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Abstract. Recently, a novel concept for the computation of essential features of
Hamiltonian systems (such as those arising in molecular dynamics) has been pro-
posed. The realization of that concept was based on subdivision techniques applied
to the Frobenius–Perron operator for the dynamical system. The present paper
suggests an alternative but related concept based on statistical mechanics, which
allows to attack realistic molecular systems. In a first step, the frequency of con-
formational changes is characterized in statistical terms leading to the definition of
some Markov operator T that describes the corresponding transition probabilities
within the canonical ensemble. In a second step, a discretization of T via hybrid
Monte Carlo techniques (based on short term subtrajectories only) is shown to
lead to a stochastic matrix P . With these theoretical preparations, an identification
algorithm for conformations is applicable (to be presented elsewhere). Numerical
results for the n-pentane molecule are given and interpreted.

1 Introduction

The classical microscopic description of molecular processes leads to a math-
ematical model in terms of Hamiltonian differential equations. In principle,
the discretization of such systems permits a simulation of the dynamics. How-
ever, direct simulation is even today restricted to relatively short time spans
and to comparatively small discretization steps. Fortunately, most questions
of chemical relevance just require the computation of averages of physical
observables, of stable conformations, or of conformational changes. In a con-
formation, the large scale geometric structure of the molecule is understood
to be conserved, whereas on smaller scales the system may well rotate, oscil-
late or fluctuate. The computational characterization of a conformation via
direct simulation thus often requires inaccessibly long time spans. Therefore,
unlike some former approaches (e.g. [2,16]), we herein advocate a different
line of method: we suggest to directly attack the determination of confor-
mations and their stability time spans, which means some global approach
clearly differing from any kind of statistical analysis based on long term tra-
jectories. In a recent article [9], such a global approach based just on short
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term simulations has first been presented. The idea is to directly solve a dis-
cretized eigenvalue problem for the Frobenius–Perron operator, an operator
which describes the propagation of probability within the system. However,
it has turned out that, even though the numerical results are intriguing, this
approach it suffers both from a (yet) unclear theoretical justification and
from the ”curse of dimension” of the suggested subdivision algorithm.

Herein, we will proceed to an alternative but related concept based on a
deeper understanding of the physical interpretation of the Frobenius–Perron
operator in the context of statistical mechanics (Sec. 2). On this basis, a
spatial transition operator will be defined, which describes the probability of
fluctuations within the canonical ensemble (Sec. 3.1). This operator replaces
the Frobenius–Perron operator in computing the conformations, again via the
eigenmodes of the operator. The corresponding eigenvalue problem is natu-
rally discretized by means of a Galerkin procedure (Sec. 3.2), which results in
a reversible stochastic transition matrix. The entries of this matrix describe
transition probabilities between certain subsets of phase space induced by the
spatial discretization of the system and can be evaluated by means of hybrid
Monte Carlo methods (Sec. 3.3). In our new approach, chemical ”conforma-
tions” now arise as subsets in position space rather than in phase space. Once
the transition matrix is assembled, the conformational subsets can directly
be determined by our recently developed identification algorithm [11]. The
performance of the resulting algorithm is illustrated by numerical results for
the n-pentane molecule (Sec. 4).

With this novel concept, both of the above named difficulties of the former
approach [9] can be overcome. In particular, a well-suited theoretical basis
can be given and realistic molecular systems come into reach.

2 Conformations as Almost Invariant Sets

In classical MD (cf. textbook [1]) a molecule is modeled by a Hamiltonian
function

H(q, p) = 1
2 p

TM−1p + V (q), (1)

where q and p are the corresponding positions and momenta of the atoms, M
the diagonal mass matrix, and V a differentiable potential. The Hamiltonian
H is defined on the phase space Γ ⊂ IR6N . The corresponding canonical
equations of motion

q̇ = M−1p, ṗ = −gradV (2)

describe the dynamics of the molecule. The formal solution of (2) with initial
state x0 = (q(0), p(0)) is given by x(t) = (q(t), p(t)) = Φtx0, where Φ

t denotes
the flow.

On the smallest time scales (around 1 femtosecond) the dynamics de-
scribed by the flow Φt consists of fast oscillations around equilibrium positions
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(bond length or bond angle vibrations). In contrast to these fast fluctuations
the phrase “conformations” describes quasi-stable global configurations of the
molecule. Conformational changes are therefore rare events, which will show
up only in long term simulations of the dynamics (e.g. on a nano- or mil-
lisecond time scale). From a mathematical point of view, conformations are
special “almost invariant” subsets of phase space: Invariant sets correspond
to infinite durations of stay (or relaxation times) and contain all subsets
associated with different conformations. Almost invariant sets correspond to
finite relaxation times and consist of conformational subsets. In order to char-
acterize the conformational dynamics of the molecular system, these subsets
are the objects of interest.

More precisely, a subset B ⊂ Γ is called invariant under the flow Φt iff,
for all t > 0,

Φt(B) = B and, thus, Φ−t(B) = B.

We now aim at a precise mathematical understanding of “almost invariance”
of a subset B ⊂ Γ in a certain time span τ . Therefore, we have to introduce
a measure for quantizing the fraction B∩Φτ (B) that remains in B under the
action of the flow during this time span. Let μ be any suitable probability
measure on Γ . The degree of invariance of B with respect to μ is given by
the corresponding conditional probability

δ(B, τ) =
μ (B ∩ Φτ (B))

μ(B)
≤ 1, B μ-measurable. (3)

In particular, if B is invariant, then δ(B, τ) = 1 independent of the choice of
μ. We are interested in subsets B with δ(B, τ) sufficiently close to δ = 1, to
be denoted as almost invariant subsets.

From now on, let us fix a suitable time span τ . Thus, we have reduced
the continuous dynamical system (2) to a discrete dynamical system

xk+1 = g(xk), k = 0, 1, 2, . . . with g = Φτ . (4)

The long term behavior of the system (4) is described by so-called invariant
measures: a probability measure μ is invariant, iff μ(Φτ (B)) = μ(B) for all
measurable subsets B ⊂ Γ . Thus, μ(B) may be interpreted as the probability
of finding the molecular system in B at an arbitrary instant t = kτ , k ∈ ZZ.

2.1 Dynamical Systems Approach and the Frobenius–Perron
Operator

The numerical computation of invariant measures is equivalent to the solution
of an eigenvalue problem for the so-called Frobenius–Perron operator U :
M → M defined on the set M of probability measures on Γ by virtue of

(Uμ)(B) = μ(g−1(B)) for measurable B ⊂ Γ and μ ∈ M. (5)
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Invariant measures correspond to fixed points of U which means that Uμ = μ
iff μ ∈ M is invariant.

It has been discovered [8], that for many discrete dynamical systems the

almost invariant sets are related to eigenmodes of the Frobenius–
Perron operator for eigenvalues λ ≈ 1 inside the unit circle (|λ| < 1).

(6)

One strategy for identification of almost invariant sets is to discretize the
Frobenius–Perron operator in order to approximate these eigenvalues λ ≈ 1.
In a sequence of articles (cf. [7,8]), M. Dellnitz and coworkers established
numerical techniques realizing this strategy for different non-Hamiltonian sys-
tems. The Frobenius–Perron operator is discretized via a multi-level subdi-
vision process, which generates a box covering of the system’s relative global
attractor. Recently, this approach has been extended to Hamiltonian sys-
tems [9]. In this case, the collection of discretization boxes covers the special
energy surface under consideration. This numerical approach seems to re-
produce precisely the correct results from the dynamical point of view. In
fact, one obtains the expected almost invariant sets together with reasonable
corresponding eigenvalues.

This “dynamical systems approach”, however, has two crucial difficulties.
First, this approach turns out to be useful only for small molecular sys-
tems, since it suffers from combinatorial explosion of the necessary number
of discretization boxes already for moderate size molecules. Second, the the-
oretical justification of the approach is unclear: The crucial properties of the
Frobenius–Perron operator U depend on the spaces under consideration.

– If U is acting on the entire phase space Γ , then there exist infinitely
many invariant measures and the Frobenius–Perron operator possibly has
no eigenvalues inside the unit circle. Thus, there may be no eigenvalues
λ < 1 allowing for the identification of almost invariant sets. As we will
see below, this results from the fact that g = Φτ preserves energy and
volume and can already be understood by reformulating U as an operator
on phase space densities instead of measures.

– The situation changes if we consider U as an operator acting on measures
on a certain energy surface (as intended in [9]) and not on the entire phase
space. In this case, there might be no invariant measure with an density
(see [9], Sec. 3.1), i.e., the invariant measure may indeed be unique. But
even then, the existence of eigenvalues inside the unit circle is still ques-
tionable.

We herein want to take into account the typical fluctuation of total en-
ergy in molecular systems, i.e., we anyway have to work on the entire phase
space. To simplify, we now reformulate the Frobenius–Perron operator U as
an operator on phase space densities. We consider the function spaces

Lp(Γ ) = {f : Γ → C,

∫
Γ

|f(x)|p dx < ∞}, with p = 1, 2,
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and denote the corresponding function norms by ‖·‖p. For defining U on these
Lp spaces, let us assume that the measure μ in the definition (5) has a density
f ∈ Lp(Γ ), so that μ(B) =

∫
B f(x)dx. Moreover, let Uμ also have a density

denoted by Uf . Then, the above defined (volume preserving) transformation
y = g(x) leads us to

∫
B

Uf(x) dx =

∫
g−1(B)

f(x) dx =

∫
B

f(g−1(y)) dy, for measurable B ⊂ Γ.

Thus, the definition of the Frobenius–Perron operator on Lp(Γ ) is

Uf = f ◦ g−1 = f ◦ Φ−τ , (7)

for more details see [20]. For these operators the literature on ergodic theory
contains the following result (cf. [28], Thm. 1.25; [20], Prop. 3.1.2; or [25]):

‖Uf‖p = ‖f‖p, ∀f ∈ Lp(Γ ), p = 1, 2. (8)

As a consequence, the spectrum of our operators lies on the unit circle.

2.2 Reformulation in Terms of Statistical Mechanics

To better understand the physical meaning of the Frobenius–Perron oper-
ator we have to consider the role of phase space densities in the statistical
formulation of classical mechanics. In statistical mechanics the evolution of
a statistical ensemble of identically prepared systems is described by a time
dependent probability density f = f(x, t) in phase space. The propagation of
the probability density is described by the Liouville equation for the Hamil-
tonian H :

∂t f = iLf = {H, f}, f(t = 0) = f0, (9)

where {·, ·} denotes the well–known Poisson bracket and L = −i{H, ·} the
associated Liouville operator (cf. [19]). The density f0 describes the initial
probability distribution in the statistical ensemble, i.e., f0(x) is interpreted
as the relative frequency in the ensemble of systems in state x at time t =
0. Therefore, the density f0 is to be defined in accordance with the initial
experimental preparation of the ensemble.

On the one hand, the solution of (9) is given by the flow corresponding
to H ,

f(x, t) = f0(Φ
−tx),

on the other hand, it can be denoted using the semi-group generated by L
on the Hilbert space L2(Γ ):

f(·, t) = exp(itL) f0.
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From this equality and a comparison with the definition (7), we may write
our Frobenius–Perron operator U as

U = exp(iτL) in L2(Γ ).

This result has some intriguing consequences: In L2(Γ ), U is unitary, since
L is self-adjoint [18]. This explains equation (8) for p = 2. All stationary
solutions of the Liouville equations are invariant densities of U , i.e., eigen-
vectors for the eigenvalue λ = 1. In particular, for arbitrary smooth functions
F : IR → [0, 1], the associated densities f(x) = F (H(x)) are stationary
solutions of the Liouville equation. Consequently, there are infinitely many
invariant densities (and associated invariant measures) for U — as long as
we are working on the entire phase space Γ .

Clearly, we need a unique invariant density in order to induce the measure
μ used to quantify the “almost invariance” of sets according to (3). Thus, we
have to choose one of the possible invariant densities of U . As already stated
above, in terms of the statistical formulation this choice corresponds to the
initial preparation of a stationary ensemble, i.e., the initial conditions of the
experiment determine the invariant density f0. Hence, due to (3), the degree
of invariance of a subset B ⊂ Γ is given by:

δ(B, τ) =
1∫

B f0(x) dx

∫
B

χB(Φ
τx) f0(x) dx,

with χB denoting the characteristic function of B, i.e., χB(x) = 1 iff x ∈ B
and χB(x) = 0 otherwise. Hence, δ(B, τ) is the conditional probability in the
ensemble that systems being at time t in the phase space region B are found
there again at time t + τ . The following generalization of this definition is
obvious: For two subsets B,C ⊂ Γ let

w(B,C, τ) =
1∫

B
f0(x) dx

∫
B

χC(Φ
τx) f0(x) dx (10)

denote the transition probability fromB to C. Of course, δ(B, τ) = w(B,B, τ),
which is called the probability to stay within B.

Most experiments on molecular systems are performed under the con-
ditions of constant temperature and volume. The corresponding stationary
density is the canonical density associated with the Hamiltonian H

f0(x) =
1

Z
exp (−β H(x)) , with Z =

∫
Γ

exp (−β H(x)) dx,

where β = 1/kBT , with T being the system’s temperature T and kB Boltz-
mann’s constant. Since H was assumed to be separable, f0 is a product

f0(x) =
1

Zp
exp

(
−β

2
pTM−1p

)
︸ ︷︷ ︸

=P(p)

1

Zq
exp (−β V (q))

︸ ︷︷ ︸
=Q(q)

, (11)
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where we normalize P and Q such that∫
P(p)dp =

∫
Q(q)dq = 1.

In the following we always consider this canonical ensemble, i.e., f0 will always
be given by (11).

We have defined conformations as special subsets of phase space. How-
ever, the chemical phrase “conformation” does not refer to any momentum
information. In other words, the information of chemical interest is spatial,
i.e., given by the geometry of positions. In order to consider this aspect in
our context, assume that the phase space is given by Γ = Ω × IR3N with
Ω ⊂ IR3N being the position space. For a spatial subset B ⊂ Ω we then
define the corresponding phase space cylinder with base B as

Γ (B) = {(q, p) ∈ Γ, q ∈ B}.

From now on, we are interested only in subsets of this form. For B,C ⊂
Ω we use the simplified notation w(B,C, τ) = w(Γ (B), Γ (C), τ) for the
corresponding transition probabilities and denote the probability to be within
B ⊂ Ω by

π(B) =

∫
B

Q(q) dq =

∫
Γ (B)

f0(x) dx. (12)

Summarizing, we have introduced three important modelling steps: de-
termination of the invariant density by preparation of a stationary ensemble,
choice of the canonical ensemble representing the typical experimental prepa-
ration, and restriction to spatial conformations.

3 Transition Probabilities and Associated Markov
Chains

As a consequence of the considerations of the previous section, we now have
to replace the Frobenius–Perron operator acting on Γ by another stochastic
operator that represents the restriction to purely spatial structures within
the canonical ensemble. After that, we proceed to the identification of almost
invariant sets via the eigenvalue problem of this operator.

3.1 Definition of a Spatial Transition Operator

As will turn out subsequently, an appropriate choice for a stochastic operator
is the spatial transition operator T defined via momentum weighting due to

Tu(q) =

∫
u(Φ−τ (q, p))P(p) dp, (13)
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where u = u(q) is a function u : Ω → C and u(Φ−τ (q, p)) means u(q1) if
(q1, p1) = Φ−τ (q, p). We consider T as an operator on the weighted spaces

Lp
Q(Ω) = {u : Ω → C,

∫
Ω

|u(q)|pQ(q) dq < ∞}, p = 1, 2.

Obviously, L2
Q(Ω) is a Hilbert space with scalar product

〈u, v〉Q =

∫
Ω

u∗(q) v(q)Q(q) dq

and induced norm ‖u‖2Q = 〈u, u〉Q. With respect to these spaces, the impor-
tant properties of T are the following (cf. [25]):

1. T is a Markov operator on L1
Q(Ω).

2. T is bounded: ‖Tu‖Q ≤ ‖u‖Q.
3. In L2

Q(Ω), T is selfadjoint, since Φτ is reversible. Hence, the spectrum
σ(T ) of T is real-valued and bounded: σ(T ) ⊂ [−1, 1].

4. For subsets B,C ⊂ Ω we find:

〈TχB, χC〉 =

∫
Γ (B)

χΓ (C)(Φ
τx) f0(x) dx, (14)

showing that T represents the transition probabilities of our interest.

On the basis of Section 2.2, the Frobenius–Perron operator must be replaced
by T . In analogy to (6), we once again may hope that the eigenmodes of T
for eigenvalues near λ = 1 allow for an identification of almost invariant sets.

3.2 Spatial Discretization

If we restrict our attention to the weighted Hilbert space L2
Q(Ω), we can

(as in [8,9]) naturally derive a special Galerkin procedure to discretize the
eigenvalue problem Tu = λu. Let B1, . . . , Bn ⊂ Ω be a covering of Ω so that
Bk ∩ Bl is of (Lebesgue) measure zero for k �= l and ∪n

k=1Bk = Ω. Then,
the sets Γ (Bk), k = 1, . . . , n, are a covering of Γ . Our finite dimensional
ansatz space Vn = span{χ1, . . . , χn} is spanned by the associated charac-
teristic functions χk = χBk

. The Galerkin projection Πn : L2
Q(Ω) → Vn of

u ∈ L2
Q(Ω) is defined by

Πnu =

n∑
k=1

1

π(Bk)
〈χk, u〉Q χk.

The resulting discretized transition operator ΠnTΠn induces the approxi-
mate eigenvalue problem ΠnTΠnu = λu in Vn. Let λ be one of the cor-
responding eigenvalues and let the related eigenvector be u =

∑n
k=1 αkχk.

Then, the discretized eigenvalue problem has the form

n∑
l=1

〈Tχk, χl〉Q αl = λπ(Bk)αk, ∀k = 1, . . . , n.
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After division by π(Bk) (known to be positive), we end up with the convenient
form

Pα = λα with α = (α1, . . . , αn),

where in fact the entries of the n × n matrix P are given by the spatial
transition probabilities from Bk to Bl:

Pkl =
〈Tχk, χl〉Q

π(Bk)
= w(Bk, Bl, τ). (15)

This result finally confirms that (13) was the correct choice of a transition
operator in the statistical context.

Since T is a Markov operator, its Galerkin discretization P is a (row)
stochastic matrix, i.e., Pkl ≥ 0 and

∑n
l=1 Pkl = 1 for all k = 1, . . . , n (for

details about stochastic matrices see [3]). Hence, all its eigenvalues λ satisfy
|λ| ≤ 1. Moreover, we have the following three important properties:

1. The row vector π = (π1, . . . , πn), πk = π(Bk) denotes the discretized
invariant density. Simple calculus reveals that π is a left eigenvector to
the eigenvalue λ = 1, i.e., that πP = π.

2. As shown in [25], P is irreducible and aperiodic, which implies, that the
eigenvalue λ = 1 is simple. Hence, the discretized invariant density π is
the unique stationary distribution of P .

3. P is reversible, since T is self-adjoint. In other words, P fulfills the con-
dition of detailed balance:

πk Pkl = πl Plk, ∀k, l ∈ {1, . . . , n}.

Therefore, all eigenvalues of P are real-valued: σ(P ) ⊂ [−1, 1].

This means that, for arbitrary coverings B1, . . . , Bn ⊂ Ω, the discretization
matrices P are inheriting the most important properties of the operator T .

As any stochastic matrix, our discretization matrix P also defines a dis-
crete Markov chain, i.e., the stochastic (random) walk of a single system
through phase space. The associated statistical interpretation is as follows: If
at instance j ∈ IN the system is in Bk, the probability of finding the system
in Bl at instance j + 1 is Pkl = w(Bk, Bl, τ). With j → ∞ the system vis-
its all subset Bk with the probability πk, the value given by the stationary
distribution of P .

According to our definition of “almost invariance”, we are interested in
such unions B = ∪k∈IBk of our “discretization boxes” Bk, for which the
probability w(B,B, τ) to stay within is sufficiently close to δ = 1. In other
words, we are looking for a nontrivial index set I ⊂ {1, . . . , n} so that the
discrete system almost certainly stays within B = ∪k∈IBk within one single
step j → j + 1. As derived in [11], such index sets (“almost invariant ag-
gregates”) can be identified via the right eigenvectors of P for eigenvalues
close to λ = 1. After a conformational subset B is identified, the probability
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δ(B, τ) = w(B,B, τ) to stay within B can easily be computed by virtue of
the relation:

δ(B, τ) =
1∑

k∈I

πk

∑
k,l∈I

πk Pkl. (16)

3.3 Realization via Hybrid Monte Carlo

Up to now, the remaining question is how to compute the matrix P for given
boxes Bk. According to (15) we have to determine the transition probabilities
between the Bk. This task includes two subproblems:

1. “Sampling of the canonical density”: That is, we have to generate a se-
quence of states S = {xk, k = 1, . . . ,M} ⊂ Γ that is approximately
distributed according to f0.

2. Approximation of the transition probabilities: We will see below that this
reduces to counting all such xj ∈ S for which xj ∈ Bk and Φτxj ∈ Bl.
For checking the last condition, sufficient approximations x̃j ≈ Φτxj of
all M subtrajectories starting from S are needed.

The typical approach to sampling the canonical density is via Monte Carlo
(MC) techniques. The literature on this topic is extremely rich and varied
[5] and we surely will not give particular merits to any special MC variant.
We merely suggest to apply a hybrid Monte Carlo (HMC) technique because
it seems to be particularly appropriate for linking the above mentioned sub-
problems 1 and 2. In order to explain this advantage and the basic idea of
HMC we have to shortly recall the basic steps of a Metropolis MC approach
to sampling f0 (for additional details see, e.g., [26]).

Each update step xj → xj+1 of the Metropolis construction of a sampling
set S consists of two parts:

1. The proposal step xj → x̃j : The numerical realization of the proposal
step should exclude any evaluation of f0 and must yield a final update
step which satisfies the detailed balance condition.

2. The acceptance step: evaluate ΔE = H(x̃j)−H(xj) and compute r ran-
domly equidistributed from [0, 1]. The state x̃j is accepted as xj+1 if
r ≤ min{1, exp(−βΔE)}, otherwise we set xj+1 = xj .

So-called “hybrid” MC variants have to our knowledge first been introduced
in the late 80’s (cf. [12]) and have in MD mostly been used for condensed
matter and polymer-like systems (cf. [22,17,15]). The technique fits into the
general Metropolis MC framework as a specification of the proposal step for
separable Hamiltonians of form (1) (cf. [21]). For explaining this, let ΨΔt de-
note a reversible and volume-preserving one-step discretization of the flow Φt,
i.e., of the Hamiltonian equations (2). The reader unfamiliar with this nota-
tion may think of ΨΔt as denoting, e.g., the well-known Verlet discretization
[27,1] with stepsize Δt. Starting with xj = (qj , pj) the HMC proposal step
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consists of two substeps: Firstly, choose new initial momenta p0j from the nor-
mal distribution P = P(p), i.e., from the canonical momentum distribution.
Secondly, compute the proposal x̃j as

x̃j =
(
Ψ−Δt

)m
(qj , p

0
j), (17)

i.e., via m ∈ IN steps of the discretization ΨΔt. Obviously, the momenta are
determined randomly before each step. In general, they are not distributed
according to P afterwards, so that HMC is to be understood as a pure position
sampling of the spatial canonical distribution Q = Q(q).

The main result of the theoretical justification of anyMetropolis algorithm
(cf. [6]) is the convergence of mean values of the sequences S = {x1, . . . , xM}
to the corresponding expectation values for M → ∞: For any observable
A : Γ → IR we have asymptotically∣∣∣∣∣∣∣∣∣∣∣

1

M

M∑
j=1

A(xj) −
∫
Γ

A(x)f0(x) dx

︸ ︷︷ ︸
= 〈A〉

∣∣∣∣∣∣∣∣∣∣∣
≤ CM−1/2, (18)

with a constant C not explicitly depending on dim(Γ ) = 6N . We consider
the special observables Ak = χΓ (Bk) and Akl with

Akl(x) = χΓ (Bk)(x) χΓ (Bl)(Φ
τx)

with the corresponding relations

〈Ak〉 ≈ 1
M

M∑
j=1

Ak(xj) = 1
M (number of xj ∈ Γ (Bk)) ,

〈Akl〉 ≈ 1
M

M∑
j=1

Akl(xj) = 1
M (number of xj ∈ Γ (Bk) with Φτxj ∈ Γ (Bl)) .

This shows, that we are able to approximate the desired transition probabil-
ities w(Bk, Bl, τ) = 〈Akl〉/〈Ak〉 “simply” by counting. Since xj = (qj , pj) ∈
Γ (Bk) is equivalent to qj ∈ Bk, no problems will arise when using HMC
for a position sampling only. Moreover, the main advantage of HMC in this
context is obvious: we need approximations of Φτxj and can have them “for
free” if we use mΔt = τ with sufficiently small Δt in the HMC proposal step
(17).

Theoretically, the transition matrix P is reversible. In order to reproduce
this property for its approximation, we may simply count each transition
from Bk to Bl as a transition Bl → Bk, too (thus exploiting the reversibility
of the discretization ΨΔt).

As is widely known, MC simulations for ensemble averages may suffer
from possible “critical slowing down” [21]. This phenomenon occurs when
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the iteration xk → xk+1 gets trapped near a local potential minimum due to
high energy barriers so that a proper sampling of the phase space within rea-
sonable computing times is prevented. Typically, this also happens to HMC
applications. Therefore, a novel approach combining HMC with the reweight-
ing technique [13,4] has been developed [14]. This HMC variant generates the
distribution of a mixed-canonical ensemble composed of two canonical ensem-
bles at low and high temperature. Its analysis shows an efficient sampling of
the canonical distribution at the low temperature, whereas the high temper-
ature component facilitates crossing of the crucial energy barriers.

3.4 Essential Degrees of Freedom

Up to now, we have presented the toolbox for the identification of confor-
mations in terms of given spatial discretization boxes Bk ⊂ Ω. It is a main
advantage of the algorithmic concept that the HMC sampling techniques do
not scale exponentially with the size of the molecular system under consid-
eration. Therefore, the crucial part of the algorithm as it stands now is the
solution of the eigenvalue problem for the transition matrix P . Fortunately,
we only need the cluster of the largest eigenvalues of P near λ = 1, which
permits us to apply subspace oriented iterative techniques (see, e.g., [24] or
[10], Sec. 4.1). But even these more sophisticated approaches scale exponen-
tially with the molecular size if the number of discretization boxes explodes.
Hence, the question remains of how to choose the boxes without risking a
combinatorial explosion of their number.

Our present strategy is based on chemical insight: In the chemical liter-
ature the conformation of a molecule is mostly described in terms of some
essential degrees of freedom, e.g., certain torsion angles which are of crucial
importance for the geometry of what is called the conformation. This means,
that most of the spatial degrees of freedom are of minor or no importance
for the “characterization” of a conformation (even though they may be of
importance for its identification). Consequently, we are allowed to choose
our discretization boxes with respect to these essential degrees of freedom
only, while our HMC process samples the entire (position) phase space. The
example studied in Sec. 4 may serve as an illustration of this procedure.

4 Numerical Experiments

In this section, the performance of the above derived algorithm in application
to the n-pentane molecule CH3(CH2)3CH3 is presented. It is illustrated that
the algorithmically identified almost invariant sets are in perfect agreement
with the chemically observed conformations (cf. Fig. 1).

For modelling the n-pentane molecule, we use the united atom model
(cf. Fig. 2) with the typical bound length and bond angle potentials, and a
Lennard-Jones potential modelling the interaction between the first and the
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Fig. 1. Different conformations of n-pentane: From the left to the right: trans-trans,
trans-gauche, gauche-gauche orientations.

last of the united “atoms”. The dihedral angle potentials are chosen accord-
ing to [23], cf. Fig. 2. The form of the dihedral angle potential shows three
different minima corresponding to the trans and gauche orientations of the
angles. The vibrational frequencies induced by these potentials are consider-
ably smaller than those induced by the bond interactions. Consequently, the
conformations of the n-pentane molecule are described in terms of these di-
hedral angles, i.e., they are the above mentioned essential degrees of freedom
of n-pentane.
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Fig. 2. United atom model of n-pentane with the two dihedral angles ω1 and ω2.
On the left: Dihedral angle potential due to [23]. The main minimum corresponds to
the trans orientation of the angle, the two side minima to the ±gauche orientations.

Figures 3 to 6 below illustrate the execution of the algorithm for the
temperature T = 300K. The discretization boxes are constructed via uniform
decomposition of the possible values [0, 2π]× [0, 2π] of the two dihedral angles
ω1 and ω2 in n = 20× 20 = 400 boxes. The HMC sampling has been realized
using the Verlet time discretization with a subtrajectory length of τ = 160fs.
Fig. 3 shows the resulting sequences of HMC steps in terms of the dihedral
angles.
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Fig. 3. HMC simulation of n-pentane for T = 300K. From top to bottom: The
two dihedral angles (in radiant) versus the step number and the convergence of the
potential energy expectation 〈V 〉.

We observe frequent transitions between the different “trans” and “gauche”
orientations of both angles. This observation nicely illustrates that it is not
sufficient to know the probability to be within a particular orientation of the
angles but that the essential dynamical information is given by the probabil-
ity to stay within it until a transition into another orientation occurs.

From such an HMC sampling with M = 200.000 steps we computed
the transition matrix P by the procedure explained in Sec. 3.3. Within this
sampling length, the HMC method produced a more than sufficient sampling
of the canonical density (see the equilibration diagram on bottom of Fig. 3)
— the question of whether M could be smaller will be discussed below.

From Sec. 3.2 we know that the discrete invariant density (π(Bk))k=1,...,n

is given by the left eigenvector of P for the largest eigenvalue λ1 = 1. The
result produced herein is given in Fig. 4. As expected, the invariant density
shows distinct local maxima at the minima of the dihedral angle potentials.

Conformations. Following [11], the chemical conformations are analyzed
via the right eigenvectors corresponding to an eigenvalue cluster near λ = 1.
A presentation of the derivation of the algorithmic procedure would be be-
yond the scope of the present paper. We herein can only give a sketch of
the construction principle: In a first step, determine the eigenvalue cluster
near λ = 1, which is separated from the remaining part of the spectrum by a
significant spectral gap – in our case, these are the seven largest eigenvalues.
Fig. 5 shows a schematic plot of the corresponding right eigenvectors. We ob-
serve that we may decompose the discretization domain into disjoint regions
by distinguishing between different positive, negative, and almost zero values
of these eigenvectors. The details of the algorithmic realization are nontrivial,
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Fig. 4. Discrete canonical distribution for n-pentane versus the indices of the dis-
cretization boxes of the two dihedral angles ω1 and ω2. T = 300K.

because it has to include an iterative procedure to decide what is “almost
zero”.
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Fig. 5. Schematic plot of the right eigenvectors corresponding to the seven largest
eigenvalues λ1, . . . , λ7 of P versus the indices (1, . . . , 20) × (1, . . . , 20) of the dis-
cretization boxes of the two dihedral angles ω1 and ω2. Positive entries of the
eigenvectors are indicated by black boxes, negative entries by gray boxes and white
boxes indicate almost zero entries. T = 300K.

By analyzing the eigenvectors as illustrated, the algorithm from [11] iden-
tifies the conformational subsets shown in Fig. 6. As can be seen the auto-
matic procedure in fact supplies the chemically expected information. After
identifying the conformations, the corresponding probabilities to stay within
each conformational subset can be computed due to equation (16). The re-
sulting values p are also given in Fig. 6. We observe that the trans/trans
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conformation is slightly more stable than the different trans/gauche and
gauche/trans conformations. As expected, the two gauche/gauche conforma-
tions are clearly less stable.
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Fig. 6. Almost invariant sets for T = 300K. The numbers p on top of each figure are
the probabilities to stay within the corresponding subsets during the time span τ .
From the left hand side on top to the right hand side below we see the -gauche/trans,
trans/+gauche, -gauche/-gauche, trans/trans, trans/-gauche, +gauche/trans, and
+gauche/+gauche conformations (cf. Fig. 1).

As already emphasized above, the probabilities to stay within should not
be confused with the probability to be within a conformation, which is al-
ready given by the invariant density (cf. Fig. 4). In the table below, these
two different probabilities are enlisted for each of the conformational subsets
shown in Fig. 6 (±g and t denote the ±gauche and trans orientations):

conformation -g/t t/+g -g/-g t/t t/-g +g/t +g/+g
prob. to be within 0.120 0.132 0.012 0.473 0.117 0.132 0.013
prob. to stay within 0.976 0.980 0.910 0.982 0.979 0.970 0.865

The slight differences between the probabilities to be within the ±g/t and
t/±g orientations may be used as an error indicator for the sampling. The
probability to be within the +gauche/-gauche or -gauche/+gauche orienta-
tions is less than 0.0005, showing that they are irrelevant in this context.

Parameter Sensitivity. The results presented herein surely depend on a
number of crucial parameters, some of them being of physical nature (e.g., the
temperature T ), others being introduced by the algorithm (e.g., the number
n of discretization boxes or the length M of the HMC sampling). We want
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to emphasize that the algorithm as it stands now is far from being perfectly
tuned. We thus can only present some experiences from numerical experi-
ments for the n-pentane molecule and some other comparably small systems.

At first, let us consider the dependence of the conformations on the tem-
perature T . Varying the temperature between T = 200K and T = 600K we
do not observe an influence on the identified conformations. But, as to be
expected, the probabilities to stay within these conformations are decreas-
ing with increasing T : Fig. 7 shows the corresponding decrease of the nine
largest eigenvalues of the transition matrices P = P (T ). It also illustrates
thatin all cases tested so far there exists a distinct spectral gap between the
seven largest eigenvalues used to identify the conformational subsets, and the
remaining part of the spectrum.
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Fig. 7. Temperature dependence of the nine largest eigenvalues of the transition
matrix P .

The present version of the algorithmic realization does not include any au-
tomatic mechanism for controlling the length M of the HMC sampling. If, for
fixed temperature and spatial discretization, the number of steps is decreased
from M = 200.000 down to M = 50.000, we observe that the approximation
quality of the invariant density slowly deteriorates. This corresponds to a
slowly increasing distortion of the approximate “conformational” subsets.

Dependence on Discretization. Finally, let us illustrate an extremely
important property of the presented algorithm, the stability of the results
even when significantly coarser discretizations are used. For the n-pentane
molecule we indeed can reduce the decomposition of the discretization do-
main from n = 20 × 20 boxes to n = 3 × 3 boxes but the algorithm still
identifies approximately the same conformations and nearly the same prob-
abilities (both to stay and to be within). The reason for this is illustrated
in Fig. 8: since the HMC procedure samples the phase space independent of
the discretization, the seven largest eigenvalues of the transition matrix P
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Fig. 8. Sensitivity of the absolutely largest eigenvalues of P for different uniform
discretizations of [0, 2π]2 with n = 3 × 3 = 9 boxes (dashed line), n = 9 × 9 = 81
(dashed-dotted), and n = 20 × 20 = 400 boxes (dense line). Note that the seven
largest eigenvalues – only these are used for the identification of the conformations
– remain almost unperturbed if the grid gets coarser.

are only insignificantly perturbed when the number of discretization boxes is
reduced.
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