then we define the fol-
lowing order-preserving map of posets.
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Definition 4.1.

Π :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω(C(n,d)) → ω̂(C(n−1,d)),

S �→

⎧⎪⎨⎪⎩
Sn−1 if [n−1] ∈ S,

Sn if ([n−2]∪{n}) ∈ S,

S\n otherwise.

Observe the following: [n−1] and [n−2]∪{n} cannot be both cells in S
because they intersect improperly unless n ≤ d +1, in which case they are
not spanning. If none of these cells is in S then S\n is non-trivial by con-
struction. Thus, Π is well-defined. Also, Π−1(Sn) and Π−1(Sn−1) have a
single element, namely the subdivisions of C(n,d) obtained from the trivial
one by pushing n−1 and n, respectively. Since these two subdivisions are
maximal elements in ω(C(n,d)) and since the deletion operator is order-
preserving, Π is order preserving.

Theorem 4.2. The map Π : ω(C(n,d)) → ω̂(C(n− 1,d)) is a homotopy
equivalence. In particular, ω(C(n,d)) is homotopy equivalent to an (n−
d−2)-sphere.

Proof. Let us first show how to derive the second part from the first one. It is
well known that C(n,d) is homeomorphic to an (n−d−2)-sphere whenever
n ≤ d +3. Then, if we fix d and apply induction on n, we can inductively
assume that ω(C(n− 1,d) is homotopically an (n− d − 3)-sphere. Since
ω̂(C(n− 1,d)) is the suspension of ω(C(n− 1,d), it is homotopically an
(n− d − 2)-sphere. Thus, if Π is a homotopy equivalence, ω(C(n,d)) is
homotopically an (n−d−2)-sphere.

For proving that Π is a homotopy equivalence we will use the following
Lemma from [2]. A proof of this lemma appears in [21].

Lemma 4.3 (Babson). Let f : P→Q be an order-preserving map of posets.
If

(i) f−1(x) is contractible for every x ∈ Q, and
(ii) P≤y∩ f−1(x) is contractible for every x ∈ Q and y ∈ P with f (y)> x,

then f induces a homotopy equivalence.

Let S ∈ ω̂(C(n− 1,d)). If S ∈ {Sn,Sn−1} then the two conditions of
Lemma 4.3 are trivial for S. Otherwise, we will prove in Lemma 4.8 that the
posets Π−1(S) and ω(C(n,d))≤S′∩Π−1(S) (where S′ denotes a subdivision
of C(n,d) with S′\n coarser than S) are respectively isomorphic to certain
subposets ω(lkS(n− 1)) and ω≤S0(lkS(n− 1)) of C(n− 2,d − 2). These
subposets are defined below and proved to be contractible in Theorem 4.6
and Corollary 4.7.

In the remainder of this section, we provide the details referenced in the
proof above. Let S be a subdivision of C(n,d). Two cells in S are adjacent if
they share a codimension one facet. For any pair of adjacent cells, it makes
sense to say that one is above the other (with respect to the last variable)
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because no codimension-one facet is vertical. We say that S is stackable
(with respect to the last coordinate) if the transitive closure of the relation
“a cell σ is above another one σ′” is a partial order. Observe that in this
case we can number the cells of S so that whenever two cells σ and σ′ are
adjacent the one above has the higher label.

Not every subdivision of a generic point configuration is stackable. How-
ever, Rambau [16, Section 5] proved that all triangulations of a cyclic poly-
tope have this property. Actually, he introduces a total order “<(o∗e)” on
the set of bases of C(n,d) and then proves that for every pair of adjacent
simplices σ1 and σ2 with σ2 above σ1 one has σ1 <(o∗e) σ2. This proves the
result.

Lemma 4.4. Let C(n,d) be a cyclic polytope. Let F1 and F2 be a lower and
upper facet of it respectively. Then, there is a triangulation of C(n,d) in
which the simplices σ1 and σ2 incident to F1 and F2 satisfy σ1 <(o∗e) σ2.

Proof. The upper facet F2 has only odd gaps (i.e., for all indices o in [n]\F2
there is an odd number of indices in F2 larger than o [16, Definition 3.2]);
the lower facet F1 has only even gaps. Let i1 and i2 be the largest indices
not in F1 and F2 respectively, and let σ1 = F1 ∪ i1 and σ2 = F2 ∪ i2. By
construction σ1 only has odd gaps and σ2 only even gaps, so σ1 <(o∗e) σ2
(see the definition of <(o∗e) in [16, Definition 5.6]).

Both simplices σ1 and σ2 contain the last point n. Also, σ1\{n} and
σ2\{n} are facets, since they contain only odd and even gaps, respectively.
Hence, σ1 and σ2 are simplices in the pulling triangulation on n (the trian-
gulation which joins n to every facet not containing n).

Corollary 4.5. Any subdivision of a cyclic polytope is stackable (with re-
spect to the last coordinate).

Proof. Let S be a subdivision of C(n,d). We want to prove that the relation
“being above” defined on pairs of adjacent cells of S has no cycles. Sup-
pose by way of contradiction that σ0,σ1, . . . ,σk = σ0 is a sequence of cells
(with no repetitions) with σi adjacent and above σi−1 for each i = 1, . . . ,k.
Let τi be the common facet of σi and σi−1. The cell σi (i = 1, . . . ,k) is it-
self a cyclic polytope and τi and τi+1 are a lower and an upper facet of it
respectively. By the previous lemma we can refine the subdivision S to a
triangulation T with the following property: if σ+

i and σ−
i denote the sim-

plices incident to τi above and below respectively, then σ+
i <(o∗e) σ−

i+1, for
each i = 1, . . . ,k. In the other hand, by Rambau’s result, σ−

i <(o∗e) σ+
i ,

for each i, so we get a directed cycle in the total order “<(o∗e)”, which is
impossible.

Let Ŝ be a subdivision of the cyclic polytope C(n,d+1) and S a subdivi-
sion of C(n,d). We say that S is induced by Ŝ if every cell σ ∈ S is a face
(perhaps a non-proper one) of a cell σ′ ∈ Ŝ. One can think of subdivisions of
C(n,d) as cellular sections of the natural projection C(n,d+1)→C(n,d).
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The subdivisions of C(n,d) induced by a subdivision Ŝ of C(n,d + 1) are
the sections “contained” in S. In what follows we are interested in the poset
of all the subdivisions of C(n,d) which are induced by a certain subdivision
Ŝ of C(n,d+1). We will denote this poset ω(Ŝ) and want to prove that it is
homotopically equivalent to a single point (i.e., contractible).

Theorem 4.6. The poset ω(Ŝ) of subdivisions of C(n,d) which are induced
by a subdivision Ŝ of C(n,d+1) is contractible.

Proof. Let k denote the number of cells in Ŝ. By Corollary 4.5, there is a
numbering σ1, . . . ,σk of the cells of Ŝ such that if σi is above σ j then i > j.

Let S ∈ ω(Ŝ) be a subdivision of C(n,d). Let us regard S as a collection
of faces of (perhaps non-proper) cells of Ŝ. Then, for every cell σi of Ŝ
we can tell whether σi is above, on or below S. Let us call height of S the
maximal index i of a cell σi on or below Ŝ. For each i = 0, . . . ,k we denote
ω(Ŝ; i) the subposet of ω(Ŝ) consisting of the subdivisions of height at most
i. It is obvious that ω(Ŝ) = ω(Ŝ;k) and that ω(Ŝ;0) has a single element:
the lower envelope of C(n,d+1). In what follows we will prove that ω(Ŝ; i)
and ω(Ŝ; i−1) are homotopically equivalent, for every i = 1, . . . ,k.

Consider first the following situation. Let S ∈ ω(Ŝ) with σi ∈ S. Then we
can get two new elements Sσi+ and Sσi− of ω(Ŝ) substituting σi in S for its
upper and lower envelope, respectively.

We now construct the homotopy equivalence fi : ω(Ŝ; i) → ω(Ŝ; i− 1).
We define fi to be the identity on those S ∈ ω(Ŝ; i) with height at most
i− 1. If S has height i then either S contains σi, in which case we take
fi(S) = Sσi−, or S contains the upper envelope of σi. In this case S = Tσ�i
for some T ∈ ω(Ŝ). We then define fi(Tσ�i

) = Tσ−
i

.

In this way, the inverse image of an element S ∈ ω(Ŝ; i−1) is

(i) S itself if S does not contain the lower envelope of σi.
(ii) If S contains the lower envelope of σi, then S = Tσi− for some T ∈

ω(Ŝ; i) and f−1(S) = f−1(Tσi−) = {T,Tσi−,Tσi+}.

Define the following order-preserving map:

gi :

⎧⎪⎨⎪⎩
ω(Ŝ; i−1) → ω(Ŝ; i),

S �→
{

S in case (i),
T in case (ii).

Then fi ◦ gi = idω(bS;i−1) and gi ◦ fi ≥ idω(bS;i), which means that fi and
gi are homotopy inverses to each other by Quillen’s order homotopy theo-
rem [6, 10.11]. Thus, ω(Ŝ; i) is homotopy equivalent to ω(Ŝ; i−1).

We consider now the following situation. Let Ŝ be a subdivision of
C(n,d + 1). Let S0 be a subdivision of C(n,d) such that S0 ∈ ω(Ŝ0) for
some Ŝ0 coarser than Ŝ (in particular, for every cell B in S0 the collection
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σ′ ∈ Ŝ : σ′ ⊂ σ

}
is a subdivision of σ). We denote ω≤S0(Ŝ) the subposet

of ω(Ŝ) consisting of subdivisions of C(n,d) which refine S0. Then,

Corollary 4.7. ω≤S0(Ŝ) is contractible.

Proof. Let S0 = {τ1, . . . ,τk}. Since every subconfiguration of a cyclic poly-
tope is a cyclic polytope as well, if we consider τi as a cell of Ŝ0, which is a
subdivision of C(n,d+1), then the refinement Ŝ of Ŝ0 induces a subdivision
Si of C(τi,d+1). It makes sense then to consider the poset ω(Si), which is
contractible by Theorem 4.6. Since in a generic configuration the different
cells of a subdivision can be refined independently, one can easily prove
that the poset ω≤S0(Ŝ) is (isomorphic to) the direct product of the posets
ω(Si). Thus, it is contractible.

We are now in position to prove the crucial statement of this section,
which relates the fibers of the map Π of Definition 4.1 with the posets ω(Ŝ)
and ω≤S0(Ŝ).

Lemma 4.8. Let Π : ω(C(n,d))→ ω̂(C(n−1,d)) be the order preserving
map of Definition 4.1. Let S′ ∈ ω(C(n,d)) be a non-trivial subdivision of
C(n,d) and let S∈ω(C(n−1,d)) be a non-trivial subdivision of C(n−1,d)
with S ≤ Π(S′) (i.e. S refines S′\n).Then,

1. The poset Π−1(S) is isomorphic to the poset ω(lkS(n−1))⊂ ω(C(n−
2,d−2)).

2. Let S0 = lkS′({n,n− 1}), which is a subdivision of C(n− 2,d − 2).
Then the subdivision Ŝ0 = lkS′\n(n− 1) of C(n− 2,d − 1) is coarser

than lkS(n−1) and satisfies that S0 ∈ ω(Ŝ0). In particular, the poset
ω≤S0(lkS(n−1)) is non-empty and well-defined.

3. ω(C(n,d))≤S′ ∩Π−1(S) is isomorphic to the poset ω≤S0(lkS(n− 1))
for the subdivision S0 of C(n−2,d−2) defined above.

Thus, Π−1(S) and ω(C(n,d))≤S′ ∩Π−1(S) are contractible.

Proof. (1) Observe first that lkS(n− 1) is a subdivision of C(n− 2,d− 1).
Thus, ω(lkS(n− 1)) is a collection of subdivisions of C(n− 2,d − 2). We
define the following order-preserving map of posets:

π : Π−1(S)→ ω(lkS(n−1))

by π(T ) = lkT ({n,n− 1}). This map is well-defined because Π(T ) = S
implies that lkT ({n,n− 1}) ⊂ lkS(n− 1), and is clearly order-preserving.
For proving (i) we only need to show that π is bijective and π−1 order-
preserving.

For this we observe the following: let T ∈ Π−1(S) and σ ∈ lkS(n− 1).
We can say whether σ lies in, above or below π(T ) = lkT ({n,n−1}), as we
did in the proof of Theorem 4.6. Then, σ∪{n} ∈ T (resp. σ∪{n−1} ∈ T
or σ∪{n,n−1} ∈ T ) if and only if σ is above π(T ) (resp. below π(T ), or
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in π(T )). Let us consider the following map:

π−1 : ω(lkS(n−1))→ Π−1(S)

defined in the following way:

π−1(T ) := {σ ∈ S : n−1 �∈ σ}
∪{σ∪{n} : σ ∈ lkS(n−1), σ is above T }
∪{σ∪{n−1} : σ ∈ lkS(n−1), σ is below T }
∪{σ∪{n,n−1} : σ ∈ lkS(n−1), σ ∈ T } .

One can prove that π−1(T ) is indeed a subdivision (e.g., by using Lemma
2.1), and it follows from the definition of π−1 that

π−1(T )\n = S and π◦π−1(T ) = lkπ−1(T )({n,n−1}) = T

(i.e., π−1(T ) ∈ Π−1(S), and π−1 is well-defined and π is surjective). Fi-
nally, the remark above proves that π−1 ◦π is the identity map and thus π is
injective.

(2) Since S refines S′\n, then lkS(n−1) refines Ŝ0 = lkS′\n(n−1). This

proves the first assertion. We now have to prove that S0 ∈ ω(Ŝ0). That is
to say, that every cell of S0 = lkS′({n,n− 1}) is a face of a cell of Ŝ0 =
lkS′\n(n− 1). Let σ be a cell of lkS′({n,n− 1}). By definition of link,
σ∪{n,n−1} is a cell of S′. Then,

• If σ∪{n− 1} is spanning in C(n− 1,d) then it is a cell of S′\n (by
definition of S′\n = S′n→n−1) and thus σ is a cell in lkS′\n(n−1).

• If σ∪{n−1} is not spanning in C(n−1,d), then σ∪{n−1} and σ∪
{n} are facets of σ∪{n−1,n} in S′. In the sliding process n → n−1
these two facets match to one another, so that σ∪{n−1} becomes a
facet of some cell in S′\n and σ is a facet of some cell in lkS′\n(n−1).

(3) We just need to prove that the order-preserving bijection π of part
(1) restricts to a bijection between ω(C(n,d))≤S′ ∩Π−1(S) ⊂ Π−1(S) and
ω≤S0(lkS(n−1))⊂ ω(lkS(n−1)).

Let T ∈ ω(C(n,d))≤S′ ∩Π−1(S). Since T refines S′, π(T ) = lkT ({n,n−
1}) refines lkS′({n,n−1}) = S0 and thus π(T ) ∈ ω≤S0(lkS(n−1)).

Reciprocally, let T ∈ ω≤S0(lkS(n−1)), so that T refines lkS′({n,n−1}).
We want to see that π−1(T ) refines S′. We consider the four types of cells
in π−1(T ) and see that they are contained in cells of S′:

• If σ ∈ S with n−1 �∈ σ, then σ ∈ T , which is a refinement of S′.
• If σ′ = σ∪{n,n−1} with σ ∈ T ⊂ lkS(n−1), then σ′ is contained in

a cell of S′ since T refines lkS′({n,n−1}).
• If σ′ = σ∪{n} with σ ∈ lkS(n−1) above T , then σ∪{n−1} ∈ S is

contained in a cell of S′\n (because S refines S′\n). Let σ′′∪{n−1}
be that cell. The facts that T refines lkS′({n,n−1}) and σ is above T
imply that σ′′ is in or above lkS′({n,n−1}). Thus, either σ′′∪{n} or
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σ′′∪{n,n−1} are in S′. In particular, σ′ = σ∪{n} is contained in a
cell of S′.

• In a similar way, if σ′ = σ∪{n−1} with σ ∈ lkS(n−1) below T , then
σ∪{n−1} ∈ S is contained in a cell of S′\n (because S refines S′\n).
Let σ′′∪{n−1} be that cell. The facts that T refines lkS′({n,n−1})
and σ is below T imply that σ′′ is in or below lkS′({n,n−1}). Thus,
either σ′′∪ {n− 1} or σ′′∪ {n,n− 1} are in S′. In particular, σ′ =
σ∪{n−1} is contained in a cell of S′.

5. THE NUMBER OF BISTELLAR NEIGHBORS

We will now provide a triangulation of C(11,5) with flip deficiency, i.e.,
less flips than the dimension of the corresponding secondary polytope. This
example was found (together with the others mentioned in Theorem 1.2)
while enumerating the set of all triangulations of C(11,5) resp. C(12,5) by
a special C++ computer program. The algorithm makes full use of the fact
that the set of triangulations of a cyclic polytope forms a bounded poset [9].
Modulo implementation details, the algorithm is straightforward; thus we
do not discuss it here. Table 1 contains the resulting numbers of triangula-
tions. This same table appears in [1].

number of points: 3 4 5 6 7 8 9 10 11 12

dimension 2 1 2 5 14 42 132 429 1,430 4,862 16,796
dimension 3 1 2 6 25 138 972 8,477 89,405 1,119,280
dimension 4 1 2 7 40 357 4,824 96,426 2,800,212
dimension 5 1 2 8 67 1,233 51,676 5,049,932
dimension 6 1 2 9 102 3,278 340,560
dimension 7 1 2 10 165 12,589
dimension 8 1 2 11 244
dimension 9 1 2 12

dimension 10 1 2

TABLE 1. The number of triangulations of C(n,d) for n ≤ 12.

The fact that the example below is a triangulation and has only the claimed
flips is computationally straightforward once the example is in hand. It
was checked by the maple program PUNTOS [12] which studies triangula-
tions of arbitrary point configurations and by two other independent maple
routines. However, we will devote this section to provide a computer-free
proof. The proof is essentially a long but transparent case study, with almost
no technical content.

Example 5.1. Throughout this section, T will be the following collection
of 36 simplices in C(11,5). We give it in five pieces which we call T3,
T9, T6 T− and T+, since the vertices 3, 6 and 9 play a special role in them
and in the proofs. All the simplices in T contain either 3 or 9. The parts
T3, T9 and T6 consist respectively of those simplices not containing 3, not
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containing 9 and containing both 3 and 9 but not 6. Then, T− and T+ consist
of the simplices containing 3, 6 and 9, divided into two groups according to
whether they contain two elements in {1,2,4,5} and one in {7,8,10,11} or
vice versa. T is symmetric under the reversal the indices.

T3 := {{1,2,6,7,8,9},{1,2,6,7,9,11},{1,2,7,8,9,11},
{1,6,7,9,10,11},{1,7,8,9,10,11},{4,5,6,7,9,11},
{4,5,6,9,10,11},{4,5,7,8,9,11},{5,6,7,8,9,11}}

T9 := {{3,4,5,6,10,11},{1,3,5,6,10,11},{1,3,4,5,10,11},
{1,2,3,5,6,11},{1,2,3,4,5,11},{1,3,5,6,7,8},
{1,2,3,6,7,8},{1,3,4,5,7,8},{1,3,4,5,6,7}}

T6 := {{1,2,3,9,10,11},{1,3,4,5,8,9},{1,3,4,5,9,10},
{2,3,7,8,9,11},{3,4,5,7,8,9},{3,4,7,8,9,11}}

T− := {{1,2,3,6,8,9},{1,2,3,6,9,11},{1,3,5,6,8,9},
{1,3,5,6,9,10},{3,4,5,6,9,10},{3,4,5,6,7,9}}

T+ := {{3,4,6,9,10,11},{1,3,6,9,10,11},{3,4,6,7,9,11},
{2,3,6,7,9,11},{2,3,6,7,8,9},{3,5,6,7,8,9}}.

We will prove that T is a triangulation and has only the following four
bistellar flips: Two upward ones supported on

{1,2,3,6,7,8,9},{3,4,5,6,9,10,11},
and two downward ones, supported on

{1,2,3,6,9,10,11},{3,4,5,6,7,8,9}.
Theorem 5.2. The collection T of simplices of Example 5.1 is a triangula-
tion of C(11,5).

Proof. For proving this we produce Tables 2 and 3 below. The first five
numbers in each row represent a codimension one simplex τ of T . It is
followed by one number (in Table 2) or two numbers (in Table 3) in bold,
each representing a vertex v to which τ is joined, so that τ∪{v} is a simplex
in T . The final information in each row says in which of the subsets T3, T9,
T6, T+ or T− of T the simplex in question can be found. The reader can
verify the following facts:

1. The 56 codimension one simplices in Table 2 are the facets of C(11,5),
by Gale’s evenness criterion (upper facets on the right and lower facets
on the left). Joining them to the element in bold in the same row
produces a simplex of T .

2. The 80 codimension one simplices in Table 3 are non-facets of C(11,5).
Let τ be any of them and let v1 and v2 be the two elements in bold in
the same row. Then, τ∪ {v1} and τ∪ {v2} are in T and they lie in
opposite sides of τ. The latter is equivalent to saying that there are an
odd number of elements of τ between v1 and v2.
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1 2 3 4 5 11 (T9)

1 2 3 5 6 11 (T9)

1 2 3 6 7 8 (T9)

1 2 3 7 8 6 (T9)

1 2 3 8 9 6 (T−)

1 2 3 9 10 11 (T6)

1 2 3 10 11 9 (T6)

1 3 4 5 6 7 (T9)

1 3 4 6 7 5 (T9)

1 3 4 7 8 5 (T9)

1 3 4 8 9 5 (T6)

1 3 4 9 10 5 (T6)

1 3 4 10 11 5 (T9)

1 4 5 6 7 3 (T9)

1 4 5 7 8 3 (T9)

1 4 5 8 9 3 (T6)

1 4 5 9 10 3 (T6)

1 4 5 10 11 3 (T9)

1 5 6 7 8 3 (T9)

1 5 6 8 9 3 (T−)

1 5 6 9 10 3 (T−)

1 5 6 10 11 3 (T9)

1 6 7 8 9 2 (T3)

1 6 7 9 10 11 (T3)

1 6 7 10 11 9 (T3)

1 7 8 9 10 11 (T3)

1 7 8 10 11 9 (T3)

1 8 9 10 11 7 (T3)

1 2 3 4 11 5 (T9)

1 2 4 5 11 3 (T9)

1 2 5 6 11 3 (T9)

1 2 6 7 11 9 (T3)

1 2 7 8 11 9 (T3)

1 2 8 9 11 7 (T3)

1 2 9 10 11 3 (T6)

2 3 4 5 11 1 (T9)

2 3 5 6 11 1 (T9)

2 3 6 7 11 9 (T�)

2 3 7 8 11 9 (T6)

2 3 8 9 11 7 (T6)

2 3 9 10 11 1 (T6)

3 4 5 6 11 10 (T9)

3 4 6 7 11 9 (T�)

3 4 7 8 11 9 (T6)

3 4 8 9 11 7 (T6)

3 4 9 10 11 6 (T�)

4 5 6 7 11 9 (T3)

4 5 7 8 11 9 (T3)

4 5 8 9 11 7 (T3)

4 5 9 10 11 6 (T3)

5 6 7 8 11 9 (T3)

5 6 8 9 11 7 (T3)

5 6 9 10 11 4 (T3)

6 7 8 9 11 5 (T3)

6 7 9 10 11 1 (T3)

7 8 9 10 11 1 (T3)

TABLE 2. Simplices of T incident to facets of C(11,5)

Once these properties are checked, we can prove that T is a triangulation
as follows: a simple counting argument shows that Tables 2 and 3 cover all
the codimension 1 simplices in T , since 2×80+56 = 36×6, where 36 is
the number of simplices in T . Then, Table 3 shows that every codimension
1 simplex in T lies in precisely two simplices of T , and that these two
simplices intersect properly. In other words, T satisfies the interior cocircuit
equations introduced in [13]. Parts (i) and (ii) of Theorem 1.1 in [13] say
that in order to prove that a collection T of simplices which satisfies the
interior cocircuit equations is a triangulation it suffices to show that there is
a point in the interior of C(11,5) which is covered by exactly one simplex
of T . In our case, this holds for every point sufficiently close to a facet of
C(11,5) since there is a unique simplex incident to that facet.

Theorem 5.3. Let A = {a1, . . . ,a7} be a circuit of C(11,5) which supports
a flip of T . Then,

(i) A contains 3 and 9.
(ii) A contains 6.

(iii) A contains exactly two elements among 1, 2, 4 and 5 and other two
among 7, 8, 10 and 11.

(iv) A contains one of the pairs {1,2}, {4,5} and one of {7,8}, {10,11}.
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Without 3:
1 2 6 7 9 8 11 (T3 , T3)

1 2 6 8 9 3 7 (T− , T3)

1 2 6 9 11 3 7 (T− , T3)

1 2 7 8 9 6 11 (T3 , T3)

1 2 7 9 11 6 8 (T3 , T3)

1 6 7 9 11 2 10 (T3 , T3)

1 6 9 10 11 3 7 (T� , T3)

1 7 8 9 11 2 10 (T3 , T3)

1 7 9 10 11 6 8 (T3 , T3)

2 6 7 8 9 1 3 (T3 , T�)

2 6 7 9 11 1 3 (T3 , T�)

2 7 8 9 11 1 3 (T3 , T6)

4 5 6 7 9 3 11 (T− , T3)

4 5 6 9 10 3 11 (T− , T3)

4 5 6 9 11 7 10 (T3 , T3)

4 5 7 8 9 3 11 (T6 , T3)

4 5 7 9 11 6 8 (T3 , T3)

4 6 7 9 11 3 5 (T� , T3)

4 6 9 10 11 3 5 (T� , T3)

4 7 8 9 11 3 5 (T6 , T3)

5 6 7 8 9 3 11 (T� , T3)

5 6 7 9 11 4 8 (T3 , T3)

5 7 8 9 11 4 6 (T3 , T3)

Without 9:
1 2 3 5 11 4 6 (T9 , T9)

1 2 3 6 8 7 9 (T9 , T−)

1 2 3 6 11 5 9 (T9 , T−)

1 3 4 5 7 6 8 (T9 , T9)

1 3 4 5 8 7 9 (T9 , T6)

1 3 4 5 10 9 11 (T6 , T9)

1 3 4 5 11 2 10 (T9 , T9)

1 3 5 6 7 4 8 (T9 , T9)

1 3 5 6 8 7 9 (T9 , T−)

1 3 5 6 10 9 11 (T− , T9)

1 3 5 6 11 2 10 (T9 , T9)

1 3 5 7 8 4 6 (T9 , T9)

1 3 5 10 11 4 6 (T9 , T9)

1 3 6 7 8 2 5 (T9 , T9)

1 3 6 10 11 5 9 (T9 , T�)

2 3 6 7 8 1 9 (T9 , T�)

3 4 5 6 7 1 9 (T9 , T−)

3 4 5 6 10 9 11 (T− , T9)

3 4 5 7 8 1 9 (T9 , T6)

3 4 5 10 11 1 6 (T9 , T9)

3 4 6 10 11 5 9 (T9 , T�)

3 5 6 7 8 1 9 (T9 , T�)

3 5 6 10 11 1 4 (T9 , T9)

With neither 3 nor 9:
1 2 6 7 8 3 9 (T9 , T3)

4 5 6 10 11 3 9 (T9 , T3)

With 3 and 9 but not 6:
1 2 3 9 11 6 10 (T− , T6)

1 3 4 5 9 8 10 (T6 , T6)

1 3 5 8 9 4 6 (T6 , T−)

1 3 5 9 10 4 6 (T6 , T−)

1 3 9 10 11 2 6 (T6 , T�)

2 3 7 8 9 6 11 (T� , T6)

2 3 7 9 11 6 8 (T� , T6)

3 4 5 7 9 6 8 (T− , T6)

3 4 5 8 9 1 7 (T6 , T6)

3 4 5 9 10 2 6 (T6 , T−)

3 4 7 8 9 5 11 (T6 , T6)

3 4 7 9 11 6 8 (T� , T6)

3 5 7 8 9 4 6 (T6 , T�)

3 7 8 9 11 2 4 (T6 , T6)

With 3, 6 and 9:
1 2 3 6 9 8 11 (T− , T−)

1 3 5 6 9 8 10 (T− , T−)

1 3 6 8 9 2 5 (T− , T−)

1 3 6 9 10 5 11 (T− , T�)

1 3 6 9 11 2 10 (T− , T�)

2 3 6 7 9 8 11 (T� , T�)

2 3 6 8 9 1 7 (T− , T�)

2 3 6 9 11 1 7 (T− , T�)

3 4 5 6 9 7 10 (T− , T−)

3 4 6 7 9 5 11 (T− , T�)

3 4 6 9 10 5 11 (T− , T�)

3 4 6 9 11 7 10 (T� , T�)

3 5 6 7 9 4 8 (T− , T�)

3 5 6 8 9 1 7 (T− , T�)

3 5 6 9 10 1 4 (T− , T−)

3 6 7 8 9 2 5 (T� , T�)

3 6 7 9 11 2 4 (T� , T�)

3 6 9 10 11 1 4 (T� , T�)

TABLE 3. Codimension 1 interior simplices of T

Thus, T has only the four bistellar flips mentioned in Example 5.1.

Proof. To say that A = {a1, . . . ,a7} supports a flip of T means that T con-
tains one of the two triangulations of A, which are

T e
A := {A\{ai} : i = 2,4,6} and T o

A := {A\{ai} : i = 1,3,5,7} ,
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where we assume a1 < · · · < a7. Moreover, the flip supported on A is up-
ward (in the poset structure on the collection of triangulations of C(11,5))
if T o

A ⊂ T and downward if Te
A ⊂ T .

If A = {a1, . . . ,a7} supports a flip, at least three simplices of T have to be
contained in A and at least two of them must contain ai, for each i= 1, . . . ,7.
This simple remark is essentially all that is used in the proof of (i), (ii), (iii)
and (iv), together with the fact that T is symmetric under reversal of indices.

The conclusion of the Theorem follows from parts (i), (ii), (iii) and (iv) as
follows: By (i), (ii) and (iii) A contains 3, 6 and 9 plus two vertices among
1, 2, 4 and 5 and other two among 7, 8, 10 and 11. Then (iv) implies that
the only four possibilities for A are those in Example 5.1. That these four
circuits actually support flips can be trivially checked by finding among the
simplices in T one of the two triangulations To

A and Te
A , for each case. Also,

this check tells whether the flip is upwards or downwards.
• For proving part (i) we only need to prove that A contains 3 since then

it will follow by symmetry that A contains 9 as well.
Suppose that A does not contain 3. Then one of the two triangulations Te

A
or To

A of A is contained in T3. Since in T3 only {1,2,6,7,8,9} does not contain
11, we have that a7 = 11. Moreover, if the triangulation of A contained in
T was To

A , then A\{11}= {1,2,6,7,8,9} and A = {1,2,6,7,8,9,11}; this
case is easily discarded, so we assume Te

A ⊂ T .
Since 9 is in every simplex of T3, 9 is in A and equals ai for an odd i.

Thus, a5 = 9 and a6 = 10. With similar arguments one can prove that 7 is in
A and 7 = ai for an odd i, so a3 = 7 and a4 = 8. Thus, the simplex A\{a2} ∈
T e

A ⊂ T contains {7,8,9,10,11}, which implies A\{a2}= {1,7,8,9,10,11}
and a1 = 1. This is impossible because then A\{a6} contains {1,7,8,9,11},
which is not contained in any simplex of T3.

• For part (ii), if A does not contain 6 then one of the two triangulations
T e

A or To
A of A is contained in the following twelve simplices, which are

those in T and not containing 6. They are the six simplices in T6, together
with three from T3 and three from T9:

{{1,2,3,4,5,11},{1,2,3,9,10,11},{1,2,7,8,9,11},{1,3,4,5,10,11},
{1,3,4,5,7,8},{1,3,4,5,8,9},{1,3,4,5,9,10},{1,7,8,9,10,11},
{2,3,7,8,9,11},{3,4,5,7,8,9},{3,4,7,8,9,11},{4,5,7,8,9,11}}.
The four simplices in the last row are the only ones not containing 1,

but they all contain the consecutive three elements 7, 8 and 9, and they
cannot contain a triangulation of a circuit. Thus, a1 = 1 and if To

A ⊂ T
then {7,8,9} ⊂ A. The same argument on the four simplices which do not
contain 11 proves that a7 = 11 and that Te

A ⊂ T , since To
A ⊂ T would imply

that {1,3,4,5,7,8,9,11}⊂ A. Now, Te
A ⊂ T implies that T e

A is contained in
the set of simplices of T which contain both 1 and 11, which are:

{{1,2,3,4,5,11},{1,2,3,9,10,11},{1,2,7,8,9,11},
{1,3,4,5,10,11},{1,7,8,9,10,11}}.
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Only the two in the second row do not contain 2, so we should have a2 = 2
and one of those two simplices equal A\a2 ∈ T e

A . But this is impossible
because A\2 must contain both 3 and 9, by part (i).

• For part (iii) we will prove that A contains at least two vertices among
1, 2, 4 and 5. With this, symmetry proves the same thing for 7, 8, 10 and 11
and then the fact that A contains 3, 6 and 9 proves the statement.

Since every simplex of T contains at least one of 1, 2, 4 and 5, A contains
at least one of them too. If A contains only one of them, then a triangulation
of A is contained in the following list of eleven simplices, which are those in
T and containing only one of {1,2,4,5}: The six simplices in T+ together
with three simplices from T3 and two from T6:

{{1,3,6,9,10,11},{1,6,7,9,10,11},{1,7,8,9,10,11},
{2,3,6,7,9,11},{2,3,6,7,8,9},{2,3,7,8,9,11},
{3,4,6,9,10,11},{3,4,6,7,9,11},{3,4,7,8,9,11},
{3,5,6,7,8,9},{5,6,7,8,9,11}}.

We have displayed them so that the four rows correspond, respectively, to
simplices using 1, 2, 4 and 5. If A contains only one of 1, 2, 4 or 5, then the
triangulation of A must be contained in one of the rows. This is clearly not
the case.

• For part (iv), the statement on 1, 2, 4 and 5 will follow from part (iii)
and the fact that A cannot contain exactly one of 1 and 2 and one of 4
and 5, which we now prove. The statement on 7, 8, 10 and 11 follows by
symmetry.

If A contains exactly one of 1 and 2 and one of 4 and 5, then a1 ∈ {1,2},
a2 = 3, a3 ∈ {4,5}, a4 = 6. We have To

A ⊂ T , since Te
A �⊂ T would imply

that A\{3} is in T3 and contains one of {1,2} and one of {4,5} but no
such simplex exists. In particular, A\{a1} ∈ T and A\{a3} ∈ T . Both must
contain 3, 6, 9 and only one of {1,2,4,5}, so they are in T+. More precisely,
we must have

A\{a3} ∈ {{2,3,6,7,9,11},{1,3,6,9,10,11},{2,3,6,7,8,9}}
A\{a1} ∈ {{3,4,6,7,9,11},{3,4,6,9,10,11},{3,5,6,7,8,9}}.

This gives three possibilities for A\{a1,a3} and A, namely:

A\{a1,a3}= {3,6,7,9,11}, A = {2,3,4,6,7,9,11},
A\{a1,a3}= {3,6,9,10,11}, A = {1,3,4,6,9,10,11},
A\{a1,a3}= {3,6,7,8,9}, A = {2,3,5,6,7,8,9}

In no case is To
A ⊂ T , so the proof is complete.
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