A Study of Genetic Algorithms solving
a Combinatorial Puzzle

Thomas Wolf
Queen Mary & Westfield College, University of London,
Mile End Road, London E1 4NS, UK
email: T.Wolf@maths.qmw.ac.uk

January 20, 1998

Abstract

The suitability of Genetic Algorithms (GAs) to solve a combinatorial problem
with only one solution is investigated. The dependence of the performance is
studied for GA-hard and GA-soft fitness functions, both with a range of different

parameter values and different encodings.

Contents
1 Introduction 2
2 Evaluation functions 3
3 Generation of new chromosomes 4
4 Selection to drop 5
5 Alternative encodings 6
6 Results 6
6.1 Specification of diagrams oo 6
6.2 The size of population and number of children generated 7
6.3 Variations in selectivityo Lo 8
6.4 Comparison of encodings Lo 11
6.5 The number of repeats of crossover 14
6.6 Immortality of the best chromosome 15
6.7 Automatically restarting evolution 17
7 Summary 20
8 Possible extensions 20

List of Figures

1 Dependency on the number of children 8
2 Dependency on the size of the population, evaluation function1 9
3 Dependency on the size of the population, evaluation function2 9
4 Dependency on the selectivity, evaluation function 1 10
) Dependency on the selectivity, evaluation function 2 10
6 The two encodings with all 3 evaluation functions 11
7 Variation of the switching probability in crossover, encoding 1 12
8 Variation of the switching probability in crossover, encoding 2 12
9 Variation of the ratio crossover/mutation, encoding 2 13
10 Variation of the ratio crossover/mutation, encoding 1 13
11 Many repeats of crossover, evaluation function 2 14
12 No repeats of crossover, evaluation function 2 15
13 Many repeats of crossover, evaluation function 1 16
14 No repeats of crossover, evaluation function 1 16
15 Immortality of top chromosomes 17
16 Restart technique, evaluation function 1 19
17 Restart technique, evaluation function 2 19

1 Introduction

The application of Genetic Algorithms (GAs) to be discussed in this paper arose as an
example in teaching GAs. The aim in this paper is to clarify the effect of a variation
of GA-parameters and of the evaluation function by doing a statistical analysis of
a large numbers of computations. What is also demonstrated in this study is that
GAs can successfully be applied to the solution of combinatorial problems with a
unique solution in contrast to conventional applications of GAs where an as good as
possible approximative solution is looked for in a limited time. The study of parameter
dependence is supposed to help dealing with much harder combinatorial problems than
what is solved below.

The other suggestion is a simple measure to partially compensate loss of genetic
diversity by increasing the ratio of mutation/crossover.

The puzzle to be solved by the GA is to map each letter in the following figure to
a digit such that the 3 horizontal and 3 vertical computations are correct.

EDKH / KF = AA
- + +
EDB x J = EHCG
EEJD - DK = EEAE

With 10 letters and digits there are 10!=3628800 permutations from which only one
(ABC. .K=5793146082) solves the puzzle. This size of configuration space is large

enough to study non-trivial effects by comparing a GA-hard evaluation function with
many local optima with a function with fewer local optima and a function with only
one optimum. On the other hand this problem is small enough to solve it very often
to visualize parameter dependence and not only to produce single numbers for average
and variance of efficiency. Finally, the fact that this puzzle has a single solution
provides a unique stopping criterion.

2 Evaluation functions

Three versions of evaluation functions are tested which are denoted 1 - 3 in the rest
of the paper.

1. The naive and simplest way to measure progress is to count how many of the
three horizontal and three vertical calculations are correct, i.e. the evaluation
function returns a value in 0...6. Although the other two functions return
more information and give a better feed back, this functions is used to study
combinatorial problems for which no good evaluation function is known and
which are therefore a bigger challenge for Genetic Algorithms, i.e. which are
GA-hard. This function is even more ‘GA-hard’ than it looks. The reason is
that only very close to the solution of the puzzle do chromosomes have a higher
fitness than 2. So during nearly all of the evolution, chromosomes have only the
three different fitness values 0,1,2.

2. An improved evaluation function compares digit by digit the result of a calcu-
lation with what is encoded in the puzzle. For example, in the first line after
evaluating (K10 + F')(A10 + A) the result is compared with EDKH for each
of the four digits. In this way 22 comparisons are made in all 6 calculations
which gives a more detailed feedback. In the case of a subtraction the equivalent
addition is checked and in the case of a division the corresponding multiplication
is checked. This resulting evaluation function is refined further by a number of
modifications:

e A bonus of 10 is given if the rightmost position is correct whereas a correct
comparison of other positions gives only a bonus of 8. The reason for these
different weights is that a wrong carry over due to wrong digits to the right
can make wrong digits look fine if their sum is off by only +1.

e For the same reason (correct digits looking wrong due to a false carry over),
a bonus of 4 is given if a not-rightmost comparison gives a discrepancy of
only +1.

e [f the rightmost comparison in a multiplication is wrong then no other digits
in this calculation are compared because a wrong multiplication usually
inflicts a false carry over which prevents checking of digits further left.

3. A third function includes perfect information and is used only for comparisons.
It counts the number of correct digits in the chromosome by comparing it with
the unique correct chromosome which solves the puzzle.

The first of these functions has very many local optima, the second function less and
the third by definition only one. This allows one to investigate the effect of changing
GA-parameters for these quite different functions.

3 Generation of new chromosomes

After determining raw fitness values with one of the above fitness functions these values
are slightly modified to initialize a roulette wheel for selecting parents to generate
offspring. We used a simple shift to improve the chance of better chromosomes. If m
is the minimal raw fitness then each fitness f is changed to f:= f —m/2.

Offspring chromosomes are created with three operators:

e Crossover: The usual order-based crossover operator as, described in [1], is
slightly modified to enable one to take advantage of additional knowledge of
potential building blocks.

According to the conventional method ([1],[2]) two child chromosomes are gen-
erated at the same time. A random bit-string B (containing 0’s and 1’s) with
the length of a chromosome is generated. For each ‘0’ in this string the 1st of
the children inherits the allele from the 1st of the parents at this position in
the chromosome, and for each ‘1’ the 2nd child inherits the allele from the 2nd
parent. The remaining alleles of the 1st child that have not got a value yet are
filled with the missing digits in the same order as they occur in the 2nd parent
and the so far unassigned alleles of the 2nd child are filled with the missing digits
as they occur in the 1st parent.

The modification in our program is that the bit-string B starts with a random

first component B; (= 0 or 1) and each element B, of this string is determined
from B, _; by

B _ B,_; with probability 1 —p (1)

" 1 1- B,_, with probability p

The advantage of this assignment of B is that one has an extra parameter p
which is a probability of switching inheritance between both parents, i.e. it is an
inverse measure of how lumpy are the parts that are copied from the parents.
If one knows about the strong causal interdependence of some of the variables
to be determined then one can encode the chromosome such that the corre-
sponding genes are located next to each other in the chromosome. By having
a smaller value of p one has a higher probability that more than one allele in
a row is copied from the parents to the children which increases the chance to

4

inherit pre-optimized building blocks of parent chromosomes. This is discussed
in section 6.4.

If two parent chromosomes differ only in two positions, then crossover will gen-
erate two offsprings that are equal to their parents. In order to keep the genetic
variety high, offsprings must not be a duplicate to any already existing chromo-
some. In the case of a clash, crossover is tried again and if it happens consecu-
tively ¢, times then the mutation operator is tried instead in order to increase
genetic variety. ¢, is called below the maximal-crossover-repeats parameter.

e Small mutation: Two positions in the chromosome are determined randomly and
their values are exchanged.

e Large mutation: Two positions in the chromosome are determined randomly
which determines an interval. With a chance of 50% all positions within this
interval are permuted otherwise all positions outside this interval are permuted
randomly.

Operator weights that determine how often each of these operators is used are kept
constant. One reason for this is that running times may vary greatly with different
parameter sets. Therefore a dynamic variation would be necessary, compensating
dynamically for the loss of diversity during evolution. The maximal-crossover-repeats
parameter ¢, plays such a role although only to a very limited extend. Its advantage
is that its use comes for free, whereas monitoring genetic diversity would otherwise be
more expensive. A more radical measure is to restart evolution, which is studied in
section 6.7.

4 Selection to drop

The list of parents and the list of offsprings are appended and closed to form a circular
linked list, with a pointer pointing to an arbitrarily defined start of this list. To delete
a chromosome a random (integer) number r in the interval

m...m+ [s(M —m)+0.5] (2)

is generated where m, M are the minimum and maximum of the fitness values of
parents and offspring determined by the evaluation function and s is a selectivity
parameter giving an increasingly aggressive selection the smaller s is. [z] denotes the
biggest integer < x. Then the pointer is advanced in the circular linked list until a
chromosome is reached with a fitness < r which is subsequently killed unless it has
maximal fitness M.

In the process of dropping chromosomes, the minimum fitness of the remaining
ones may increase if all chromosomes with minimal fitness m are dropped. Therefore
m has to be updated when stepping through the circular linked list.

The aim was to have a parameter allowing different selectivities and also allowing
chromosomes with a high fitness to be dropped. Compared with a roulette wheel
selection we have no need to

1. total the fitness of all chromosomes,
2. assign to each chromosome its partial sum of fitness and

3. step through the list of chromosomes until their partial sum exceeds a random
number.

The resulting speed up becomes increasingly useful for larger population sizes.

5 Alternative encodings

On first sight it does not seem to matter in which sequence the letters A... K are
encoded in the chromosome.

The essence of Genetic Algorithms - the combination of optimized building blocks
of two parent chromosomes through the crossover, is more effective if such building
blocks are passed as a whole to offspring and less likely to be cut through during
CTOSSOVer.

What are such building blocks in our problem? Looking, for example, on the right
vertical calculation and the rightmost digits, it appears that if A+ G = F or A+ G =
10 + FE is satisfied and one of the three digits A, G, E' is changed then at least another
one of them has to change as well in order to keep the sum correct. Such a causal
dependence is obviously not the case for each triple of letters, like A, D, .J. Therefore
A, G, E should be grouped next to each other in the chromosome as a potential building
block. Applying this principle consequently, grouping rightmost letters of each three
numbers involved in any calculation next to each other we obtain, for example, the
encoding HFAGEKDBJC. In section 6.4 the effect of different encodings is discussed
for different evaluation functions.

6 Results

6.1 Specification of diagrams

Diagrams shown in this section display the number of chromosomes that had to be
generated in order to solve the puzzle. On the horizontal axis the log,,(number of
chromosomes generated to solve the puzzle) is given and the vertical axis measures
the frequency with which that number of chromosomes was necessary. For each graph
the puzzle was solved between 3000 and 40000 times depending on whether the average
number of generated chromosomes was high (~ 10°) or low (~ 2000). The interval
between the minimal and maximal number of chromosomes for each graph was divided

into 20 subintervals for 3000 runs and into 50 subintervals for 40000 runs. The number
of runs with chromosomes in this subinterval was counted and constitutes the vertical
measure after having been normalized so that the area under each graph in a figure is
the same.

Each diagram displays the variation of few parameters, usually only one. The
values of the other parameters which are held constant are given, using the following
abbreviations:

ef ... evaluation function used (= 1,2,3 see section 2)

cd ... encoding used (= 1 for HFAGEKDBJC, 2 for ABCDEFGHJK)

s ... selectivity parameter (s in (2))

nc ... number of children chromosomes generated in one go

np ... number of chromosomes in the population

p ... probability in % that during crossover an allele is inherited from a

parent if the previous allele in the chromosome was inherited from
the other parent (p in (1))

cr ... maximal number of repeats of crossover if duplicate chromosomes are
generated (see the description of crossover in sec. 3)
co ... probability in % of children generated by crossover

m1 ... probability in % of children generated by swapping two alleles
m2 ... probability in % of children generated by interval mutation

rf ... restart factor - a measure of how long no improvement must have
happend in order to restart evolution, plays only a role in
section 6.7

For all-or-nothing problems like our puzzle we are interested in the effort required to
find the unique solution, and therefore we have not monitored the progress in time,
i.e. its dependence on the number of chromosomes generated so far.

One could have plotted the integral of the graphs of our diagrams which would
show the accumulated probability of solving the puzzle. By showing the probability
density instead, a higher resolution of the right flank of our graphs is achieved which
simplifies comparisons of graphs for high chromosome numbers.

Also, we are less interested in the actual time in which the puzzle is solved (about
1 sec on a 133MHz PC for evaluation function 2) but in relative differences when
comparing different parameter values.

At first single parameters are varied; later combinations of parameters.

6.2 The size of population and number of children generated

In figure 1 below, the dependence on the number of children generated in one go is
shown. As is to be expected, the influence of this parameter is small. The benefit of
generating a smaller number in each generation (and consequently mor generations)
is that if they amoung this generation there are any good individuals then they can
have descendants already in the next generation.

7

In contrast, the size of the population is a much more critical parameter as shown
in figures 2 and 3.

The situation is qualitatively the same for evaluation functions 1 and 2. A larger
population size gives a smaller variation whereas small population sizes carry the risk
of getting stuck at a local optimum and then about 100 times as many chromosomes
have to be generated to solve the puzzle.

L =z —
1.5 2 2.5 3 3.5 4 4.5 5
ef=2 cd=1 s=0.3 np=50 p=8 co=45 ml1=30 m2=25

Figure 1: Dependency on the number of children

6.3 Variations in selectivity

If an evaluation function has many sub-optima then it is important that evolution
does not concentrate around the first optimum it finds. This can be achieved with a
selectivity that allows for good chromosomes to die as well. Therefore for evaluation
function ef=1, variations of selectivity have a similar effect as different population
sizes (figures 2, 4). If there is a chance that preliminary good chromosomes can be
deleted, then the risk to get stuck with local optima is reduced. Consequently high
values of s are optimal. The shape of the curves changes relatively quickly for s > 0.5
but very little for 0.3 < s < 0.5. The reason is that during nearly all of the evolution
fitness values are only 0,1 and 2 and for s < 0.5 only chromosomes with fitness 0 are
deleted. Evaluation function 2 in contrast has less local optima so a highly aggressive
selection (low value of s) is optimal there (figure 5). The way selection is performed
(only a few chromosomes are deleted for the next children to be generated) ensures
that no second hump develops like in figure 3 for small population sizes.

ef=1 cd=1 s=0.3 nc=2 p=8 co=45 ml=30 m2=25

Figure 2: Dependency on the size of the population, evaluation function 1

|
I np= 15 -———-
[np= 25 ------
! np= 50 oo
bl np=150 ——-—
Yoo

1 2 3 4 5 6 7
ef=2 cd=1 s=0.3 nc=2 p=8 co=45 ml=30 m2=25

Figure 3: Dependency on the size of the population, evaluation function 2

|
RN s=0.3 ——
N s=0.5 - ———-
; /,’ \\ s=0.6 ------
,'1/' \ s=0.7 oo
A RN s=0.8 —-—-—
,’/' _/'/ ‘\ 5210 _____
//’ - \\ $=3.0 -- ----

1 2
ef=1 c¢d=1 nc=2 np=25 cr=2 p=8 co=45 ml=30 m2=25
Figure 4: Dependency on the selectivity, evaluation function 1
T
1.5 2 2.5 3 3.5 4 4.5 5 9.5
ef=2 c¢d=1 nc=2 np=50 cr=2 p=8 co=45 ml=30 m2=25

Figure 5: Dependency on the selectivity, evaluation function 2

10

6.4 Comparison of encodings

In figure 6 the two encodings cd=1: HFAGEKDBJC and cd=2: ABCDEFGHJK are
compared for all three evaluation functions. It appears that grouping causally stronger
depending genes next to each other in the chromosome, like in HFAGEKDBJC im-
proves effectivity. This is the more effective the harder the problem is (or equivalently
the less information the evaluation function provides) with the consequence that for
the perfect evaluation function ef=3 there is virtually no difference in the graphs for
both encodings.

For the improved encoding cd=1: HFAGEKDBJC it is better to inherit bigger blocks

| |
ef=3, cd=1 & cd=2 ———
ef=2, cd=1 - —---

! Ll . :
1 2 3 4) 6 7 8
s=0.3 nc=2 np=50 p=8 co=45 ml=30 m2=25

Figure 6: The two encodings with all 3 evaluation functions

from parents than for encoding 2. Although the dependency on the related inheritance-
switching-probability p in (1) is remarkably small, optimal efficiency is obtained for
p = 15— 50% for encoding 1 (figure 7) and p = 50 — 70% for encoding 2 (figure 8).
A change in the encoding has also an effect on the optimal ratio of crossover/mutation
(= co/(ml4m2)). As can be seen from figure 9, for the encoding cd=2: ABCDE-
FGHJK crossover is useless and reducing its weight is the best one can do. Differently
for encoding cd=1: HFAGEKDBJC for which about 55% crossover is the optimum
(figure 10).

(These numbers have to be seen in the context of the maximal-crossover-repeats
parameter cr=2 which means that the ratio (crossover/mutation) starts as 55:45 but
later in the evolution when genetic material narrows, the weight of mutation increases
slightly.) It is remarkable that for the order based encodings used here, crossover only
becomes productive if causally linked genes are grouped next to each other in the
chromosome.

11

| |
= 4 _____
p=100 ------
| -1
5 5.5

2.5 3 3.5 4 4.5

1.5 2
np=>50 co=45 ml=30 m2=25

ef=2 cd=1 s=0.3 nc=2

Figure 7: Variation of the switching probability in crossover, encoding 1

|
1.5 2 2.5 3 3.5 4
ef=2 c¢d=2 s=0.3 nc=2 np=>50

4.5 5) 5.5 6
co=45 ml=30 m2=25

Figure 8: Variation of the switching probability in crossover, encoding 2

12

co:I 0, m1:})5, m2:45|
co=25, m1=40, m2=35
co=>55, m1=25, m2=20
co=70, m1=15, m2=15
co=90, ml= 5, m2= 5

S ""‘-.--_--_--_.:____;t _______ N

| -
1.5 2 2.5 3 3.5 4 4.5 5 5.5
ef=2 cd=2 s=0.3 nc=2 np=50 p=8§
Figure 9: Variation of the ratio crossover/mutation, encoding 2
T T T T
co=b55, m1=25, m2=20 ——
co= 5, m1=50, m2=45 - -—--
co=70, m1=15, m2=15 ------
L 2a L
1.5 2 2.5 3 3.5 4 4.5 5 5.5
ef=2 cd=1 s=0.3 nc=2 np=50 p=8

Figure 10: Variation of the ratio crossover/mutation, encoding 1

13

As this is a general principle, the author expects that, for example, for the Traveling
Salesman problem it helps as well to position cities to be visited that are closely to
each other geographically as well closely to each other in the chromosome.

6.5 The number of repeats of crossover

As described in section 3, offsprings generated through crossover are compared with
all chromosomes in the population to avoid duplicates. In case of a clash, crossover
is repeated cr times and then mutation is used instead to generate the next pair
of offsprings. In figure 11, curves are plotted for cr=100 and four different ratios
crossover/mutation. In figure 12, curves for the same crossover/mutation ratios are
plotted, there for cr=1. For the, about optimal, crossover /mutation ratio of 45/55 the
difference in cr does not matter as the solid lines of both figures are comparable.
Differently for high values of co. The dotted line co=96 in figure 11 is left shifted
compared to the line co=96 of figure 12. This means, when crossover already has an
unfavourable high weight of 80-100% then in case of a clash of a new chromosome with
an existing one, it is still better to repeat crossover as often as necessary until a new
different chromosome is generated (dotted curve co=96 in figure 11) instead of using
mutation (dotted curve co=96 in figure 12). The reason for this effect seems to be that
the evaluation function used in figures 11, 12 is smooth enough such that it is better
to continue using crossover and stay close to the maximum found so far.
The situation changes very much for the less smooth and low information evalua-

COZI45, m1:i|’>0, m2:25| -
co=70, m1=15, m2=15 - ----
co=80, m1=10, m2=10 ------
co=96, ml= 2, m2= 2 -

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
ef=2 cd=1 s=0.3 nc=2 cr=100 np=50 p=8

Figure 11: Many repeats of crossover, evaluation function 2

14

co:|45, ml:il%O, m2:25| _
co=70, m1=15, m2=15 - ----
\ co=80, m1=10, m2=10 ------
R c0=96, ml= 2, m2= 2 --eee-

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
ef=2 cd=1 s=0.3 nc=2 cr=1 np=5H0 p=8

Figure 12: No repeats of crossover, evaluation function 2

tion function 1. In figures 13, 14 the same crossover/mutation ratios are used as in
figures 11, 12.

The first difference is that no repeats of crossover (figure 14) is superior to many
repeats of crossover (figure 13) as the right flanks in figure 14 are located further left
than those in figure 13. This is in contrast to figure 11, 12 where the opposite is
true. It was already indicated that the different nature of the evaluation function is
responsible for that.

The second difference is rather remarkable. In figures 11, 12 and 13 a very high
crossover weight of 96% is the worst of each of the four crossover/mutation ratios. Not
so in figure 14 where the right flank of co=96 is even left of co=45. The mechanism
seems to be that for low information function 1 an initially high crossover weight of 96%
does soon lead to a low genetic diversity, such that it comes earlier to extra mutations
when an offspring generated by crossover is a duplicate of an already existing one.

6.6 Immortality of the best chromosome

As described in section 4, during the selection process the chromosomes with a top
fitness are spared from being deleted. This is a good idea for a GA-soft problem but
is it good as well for evaluation function 1 if one aims at low selectivity, i.e. deleting
high scoring chromosomes as well?

In figure 15 two series of runs for the GA-hard evaluation function 1 are com-
pared, one sparing top chromosomes, the other without special treatment for them,

15

CO:4é, ml1=30, m2|:25
co=70, m1=15, m2=15
co=80, m1=10, m2=10
c0o=96, ml= 2, m2= 2

AN

2 3 4 5 6 7
ef=2 cd=1 s=0.3 nc=2 cr=100 np=50 p=8

Figure 13: Many repeats of crossover, evaluation function 1

I T
co=45, m1=30, m2=25 ——
co=70, m1=15, m2=15 ——-—-
co=80, m1=10, m2=10 ------

] = |]]] AR]

2 3 4 5 6 7
ef=1 c¢d=1 s=0.3 nc=2 cr=1 np=50 p=8

Figure 14: No repeats of crossover, evaluation function 1

16

i.e. deleting them if randomly chosen. Even for these parameters used here (s=3), the
immortability of top chromosomes is superior.

Therefore, in case of evaluation functions with many local optima where selection
must not be aggressive (high value of s), then as a counter measure, it obviously is
useful to keep top chromosomes (unless all chromosomes have the same fitness) and
rather have a higher value of s.

L |
.7 N immortal

s N .
v can die ——----
\

1
1.5 2 2.5 3 3.5 4 4.5) 5.5 6
ef=1 cd=1 s=3 nc=2 np=25 cr=2 p=8 co=45 ml=30 m2=25

Figure 15: Immortality of top chromosomes

6.7 Automatically restarting evolution

Let us assume, the probability curve has two humps of roughly equal size separated
by, say, 2 i.e. the second corresponding to a factor of 10 = 100 more chromosomes
generated, like in figures 13, 14. Then, as a single evolution progresses, if the number
of chromosomes computed has passed the first hump without solving the puzzle then
it is likely that about a factor of 100 more have to be generated, only to double the
chance of finding the solution. But the same probability one can have much cheaper
by restarting from scratch, thereby just doubling the effort. To include the option of
restarting the evolution seems to be a cheat on the principles of the genetic algorithm.
If the genetic material in the population has converged then something has to be done,
for example, an increase of the weight of mutation. The restart of evolution is only
the most radical of all steps towards more diversity. It is likely that other, less radical
measures are better, if at least some of the genes of the best chromosomes are correct
and worth inheriting.

17

In figures 16, 17 evolution is restarted if no improvement of the top fitness had
been occured for many generations. We adopt a simple rule with one parameter rf
(Restart-Factor).

Let n be the number of generated chromosomes since the last start or restart. Let
m be the number of generated chromosomes from the last start or restart until the
last time that a new record fitness was reached. The evolution is restarted as soon as
n > rf x m. In the case of a restart the complete population is randomly initialized,
n, m are set to n = m = (size of the initial population), and the record fitness to be
improved in the following is the highest fitness in the initial population. The vertical
axis in figures 16, 17 below measures the total of all individuals generated in all restarts
until the puzzle was solved.

The technique to restart if the evolution got frozen has the effect of shortening the
longest runs, i.e. of shifting the right flank of our diagrams towards the left. In that
it is similar to reducing selectivity (increasing the s value, figure 4) or increasing the
size of the population (increasing the np value, figure 2). But low selectivity means
that chromosomes near the global optimum may be deleted and early solutions are less
likely - the left flank moves towards the right. Similarly, in a large population it takes
longer for top chromosomes close to the global optimum to dominate the population
and to lead to a quick solution of the puzzle.

Differently the restarting technique which has little effect on the left flank as this
corresponds to situations where evolution is running well and improving fast. To have
the left and right flank left-shifted as much as possible, we combine high selectivity
and/or low population sizes to have many early solutions with the restart technique to
have an insurance against conversion to a local optimum. This interpretation is well
confirmed in figure 16 where the optimal curve with r£=6 has the same left flank as the
low-s curve and even improved on the right flank of the high-s curve. For evaluation
function 2 the situation is different. From figure 5 we learned that high selectivity (low
s values) are not beneficial which leaves only low population sizes to left-shift the left
flank (figure 3 above) and use the restarting technique to improve on the otherwise
right-shifting right flank. Because evaluation function 2 is so well behaved one has
to go to very low population sizes to develop a second hump which could make the
restarting technique useful. As it is seen from figure 17, although the very long runs
are avoided, the right flank of runs without restart is not really improved. Therefore,
as it is to be expected, the restart technique is more useful for GA-hard problems
(evaluation function 1) where convergence to local optima happens more frequently
than for GA-soft problems (evaluation function 2).

Another difference is that evaluation function 2 can have more different values and
consequently the top fitness increases more frequently in smaller steps and therefore the
restart factor has to be smaller. This restart mechanism can only be a rough example
and a more differentiated increase of the number of children nc and the weight of
mutation m2 might be better instead of deleting the whole population.

18

7
ef=1 c¢d=1 nc=2 np=25 cr=2 p=8 co=45 ml=30 m2=25

Figure 16: Restart technique, evaluation function 1

S~
~~1

6
ef=2 cd=1 s=0.3 nc=2 cr=2 p=8 co=45 ml=30 m2=25

Figure 17: Restart technique, evaluation function 2

19

7 Summary

We found the simple but nontrivial puzzle to be useful in demonstrating many typical
parameter dependences of the GA including the dependence on the choice of the
encoding and the fitness function.

We found a strong relationship between the fitness function being GA-hard or not
and the optimal size of the population, the optimal selectivity and the optimal restart
factor.

Another relationship proved to exist between the encoding and the crossover /
mutation ratio. Positioning causally stronger connected genes next to each other in
the chromosomes increased the optimal crossover / mutation ratio and the optimal
size of lumps inherited from parents during crossover.

Interestingly, in GA-hard situations the probability curve showed two maxima (on
a logarithmic horizontal axis) which suggests the following interpretation.

Either during evolution there are enough chromosomes generated that are in reach
of the global optimum (through a large population or low selectivity and enough
mutation) and then the puzzle is solved quickly, otherwise a lower local optimum will
be found instead and then it will take very long to leave it.

Usually combinatorial problems of interest have a vastly bigger configuration space
than ours of only 10! permutations. In that case the ratio (size of population)/(number
of configurations) will inevitably have to be much smaller. Measures to overcome this
are

a large population (big np),

a low selectivity (big s),

e switching to strong mutation (or increasing the weight of mutation) if crossover
produces offsprings that are already in the population,

e restarting evolution if no progress is reached after a longer interval.

8 Possible extensions

In all investigations above the configuration space and therefore its size was constant.
Although the trend of parameter dependence for an enlarged configuration space is
clear, it would be nice to see it explicitly. A way to do this for a similar problem would
be to solve a puzzle like the one in this paper but with letters corresponding to digits
not in the interval 0...9 but, for example, 0...15. Such puzzles to a different base
are not known to the author and would have to be invented first, also using Genetic
Algorithms.

Another extension would be to solve the above puzzle with other optimization tech-
niques like Simulated Annealing, each with varied parameter values, and to compare
them with the best runs of the Genetic Algorithm.

20

References

[1] Davis, L. 1991. Handbook of Genetic Algorithms. New York: Van Nostrand Rein-
hold.

[2] Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, MAA: Addison-Wesley.

21

