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Abstract

Three different approaches for the determination of conservation
laws of differential equations are presented. For three corresponding
REDUCE computer algebra programs CONLAW1/2/3 the necessary sub-
routines are described. One of them simplifies general solutions of
overdetermined PDE systems so that all remaining free functions and
constants correspond to independent conservation laws. It determines
redundant functions and constants in differential expressions and is
equally useful for the determination of symmetries or the fixing of
gauge freedom in differential expressions.
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1 Introduction

The determination of conservation laws (CLs) for single or systems of partial
differential equations (PDEs) and of first integrals for ordinary differential
equations (ODEs) is of interest for the exact solution of these DEs, for their
understanding, classification and for supporting their numerical solution. In
this paper we outline three computer algebra programs for the computation of
CLs and explain in more detail subroutines to fix gauge freedom in differential
expressions which in this context is used to extract individual CLs from the
general solution of CL-determining equations.

In the following we adopt the notation of the book of Olver [5]. Inde-
pendent variables will be denoted by x = (x1, x2, . . . , xp). The differential
equations are Δ(x, u(n)) = 0 (i.e. Δ1 = 0, . . . ,Δq = 0), for q functions
u = (u1, u2, . . . , uq), u(n) denoting u-derivatives of order up to n. The con-
servation law that is to be fulfilled by solutions of Δ = 0 is DivP = 0 with
conserved current P = (P 1, . . . , P p). We will use J as a multiple index de-
noting partial derivatives, for example, uα

J will stand for an arbitrary partial
derivative, like ∂kuα/(∂x1∂x2 . . .).

If the differential equations Δ = 0 result from a variational principle then
any Lie-symmetry of Δ = 0 provides a conservation law as is known from
Noether’s Theorem. Instead, we will not make any restrictive assumptions
which leaves us to solve DivP = 0 either directly or to determine character-
istic functions of conservation laws or to do both at once. A comparison of
these different approaches with respect to their complexity, and an extension
to find non-local conservation laws and applications to PDEs with param-
eters will be described elsewhere [9]; here we concentrate on the computer
algebra aspects.

2 The mathematical problem and the three

approaches

In this section we describe three ways to formulate determining conditions
for conservation laws.

The first and most direct approach is to solve

DivP = 0 (1)

modulo Δ = 0 directly. The corresponding program is CONLAW1. The com-
ponents of the conserved current P 1, . . . , P p that are to be calculated are
functions of all independent variables xi, the dependent variables uα and
their derivatives uα

J up to some order.
Because we are not interested in trivial CLs P = curl V but in CLs that

solutions of Δ = 0 obey, we use Δ = 0 to eliminate some of the so-called
jet-variables uα

J and substitute them in the determining conditions (1). By
that, the conditions (1) have to be fulfilled identically in less variables, they
become less restrictive and they may have additional solutions apart from
P = curl V . These extra non-trivial CLs are the ones of interest. We
therefore assume Δ = 0 can be solved for leading derivatives uα

J so that they
and all their partial derivatives that occur in (1) can be substituted. We also,
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w.l.o.g., assume that the P do not depend on u derivatives we substitute,
which fixes a kind of equivalence of CLs.

Other approaches calculate characteristic functions Qν . A theorem can
be proven ([5], p. 272) that for a totally non-degenerate system Δν = 0, each
equivalence class of CLs DivP = 0 (i.e. conserved currents differing only by
a curl) is determined uniquely by characteristic functions Qν satisfying

DivP =
∑
ν

QνΔν (2)

identically in all xi, uα, uα
J . Equ. (2) is not solved by simply eliminating Q1

in terms of P and Δ and other Qν as it would be singular for solutions of
Δ = 0. To avoid this and because the Qν are unique only modulo Δ = 0,
we w.l.o.g. ignore dependencies of Qν on leading u-derivatives in Δ = 0 and
any of their derivatives. A way to calculate the Qν is to use the property of
the Euler operators Eν =

∑
J(−D)J∂/∂(u

ν
J ) which acting on an expression

gives identically zero iff this expression is a divergence. The D are total
derivatives. Applying this operator on (2) and using Δν = 0 one obtains as
determining conditions for the Qν :

0 =
∑
μ,J

(−D)J

(
Qμ ∂Δμ

∂(uν
J)

)
∀ν. (3)

The second and third approach are to solve identically in xi, uα, u
α
J either (3)

for Qν or (2) for P i, Qν . The corresponding programs are CONLAW2 for (3)
and CONLAW3 for (2).

The three approaches (1)-(3) differ in the number of equations to be solved
or their order or the number of functions to be determined or the number
of independent jet-variables or the degree of an ansatz for P,Q in order to
obtain the same conservation law.

To obtain solutions of (1)-(3) we assume bounds on the order of u-
derivatives on which the P i and Qν may depend. For (1) we assume a
bound for P 1 and for (2),(3) we assume a bound for Qν . Bounds for the
remaining unknown functions follow. Differentiations done in all three con-
ditions (1)-(3) introduce jet-variables (u-derivatives) on which the P i resp.
Qν do not depend so that overdetermined conditions result in which there is
no unknown function P i, Qν of all jet-variables uα

J in which the conditions
have to be satisfied identically. The resulting overdetermined PDE-systems
are investigated with the computer algebra package CRACK.

3 The computer algebra problem

The main computer algebra problem is to solve the overdetermined conditions
(1)-(3). Steps undertaken include the separation, integration, application of
integrability conditions (differential Gröbner Basis), solution of ODEs and
other steps which are described in [7],[8].

If the overdetermined system is linear ((1)-(3) are linear in P i, Qν) and
not too big - we give an example below for what is currently possible - then
CRACK will solve the system either completely or partially and return unsolved
equations e.g. return the heat equation when investigating conservation laws
of the Burgers equation.
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In the general solution of the CL condition(s) a CL is extracted by collect
ing all terms involving one of the arbitrary constants or arbitrary functions
in the solution. If some of them were redundant then CLs extracted would
not be independent of each other.

Redundant constants and functions may result because in the process of
solving the overdetermined system there is no general rule for what should
have a higher priority, integrations or the application of integrability condi-
tions, as there are examples requiring a higher priority for each of them. It
therefore may happen that two equations are integrated which are not inde-
pendent of each other and therefore the constants or functions of integration
are not independent of each other. As a consequence the final general solu-
tion could have redundant arbitrary constants and functions. For example, in
the expression c1(x)t+c2xt+c3 with independent variables x, t and arbitrary
function c1(x) and arbitrary constants c2, c3 the constant c2 is redundant as
it can be absorbed by c1(x) through c1(x) → c1(x)− c2x.

Recognizing redundancy can become cumbersome in the case of many
independent variables or if arbitrary constants/functions appear non-linearly.

Another application of redundancy recognition is the solution of PDE
systems with some gauge freedom where the problem is to eliminate any
gauge freedom from the general solution of this system. This can be accom-
plished by including in the solution terms representing the complete gauge
freedom. For example, in the case of conditions (1) the general solution could
be augmented by curl V and V be added to the list of free constants and
functions. In this way trivial CLs could be filtered out as the free constants
and functions corresponding to them would be redundant to V .

Although in the case of computing CLs, one easily could drop trivial CLs
after they have been computed by checking DivP = 0 identically in all jet-
variables, such a simple test to eliminate gauge might not be available for
other problems.

4 Subroutines

In the following subsections we describe subroutines which extract CLs from
the general solution of conditions (1)-(3), subroutines that compute Qν from
P i and P i from Qν and subroutines that simplify P i.

4.1 Identifying redundant constants and functions

The problem of finding the general solution of a PDE system with some
existing gauge freedom fixed can be reduced to the problem of finding the
general solution of a PDE system without fixing gauge in the following way.

Given a system of DEs 0 = Ω(fa, x
i) to be solved for the functions fa(x

i),
we assume

fb = Fb(x
i, gc) (4)

to be a general solution where Fb are differential expressions in xi, gc where
gc are arbitrary constants and functions. They may include functions from
the original set fa and constants and functions of integration.

The question is to specify the gc to fix any redundancy but not to lose
generality of the solution. The steps are:
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Formulate a set of conditions

0 = Fb(x
i, gc)− Fb(x

i, ḡc) (5)

where ḡc are new functions, each ḡc having the same variable depen-
dence as gc. Regard equ. (5) as a system of equations for the set of
unknown functions {gc, ḡc}, to be satisfied identically in the xi.

• Find the general solution of the system (5) as

g̃c = Gc(x
i, hd) (6)

where g̃c is a subset of {ga, ḡb}, and Gc are algebraic or differential
expressions in functions hd which are the remaining {ga, ḡb} and extra
constants and functions of integration. The hd are arbitrary. Any
function ga or ḡa appears only once on a left-hand-side (lhs) of (6) or
only on right-hand-sides (rhs’s).

• If for any index c both, gc and ḡc appear only on rhs’s of (6) then gc is
redundant and can be set to zero in all Fb in (4) and all Gc in (6).

• If for any index c both, gc and ḡc appear only on lhs’s of (6) in the
equations gc = Gc and ḡc = Ḡc then these two equations are replaced
by ḡc = gc −Gc + Ḡc in (6).

• If for any index c, gc appears on a lhs of (6) and ḡc appears only on rhs’s
then the equation with lhs gc is solved for ḡc in terms of gc and other
functions and replaced by the new equation ḡc = Ḡc(gc, . . .). With this
new equation ḡc is substituted on any rhs of (6).

• There remains only the case of ḡc being on the lhs of an equation and
gc being on rhs’s such that the system (6) now has the form

ḡc = Ḡc(x
i, ga, h̄b) (7)

where h̄b are arbitrary constants and functions of integration which
arose during the solution of (5). ḡc do not occur on rhs’s as they would
be redundant and would have been set to zero otherwise.

• Finally, free constants and functions h̄b on rhs’s will be chosen to make
as many Ḡc as possible zero and to set the redundant gc to zero in (4)
and (7). As we do not have to know h̄b explicitly, it is enough to find
equations in (7) which include an arbitrary function h̄b of all variables
xi in this equation. Assuming local solvability of 0 = Ḡc for h̄b we
conclude redundancy of gc.

• All remaining h̄b which cannot be used to make a rhs zero are set
to zero themselves and the final form of (7) ḡc = Ḡc(x

i, ga) provides
substitutions which turn Fb(x

i, ḡc) into the gauge fixed final solution
fb = Fb(x

i, gc).

Two comments:
Although the solvability of (5) for ga, ḡb and the solvability of 0 = gc −

Gc(x
i, ḡc, . . .) for ḡc cannot be guaranteed, this should in practice not be a

problem for the following reasons.
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Usually there is no arbitrary function ga, gb depending on all (jet )
variables of (5) such that (5) is very overdetermined and therefore easy
to solve.

• If the equ.s 0 = Ω are linear in fa then their solution is linear in the
arbitrary functions gc which is the case for the computation of CLs 1.

• If equ.s 0 = Ω are non-linear in fa then solving (5) should still be
simpler than the solution of 0 = Ω which we assume was possible to
derive.

• Equ.s (5) have the special solution ḡc = gc, ∀c.
The above steps for fixing gauge freedom are not only applicable once a

general solution of a PDE(-system) 0 = Ω(fa, x
i) has already been found.

For example, the computation of conservation laws for the Burgers equa-
tion below returns the heat equation which remains unsolved. In order to
find redundancies in constants and functions which turn up in a preliminary
solution fb = Fb(x

i, gc) and which additionally have to satisfy remaining dif-
ferential equations 0 = D(xi, gc), one can extend redundancy conditions (5)
by 0 = D(xi, gc) − D(xi, ḡc). These conditions are sufficient but not neces-
sary as only equivalence of 0 = D(xi, gc) and 0 = D(xi, ḡc) is required, not
equality.

The possibility to fix at least some gauge freedom even in the presence
of yet unsolved equations opens the possibility to run a gauge-fixing step
during the process of solving overdetermined PDE-systems. By that the
number of unknown functions could be reduced and the remaining equations
be simplified.

4.2 Computing characteristic functions from
conserved currents

The first approach (1) is attractive compared with (2),(3) as it generates only
one PDE to be solved which is of first order and involves less jet-variables
than approach (2) because it is computed modulo Δ = 0. Also, it has less
functions to compute than approach (2). A negative aspect is that it provides
only the conserved current P and not the characteristic functions Q.

If expressions QνJ in a relation (8) below are known then partial in-
tegrations (9) yield the characteristic functions Qν and the corresponding
conserved current P − R:

DivP = 0 mod Δν = 0 ↔
∃QνJ : DivP =

∑
ν,J

QνJΔ(J)
ν (identically in all x, uα

J) (8)

=
∑
ν,J

DJ(Q
νJΔν)−DJ(Q

νJ)Δν (repeatedly) (9)

= DivR +
∑
ν

QνΔν

�Conditions become non-linear if we want to calculate parameter values such that CLs
exist.
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Equation (8) cannot be regarded as a linear algebraic equation to determine
QνJ as there is the additional requirement that the QνJ are non-singular
for solutions of Δ = 0. Instead, DivP is calculated and substitutions of
a different form than before are made. For example, if CLs for the Harry
Dym equation 0 = Δ = ut − u3uxxx are investigated and if for the derivation
of (1) there had been done substitutions ut = u3uxxx, utx = (u3uxxx)x, . . .
before then now the substitutions would be ut = Δ + u3uxxx, utx = Δx +
(u3uxxx)x, . . . which provide the rhs of (8). The computation of Qν and
P i −Ri from P i is part of CONLAW1.

4.3 Computing conserved currents from

characteristic functions

The inverse computation is necessary in CONLAW2 where the conserved current
P i has to be computed from Qμ by integrating DivP =

∑
ν Q

νΔν .
A direct way is based on a formula given by Anco & Bluman in [1]:

P i =
∫ 1

0

dλ

λ

(
Si(u) +N i

μ(u)u
μ +N ij

μ (u)Dju
μ + . . .

)
|u→λu (10)

Si(u) = Qν ∂Δν

∂uμ
i

uμ +Qν ∂Δν

∂uμ
ij

uμ
j −

(
Qν ∂Δν

∂uμ
ij

)
j

uμ + . . . (11)

N i
μ(u) =

∂Qν

∂uμ
i

Δν −
(
∂Qν

∂uμ
ij

Δν

)
j

+

(
∂Qν

∂uμ
ijk

Δν

)
jk

− . . . (12)

N ij
μ (u) =

∂Qν

∂uμ
ij

Δν −
(
∂Qν

∂uμ
ijk

Δν

)
k

+

(
∂Qν

∂uμ
ijkl

Δν

)
kl

− . . . (13)

where summation is done over double indices in each term.
A slightly more compact formulation (and way to compute P i) is

V = QνΔν ,

W i(u) =
∂V

∂uμ
i

uμ +

∂V

∂uμ
ij

uμ
j −

(
∂V

∂uμ
ij

)
j

uμ +

∂V

∂uμ
ijk

uμ
jk −

(
∂V

∂uμ
ijk

)
j

uμ
k +

(
∂V

∂uμ
ijk

)
jk

uμ +

...

P i =
∫ 1

0

dλ

λ
W i(u)|u→λu

Although being an elegant formula there may be problems in computing the
integral analytically. More seriously, the integral may be singular for λ = 0, 1.
That is the case, for example, for the non-polynomial characteristic functions
of the Harry-Dym equations in the next section. Although in some cases it
might help do take P i =

∫ 1 dλ
λ
W i|u→λu this need not always be the case.

A backup procedure if the above method fails is to use the integration
module of CRACK to x1-integrate

∑
ν Q

νΔν , to x2-integrate the remaining
unintegrated terms and so on. In case, terms remain after the last xp-
integration, the process is restarted on the remaining terms until all terms
are integrated or at most a fixed number of times.
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4.4 The simplification of P in two variables

After deleting trivial CLs and identifying equivalent CLs through the com-
putation of characteristic functions Q it remains to simplify the conserved
current P through the addition of some curl: P → P + curlV . This is done
if there are only two independent variables, say x1, x2. The aim is to lower
the order of x2-derivatives in P 1 through changes P 1 → P 1 − D2R, P 2 →
P 2 + D1R. R is found by repeated partial integration of terms in P 1 with
highest x2-derivatives of u. For that, partial integration routines of CRACK are
used which are limited in applicability to expressions at most polynomially
non-linear in u and derivatives of u.

5 Examples

Computation times refer to a 24 MB REDUCE 3.6 session under LINUX on
a 133 MHz Pentium PC with the Jan. 1998 version of CRACK.

Example 1:
The advantage of using the package CRACK for solving determining equations
is that they can be PDEs and do not have to be restricted to algebraic equa-
tions for coefficients of a polynomial ansatz for the CL. By that it is possible
to find non-polynomial CLs and CLs that have an explicit xi dependence.
An example is the Harry Dym equation

Δ = ut − u3uxxx, u = u(t, x)

which was used below to substitute ut and derivatives of ut. These calcula-
tions were done with CONLAW1.
P t of order 0: time to formulate (1): 0.32 sec, to solve (1): 1.34 sec, CLs:

2u−2 ·Δ = Dt(−2u−1) + Dx(u
2
x − 2uuxx)

2u−3 ·Δ = Dt(−u−2) + Dx(−2uxx)

2xu−3 ·Δ = Dt(−xu−2) + Dx(2ux − 2xuxx)

2x2u−3 ·Δ = Dt(−x2u−2) + Dx(4xux − 2x2uxx − 4u)

P t of order 1: time to formulate (1): 0.32 sec, to solve (1): 2.6 sec, CLs:

(2uuxx − u 2
x )u

−2 ·Δ =

Dt(−u 2
x u−1) +Dx((2utux − u 2

xxu
3 + uxxu

2
x u

2 − u 4
x u/4)u

−1)

P t of order 2: time to formulate (1): 0.7 sec, to solve (1): 158 sec, CL:

(−8uxxxxu
3 − 16uxxxuxu

2 − 12u 2
xxu

2 + 12uxxu
2
x u− 3u 4

x )u−2 ·Δ =

Dt((−4u 2
xxu

2 − 3uxxu
5
x tu− u 4

x )u
−1)+

Dx((8utxuxxu
2 + 3utxu

5
x tu− 8utuxxxu

2 − 8utuxxuxu+ 4utu
3
x +

4u 2
xxxu

5 + 4u 3
xxu

4 − 6u 2
xxu

2
x u

3 + 3uxxu
4
x u2)u−1)

Example 2:
The Burgers equation in the form

Δ = ut − uxx − 1

2
u 2
x = 0, u = u(t, x) (14)
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is an example for the case that the determining equations cannot be solved
completely. It has zeroth order CLs

feu/2Δ = Dt(2fe
u/2) +Dx(e

u/2(2fx − fux)) (15)

with f = f(t, x) satisfying the linear reverse heat equation 0 = ft+fxx. This
CL is also an example that CONLAW allows the computation of CLs with non-
rational terms which is not possible with approaches based on a polynomial
ansatz. A remaining linear PDE and the occurrence of free functions in the
CL indicates linearizability of Δ = 0 which is the case with the Burgers
equation.

Example 3:
The MVDNLS equations (Modified Vector Derivative Nonlinear Schrödinger
equations) describe oblique propagation of magnetohydrodynamic waves in
warm plasmas [6]. For functions u = u(t, x), v = v(t, x) and b = const. they
are

Δ1 = ut + [u(u2 + v2) + bu − vx]x (16)

Δ2 = vt + [v(u2 + v2) + ux]x. (17)

Both equations have the form of CLs. Using the abbreviations (introduced
by hand afterwards)

E = −vx + u(u2 + v2)

F = ux + v(u2 + v2 − b)

G = 2uxx + 6vx(u
2 + v2)− 3u(u2 + v2)2 − 2bu3

H = 2vxx − 6ux(u
2 + v2)− 3v(u2 + v2)2 + 2bv3

I = b(u4 − v4) + (u2 + v2)3 − 2u2
x − 2v2x

and using equ.s (16), (17) to substitute for ut, vt, further CLs calculated by
CONLAW2/3 have the characteristics {Q1, Q2} :

{u, v}, {E, F}, {G,H}, (18)

{(bt−2x)E−2tG+ b(bt−x)u+v, (bt−2x)F −2tH+ b(bt−x)v−u}, (19)

{−Hx + 2uvH + (b+ 2u2)G+ uI, Gx + 2uvG+ 2v2H + vI}. (20)

CONLAW2 can compute one more CL with Q1, Q2 of 4’th order and 36 terms
each. Run times are listed in table 1.

Apart from (19) these CLs are given in [6] where also a bi-Hamiltonian
structure is provided. Although from the resulting recursion operator, an
infinite sequence of conserved densities can be calculated, the CL (19) is not
contained in that sequence and is new - it has an explicit t, x-dependence.

In the scope of CONLAW1 to find CLs with P 1 of order 1 are CLs (18),(19)
and if equations (16),(17) are used to substitute uxx, vxx then also (20) is
included. Such a run of CONLAW1 returns a differential Gröbner Basis of 2
equations for one function in 3 variables and 2 equations for one function in
2 variables, which could not be solved completely because one of the ODEs
is a second order ODE that could not be solved automatically.
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order of P t for CONLAW1, order of Q for CONLAW2/3
CONLAW 0 1 2 3 4

t1 t2 t1 t2 t1 t2 t1 t2 t1 t2
1 0.15 2.9 0.15 1977

2 1.7 2.0 2.7 16 4.5 194 8.5 722 17 2784

3 0.17 4.5 0.18 11.7 0.3 28.5 0.6 377 1.9 low memory

Table 1: Run times t1 to formulate and t2 to solve determining conditions of
CLs of the MVDNLS equations

6 Comparison of the three methods

The determining equations (1)-(3) differ in the number of functions, number
of variables and their order.

For example, for the MVDNLS equations (16),(17) the condition (1) for
CLs with P 1 of order 2 and the conditions (2),(3) for CLs with Qμ of order
3 have the following characteristics:

(1): 1 condition in 12 variables (t, x, u, v, ux, vx,. . ., u4x, v4x), 2 of which
occur only explicitly (u4x, v4x), with 55 terms linear in functions P t of 8 vari-
ables (t, x, u, v, ux, vx, uxx, vxx) and P x of 10 variables (t, x, u, v,. . ., uxxx, vxxx)
and their 1st order derivatives. The unsymmetry in the dependencies of
P t, P x at the beginning of CONLAW1 is necessary because of the unsymmetry
in using (16), (17) to substitute a first order t-derivative of u by a second
order x-derivative.

(2): 1 condition in 22 variables (t, x, u, v, . . . , u(3), v(3)), 6 of which occur
only explicitly (2nd order derivatives of ut, vt), with 37 terms linear in func-
tions P t, P x of 14 variables (t, x, u, v, . . . , u(2), v(2)) and their 1st order deriva-
tives, and furthermore functions Q1, Q2 of 10 variables (t, x, u, v, . . . , uxxx,
vxxx).

(3): 2 coupled conditions in 14 variables (t, x, u, v, ux, vx, . . . , u5x, v5x),
4 of which occur only explicitly (u4x, v4x, u5x, v5x), with 131 and 132 terms
linear in functions Q1, Q2 of 10 variables (t, x, u, v, . . . , uxxx, vxxx) and their
1st and 2nd order derivatives.

The following are general features of equations (1)-(3).
Equ. (1) is of first order and therefore only highest order u-derivatives which
are not substituted due to 0 = Δ are not variables to the P i and can be
used for direct separation. Equ. (1) therefore is only weakly overdetermined
with the application of integrability conditions playing an important role.
A general problem with computing a differential Gröbner Basis is that the
complexity of these calculations depends heavily on the total ordering of
derivatives of functions P,Q chosen for which there is currently no complete
theory available. Choices made by the program can be particularly good or
bad for the problem at hand.

In contrast, equ.s (3) are of higher order with more jet-variables that occur
only explicitly and that can be used for direct separation. Although these
equations are of higher order they are highly overdetermined and simpler to
solve in general. An efficient way of doing direct separations and handling
large equations is of importance for this approach.
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Finally, in equ.s (2) the P depend initially on all jet variables (apart from
highest order u-derivatives), also those substituted through 0 = Δ on which
the Qμ do not depend. On the other hand the Qμ do depend on highest order
u-derivatives initially. The efficiency in solving (2) therefore depends on the
efficiency of a module for indirect separation, i.e. on a module for handling
equations which have no function depending on all variables but which have
also no variable occurring only explicitly so that no direct separation with
respect to any variable is possible. Such a module is described in [7].

To solve the overdetermined system of all three approaches, all techniques
are used, only some are used more often in one approach than in the other.

There is another issue. If the order of derivatives w.r.t. different variables
differs, like, for the Harry Dym equation 0 = ut − u3uxxx, then it matters
whether this equation is used to do substitutions ut = u3uxxx or uxxx = ut/u

3.
Substituting ut gives a lower increase in complexity when successively higher
order ansätze for P or Q are made. On the other hand one has to go to higher
orders of P and Q to cover the same equivalence classes of CLs compared to
substituting uxxx. As equ.s (3) involve already higher order u-derivatives, a
further increase could explode the size of (3) even more.

Another relation between (2) and (3) is that one could look at (3) as
resulting from a differential-Gröbner-Basis calculation done with (2), with
the aim to eliminate the P i first. It is of course more efficient to exploit
knowledge of the structure of (2) and to apply the Euler operator to write
down (3) directly rather than to do the differential Gröbner Basis calculation
step by step with (2). On the other hand CRACK includes a number of modules
to take advantage of special situations (e.g. to integrate exact PDEs or to
recognize and solve PDEs that are ODEs for some partial derivatives and
to solve them using ODESOLVE [4]). For a concrete problem it is very likely
that there exists a quicker way to solve (2) than to eliminate at first all P i.
The question which of the CONLAW programs is more effective depends on the
effectiveness of different submodules of the program CRACK which solves (1)-
(3). With the current version of CRACK (Jan. 1998), programs CONLAW1/3 are
better for simpler CL problems and CONLAW2 is better for larger problems.

7 Syntax of CONLAW

Example: The input to find CLs with Q of order 0-4 for the MVDNLS
equations (16),(17) is

depend u,x,t;

depend v,x,t;

conlaw2({{df(u,t) = - df( u*(u**2+v**2) + b*u - df(v,x) ,x),

df(v,t) = - df( v*(u**2+v**2) + df(u,x) ,x) },

{u,v}, {t,x}

},

{0, 4, t, {}, {}});

In REDUCE lists are enclosed in { }. The input of CONLAWi (i=1,2,3) consists
of two lists, the first encodes the PDE problem. It contains a list of equations
with the derivative to be substituted on the left hand side, a list of functions
and a list of independent variables. The second parameter to CONLAWi is a
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list that specifies the CLs to be computed. Its first two elements are the
minimum and maximum order of P 1 in the case of CONLAW1 and the order
of Qμ in the case of CONLAW2/3. The third element is t or nil and specifies
whether the CL may depend explicitly on the xi or not. The fourth element
is a list of functions to be determined in an ansatz made for P i or Qμ and
the last element is a list of inequalities to be satisfied.

More details about investigating an ansatz is given in a manual file that
comes with the three CONLAW files.

8 Summary

Supplied with subroutines to fix gauge freedom in differential expressions
the programs CONLAW1/2/3 proved to be a efficient tool for the computation
of CLs of differential equations. Compared with other programs, a list of
which and a short description is given in [2], the programs CONLAWi show the
following new features:

• By solving systems of overdetermined differential equations it is possi-
ble to find CLs with non-polynomial, even non-rational P,Q.

• It is possible to find CLs with an explicit dependence of P,Q on the
independent variables.

• There is no limit on the number of DEs nor the number of independent
variables to be investigated for CLs other than a limit through the
complexity of computations.

• It is possible to determine values of parameters in the DE such that
CLs exist (examples in [9]).

• For each of the programs CONLAWi an ansatz for P i and/or Qμ can be
input to specify CLs to be calculated.

Compared with the program of Göktaş and Hereman, CONLAW is able to find
more general CLs and to make a definitive statement if local CLs do not exist
and the order is not too high to complete the computations.

The strength of the program described in [2] is to get sometimes higher
in the order that still can be handled by concentrating on polynomial CLs
having to solve algebraic systems for coefficients of a polynomial ansatz.
They were also able to extend applicability to differential-difference systems
[3].

The comparison of the three approaches (1)-(3) showed that each of them
has advantages in special circumstances. It also serves as a comparison be-
tween using a general purpose program to find the quickest way of solving
overdetermined PDE systems directly (CONLAW1/3) and an approach to derive
integrability conditions by applying extra information about the structure of
the PDE system (CONLAW2).

The programs including a manual and a test file are available via ftp
from lie.maths.qmw.ac.uk, directory pub/compalg. The package will be
submitted to the REDUCE network library.
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