Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

Takustral3e 7
D-14195 Berlin-Dahlem
Germany

RALF KORNHUBER

Monotone Iterations for Elliptic
Variational Inequalities

Preprint SC 98-10 (March 1998)



MONOTONE ITERATIONS FOR ELLIPTIC VARIATIONAL
INEQUALITIES

RALF KORNHUBER

ABSTRACT. A wide range of free boundary problems occurring in engineering
and industry can be rewritten as a minimization problem for a strictly convex,
piecewise smooth but non—differentiable energy functional. The fast solution of
related discretized problems is a very delicate question, because usual Newton
techniques cannot be applied. We propose a new approach based on convex
minimization and constrained Newton type linearization. While convex min-
imization provides global convergence of the overall iteration, the subsequent
constrained Newton type linearization is intended to accelerate the conver-
gence speed. We present a general convergence theory and discuss several
applications.

1. INTRODUCTION
We consider the minimization problem
(L.1) uj €850 J(uy) +9(uy) < T) +¢;(v)  VweES;

on a finite dimensional space S;. The discrete problem (1.1) is typically resulting
from the discretization of a related continuous analogue. The functional 7,

(1.2) J () = 3a(v,v) — L(v),
is induced by a continuous, symmetric and positive definite bilinear form a(-, -) and
by a linear functional £. S; is equipped with the energy norm || - || = a(-,-)'/2.

The functional ¢; : §; — R U {+oo} is convex, lower semicontinuous and proper,
ie. ¢j(v) > —oo and

ICJ' = {U S 8J| (bj(v) < +OO} 7é 0.

It is well-known that (1.1) then admits a unique solution u; € S;.

Minimization problems of the form (1.1) with piecewise smooth nonlinearity ¢;
arise in a large number of practical applications [3, 6, 8, 9, 11, 19]. As a con-
sequence, there is a considerable interest in fast solvers motivating a variety of
solution concepts [1, 2, 10, 13].

Algorithms from convex minimization, such as nonlinear Gauf3-Seidel relaxation
or steepest descent type methods, typically rely on local information about the
objective function J 4+ ¢;. This usually leads to rapidly deteriorating convergence
rates when proceeding to larger spaces S; or, equivalently, to more refined grids.
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Because the energy J + ¢; is not differentiable, classical Newton multigrid meth-
ods [12] cannot be applied without preceding regularization. Unfortunately, rea-
sonable convergence speed may then have to be paid by unacceptable discretization
errors and vice versa.

Extending recent monotone multigrid methods [14, 15, 16], we propose a new
approach to the fast solution of (1.1). Monotone iterations are two-stage methods
consisting of a globally convergent descent method and a subsequent constrained
Newton linearization. The first substep is intended to fix the discrete free boundary,
i.e. to deal with the non-smoothness of the problem, while the second substep is
intended to increase the convergence speed once the discrete free boundary is (more
or less) known. Note that this combination also has the flavor of an active set
method. Monotonically decreasing energy is crucial for the global convergence of
the overall iteration.

2. MONOTONE ITERATIONS
Assume that M; : §; — S; satisfies

T (M (w)) + ¢;(M;(w)) < oo
(2.1) Yw € S;,
T M;(w)) + ¢;(M;(w)) < T (w) + ¢;(w)

where
(2.2) T (M;(w)) + ¢(M;(w)) = T (w) + ¢j(w) & w = u;.
In addition, we require that
(2.3)
i sup (7 (M5 () + 65 (M () < T (M (Jim ) + 65(M; ( Jim w")

holds for each convergent sequence (w”),>0 C K;.

We shall see that the above conditions are sufficient for global convergence of the
iteration uJ” =M J(u;’) However, the convergence speed may be unacceptable
low. As a possible remedy, we introduce slightly more general monotone iterations

uf = M;(uy)
(2.4)

it = C(ay)

where the additional substep C; is intended to accelerate the convergence speed.
Note that classical multigrid methods for selfadjoint linear problems can be inter-
preted in a similar way. Adopting multigrid terminology, M; is called fine grid
smoother, u¥ is the smoothed iterate and C; is called coarse grid correction.

J
We are now ready to state our basic convergence theorem.

Theorem 2.1. Let ¢; be upper semicontinuous (and therefore continuous) on K;.
Assume that the smoother M; satisfies conditions (2.1) - (2.3) and that the coarse
grid correction C; has the monotonicity property

(2.5) J(Cj(w)) + ¢;(Cj(w)) < T (w) + ¢j(w)  Vw e S;.

Then the monotone iteration (2.4) is globally convergent.



Proof. For notational convenience, we introduce the abbreviation J = J + ¢;. Let
us first show that the sequence of iterates (uY),>o is bounded. As ¢; is convex,
lower semicontinuous and proper, there are constants ¢, C' € R, such that

oi(v) > c|lv|| +C Yv € §;
(cf. e.g. [7]). As a consequence, we have
(2.6) J@) = glvll* + (e = €Dl + € Vv eS;,
so that ||v|| — oo implies J(v) — oo. Hence, (uf)y>0 must be bounded, because
Jw)) <J@)<oo  Vv>1

follows from (2.1) and (2.5).

Now, let u;’“, k > 0, be an arbitrary, convergent subsequence of u with the limit
u* € Sj,

. Vi ok

(2.7) klggouj =u.
Such a subsequence exists, because uY is bounded and §; has finite dimension. Note
that u* € K;, because (uj*)r>1 C U; == {v € S} J () < J(uj)} C Kj and the
sublevel set U; is closed. We now want to prove uj = u;. In the light of (2.2), it is
sufficient to show

(2.8) T (M;(u*)) = T (u”).
Observe that (2.1) and (2.5) imply
T < J) < TMy ) < T ().
In virtue of the continuity of 7 on K;, this leads to
Tim 7 (M () = F(u).

Now the equality (2.8) is an immediate consequence of conditions (2.1) and (2.3).
As (uj”-k)kzo was an arbitrary convergent subsequence, the whole sequence uy
must converge to u;. This completes the proof. O
Note that ¢; is known to be upper semicontinuous on /C; provided that K; is
locally simplicial [18].
As a by-product, we also get the convergence of the smoothed iterates
(2.9) lim @

[ g— .
koo =Y

We emphasize that the coarse grid correction alone does not need to be convergent.
This gives considerable flexibility in constructing C;.

3. FINE GRID SMOOTHER

All descent methods from convex minimization are natural candidates for the
fine grid smoother M.

ExaMPLE 3.1 (Nodal type nonlinearity)

Let S; be the space of linear finite elements with respect to a triangulation 7; of
a bounded polygonal domain 2. The set of vertices of all triangles t € 7; is called
Nj, n; = #Nj; and

A= (Ag@,...,xgzgj)



denotes the nodal basis of S, ordered in a suitable way. Now assume that ¢; can
be written as

(3.1) $i(v) = Y By(v(p)) hy

PEN;

with convex, lower semicontinuous and proper functions ®, : R — R U {400} and
weights h, € R. Then ¢; is convex, lower semicontinuous, proper, and continuous
on K; = {v e §j|v(p) € dom ®,,p € N}

The nonlinear Gauf-Seidel relaxation MJGS (cf. e.g. [10, 16]) for the iterative
solution of (1.1) reads as follows. Starting with a given iterate wy := u} € S;, we
compute local corrections vy € V; := span{)\g)
v € Vi: j(waI + vly) + Oy, (u;(pl) + vly(pl))hpz

< T(wig +v) + Py, (U;(pl) +v(Pi)hps Vv €V,

} from the n; local subproblems

(3.2)

setting wy = wy_, + v}, I =1,...,n;. Finally, we define ./\/les(u;’) =w
It is not difficult to show that MJGS satisfies conditions (2.1) - (2.3).

If the nonlinearity ¢; does not have the form (3.1), then nonlinear Gaufl-Seidel
relaxation is no longer applicable, because (2.2) may be violated. In this case, other
descent algorithms, such as bundle methods, should be used (cf. e.g. [13]).

4. COARSE GRID CORRECTION

In most practical applications the functional ¢; is piecewise smooth. Then, for
given @7 = Mju}, we can find a closed convex subset lCﬂx; C S; and a smooth
functional (bﬁ? : §; = R, such that

iy € Kay
pay (w) = ¢;(w) + const. Vw € Kay.

Roughly speaking, all w € Kgz» must have the same phases as uy.
Let us consider the constrained minimization of the smooth energy J + ¢a;f

(4.1) uj € Kay o J(u}) + day (uf) < T (v) + dar(v) Vv € Kav.

As a consequence of (2.9), we get dist(u;, Kzv) — 0 as v — oco. Hence, the solutions
uj of (4.1) tend to u;. Moreover, there is some hope that u; € ICEJV, holds for
v > vy with vy sufficiently large (see example 4.1 below). In this case, we even get
uj = u; Yv > vg. As a consequence, a monotone iteration (2.4) with coarse grid
correction defined by C;(u}) = u} would produce the exact solution after a finite
number of steps.

Of course, we cannot expect to solve (4.1) exactly. The main advantage of (4.1)
is that Newton type linearization can be applied to the smooth energy J + <bﬁju,.

More precisely, we approximate J + (;51;3( by the quadratic energy functional ‘7173-"

Tay (w) = gagy (w,w) — Loy (w) & T (w) + ¢ay (w) + const., w € Kay,
where the bilinear form

(4.2) agy (w,w) = a(w, w) + qbgz_, (a5)(w, w)



and the linear functional
o (w) = Cw) — @ () (1) + 6 (a8 (i )
are obtained by Taylor’s expansion
Pay (w) & pay (W) + ¢y (W) (w — W) + 565 (@7)(w — af,w — @).
The resulting linearized constrained problem
(4.3) wi € Ky o Jar(w)) < Jav(v) Vo € Kay

can be regarded as a generalization of classical Newton linearization in case of
smooth functionals ¢;. Indeed, if ¢; is twice differentiable on S;, we can take
Kay = S; and (4.3) becomes a linear system.

Let w; be an approximate solution of (4.3). Then, we define

(44) ’U,;»/Jrl = Cj (’U,J”) = ﬂ;/ + W(’Lbj — ’U,J”),

where the damping parameter w has to be chosen such that the monotonicity (2.5)
holds. Here, we refer to well-known affine invariant damping strategies [4, 5].

If the exact solution w; = w} of (4.3) is inserted in (4.4) and u; € Kgy holds
for all v > 1, then we can expect that the resulting monotone iteration (2.4) is
converging quadratically for v > vg. In practise, an approximation w; = MG(u¥)
of w} is obtained by one step of a suitable iterative scheme MG. Here, multigrid
typically comes into play. As for classical Newton multigrid methods we can expect
that the convergence rates of MG asymptotically, i.e. for large v, dominate the
convergence speed of the overall monotone iteration (2.4). Hence, (asymptotically)
fast solvers for (4.3) should produce (asymptotically) fast monotone iterations.

ExaMPLE 4.1 (Nodal type nonlinearity)

Let 7; be resulting from j refinements of an intentionally coarse triangulation 7o
of a bounded polygonal domain 2. In this way, we obtain a sequence of triangula-
tions 7o, ..., 7; and corresponding nested spaces So C --- C S; of piecewise linear
finite element functions. We assume for convenience that the triangulations are
uniformly refined. Collecting all nodal basis functions from all refinement levels,
we obtain the multilevel nodal basis Ags,

As = (A AL D A0,

> Py ? YPng

with ms = n;+---+ng elements. As usual, the ordering A; := )\Z(,]f’), l=1,...,ms,
is taken from fine to coarse. Now assume, for example, that ¢; is given by (3.1)
with

D,(2) =272 V220, Bp(z)=+0c0 V2<0 VpeN;.
Then we can choose

Kay = {v € 8| 3u4(p) < v(p) ¥p € N (@}), v(p) = 0¥p € N7 ()},

where we have set

N7 (@) ={p e Nj| uf(p) =0},  Nj(uf) =N; \ N} (@)

For the approximate solution of the linearized constrained problem (4.3) we can use
the multilevel relaxation MG defined as follows. Starting with a given smoothed



iterate wy = uf € K; = {v € ;| v(p) > 0 Vp € N;}, we compute local corrections
vy € Vi :=span{\;} from the mg local subproblems

(4.5) v € VinKay : Tay (wi_y +v]) < Tar (wi_y +v) Yo € ViNKay,

setting w;' = wy_ ; + vy, I = 1,...,ms. Finally, we define w; = MG(u}) := wy,
In the linear self-adjoint case, i.e. for Kay = S; or, equivalently, for smooth ;s thls
is just the classical multigrid method with canonical restrictions and prolongations
and GauB-Seidel smoother. In practise, the local subproblems (4.5) are modified a
bit in order to allow an implementation with optimal order of complexity [14, 16, 17].
In some cases, it may be more appropriate to use local damping parameters w;
associated with each local correction v} instead of the global parameter w in the
correction step (4.4) [17]. Monotone iterations (2.4) involving such variants of
multilevel relaxation are called monotone multigrid methods.

If our original problem (1.1) is non-degenerate and nonlinear Gauf-Seidel relax-
ation MJGS is used as fine grid smoother (cf. example 3.1), then it can be shown
that u; € ’Ca; holds for sufficiently large v. Moreover, the linearized constrained
problem (4.3) asymptotically, i.e. for large v, reduces to the linear problem

(4.6) wi €S Ay (W, v) = Ly, (v) Vv e S;
on the reduced space
S; ={v e Sj|lv(p) =0Vp € N (uy)}.

Multilevel relaxations automatically reduce to linear multigrid methods for (4.6)
with multigrid convergence rates. Hence, we get asymptotic multigrid convergence
rates for the resulting monotone multigrid methods. In our numerical experiments,
we observed that the asymptotic behavior starts almost immediately, if nested it-
eration is used [17].

ExAMPLE 4.2 (Gradient type nonlinearity)
Let S; and 7; be defined as in the preceding example. Assume that ¢; is given

by
= Z [Vou(t)| he

teT;
with |- | denoting the Euclidean norm and suitable weights h;. Then we can choose
Kay = {v e §j] %|Vﬂ;’(t)| < |Vo(t)| vt € TP (uY), Vo(t) =0Vt € T (u})},
where we have set
77 (@f) ={t € Tj| Vaj(t) =0}, T7(ug) = T; \ T} (a5).
Assume the fine grid smoother M, has properties (2.1) - (2.3) and additionally
guarantees u; € Kgv for sufﬁ(:lently large v. Then, similar to in the previous
example, (4.3) abymptotlcally reduces to the linear problem (4.6) with reduced
space S5 now given by
S; ={v eS| Vo(t) =0Vt e T (uy)}-
Again, multilevel relaxations for (4.3) asymptotically reduce to linear multigrid
methods for this problem.

The actual construction of a fine grid smoother M; with the desired properties
is the subject of current research.
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