
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

HARALD BÖING AND WOLFRAM KOEPF

Algorithms for q-hypergeometric
Summation in Computer Algebra

Preprint SC 98-02 (January 1998)

Algorithms for q-hypergeometric Summation in
Computer Algebra

HARALD BÖING† AND WOLFRAM KOEPF‡

†Konrad Zuse Zentrum Berlin, Germany

‡Hochschule für Technik, Wirtschaft und Kultur Leipzig, Germany

In this paper we present a short description of q-analogues of Gosper’s, Zeilberger’s,
Petkovšek’s and related algorithms. Furthermore we introduce our correspondingMaple

implementations and show how they can be applied to prove or even derive identities
associated with q-series.

1. Introduction

The well-known algorithms of Gosper, Zeilberger and Petkovšek are useful tools for
problems dealing with hypergeometric summation. The theory and a description of their
implementation in Maple are described in detail by Koepf (1998); the theory can also
be found in Petkovšek et al. (1996); for Maple details see also Koepf (1996).
Surprisingly enough, the algorithms can be easily adapted to the q-case, see e. g. Koorn-

winder (1993) for a short description of Gosper/Zeilberger and Abramov et al. (1997) for
Petkovšek.
As a general reference for q-hypergeometric (basic) series we refer to Gasper and Rah-

man (1990). We sketch the underlying theory only briefly and emphasize on the applica-
tion of our Maple package qsum.mpl which is an implementation of those algorithms,
containing an m-dimensional version of the q-Gosper algorithm, and some other general-
izations. This package and an extensive help database for Maple V Release 4 is available
by e-mail request from koepf@imn.htwk-leipzig.de. All examples shown in this paper
were computed with Maple V Release 4 on a Sun Sparc 20.
For Mathematica the package qZeil.m written by Riese is an excellent implementa-

tion of q-Gosper’s and q-Zeilberger’s algorithm.1

Throughout this paper by q the vector (q1, q2, . . . , qm), m ∈ N is denoted, and F is an
abbreviation for K (q1 , q2, . . . , qm), K denoting the field Q extended by some parameters.2

1 The package qZeil is available by e-mail request to Peter.Paule@risc.uni-linz.ac.at.
2 From a theoretical point of view any computable field of characteristic zero would be appropriate.

However algorithms used in computer algebra systems (such as factorization) usually require a more
restrictive setting.

2 B�oing� H� and Koepf� W�

2. q-Gosper

The q-version of Gosper’s algorithm determines for a q-hypergeometric term F(k), i. e.

F(k + 1)

F(k)
∈ F
(
qk1 , . . . , q

k
m

)
a q-hypergeometric term G(k) with

F(k) = G(k + 1)−G(k) (2.1)

iff it exists. Knowing such an antidifference3 G(k) for F(k) makes the evaluation of
definite sums over F(k) easy:

h∑
k=l

F(k) = G(h+ 1)−G(l).

The q-Gosper algorithm is based on the following two observations:

1 By dividing Equation (2.1) by G(k) one can see that G(k)/F(k) ∈ F
(
qk1 , . . . , q

k
m

)
.

2 On the other hand, if one divides Equation (2.1) by F(k), one gets

F(k + 1)

F(k)
C(k + 1)− C(k) = 1, C(k) =

G(k)

F(k)
∈ F
(
qk1 , . . . , q

k
m

)
. (2.2)

Thus to determine an antidifference G(k) for F(k) it is sufficient to search for a
rational solution C(k) of an inhomogeneous recurrence equation of first order with
rational coefficients.

As the q-Gosper algorithm is already well described by Koornwinder (1993) for the case
m = 1, by Riese (1996) for m = 2, and by Böing (1998) for the general case m ∈ N, we
merely want to give the two main steps of the algorithm without going into details:

1 Determine P(k),Q(k),R(k) ∈ F
[
qk1 , . . . , q

k
m

]
such that

F(k + 1)

F(k)
=

P(k + 1)

P(k)

Q(k)

R(k)
(2.3)

and
gcd

(
Q(k),R(k + j)

)
= 1, for all j ∈ N0 . (2.4)

2 If the inhomogeneous first order recurrence equation for X(k)

Q(k)X(k)− R(k − 1)X(k − 1) = P(k) (2.5)

has a solution X(k) ∈ F
[
qk1 , q

−k
1 , . . . , qkm, q−k

m

]
then

G(k) =
R(k − 1)X(k − 1)

P(k)
F(k) (2.6)

is a q-hypergeometric antidifference for F(k). Otherwise no such antidifference ex-
ists.

3 Note that by antidifference we always mean an upward antidifference.

Algorithms for q-hypergeometric Summation in Computer Algebra 3

With the q-Gosper algorithm one can derive identities, like e. g. Formula (II.34) found
in the Appendix of Gasper and Rahman (1990):

n∑
k=0

1− a pk qk

(1− a) ck
(a; p)k

(a p/c; p)k

(c; q)k
(q; q)k

=
1

cn
(a p; p)n (c q; q)n
(a p/c; p)n (q; q)n

, (2.7)

where (a; q)k denotes the q-Pochhammer symbol defined as usual by

(a; q)k =

⎧⎪⎨
⎪⎩
(
1− a

) (
1− a q

) · · · (1− a qk−1
)
, if k > 0,

1, if k = 0,[(
1− a q−1

) (
1− a q−2

) · · · (1− a qk
)]−1

, if k < 0.

(2.8)

After loading our package in Maple via read ‘qzeil.mpl‘; one can deduce the right-
hand side of Equation (2.7) from the left-hand side with the procedure qgosper:

> result:= qgosper((1-a*p^k*q^k)/(1-a)/c^k*qpochhammer(a,p,k)/
qpochhammer(a*p/c,p,k)*qpochhammer(c,q,k)/qpochhammer(q,q,k),[p,q],k=0..n);

result :=
qpochhammer(c, q, k) qpochhammer(a, p, k) (−1 + qk) (−c+ pk a) c(−k)

qpochhammer
(a p

c
, p, k

)
qpochhammer(q, q, k) (−1 + a) (c− 1)

It is easy to check that this result is equivalent to the right-hand side of Equation (2.7),
e. g. by the computation

> qsimpcomb(result/qpochhammer(a*p,p,n)/qpochhammer(c*q,q,n)*
qpochhammer(a*p/c,p,n)*qpochhammer(q,q,n)*c^n);

1

The procedure qsimpcomb is a simplification procedure for q-hypergeometric terms. It
was designed to simplify ratios of q-hypergeometric terms like F(k + 1)/F(k) to decide
rationality. In other cases the procedure might fail to give the simplest result. Then one
can try to use the procedure qsimplify that does a more rigid simplification.
Generally the most time consuming part in q-Gosper’s algorithm is its second step,

which is usually done in two parts:4

1 Determine lower and upper degree bounds l and h for X(k).

2 Substitute a generic Laurent polynomial
∑h

i=l ci (q
k)i for X(k) with yet unknown

coefficients ci in Equation (2.5) and solve the resulting linear system by comparing
the coefficients of (qk)i.

This method involves solving a system of h − l + 1 linear equations which is inefficient
if the difference h− l is large. In 1995 Abramov, Bronstein and Petkovšek introduced an
alternative algorithm. It is based on the idea to convert the recurrence equation for X(k)
into one for the coefficients ci and using this recurrence to calculate as many coefficients
as possible. Abramov et al. suggest to use their algorithm if the difference h− l is greater
or equal to the order of the recurrence equation that is to be solved.

4 To simplify the notation, we just describe the case m = 1.

4 B�oing� H� and Koepf� W�

We want to illustrate this by calculating an antidifference for the function

Fn(k) =
(a; q)k
(q; q)k

(
a qn

)−k
, (2.9)

where a is an arbitrary parameter. The application of q-Gosper’s algorithm to Fn(k)
with symbolic n shows that no q-hypergeometric antidifference exists:

> qgosper(qpochhammer(a,q,k)/qpochhammer(q,q,k)/(a*q^n)^k,q,k);

Error, (in qgosper) No q-hypergeometric antidifference exists.

However, for each nonpositive integer n ∈ N0 there exists an antidifference, where the
resulting recurrence relation for X(k), i. e.(

1− a qk
)
X(k)− a qn

(
1− qk

)
X(k − 1) = 1, (2.10)

implies X(k) being a polynomial of degree n. Thus for n = 1 we get e. g.5

> qgosper(qpochhammer(a,q,k)/qpochhammer(q,q,k)/(a*q)^k,q,k,simplify=false);

a q (−1 + qk)

(
1

−1 + a q
+

a (q − 1) qk

(−1 + a q) (−1 + a) q

)
qpochhammer(a, q, k)

(a q)k qpochhammer(q, q, k)

The system of linear equations can be solved by qgosper6 with three different methods
that are invoked via the optional argument “solvemethod=name”, where name is one of

ABP: This represents the algorithm of Abramov et al. described above that we imple-
mented for m = 1.

solve: This is Maple’s builtin solve procedure.
gausselim: An implementation of Gaussian implementation, since Maple’s solve in

many cases only poorly solves systems of linear equations. The same problem occurs
in Mathematica and was described by Paule and Riese (1995).

auto: This is the default, meaning that qgosper chooses either ABP or gausselim, de-
pending on the example. In most cases it chooses the faster method.

The following table shows the timings for computing antidifferences of Fn(k), generated
by the call

qgosper(qpochhammer(a,q,k)/qpochhammer(q,q,k)/(a*q^n)^k,q,k,simplify=false);

with specified n, and the additional optional argument solvemethod set to the appro-
priate value:7

5 By default the resulting antidifference is factorized over F[qk], which can be rather time-consuming
if X(k) is ‘complicated’. The application of this simplification can be dropped via the option
simplify=false.

6 This also applies to qsumrecursion, introduced in the next section.
7 The occurring dashes (—) in the table mean that no result was obtained within two hours.

Algorithms for q-hypergeometric Summation in Computer Algebra 5

Table 1. Timings for different solve methods

n 10 20 30 40 50 60 70 80 90 100

solve 6 s 106 s 1426 s — — — — — — —
gausselim 2 s 8 s 27 s 63 s 146 s 270 s 466 s 770 s 1188 s 1642 s
ABP 1 s 2 s 6 s 21 s 46 s 96 s 160 s 252 s 378 s 519 s

In Section 4 we will introduce an extension of the one-dimensional q-Gosper algorithm
that allows the computation of an antidifference for Fn(k) for arbitrary n ∈ N0 .
Note that—similarly to the process of indefinite integration—an antidifference is only

determined up to an additive constant, as the following example for m = 3 shows. The
function qbrackets(k,q) is given as

[k]q =
qk − 1

q − 1
.

We define t(k) by

> t:= qbrackets(k,p)*qbrackets(k,q)*qbrackets(k,r):

Obviously t(k) is an antidifference of t(k + 1) − t(k). Let’s nevertheless compute an
antidifference of t(k + 1)− t(k) applying qgosper:

> result:= qsimpcomb(qgosper(subs(k=k+1,t)-t,[p,q,r],k));

result :=
rk + qk − qk rk + pk − pk rk − pk qk + pk qk rk

(p− 1) (q − 1) (r − 1)

With qsimpcomb one shows that this antidifference is the same as t with an additive
constant (w. r. t. k):

> qsimpcomb(result-term);

1

(p− 1) (q − 1) (r − 1)

3. q-Zeilberger

Wilf and Zeilberger (1992) showed that Zeilberger’s algorithm can be easily carried over
to the q-case (see also the description by Koornwinder (1993)). The q-Zeilberger algorithm
tries to derive a recurrence equation for the definite sum S(n)

S(n) =

bn∑
k=an

F(n, k), (3.1)

where F(n, k) is a q-hypergeometric term w. r. t. n and k. It uses the q-Gosper algorithm
to determine an antidifference G(n, k) for fn(k) and σ0(n), . . . , σJ (n) ∈ F(qn) for some

6 B�oing� H� and Koepf� W�

J ∈ N, where8

fn(k) =

J∑
j=0

σj(n) F(n− j, k). (3.2)

Note that the application of q-Gosper to fn(k) in the second step gives a recurrence
equation for X(k) (see Equation (2.5)) which leads to a system of equations that are
linear in the coefficients of X(k) and in σ0(n), . . . , σJ (n). Thus the only change required
is to add the unknowns σ0(n), . . . , σJ (n) to the variables of the linear system that has to
be solved.
If the algorithm is successful, we get an inhomogeneous recurrence equation for F(n, k),

J∑
j=0

σj(n) F(n− j, k) = G(n, k + 1)−G(n, k), (3.3)

with σ0(n), . . . , σJ(n) ∈ F(qn). By summing over k from αn = max{an−j | j = 0, . . . J}
to βn = min{bn−j | j = 0, . . . J} we get the inhomogeneous recurrence equation

J∑
j=0

σj(n) S(n− j) = G(n, βn + 1)−G(n, αn) +

J∑
j=0

[
αn−1∑

k=an−j

F(n− j, k) +

bn−j∑
k=βn+1

F(n− j, k)

]
. (3.4)

An advantage of Zeilberger’s method is that, no matter how complicated the computation
of the recurrence equation (3.4) might be, one can prove its validity by rational arithmetic
if one also knows G(n, k):

1 Write down the corresponding recurrence equation (3.3) for the summand F(n, k)
and divide it by F(k). As G(n, k)/F(n, k) ∈ F

(
qn, qk

)
, this equation can be shown

by pure rational arithmetic.9

2 Knowing that Equation (3.3) is correct, we proceed by summing over k to obtain
Equation (3.4).

Thus the term G(n, k)/F(n, k) is often referred to as the (rational) certificate for the
recurrence Equation (3.4). Since the term F(n, k) usually has compact support, i. e. F(n, k)
vanishes for each n ∈ N0 outside a finite interval of k, in most cases the right-hand side
of (3.4) is zero. Therefore our implementation assumes that the right-hand side of (3.4)
is zero, if no summation bounds are specified (thus saving computation time).

Assume we want to prove the q-Pfaff-Saalschütz identity

3φ2

(
a, b, q−n

c, a b q1−n/c

∣∣∣∣ q; q
)

=
(c/a; q)n (c/b; q)n
(c; q)n (c/(a b); q)n

, (n ∈ N0) (3.5)

8 Instead of F(n − j, k) one could also use F(n + j, k) leading to an upward instead of a downward
recurrence equation.

9 after simplifying the ratios of the q-hypergeometric terms

Algorithms for q-hypergeometric Summation in Computer Algebra 7

where the basic hypergeometric series rφs is defined by

rφs

(
a1, a2, . . . , ar
b1, b2, . . . , bs

∣∣∣∣ q; z
)

=

∞∑
k=0

(a1, a2, . . . , ar; q)k
(b1, b2, . . . , bs; q)k

zk

(q; q)k

(
(−1)k q(

k
2)
)1+s−r

,

and (a1, a2, . . . , ar; q)k is an abbreviation for
∏r

j=1 (aj ; q)k. With our implementation of
the q-Zeilberger algorithm (qsumrecursion) one gets:

> qsumrecursion([a,b,q^(-n)],[c,a*b*q^(1-n)/c],q,q,S(n),
rec2qhyper=true,sumrange=0..n);⎡

⎣S(n) = qpochhammer
(c
a
, q, n

)
qpochhammer

(c
b
, q, n

)
qpochhammer(c, q, n) qpochhammer

(c

b a
, q, n

) , 0 ≤ n

⎤
⎦

To enforce the computation of the inhomogeneous part10 we supplied the optional ar-
gument sumrange=0..n; the option rec2qhyper=true advises qsumrecursion to return
a q-hypergeometric term instead of a recurrence equation if the order is one. Addi-
tionally to the output, the procedure stored some information in the global variable
_qsumrecursion_proof which is a table with several entries. One gets, e. g., the input
term, the recurrence equation and the certificate G(n, k)/F(n, k) for (3.3) by

> term:= _qsumrecursion_proof[_F];

term :=
qpochhammer(a, q, k) qpochhammer(b, q, k) qpochhammer

(
q−n, q, k

)
qk

qpochhammer(c, q, k) qpochhammer

(
a b q1−n

c
, q, k

)
qpochhammer(q, q, k)

> re:= _qsumrecursion_proof[_recursion];

re := (qn c− q) (−qn c+ a b q)S(n) + (−qn c+ b q) (a q − qn c) S(n− 1) = 0

> cert:= _qsumrecursion_proof[_certificate];

cert := − (−qn c+ a b q) (−q + c qk) (−1 + qk) qn

(qn − 1) qk

Due to the rφs-series type of input qsumrecursion had to choose a summation variable
(namely k) such that S(n) is a sum of term over k from 0 to n. But be careful, to avoid
interference with the global variable k we defined k to be local.11 The best way to use
this local variable (stored in _qsumrecursion_proof[_sumvar]) is to assign it to a global
variable, e. g.

> i:=_qsumrecursion_proof[_sumvar];

i := k

One can now prove the recurrence Equation (3.3) for the summand F(n, k) (term) by

rational arithmetic, where the antidifference G(n, k) is F(n, k) G(n,k)
F(n,k) , hence cert*term:

10 As we expected it turned out to be zero.
11 I. e., a substitution, such as subs(k=k+1,term) would not change anything!

8 B�oing� H� and Koepf� W�

> re:=subs({S(n-1)=subs(n=n-1,term),S(n)=term},lhs(re))-
(subs(i=i+1,cert*term)-cert*term):

> qsimpcomb(re);

0

Therefore Equation (3.3) is valid, which can now be converted into a recurrence equation
for S(n) by summing over k: Because F(n, k) and the antidifference G(n, k) have compact
support, i. e.

(a; q)k (b; q)k (q−n; q)k qk

(c; q)k (a b q1−n/c; q)k (q; q)k
= 0, for k ∈ {j ∈ Z

∣∣ j ≤ −1 or j ≥ n+ 1
}

the easiest way to prove _qsumrecursion_proof[_recursion] now, is by summing over
k from 0 to ∞, showing that the inhomogeneous part is zero.
Next let’s apply our program to deduce the right-hand side of the q-Dixon identity

n∑
k=−n

(−1)k qk (3 k−1)/2

[
n+ b

n+ k

]
q

[
n+ c

c+ k

]
q

[
b + c

b+ k

]
q

=
(q; q)n+b+c

(q; q)n (q; q)b (q; q)c
, (3.6)

where the q-binomial coefficient is defined by[n
k

]
q
=

(q; q)n
(q; q)k (q; q)n−k

.

If we apply qsumrecursion to find a recurrence equation for the sum, we get

> term:= (-1)^k*q^(k*(3*k-1)/2)*qbinomial(n+b,n+k,q)*qbinomial(n+c,c+k,q)*
qbinomial(b+c,b+k,q):

> qDixon_RE:= qsumrecursion(term,q,k,S(n));

qDixon RE :=
(− q2n + q

) (
qn + 1

) (
qn − 1

)
q3 S(n) + q

(
q5 + q4 − q4+n+c+b −

q2n+3 − qn+3+c − qn+3+c+b + q3 + q2n+3+c + q2n+3+b − qn+3+b − q3n+2 +

q2n+2+b + q4n+2+c+b + q2n+2+c − q3n+2+b − q3n+2+c − q2n+2+c+b − q1+3n +

q4n+1+c+b + q4n+c+b
)
S(n− 1) − (

q − qn+c+b
) (− q3n+c+b+1 + q5 + q2n+2 −

q3n+c+b + q4 − q3n+2+c+b + q6 − q4+n+c+b + q2n+3+b − qn+3+c + q2n+3+c −
qn+3+b − q4+n+c + q2n+2+b + q2n+2+c − q4+n+b

)
S(n− 2) +(

q2 − qn+c+b
) (

q − qn+c+b
) (

q2 − qn+b
) (

q2 − qn+c
)
S(n− 3) = 0, (3.7)

which is definitely not the result we want. Here we have an example (of quite a few),
where the q-Zeilberger algorithm doesn’t find a recurrence equation of minimal order,
which was pointed out by Paule and Riese (1995). Paule introduced 1994 the method
of creative symmetrizing—based on the following lemma—which resolves the problem of
non-minimality in most cases.

Lemma 3.1. (Riese, 1995) If for some c ∈ Z

bn∑
k=an

F(n, k) =

bn∑
k=an

F(n,−k − c),

Algorithms for q-hypergeometric Summation in Computer Algebra 9

and M(n, k) = F(n,−k − c)/F(n, k) then

bn∑
k=an

F(n, k) =
1

2

bn∑
k=an

(
1 +M(n, k)

)
F(n, k).

The astonishing fact is that, in most cases, the q-Zeilberger algorithm applied to the sym-
metrized summand 1/2 (1+M(n, k)) F(n, k) increases the chance of getting a recurrence
equation of minimal order. For q-Dixon we choose c = 0 to obtain:12

> M:= qsimpcomb(subs(k=-k,term)/term,assume=[k,integer]);

M := qk

If we now apply qsumrecursion to the symmetrized summand we get:

> qsumrecursion((1+M)/2*term,q,k,S(n));

(
qn − 1

)
S(n) − (− 1 + qn+b+c

)
S(n− 1) = 0

The following table is an extract of the one given in Paule and Riese (1995) with the
most time consuming examples, where we used the newest version of their package qZeil
(Version 1.8) with Mathematica 3.0:

Table 2. Comparison of the procedures qsumrecursion and qZeil

equation13 order qsumrecursion Turbo-qZeil

lhs 2 7 s 7 s
(II.18)

rhs 2 4 s 7 s

lhs 3 10 s 18 s
(III.25)

rhs 3 26 s 43 s

lhs 2 34 s 51 s
(III.28)

rhs 2 36 s 64 s

Turbo-qZeil just means that infinite summation bounds were specified, thus disabling
the computation of the inhomogeneous part. Our procedure didn’t compute the inho-
mogeneous part either, but instead of specifying the order of the recurrence (which is
necessary for qZeil), qsumrecursion tries to find a recurrence from first order up to the
one, where it is successful. By default it looks for a recurrence of order one up to five, as
in most cases the computing time of the non-successful tries is not crucial.

12 To remove factors like ((−1)k)2 the information that k is an integer is passed to our simplification
procedure qsimpcomb.
13 All equations numbers refer to the appendix of the book of Gasper and Rahman (1990).

10 B�oing� H� and Koepf� W�

The q-Zeilberger algorithm gives also a very simple method to deduce recurrence equa-
tions for orthogonal polynomials from the Askey-Wilson scheme (see e. g. Koekoek and
Swarttouw (1994)). For the little q-Legendre polynomials

pn(x|q) = 2φ1

(
q−n, qn+1

q

∣∣∣∣ q; qx
)

we get e. g. the recurrence equations

> qsumrecursion([q^(-n),q^(n+1)],[q],q,q*x,p(n));

qn (qn − 1) (q + qn) p(n) + (2 qn − x qn+1 − q x− x qn − x q2n) (q − q2n) p(n− 1)−
qn (qn + 1) (q − qn) p(n− 2) = 0

and

> qsumrecursion([q^(-n),q^(n+1)],[q],q,q*q^y,p(y));

qn+1 (qy − 1) p(y) − (qy + qy+2n+1 − 2 qn+1) p(y − 1) + qn (qy − q)p(y − 2) = 0 .

Furthermore the computation

> qsumrecursion([q^(-n),q^(n+1)],[q],q,q,p(n),rec2qhyper=true);[
p(n) = (−q)n qbinomial(n,2), 0 ≤ n

]
shows

pn(1|q) = (−1)n qn (n+1)/2 .

Now consider the Al-Salam-Chihara polynomials with x = cos θ, given by:

Qn(x; a, b|q) =
(a b; q)n

an
3φ2

(
q−n, a ei θ, a e−i θ

a b, 0

∣∣∣∣ q; q
)

(3.8)

=
(
b e−i θ; q

)
n
ei n θ

2φ1

(
q−n, a ei θ

b−1 q1−n ei θ

∣∣∣∣ q; b−1 q e−i θ

)
. (3.9)

With qsumrecursion one can easily show the equality of the two representations by

> re1:= qsumrecursion(qpochhammer(a*b,q,n)/a^n,
[q^(-n),a*exp(I*theta),a*exp(-I*theta)],[a*b,0],q,q,Q(n));

−eI θ q3 Q(n) − (eI θ qn a− q + eI θ qn b− q e2 I θ) q2 Q(n− 1) +

eI θ (−q2 + a b qn) (−qn + q)Q(n− 2) = 0

> re2:= qsumrecursion(qpochhammer(b*exp(-I*theta),q,n)*exp(I*n*theta),
[q^(-n),a*exp(I*theta)],[b^(-1)*q^(1-n)*exp(I*theta)],
q,b^(-1)*q*exp(-I*theta),Q(n));

−eI θ q3 Q(n) − (eI θ qn a− q + eI θ qn b− q e2 I θ) q2 Q(n− 1) +

eI θ (−q2 + a b qn) (−qn + q)Q(n− 2) = 0

Since the two recurrence equations agree, (3.8) and (3.9) really define the same polyno-
mials as long as the two initial values Q0(x; a, b|q) and Q1(x; a, b|q) are confirmed.

Algorithms for q-hypergeometric Summation in Computer Algebra 11

4. q-Petkovšek

In Abramov et al. (1997) the authors give a few algorithms to find solutions of special
types of homogeneous and inhomogeneous recurrence equations with polynomial coef-
ficients. Petkovšek implemented the procedure qHyper14 in Mathematica that finds
q-hypergeometric solutions of homogeneous recurrence equations.

4.1. q-hypergeometric solutions of homogeneous recursions

Assume we want to determine all q-hypergeometric solutions F(n) of the homogeneous
recurrence equation

J∑
j=0

σj(n) F(n+ j) = 0, σ0(n), . . . , σJ (n) ∈ F[qn] . (4.1)

As in Gosper’s algorithm (see Equation (2.3)), the following q-Gosper-Petkovšek repre-
sentation of rational functions plays a fundamental role:

Lemma 4.1. For every L(n) ∈ F(qn) there exists a quadruple (z,P(n),Q(n),R(n)) ∈
(F × F[qn]

3
), the q-Gosper-Petkovšek representation of L(n), with

(i) L(n) = z
P(n+ 1)

P(n)

Q(n)

R(n)
,

(ii) gcd(Q(n),R(n+ j)) = 1, for all j ∈ N0 ,

(iii) gcd(Q(n),P(n)) = 1, and gcd(R(n),P(n+ 1)) = 1,

(iv) P(n),Q(n), and R(n) are monic15, and ldeg(P(n)) = 0.

After dividing Equation (4.1) by F(n), substituting F(n+ 1)/F(n) by its corresponding
q-Gosper-Petkovšek representation and canceling common denominators one gets:

J∑
j=0

zj Cj(n) P(n+ j) = 0, (4.2)

where

Cj(n) :=
∞∑
k=0

cj,k
(
qn
)k

:= σj(n)

(
j−1∏
i=0

Q(n+ i)

)(
J−1∏
i=j

R(n+ i)

)
∈ F[qn] .

Using Lemma 4.1 it is easy to deduce the two conditions

Q(n) divides σ0(n), and R(n) divides σJ (n− J + 1),

from the above equation. Besides, one can derive

14 The corresponding package qHyper.m (and the hypergeometric version Hyper.m) can be obtained at
http://www.mat.uni-lj.si/dwnld.htm.
15 P(n) is called monic if the leading coefficient is one.

12 B�oing� H� and Koepf� W�

J∑
j=0

cj,λ z
j = 0, λ = min

{
ldeg(Cj(n))

∣∣ j = 0, . . . , J
}

(4.3)

by equating the coefficients of (qn)λ in (4.2).
Now the q-Petkovšek algorithm for each possible choice16 of Q(n), R(n) computes

possible values of z, i. e. the set

Z =
{
x ∈ F

∣∣∣ ∑J

j=0
cj,λ x

j = 0
}
.

Once we know these, we substitute them in Equation (4.2) and check whether there is a
polynomial solution P(n).
This means the algorithm is rather slow if the coefficients σ0(n) and σJ (n) have many

factors, as we have to try a lot of combinations. Thus to apply the algorithm, it is really
important to have an efficient implementation.
We observed that the number of computations could be substantially decreased by

grouping the elements of Z into equivalence classes according to

x ∼ x̃ ⇐⇒ x = qi x̃ for some i ∈ Z.

Assuming that F(n) is a solution of equation (4.1), (z,P(n),Q(n) and R(n)) a q-Gosper-
Petkovšek representation of F(n+ 1)/F(n), and z = z̃ qi for some integer i, we get

z
P(k + 1)

P(k)

Q(k)

R(k)
= z̃

P̃(k + 1)

P̃(k)

Q(k)

R(k)
, with P̃(n) =

(
qk
)i
P(n).

This means that instead of searching for polynomial solutions P(n) of (4.2) for every
z ∈ Z it suffices to search for all Laurent polynomial solutions P(n) for one representative
of each equivalence class in Z.
Our implementation qrecsolve finds all q-hypergeometric solutions of recurrence equa-

tion (3.7) that was stored in the variable qDixon_rec, after 290 s:17

> Sn:= qrecsolve(qDixon_rec,q,S(n),return=qhypergeometric);

Sn :=

[[
qpochhammer

(
qc+1+b, q, n

)
qpochhammer(q, q, n)

, 0 <= n

]]

The optional argument return=qhypergeometric advises the procedure to return the
q-hypergeometric term S(n) and not the ratio S(n+1)/S(n) which is the default. Modulo
a constant factor w. r. t. n this should be equivalent to the right-hand side of (3.6):

> qsimplify(Sn[1][1]*qpochhammer(q,q,n)*qpochhammer(q,q,b)*
qpochhammer(q,q,c)/qpochhammer(q,q,n+b+c));

(−1 + qc+b) qpochhammer(qc, q, b)

qpochhammer(q, q, b) (−1 + qc)

16 Possible choices for Q(n), e. g., are all combinations of non-constant monic divisors (w. r. t. n) of
σ0(n). Since all divisors are monic, there are only finitely many choices.
17 With Petkovšek’s implementation qHyper (version from July 1995) and Mathematica 3.0 no result

was obtained after two hours. Note that we had to supply the optional arguments Solutions->All and
Quadratics->True to get a behavior equivalent to our procedure qrecsolve.

Algorithms for q-hypergeometric Summation in Computer Algebra 13

Since Q(n) and R(n) are divisors of σ0(n) and σJ (n−J+1), respectively, we can choose to
try only possible combinations of factors of the σ’s obtained by rational or by a complete
factorization. Of course the latter method is eventually slower, but we are sure to get all
solutions. If we are not interested in solutions over any extension field, however, we might
prefer rational factorization. This can be accomplished by using the additional argument
split=false in qrecsolve. If we do this for the q-Dixon example, the solution is already
found after 105 s.18

By dividing Z into equivalence classes the computation times usually are halved: For
qDixon_rec, e. g., without this improvement our implementations needs 589 s and 234 s
with split set to true and false, respectively.

4.2. q-hypergeometric solutions of inhomogeneous recursions

From the computational point of view the case of an inhomogeneous recurrence equa-
tion is much easier. If F(n) is a q-hypergeometric solution of the recurrence equation

J∑
j=0

σj(n) F(n+ j) = G(n), σ0(n), . . . , σJ (n) ∈ F[qn] . (4.4)

with given q-hypergeometric term G(n), then L(n) = F(n)/G(n) is in F(qn). To solve
Equation (4.4) we divide it by G(n) and search for all rational solutions L(n) of

J∑
j=0

(
σj(n)

j−1∏
i=0

γ(n+ i)

)
L(n) = 1, γ(n) =

G(n+ 1)

G(n)
∈ F(qn) . (4.5)

Abramov (1995) showed how to determine a multiple of the denominator of L(n), there-
fore leaving the easier problem of finding polynomial solutions of inhomogeneous recur-
rence equations.19

As an example, we search for all q-hypergeometric solutions F(k) of the inhomogeneous
recurrence equation

qk (q + 1) (q − 1) (qk − 1) (qk+1 − 1) F(k + 2) + (q + 1) (qk − 1) (1− qk+1) ·
(qk (a q − a) + a− 1) F(k + 1) + (a+ 1) (a− 1) (qk − 1) (qk+1 − 1) F(k) =

(a− 1) (a− q) (qk + 1) (qk − 1)2 (a; q)k
(q; q)k

by the computation

> qrecsolve(q^k*(q+1)*(q-1)*(q^k-1)*(q^(k+1)-1)*F(k+2)+(q+1)*(q^k-1)*
(1-q^(k+1))*(q^k*(a*q-a)+a-1)*F(k+1)+(a+1)*(a-1)*(q^k-1)*(q^(k+1)-1)*F(k)=
(a-1)*(a-q)*(q^k+1)*(q^k-1)^2*qpochhammer(a,q,k)/qpochhammer(q,q,k),q,F(k));[(

1− qk
)
qpochhammer(a, q, k)

qpochhammer(q, q, k)

]

18 Without Quadratics->True Petkovšek’s implementation needs 1244 s.
19 To determine polynomial solutions one proceeds as described for the q-Gosper algorithm.

14 B�oing� H� and Koepf� W�

4.3. power series solutions

Let Fq-hyp. [[q
n]] denote the subset of the ring F[[qn]] of formal power series over F whose

coefficients form a q-hypergeometric sequence. In Abramov et al. (1997) the authors show
how to search for solutions F(k) ∈ Fq-hyp. [[q

n]] of

J∑
j=0

σj(n) F(n+ j) =
∞∑
k=0

bk
(
qn
)k
, (4.6)

where bk is a q-hypergeometric term w. r. t. k, based on the following lemma:

Lemma 4.2. Assume F(k) =
∑∞

k=0 fk (q
n)k ∈ Fq-hyp. [[q

n]] is a solution of Equation
(4.6) with

σj(n) =

δ∑
i=0

sj,i
(
qn
)i ∈ F[qn] , j = 0, . . . , J,

and δ = max
{
deg(σj(n))

∣∣ j = 0, . . . , J
}
. Then the recurrence equation

δ∑
i=0

(J∑
j=0

sj,δ−i q
i j
(
ql
)j)

fl+i = bl+δ, (4.7)

is valid for fl with l ∈ N0 and

l∑
i=0

(J∑
j=0

sj,l−i q
i j

)
fi = bl, l = 0, 1, . . . , δ − 1. (4.8)

Thus we can determine all solutions F(n) ∈ Fq-hyp. [[q
n]] of Equation (4.6) by using

Lemma 4.2 and applying q-Petkovšek’s algorithm if the right-hand side is zero, and
otherwise Abramov’s algorithm to determine the coefficients fl via (4.7). Then we have
to check if we can adjust the solution for fl so that the initial conditions (4.8) are fulfilled.
With the option solution=series, the procedure qrecsolve searches for formal power

series solutions by the above algorithm. E. g., given the recurrence equation20

q2 q2n F(n+ 3) + (1 + q) qn F(n+ 2) + (1− qn) F(n+ 1)− F(n) = 0,

we get the solution:

> qrecsolve(q^2*q^(2*n)*F(n+3)+(1+q)*q^n*F(n+2)+(1-q^n)*F(n+1)-F(n),
q,F(n),solution=series);

[∞∑
i=0

C1 q i2
(
qn
) i

qpochhammer(q, q, i)

]

20 (Abramov et al., 1997), Section 5.3, Example 8.

Algorithms for q-hypergeometric Summation in Computer Algebra 15

Now we want to use this method to introduce an extension of q-Gosper’s algorithm, by
considering Example (2.9). First we compute polynomials P(k),Q(k),R(k) according to
(2.3) for Fn(k) defined by (2.9)

P(k) = 1, Q(k) = a qk − 1, and R(k) = a qn
(
q qk − 1

)
.

The recurrence equation for X(k) (see (2.5)) is then(
a qk − 1

)
X(k) − a qn

(
qk − 1

)
X(k − 1) = 1.

We know already that there is no Laurent polynomial solution X(k). However, computing
a degree bound for X(k) shows that X(k) could be a polynomial of degree n. Thus we
might try to look for a solution X(k) ∈ Fq-hyp. [[q

n]]:

> qrecsolve((a*q^k-1)*X(k)-a*q^n*(q^k-1)*X(k-1)=1,q,X(k),solution=series);⎡
⎢⎢⎣

∞∑
i=0

⎛
⎜⎜⎝ qpochhammer

(
q−n, q, i

)
q i
(
qk
) i

(
a qn − q i

)
qpochhammer

(
q−n

a
, q, i

)
⎞
⎟⎟⎠
⎤
⎥⎥⎦

Note that (q−n; q) i = 0 for i > n, i. e. X(k) is a polynomial in qk of degree n as
expected. With Equation (2.6) we can now build one antidifference G(k) for all n ∈ N0 .
Our procedure qgosper can do all the necessary calculations:

> assume(n,posint);
> qgosper(qpochhammer(a,q,k)/qpochhammer(q,q,k)/(a*q^n)^k,q,k,series=true);

(− 1 + qk
)
a qn qpochhammer(a, q, k)(

a qn
)k

qpochhammer(q, q, k)

n∑
i=0

⎛
⎜⎜⎝ qpochhammer

(
q−n, q, i

)
q i
(
qk
) i

(
a qn − q i

)
qpochhammer

(
q−n

a
, q, i

)
⎞
⎟⎟⎠

Note that after 2 s qgosper delivers an antidifference for all n ∈ N. This should be
compared with the timings in Table 1. The declaration assume(n,posint); helped the
procedure qgosper to determine that the sum is not infinite since the summand is zero
for i > n.

5. Conclusion

Our package qsum.mpl is an efficient implementation of the q-Gosper, q-Zeilberger,
q-Petkovšek and similar algorithms. It is the first package which combines all these al-
gorithms which are useful tools to deal with problems associated with q-hypergeometric
sums. Especially can the combination of q-Zeilberger with q-Petkovšek be used to deter-
mine whether a definite q-hypergeometric sum has a representation as a q-hypergeometric
term.

Acknowledgment

We would like to thank Axel Riese for explaining some optimizations he did to improve
the performance of his procedure qZeil that also helped decreasing the computation
times of our version.21

21 See the second idea in Appendix B.9 of Riese (1997)

16 B�oing� H� and Koepf� W�

References

Abramov, S. A. (1995). Rational solutions of linear difference and q-difference equations. Programming
and Comput. Software, 6:273–278. Transl. from Programmirovanie (1995) 6, 3-11.

Abramov, S. A., Bronstein, M., Petkovšek, M. (1995). On polynomial solutions of linear operator
equations. In Levelt, T., editor, Proc. ISSAC ’95, pages 290–296. ACM Press, New York.

Abramov, S. A., Paule, P., Petkovšek, M. (1997). q-hypergeometric solutions of q-difference equations.
Discrete Math., to appear.

Böing, H. (1998). Theorie und Algorithmen zur q-hypergeometrischen Summation. Master’s thesis, Freie
Universität Berlin, Germany.

Gasper, G., Rahman, M. (1990). Basic Hypergeometric Series, volume 35 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press.

Koekoek, R., Swarttouw, R. F. (1994). The Askey-scheme of hypergeometric orthogonal polynomials
and its q analogue. Technical Report 94–05, Technische Universiteit Delft, Faculty of Technical
Mathematics and Informatics, Delft. Electronic version available at http://www.can.nl/~renes.

Koepf, W. (1996). Summation in Maple. Maple Technical Newsletter, 3(2):26–32.
Koepf, W. (1998). Hypergeometric Summation. Vieweg, Braunschweig/Wiesbaden.
Koornwinder, T. H. (1993). On Zeilberger’s algorithm and its q-analogue: a rigorous description. J. of

Comput. and Appl. Math, 48:93–111.
Paule, P. (1994). Short and easy computer proofs of the Rogers-Ramanujan Identities and of identities

of similar type. The Electronic Journal of Combinatorics, 1:1–9.
Paule, P., Riese, A. (1995). A Mathematica q-analogue of Zeilberger’s algorithm based on an algebraically

motivated approach to q-hypergeometric telescoping. In Fields Proceedings of the Workshop on
‘Special Functions, q-Series and Related Topics’, Toronto, Ontario. Fields Institute for Research in
Mathematical Sciences at University College.

Petkovšek, M., Wilf, H. S., Zeilberger, D. (1996). A=B. A K Peters.
Riese, A. (1995). A Mathematica q-analogue of Zeilberger’s algorithm for proving q-hypergeometric

identities. Master’s thesis, Research Institute for Symbolic Computation, J. Kepler University,
Linz, Austria.

Riese, A. (1996). A generalization of Gosper’s algorithm to bibasic hypergeometric summation. Electr.
Journal of Combinatorics, 3:1996.

Riese, A. (1997). Contributions to Symbolic q-Hypergeometric Summation. PhD thesis, Research Insti-
tute for Symbolic Computation, J. Kepler University, Linz, Austria.

Wilf, H. S., Zeilberger, D. (1992). An algorithmic proof theory for hypergeometric (ordinary and ‘q’)
multisum/integral identities. Inventiones mathematicae, 108:575–633.

