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Abstract. The world has experienced two hundred years of unprecedented advances in vehicle tech-
nology, transport system development, and traffic network extension. Technical progress continues
but seems to have reached some limits. Congestion, pollution, and increasing costs have created, in
some parts of the world, a climate of hostility against transportation technology. Mobility, however,
is still increasing. What can be done?

There is no panacea. Interdisciplinary cooperation is necessary, and we are going to argue in this paper
that Mathematics can contribute significantly to the solution of some of the problems. We propose to
employ methods developed in the Theory of Optimization to make better use of resources and existing
technology. One way of optimization is better planning. We will point out that Discrete Mathematics
provides a suitable framework for planning decisions within transportation systems. The mathematical
approach leads to a better understanding of problems. Precise and quantitative models, and advanced
mathematical tools allow for provable and reproducible conclusions. Modern computing equipment
is suited to put such methods into practice.

At present, mathematical methods contribute, in particular, to the solution of various problems of
operational planning. We report about encouraging results achieved so far.
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1 Around the World in 80 Days (Introduction)

Jules Verne’s famous novel “Around the World in 80 Days” describes a journey around the globe in
the year 1872. It all starts with Phileas Fogg’s bet that one can do the trip in at most 80 days. To prove
his claim and win the bet, he sets out for his journey. Fogg makes use of the most advanced long range
transportation facilities of his time: Hot air ballons, intercontinental railways, and steam driven ocean
liners. Despite some unexpected elephant riding and other more traditional ways of locomotion, he
manages to arrive back at his starting point in London in time.

Verne’s story provides a good impression of the high efficiency that the transportation systems had
achieved by 1872. “The world has grown smaller, since a man can now go round it ten times more
quickly than a hundred years ago.”, writes Verne. Now, 125 years later, we could do his trip another
forty times (!) more quickly. What would he say about that?

1This work was supported by the Senate of Berlin’s Department for Science, Research, and Culture (Telebus project,
grant N1) and the German Federal Ministry of Education, Science, Research, and Technology (Vehicle Scheduling in Public
Transit, grant 03-GR7ZIB-7).
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The transportation systems of today are the result of only 200 years of development, governed by two
main forces, namely, progress in vehicle technology (“faster”) and traffic network extensions (“more”).

The starting point for the development of modern vehicle technologies is the invention of the steam
engine by Watt in 1769. Only two decades later, the first steam driven locomotives and ships allowed
the transportation of passengers and goods in hitherto unknown quantity and speed. The construction
of the automobile by Benz and others in the eighteen-eighties and its mass production by Ford from
1913 on, Siemens & Halske’s electric train of 1879, and the first flight with a heavier-than-air plane
by the Wright brothers in 1903 mark a few milestones in a dynamic process that continues until today
and has widely surpassed even Jules Verne’s wildest technological extrapolations.

Each vehicle technology requires an appropriate network. Several backbones of such networks date
also back to Verne’s times. Melodious names for the first intercontinental railways such as the “Orient
Express” from Paris to Istanbul, the “Golden Flyer” from London to Paris, or the famous “Union
Pacific” and the “Western Pacific” railroads in the US show that these lines were clearly conceived as
the beginnings of the global transportation networks of today. A climax of these developments was
reached in the nineteen-sixties when mobility, in particular by cars, was equated with freedom.

But gradually problems arose: Road traffic started to suffer from congestion, residents complained
about noise, pollution, and other environmental problems. Railways and other public transportation
facilities were perceived as uncomfortable and tedious to use, while operation costs exploded. To
resolve this crisis, the first reaction was to apply the successful recipes of the past. Faster cars and
trains, emission reduction, and other technical measures, combined with network extensions, helped.
However, it became visible that the benefits from technological progress and from additional invest-
ments in traffic networks are limited. It is, for instance, unacceptable to cover half of the world with
transportation facilities.

If mobility and, thus, transportation demand is still rising, what else can be done? Changing “the rules
of the market” by legislation to impose artificial restrictions or higher costs on mobility? Perhaps this
can help, too. But whatever measure is taken, one action is certain: We have to make better use of
our resources, i.e., we must optimize our transportation systems. One way to do this is to improve
the design and the operation of transportation systems by better planning. And it seems that there are
large unused potentials for optimization, because planning standards in the transportation sector are
often rather low.

“As long as the available transportation infrastructure is not used in the most effective way, in-
vestments in its better utilization and in the reduction of congestion are more profitable than the
construction of new facilities. ����� In general, we must improve the cost-benefit ratio, i.e., we must
handle necessary transportation with less energy, less time, less costs, and with fewer negative effects
on health and on the environment.”

J. Rüttgers, German Minister for Science, Education, Research, Technology, Rüttgers [1997].

Many transportation companies, for instance, still use manual planning and heuristic ad hoc meth-
ods. This is certainly due to the monopolistic market structures of the past which have not provided
incentives for better planning. Note the sharp contrast to competitive sectors such as, e. g., industrial
engineering, where no company can survive without employing computer simulation, numerical opti-
mization, and computer aided design (CAD)! How many people have ever heard of CAS — computer
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aided scheduling? The last international conference on this topic, the CASPT’97 in Boston, had fewer
than 150 participants, and half of them were from academia!

The planning problems that come up in transportation systems range from basic questions (e.g., long
term traffic forecast), over strategic issues of system design and extension (e.g., decisions to build new
subways, to construct new roads, or to buy a new fleet of busses), to operational problems (such as
bus timetabling or vehicle and crew scheduling in public transport). It is evident that such a multitude
of complex problems of quite different nature requires the development of a toolbox of specialized
planning methods. The danger in such a situation is that only simple ad hoc trial-and-error approaches
are developed and no conceptual planning framework that provides a language to precisely state the
problems and yields tools for their solution.

The aim of this paper is to propose Mathematics, in particular Discrete Mathematics and the Theory of
Optimization, as such a framework. We will point out how the mathematical approach leads to a bet-
ter understanding of transportation systems, how abstraction allows the unified treatment of different
problems with general mathematical methodology and powerful algorithms, and how modern comput-
ing technology puts this approach into planning practice. We survey areas where today’s optimization
techniques can make a contribution and report about encouraging results that have been achieved. Our
vision is that, in the future, models of discrete mathematics play a similar role in the design and op-
eration of transportation systems as differential equations today in engineering. Phrasing our view in
buzzwords: Transportation is a combination of vehicle and network technology, economics, computer
science, and mathematical optimization. And we feel that the last two components have not received
due attention yet.

Our belief in the significance of mathematics for transportation and mobility may appear ambitious or
even provocative. Jules Verne thought the following about that:

“But, in order not to exceed it [the deadline], you must jump mathematically from the trains
upon the steamers, and from the steamers to the trains again.”

“I will jump — mathematically.”
“You are joking.”
“A true Englishman doesn’t joke when he is talking about so serious a thing.”

P. Fogg, British Gentleman, Verne [1873].

2 Transportation and Mathematics

In ancient Greece, the oracle of Delphi was famous for its capability to produce a true answer to
any question put forth to it. The oracle was also known for exorbitant prices and for the notorious
evasiveness of its answers. It was, thus, extremely important to ask “the right question”. Mathematics
is not the Delphic oracle of today. It does also give correct answers, but it is not evasive and not
expensive. There is, however, an important parallel: The usefulness of mathematics for transportation
planning depends on the identification of suitable optimization problems.

Mathematics itself does not contribute to this very important task of problem identification. This is
usually performed by engineers, social scientists, economists, administrators, and experienced practi-
tioners. They have analyzed and structured the area of transportation and have defined the planning
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problems. The mathematical treatment of such problems is based on this structuring. Mathematics
can provide no more and no less than a tool for the solution of well defined questions.

“In the modern world, decisions must be made more and more quickly, and decision side effects must
be understood in advance. Availability of high performance computing has caused common use of
computers as decision aids (spreadsheets); huge progress in computational optimization; and a rich
infrastructure of simulation models. ����� My thesis is that the basic notion of a spreadsheet can be
modified in fundamental ways by using optimization research to produce new tools required by a
wide range of the most complex decisions.”

J. Dennis, Plenary Address at the XVIth Int. Symp. on Math. Programming, Dennis [1997].

We will now provide a closer look at what can and what can’t be structured in such a way that mathe-
matical methods are applicable.

The Global View. From a very abstract point of view, transportation is caused by demands to move
something between locations, say, from an origin to a destination. The demands fall into different (not
always clearly distinguishable) categories: Transportation of persons or goods, slow or fast, regional
or interregional, periodically or spontaneous, etc. Transportation systems are developed to satisfy
these demands.

It would be perfect to know all such demands (precisely or approximately) for a foreseeable future.
Then one could “globally” develop and plan transportation systems that satisfy these requirements at
lowest possible total cost. However, the world is not perfect, and thus there is no “world transportation
problem” that could be addressed, neither with mathematical nor with other methods.

The Market View. It is much better to look at markets where transportation systems have or are being
developed in order to satisfy certain categories of demand. In this model, each supplier of transporta-
tion looks individually at “his” market segment (e.g., airlines at long range traffic) and forecasts the
relevant demand by estimating so-called origin-destination matrices (O/D matrices) which describe
the amount of transportation demand between locations (within certain demand-specific time inter-
vals). Such forecasts are difficult to make on a long-term basis since they have to take local and global
trends into account, e.g., the migration into big cities in the third world and out of the big cities in
industrialized countries, the increased transportation volume by innovations such as just-in-time pro-
duction, etc. Nevertheless, O/D matrices are estimated wherever quantitative methods have entered
the decision process. Mathematics can help to some extent to improve the forecasting process and
correctly interpret the estimated and computed data.

Markets work by the interplay between supply and demand and there is, in particular, competition be-
tween technical systems. For instance, ocean liners were completely replaced by passenger airplanes
within two decades because of clear superiority of air traffic. But the transportation markets are not
“free” since the state (or supranational units like the European Union) interferes and regulates in many
ways: The state may support a new transportation system within a certain market, e.g., to promote a
new technology and create jobs, as with the controversial installation of the magnetic levitation train
between Berlin and Hamburg. The state may regulate by law, e.g., to counter negative effects such as
pollution by requiring the use of catalytic converters, or the state may regulate by giving only a lim-
ited number of licenses as for air traffic operations. The state may create almost monopolistic markets,
often operated by a state-owned agency, as is frequently done for national railway systems or public
transportation within regions. On the other hand, the state may also create markets by building, e.g.,
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roads that can be used by all cars, busses, and trucks. This economic market view is a reasonable ap-
proach to make the acting forces — supply, demand, the state — visible. But nontrivial mathematics
can’t contribute much to the solution of the non-quantifyable political, social, and economic decisions
that come up at this high level.

Strategic and Operational Planning of Transportation Systems. Planning the design and operating
existing transportation systems, such as airlines, railroads, or public transportation systems, is the area
where mathematics enters the picture substantially. Let us consider one example, the planning process
for the public transportation system of a city. Two phases must be distinguished: A strategic and an
operational planning phase.

Based on O/D data on the expected traffic demand between a number of representative points in a city,
strategic decisions determine the amount of transportation that a city is willing or capable to offer to
its residents. The construction of new subway lines, the placement of depots, and the procurement of
new vehicles are issues of strategic planning. Various combinations of statistics, stochastic analysis,
stochastic optimization, and scenario analysis can significantly improve this important planning phase.
However, such quantitative techniques are rarely applied at present.

The subsequent task of operative planning step is to provide a maximum of service or a certain level of
service at minimum cost with those resources that have been allocated in the strategic phase. Operative
planning is commonly organized in a sequential process. The first step is line planning, followed by
vehicle scheduling. The vehicle schedule gives rise to a set of tasks to operate the individual vehicles
that are next scheduled into duties in the duty (or crew) scheduling step. Finally, the crews are assigned
to the duties in a subsequent crew rostering phase. Some coordination among the different units of
public transportation is provided by a planning hierarchy that simply first schedules the subways, then
the trams and the busses last. Subway timetabling, in turn, often takes railroad timetables as input
which provides some coordination with the “neighboring” railway planning process. The problems
arising in operational planning almost always come along with massive data and give rise to very
challenging optimization tasks: A heaven for mathematical research and a rich source for cost savings.

3 The Rule Approach

The questions of strategic and operative planning in the area of transportation have inspired the de-
velopment of a large number of problem specific solution methods. Many of these methods can be
viewed as approaches of rule oriented planning.

Rule planning aims at the definition of a clear decision process. The idea is to organize the process as
a sequence of elementary steps at some (refinable) level of detail. This results in planning instructions
that could read as follows: “First we do a). If the result is b), we do c), otherwise, we do d). Then
...” Such a procedure amounts to a sequence of applications of rules, hence the name. A computer
scientist would say that rule oriented planning is nothing else than the specification of a (rather simple)
algorithm and its subsequent application.

An advantage of the rule approach for the planner is that he can always justify his results as a correct
outcome of the scheme. Hence, it is difficult to criticize his achievement. This situation is typical for
bureaucratic organizations that act process- and not goal-oriented.

If the rules are specified at a sufficient level of detail, the results become also independent of the plan-
ning person. They are reproducible and, as is currently done in many branches of the transportation
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sector, often also mechanizable, i.e., one can encode the rules in a computer program. Verifyability,
reproducibility, and, where large amounts of data are concerned, mechanizability are important char-
acteristics of a convincing planning method that have contributed to the long lasting popularity of the
rule approach. Many public transportation companies in Germany, for instance, use rule planning to
set up their timetables, schedule the vehicles and duties, and to dispatch crews.

The rule approach becomes less convincing when one looks at planning as a way to reach goals.
Rule planning processes are, of course, designed with an eye on goals, but there is neither a good
justification for the individual steps nor for the overall organization of the procedure. From this
perspective, a rule oriented decision process is just a heuristic, i.e., a method that produces some
solution but not necessarily (or even provably) one that achieves the overall objective.

4 The Mathematical Approach

The military logistics of the US armed forces had become a stronghold of the rule approach during
World War II. Pentagon planners used to organize their decisions in terms of so-called ground rules
that could be iteratively refined until a particular plan was produced. One of these planners was the
young mathematician George Dantzig. In 1946, he had just graduated and become a Mathematical
Advisor to the US Air Force Comptroller in the Pentagon, where he tried to “mechanize” the planning
of a time-staged deployment, training, and logistical supply program. He describes the situation that
he found as follows (see Dantzig [1991]):

“This was the situation before I formulated a model. In place of an explicit goal or objective function,
there were a large number of ad hoc ground rules issued by those in authority to guide the selec-
tion. Without such rules, there would have been, in most cases, an astronomical number of feasible
solutions to choose from.”

Dantzig soon became unhappy with the ground rules because:

“ ����� objectives were often confused with the ground rules for the solution. Ask a military commander
what the goal is and he will say, “The goal is to win the war.” Upon being pressed to be more explicit,
a Navy man will say, “The way to win the war is to build battleships,” or if he is an Air Force general,
he will say, “The way to win is to build a great fleet of bombers.” Thus the means to attain the objective
becomes an objective in itself, which in turn spawns new ground rules as to how to go about attaining
the means such as how to best go about building bombers or battleships. These means in turn become
confused with goals, etc., down the line.”

When Dantzig “decided that the ad hoc ground rules had to be discarded and replaced by an explicit
objective function” he had done the first step toward a new mathematical method of planning that
would soon revolutionize not only Pentagon logistics — Linear Programming. And Dantzig was not
alone. John von Neumann’s Game Theory, Wassily Leontieff’s 1933 Input-Output Model of the Econ-
omy, and Leonid Kantorovich’s monograph on Mathematical Methods of Organizing and Planning of
Production of 1939 (the last two scientists received the Nobel Price in economics for their work) were
other fundamental contributions in a brand new line of research that aimed at establishing mathemati-
cal methods as tools for decision support in transportation, production, economics, and in many other
areas.
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“Perhaps it might be desirable to present my own view as to what I obtained in the pre-War years.

(i) I indicated a wide class of practical problems of management leading to the same mathemati-
cal extremal problem. �����

(ii) I found necessary and sufficient conditions for a solution of this mathematical problem to be
optimal. �����

(iii) On the base of the above mentioned necessary and sufficient conditions I constructed (finite)
methods of solution (called the method of resolving multipliers) which are on a par, in ef-
fectiveness and generality, with subsequently developed methods; for example, the simplex
method.

(iv) I clarified to some extent the economic meaning of the resolving multipliers ����� ”

L. Kantorovich, 1975 Nobel Laureate for Economics, Romanovsky [1989].

What is the power of this approach? We see three sources: Modelling, abstraction, and computation!

� Modelling. Stating the planning problem in mathematical terms often provides valuable new
insights. It forces the planner to explicitly name all quantities and their relations and to single
out those that are important. Only these should enter the model. Mathematical models are
unambiguous, they can be communicated easily, and they are quantitative.

� Abstraction. Mathematics looks at the general. It aims at unifying problems that look, at first
sight, quite different within one and the same “appropriately selected” mathematical theory.
This makes it possible to utilize already existing results of this theory or to exploit results
developed for one of these problems for the solution of the other ones. The ad hoc approaches
to the individual problems can be replaced by a common framework, and a better understanding
of the particularities of problems can be achieved.

� Computation. Only the quantitative model of a practical problem can provide the basis for the
application of solution algorithms. An algorithm is a (in general somewhat sophisticated) sys-
tem of instructions to perform computations. Successful algorithms are based on mathematical
insight.

Let us discuss some of these points. The starting point of the mathematical approach is what one
calls a mathematical model of a problem. The model is based on the idea of a “space” of feasible
solutions, i.e., a mathematical representation of all possible results of the planning process. The space
typically used is the real vector space

� n of dimension n depending on the problem characteristics.
As the feasible solutions are not known a priori, they are described implicitly by means of so-called
constraints. A typical constraint is a linear inequality of the form a1x1 � a2x2 � ����� � anxn � b, where
b and ai, i � 1 � ����� � n are given (real) values and the xi are variables that we seek to determine. The
constraints describe conditions that every feasible solution has to meet and, conversely, anything that
satisfies all constraints is considered perfectly legal, i.e., a feasible solution. A clear distinction has to
be made between the constraints and the objective that measures the desirability of a feasible solution.
The objective is just a single number that is associated to every solution; costs, time, or combinations
of these are, for instance, possible objectives. The key point of this simple concept is that it gives rise
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Figure 1: A Directed Graph.

to a ranking of all feasible solutions and there is, in particular, one (or several) best feasible solution
of the model. Solving the problem means then to find such a best solution.

We give a trivial, but fundamental example of a simple transportation problem. Consider the directed
graph depicted in Figure 1. The nodes of the digraph are labeled 1,2,3,4; we denote the arcs by

�
i � j � .

Suppose every arc
�
i � j � carries the cost value ci j as shown in Figure 1. Suppose that some commodity

has to be transported from 1 to 4, i.e., the problem is to find a cheapest directed path from 1 to 4. This
basic question is known as the shortest path problem.

We want to formulate this problems in terms of an integer, or more precisely, a 0/1 programming
model, one of the models used in discrete optimization. To this purpose, we associate with each
arc
�
i � j � a variable denoted by xi j and stipulate that this variable may attain only two values, namely

0 or 1; xi j � 1 means that the path uses arc
�
i � j � , xi j � 0 means that the path avoids

�
i � j � . This way

we get six so-called 0/1 variables. Now a directed path from 1 to 4 consists of a sequence of arcs with
one arc leaving node 1, arc

�
1 � 2 � or arc

�
1 � 3 � , and one arc entering node 4. The directed path need

not enter nodes 2 or 3, but if it does, it also has to leave the nodes. One can mathematically formulate
these observations by writing down the following linear equations

x12 � x13 � 1 (leave 1)
x24 � x34 � 1 (enter 4)

x12 � x23 � x24 � x32 � 0 (leave = enter 2)
x13 � x23 � x32 � x34 � 0 (leave = enter 3)

and by stipulating, in addition, the already mentioned condition

xi j ��� 0 � 1 � for all arcs
�
i � j � �

A feasible solution of this 0/1 program is, for instance, x13 � x32 � x24 � 1 and x12 � x23 � x34 � 0.
It corresponds to the path 1 � 3 � 2 � 4 and, bringing the objective into play, has cost 23. The
cheapest path clearly is 1 � 2 � 3 � 4 and has cost 12. But there are other solutions, too. In fact,
every directed path from 1 to 4 yields a feasible 0/1 solution of the equation system above. Is it also
true that all solutions of the above 0/1 program correspond to paths from 1 to 4, i.e., is the 0/1 program
a correct integer programming model of the shortest path problem? Not entirely, because not all 0/1
solutions are directed paths. E.g., x12 � x23 � x24 � x32 � 1 and x13 � x34 � 0 is a feasible solution, but
it consists of the directed path 1 � 2 � 4 and the cycle 2 � 3 � 2! Do we have to add inequalities and
equations to eliminate such unwanted solutions? It depends! For instance, if all costs c i j are positive
then a moment’s thought shows that a minimum cost solution will never contain a (superfluous) cycle
such as 2 � 3 � 2. Thus, we don’t have to care. But if negative costs are possible we have to come
up with additional constraints to get rid of these unwanted cycles.
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This type of modelling is versatile. Shortest path problems, for instance, often have “additional side
constraints”, such as restrictions on the maximum path length. In our example we could require that no
path contains more than two arcs. It is easy to incorporate this side constraint by adding the inequality

x12 � x13 � x23 � x24 � x32 � x34 � 2

to the model. Now the cheapest of such “short” paths is 1 � 3 � 4 with cost 13. Other conditions
can be handled just in the same way and this means that integer programming is a general framework
with which many transportation problems with all their variants can be modelled and attacked.

“If I were asked to summarize my early and perhaps my most important contributions to linear
programming, I would say they are three:

(i) Recognizing (as a result of my wartime years as a practical program planner) that most prac-
tical planning relations could be reformulated as a system of linear inequalities.

(ii) Replacing ground rules for selecting good plans by general objective functions. (Ground rules
at best are only a means for carrying out the objective, not the objective itself.)

(iii) Inventing the simplex method which transformed the rather unsophisticated linear-
programming approach to economic theory into a basic tool for practical planning of large
complex systems.”

G. Dantzig, Inventor of the Simplex Method, Dantzig [1991].

For real world transportation problems, it is in general not easy to find the right level of detail. The
modelling process needs the experience and know-how of practitioners and the familiarity of mathe-
maticians with alternative ways of formulating goals, rules, and requirements. Which parameters have
to be taken into account? In what way do they interact? What decisions are allowed, what “should
not” be done, and what are clearly infeasible actions? What are the goals that we want to reach and
what do we do in case of conflicts? How do we decide in case of ambiguities and how do we compare
different alternatives actions?

Unfortunately, there is no automatic modelling process that takes care of these considerations. The
general concepts of the Theories of Optimization and Discrete Mathematics offer tools to formulate
many of the tasks arising in transportation planning. They provide algorithmic frameworks that can,
at least in principle, be applied. It is, however, still necessary to come up with a problem specific
solution technique for each individual task. Nevertheless, the research done in the recent years has
shown that some standard combinatorial optimization problems such as set partitioning (see Box 1)
or multicommodity flow (see Box 2) arise frequently and can be used in many different settings.

Finding a good model is only a first step. Algorithms for their solution are what we are really looking
for. It is beyond the scope of this article to give a survey of mathematical optimization methods, but
we mention some of the most important concepts. Tools from linear programming such as the primal
simplex method, invented by George Dantzig in 1947, the dual simplex method, and various inte-
rior point methods form the computational core. These algorithms are combined with cutting plane
methods, which are based on theoretical results in polyhedral combinatorics, and branch-and-bound
techniques to yield branch-and-cut algorithms. These are currently the most powerful methods for
the exact solution of combinatorial optimization problems. If exact solution is out of reach, heuristics

9



of all kinds are employed together with dual bounding procedures such as Lagrangean relaxation and
subgradient algorithms. For introductions to mathematical methodologies we suggest the textbook
of Chvátal [1980] for linear programming, Schrijver [1986] for integer programming, Ahuja, Mag-
nanti & Orlin [1993] for network optimization, the annotated bibliography of Dell’Amico, Maffioli
& Martello [1997] for combinatorial optimization, and Nemhauser, Rinnooy Kan & Todd [1989] for
optimization in general.

All the developments sketched above would not help without sufficient computing power. Fortunately,
the mathematical solution approach benefits considerably from the enormous progress in computing
technology in the recent years.

5 The Present and Future of Transport Optimization

In this section, we sketch a few areas where mathematical optimization techniques have success-
fully been applied to problems in transportation. For further and more detailed information on ap-
plications in transportation, we refer the reader to the CASPT proceedings Daduna & Wren [1988],
Desrochers & Rousseau [1992], and Daduna, Branco & Paixão [1995], while the series Burkard,
Ibaraki & Queyranne [1995, 1997], and Burkard, Ibaraki & Pulleyblank [1998] as well as the collec-
tion Hoffmann, Jäger, Lohmann & Schunck [1997] (in German) discuss, more generally, topics on the
use of mathematics in industrial systems. Actual installations of mathematical optimization systems
in the transportation sector are not so frequent. This is somewhat surprising. But there are reasons.

In the past, many areas of transportation have been protected by monopolistic structures. (Typical
examples are national railways or local public transportation systems.) Incentives for optimization
were little. Consequently there was only low interest in the development of mathematical tools to
aid in the decision process. But this situation has changed. In Europe, e.g., the deregulation of the
transportation sector by the Maastricht II treaty has or will put the transportation companies under
serious competition. Similar developments take place elsewhere.

A second point is of mathematical nature. Most transportation problems arising in practice are really
large. Hundreds of thousands of constraints and millions of variables are not uncommon. Problems of
such dimensions were simply out of reach until very recently. Mathematical advances and advances in
computing machinery, however, have changed the picture. Now it is possible to attack transportation
problems of sizes that were beyond imagination just a decade ago, see, e.g., Box 2. Thus, we are
at the point in time to put the approach described here into practice. Decision support based on
mathematical models can make a difference!

It is impossible to provide here a complete survey of the successful applications of mathematics
to transportation. We mention a few (representative) examples where the operational planning was
greatly improved by the use of mathematical optimization techniques.

� Airline Industry. This is probably the most competitive sector in transportation — due to early
deregulation. Operations Research and Optimization have a long history in this area; mathe-
matical decision support techniques have been continuously employed and extended over the
last 30 years. Leading companies use optimization techniques for daily, weekly, and monthly
planning such as fleet assignment, crew scheduling, and crew rostering. Many airlines have
created divisions or subsidiary companies to provide the necessary mathematical knowledge,
consulting capacity, software tools, and computing machinery, see the box on page 13.
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Vehicle Scheduling in Handicapped People’s
Transport belongs to a class of transporta-
tion problems that involve complicated planning
rules. The handicapped customers of a dial-a-
ride system have to be transported with a fleet of
mini-busses that are rented on demand. Labour
regulations for bus drivers, vehicle renting con-
tracts, and the special service needs of the hand-
icapped give rise to a set of complex restrictions
on the feasibility of possible vehicle tours. The
objective is to service all requests at minimal
costs.

Figure 2: A Telebus Picks up a Customer.

Problems of this type can be attacked with a set
partitioning approach. The idea is to enumerate
in a first step all possibilities to schedule tours for
individual vehicles and to determine the optimal
combination of these tours in a second step.

1 2

3 4
5 6 7

8 9
10 11

12

I

II III

IV V
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IV concatenation
V continued

concatenation

Figure 3: Constructing Vehicle Tours.

The construction of tours for individual vehi-
cles leads to the consideration of shortest paths
in space-time graphs that satisfy additional con-
straints. The problem to construct a best vehicle
schedule from these tours can be formulated as
an integer program:

min
n

∑
j � 1

c jx j (1)

subject to

n

∑
j � 1

ai jx j
� 1 � for all i � 1 ��������� m (2)

x
�

0 and integral � (3)

Each column j of this program corresponds to
one out of n possible vehicle tours, each row to
one out of m requests. ai j is 1 if tour j services
request i and 0 else. Equations (7) state that each
request is serviced by exactly one tour, and the
objective (6) accounts for the sum of the tour
costs c j.
Dial-a-ride problems arising at Berlin’s Telebus
service for handicapped people involve 2,000 and
more requests per day and hundreds of thou-
sands of vehicle tours. For problems of this size
and complexity, the use of mathematical schedul-
ing techniques can result in impressive benefits:
Berlin’s Telebus can, e.g., transport today about
30% more requests at the same cost as in 1992,
while simultaneously the quality of the service
(punctuality, transportation time, etc.) could be
improved drastically.
These results do not only carry over to other
demand responsive transportation systems, set
partitioning methods apply also to general vehi-
cle routing problems, and to all kinds of crew
scheduling and rostering problems, such as, e.g.,
duty scheduling for bus drivers.

Box 1: Vehicle Scheduling in Handicapped People’s Transport, Borndörfer [1998].

Two articles describing the mathematical treatment of the whole chain of strategic and oper-
ational planning are Bachem, Monien, Prömel, Schrader & Voigt [1996] and Bachem et al.
[1997]; a recent collection of articles on the use of operations research in the airline industry is
Yu [1998]; particular issues are discussed in Hoffman & Padberg [1993] and in Barnhart et al.
[1994].
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Vehicle Scheduling in Public Transit is the task
to service a set of given timetabled trips (defined
by lines and their service frequencies) to carry
passengers. The primary objective is to find a
minimal fleet solution, which aims at minimiz-
ing fixed costs for the vehicle fleet. Subordinate,
one is also interested in minimizing operational
costs among all minimal fleet solutions.
We use a multicommodity flow formulation as
the underlying mathematical model. The figure
below displays a small multicommodity flow net-
work defined by a two depot instance (’r’ and ’g’)
with five timetabled trips (’a’ to ’d’). While the
nodes in this network are defined by the depots
and timetabled trips, the arcs are given by the
possible links, called unloaded trips, without pas-
sengers.

g

r

a

b

c

d

e

Figure 4: Multicommodity Flow Model.

Let D denote the set of depots, T denote the set
of timetabled trips, Ad denote the set of arcs for
each depot d, and κd denote the capacity of de-
pot d. We introduce a 0/1 variable xd

i j for each arc�
i � j � and each depot d. xd

i j indicates whether the
unloaded trip

�
i � j � is run by a vehicle of depot d

(in this case xd
i j � 1) or not (xd

i j � 0).

The integer linear programming formulation of
this vehicle scheduling problem is

min ∑
d

� D
∑�

i � j � �
Ad

cd
i j xd

i j (1)

subject to

∑
d

� D
∑�
t � j �

xd
t j

� 1 � for all t � T � (2)

∑
d

� D
∑�
t � j �

xd
t j � ∑

d
� D

∑�
i � t �

xd
it

� 0 �

for all t � T � for all d � D � (3)

∑�
d � j �

xd
d j � κd for all d � D � (4)

x
�

0 and integral � (5)

The “two stage objective” is formulated by (1),
the condition that each timetabled trip must be
serviced exactly once is given by (2), the con-
dition that each vehicle must return to its depot
is implied by (3), and depot capacities are con-
trolled by (4).
Large-scale instances from practice define prob-
lems with more than 125,000 side constraints of
type (2) and (3) and up to 70 million 0/1 vari-
ables. Nonetheless, these problems can be solved
to proven optimality (or close to optimality) with
mathematical optimization.
The possible savings using such optimization
tools are immense. Compared with a manual
planning process, tests with real world data in-
dicate savings of about 20 % of the vehicle fleet
and about 14 % of the operational costs. For in-
stance, the Berliner Verkehrsbetriebe (BVG) ex-
pects to save about DM 100 million per year em-
ploying mathematical optimization software, see
Schmidt [1997].

Box 2: Multiple Depot Vehicle Scheduling in Public Transit, Löbel [1998].

� Rail Transport. The use of mathematical methodology in this subsector is, at present, not as
widespread as in air traffic; many railroad companies have only recently observed the potential
of mathematical decision support. (E.g., in 1994 the Ferrovie dello Stato SpA of Italy was the
first railway company in Europe to run a competition — the FASTER contest — for the best
solution of particular “set covering” crew scheduling problems to find a partner for future col-
laboration.) From the mathematical side, the planning process has been analyzed; models for
the various stages exist; codes for several subproblems ranging from line planning, timetabling,
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rolling stock and crew scheduling are under development, see, e.g., Bussieck, Winter & Zim-
mermann [1997] and Caprara, Fischetti, Toth, Vigo & Guida [1997] for surveys. These recent
articles contain pointers to the relevant literature.

“The idea that Delta [Airlines] would even attempt to develop a Coldstart fleet assignment model
— that is, start with a raw schedule without any fleetings wedded to it, run it through an
L[inear]P[rogram] and fleet it — was greeted with skepticism by the rest of the airline industry.
The general consensus was that it couldn’t be done. Delta proved them wrong.

Coldstart was successfully implemented and remains fully operational. Scheff [Coldstart project
leader at Delta Decision Technologies] estimates the new system saved the airline between $50.000
and $100.000 a day during the initial start-up period in September and October of 1992. While most
of the identifiable savings occurred up front, the system continues to pay significant dividends as the
schedule is fine-tuned over time.”

P. Horner, Editor of OR/MS Today, Horner [1995].

� Public Transport. Interest in the optimization of the operational planning has existed, world
wide, for more than twenty years. This is, e.g., documented by a series of international con-
ferences on this topic. The last three proceedings of these CASPT meetings Daduna & Wren
[1988], Desrochers & Rousseau [1992], and Daduna, Branco & Paixão [1995] provide a good
overview on the state-of-the-art. Several software companies offer products to support stages
of or even the overall planning process. Parts of this software are still “rule based”, heuristic,
or just a graphical aid for manual planning. Due to significant algorithmic advances, see, e.g.,
Boxes 1 and 2, optimization strongly enters the area and uncovers further potentials for savings
and service improvements.

� Vehicle Routing. This is a classical area for optimization that includes, e.g., the famous travel-
ling salesman problem, see Lawler, Lenstra, Rinnooy Kan & Shmoys [1985] and Jünger, Reinelt
& Rinaldi [1997] for surveys. But vehicle routing problems rarely come up in this “pure” ver-
sion in practice. Many legal and technical side constraints lead to a great variety of similar
looking, but, in fact, quite different routing problems that have to be attacked with tailor-made
solution methods. For instance, there is a special literature on street sweeping, garbage collec-
tion, or postal delivery problems. Surveys on vehicle routing give Laporte [1997] and Bachem,
Hamacher, Moll & Raspel [1997]. We should mention here also some closely related problems
such as the sizing of vehicle fleets, see Desrosiers, Sauvé & Soumis [1988], and the location
of vehicle service facilities or distribution centers, see Labbé & Louveaux [1997]. A further
problem type that is currently coming more into focus are online (rolling horizon) optimization
problems where, for instance, the planning can’t start from a “standard” state (e.g., all trucks
are parked at a central location at night) but where dispatching decisions for vehicles and crews
have to be made as soon as new tasks arrive. New theory (stochastic optimization) is being
developed to mathematically cope with such situations of high uncertainty, see, e.g., Cheung &
Powell [1996] and Powell, Jaillet & Odoni [1995].

� Traffic Control. An important problem in road traffic is to manage the flow of vehicles such
that congestion is small and vehicles are not forced to make big detours. Recently several ways
to model the flow on highways and within cities have been proposed. These are based on cellular
automata or analogies to fluid dynamics. Simulation tools exist with which the validity of these
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models and their assumptions is tested, see Rickert, Nagel, Schreckenberg & Latour [1998] and
Krauß [1998]. These models are able to predict congestions based on measured traffic data and
try to reroute parts of the traffic to improve the overall flow. These investigations are still in an
early stage and transfer into practice is only experimental yet.

The interested reader may have noticed that, except for our own applications described in Boxes 1 and
2, we did not mention magnitudes of potential savings. The articles cited above (and almost all others)
usually contain the mathematical models used, descriptions of the algorithms designed, details about
implementations, and reports about computational performance — but it is difficult to find quantitative
statements about the cost savings achieved. The reason for this is simply that the industrial project
partners do not want such data to become public. (Our partners, see Boxes 1 and 2, hesitated as well!)
Occasionally, savings are reported in the press when reporters or (shareholders) insist on precise
information. This, in fact, was the case in Schmidt [1997]. On the other had, the article Thurston
[1994] on furloughing further 101 pilots due to better scheduling (after having grounded 448 pilots in
the preceding fifteen months) by Delta Airlines was obviously used by the company to exert pressure
on the Air Line Pilots Association (ALPA) that was negotiating for pay raises.

“In laymen’s terms, [the new system] allows us to schedule more efficiently. It reduces sit-time, or
nonproductive pilot time. The consequence is a surplus of pilots.”

H. Alger, Delta Airlines Executive Vice President-Operations, Thurston [1994].

We did also not address “more traditional” engineering optimization tasks such as the design of air-
plane wings, the body of a ship, vehicles with low air resistance, energy efficient motors, etc. The use
of mathematical models, optimization, and numerical simulation in these areas is well established.

The near future will see further progress in our capabilities to solve operative and other aspects of
transportation. In the long run, research aims at integrated approaches, combining, e.g., vehicle
scheduling with duty scheduling, etc. Competition will drive these methods and algorithms into in-
dustrial practice.
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Desrosiers, Sauvé & Soumis (1988). Lagrangian relaxation methods for solving the minimum fleet

size multiple traveling salesman problem. Mgmt. Sci. 34, 1005–1022.
Hoffman & Padberg (1993). Solving Airline Crew-Scheduling Problems by Branch-And-Cut. Mgmt.

Sci. 39, 657–682.
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