
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

HANS-CHRISTIAN HEGE AND DETLEV STALLING

Fast LIC with Higher Order Filter
Kernels

Preprint SC 97-74 (December 1997)



Fast LIC with Piecewise Polynomial Filter

Kernels

Hans-Christian Hege and Detlev Stalling

Abstract

Line integral convolution (LIC) has become a well-known and popular
method for visualizing vector fields. The method works by convolving
a random input texture along the integral curves of the vector field. In
order to accelerate image synthesis significantly, an efficient algorithm has
been proposed that utilizes pixel coherence in field line direction. This
algorithm, called “fast LIC”, originally was restricted to simple box-type
filter kernels.

Here we describe a generalization of fast LIC for piecewise polynomial
filter kernels. Expanding the filter kernels in terms of truncated power
functions allows us to exploit a certain convolution theorem. The convo-
lution integral is expressed as a linear combination of repeated integrals
(or repeated sums in the discrete case). Compared to the original algo-
rithm the additional expense for using higher order filter kernels, e.g. of
B-spline type, is very low. Such filter kernels produce smoother, less nois-
ier results than a box filter. This is evident from visual investigation, as
well as from analysis of pixel correlations. Thus, our method represents a
useful extension of the fast LIC algorithm for the creation of high-quality
LIC images.

1 Introduction

Line Integral Convolution (LIC), introduced by Cabral and Leedom [5], is a
particularly powerful and elegant method for synthesizing directional textures.
Such textures are useful in visualization and computer art. The algorithm needs
a texture and a vector field as input. The output image is computed by con-
volving the texture along the integral curves of the vector field. This causes
anisotropic correlations of pixel intensities: the values are much higher corre-
lated along individual integral curves than in directions perpendicular to field
lines. The resulting image thereby clearly depicts the directional structure of
the vector field.

The LIC technique can be used either to visualize a vector field or to impress
a directional texture to an arbitrary image. In the first case inputs are the vector
field one aims to visualize and a noisy, fairly arbitrary texture. In the second
case the inputs are the image one wants to modify and some artificial vector
field. This field may be generated, e.g., by taking the (rotated) gradient of the
smoothed input image.

1



Elegance and usefulness of the LIC technique inspired many researchers to
create variations and extensions of the original algorithm. Since the original
algorithm is computationally rather expensive, a much faster algorithm has been
developed which provides almost interactive speed [14]. Due to its significant
lower computational complexity we call it “fast LIC”. Another feature of this
algorithm is that smooth zooms can be produced. This can be utilized to
visualize details of vector fields. Furthermore texture animations with constant
or spatially varying velocity can be created, in order to portray orientation and
strength of the vector field in an intuitive manner. For interactive exploration of
large vector fields further acceleration may be necessary. This can be achieved
by parallelization. Designs of parallel algorithms for various kinds of computer
architectures are presented in [4] and [15].

Another method, derived from LIC, for encoding field direction and ori-
entation has been proposed in [17]. Here a low frequency input texture and
a ramp like anisotropic convolution kernel are used. Several algorithmic ap-
proaches have been suggested for the generation of LIC images on curved sur-
faces [8, 9, 1, 16, 12]. In ref. [10] it is shown how surface shapes in volume data
can be illustrated using principal direction-driven 3D LIC. By integrating the
LIC algorithm into direct volume rendering, dye advection – as used in exper-
imental flow visualization – has been simulated [13]. Strategies for effectively
portraying 3D flow using volume line integral convolution are discussed in [11].
An overview on the current status of LIC algorithms and applications of LIC is
given in [3].

In this paper we generalize the fastLIC algorithm [14] for use of piecewise
polynomial kernels. We employ the new algorithm not only in the plane, but
create LIC textures also on arbitrary surfaces, extending our work [1]. Further-
more, we investigate whether the use of higher order filters pays visually. This
is done by analyzing the differences between LIC images being generated with
different kernels. The examinations are supplemented by a statistical analysis
of LIC images.

The material of this paper has been organized as follows. After an introduc-
tion in Sect. 2, providing the mathematical background of LIC, a suitable class
of filter kernels is introduced, as well as a means for fast convolution (Sect. 3).
The fast LIC algorithm for polynomial filters is described in Sect. 4. In the
last section we provide a statistical analysis of LIC images based on white noise
input textures.

2 Line Integral Convolution

Line integral convolution may be performed in flat and curved space of arbitrary
dimension. For simplicity we describe the algorithm for the flat 2D case. It will
be become obvious that the techniques and results can simply be generalized for
higher dimensional and curved spaces. In fact we implemented the algorithm
also for vector fields on curved surfaces.

2



2.1 Integral Curves

We are working on a domain Ω ⊂ R
2 with some vector field v : Ω→ R

2 . Let
τ : [t0, t1]→ R

2 denote the integral curves1

d

dt
τ (t) = v(τ (t)) (1)

of the field v for initial conditions τ (t0) = x0, x0 ∈ Ω. For simplicity we
assume that the right hand side locally obeys a Lipschitz-condition such that
for all x0 ∈ Ω there is a unique solution. Furthermore, we assume that the field
vanishes nowhere in Ω, i.e. that no critical points exist. All integral curves τ (t)

can then be reparametrized by arc-length s, where s(t) =
∫ t

t0
v(t′) dt′ . Using

s as parameter makes it particularly easy to step along a given field line with
equi-distant steps. Both assumptions are taken to simplify the analysis. They
are not imposed in our implementation, where special care is taken at critical
and discontinuous points of the field v. Applying the chain rule and the inverse
function theorem, then using Eq. (1) and ds/dt = v, we obtain

dτ (t(s))

ds
=

dτ

dt

(ds
dt

)−1

=
v(τ (t(s)))

v(τ (t(s)))
.

Introducing a new function σ(s) := τ (t(s)), we get the alternative definition of
integral curves

d

ds
σ(s) =

v(σ(s))

v(σ(s))
, (2)

with initial condition σ(s0) = x0. Note that the right hand side of Eq. (2) is
just the normalized vector field.

2.2 Line Convolution

Now, in LIC an input texture T is convolved along the field lines σ of a given
vector field. The intensity at point x = σ(s) is defined as

I(x) =

s+L∫
s−L

T (σ(s′)) h(s− s′) ds′ , (3)

where h is an arbitrary filter, normalized to
∫ L

−Lh(s
′) ds′ = 1. Employing

filter kernels h with finite support supp h = [−L,L] and using the notation
Iσ(s) := I(σ(s)), and Tσ(s) := T (σ(s)), we may also write

Iσ(s) =

∞∫
−∞

Tσ(s
′) h(s− s′) ds′ = (Tσ ∗ h) (s) , (4)

where ∗ means convolution.
In order to evaluate Eq. (4) at a point x = σ(s), x ∈ Ω, we need a curve

segment centered at x and extending a length L in both directions. For points

1We will use the terms ‘integral curve’, ‘field line’ and ‘stream line’ synonymously.

3



Ω

Β

L

L

x

Ω = Ω ∪ Β

Figure 1: Enlarged domain Ω̄ = Ω ∪ B, used for calculation of convolution
integrals for all points x ∈ Ω.

x near ∂Ω such curve segments typically leave the domain Ω. Therefore we
pad domain Ω by a sufficiently large boundary region B as shown in Fig. 1 and
continue the vector field v arbitrarily but smoothly into region B. This allows
us to calculate integral curves of sufficient lengths for all points x ∈ Ω. The
input texture is also defined on the extended domain Ω̄ = Ω ∪ B, in order to
perform convolutions along these line segments. The output image lives on Ω.

2.3 Raster Images

The domains Ω̄ and Ω are partitioned into sets {ω̄i} and {ωj} of rectangular
pixels. The input texture T is a predefined raster image or is given procedurally.
In either case it is a piecewise constant function T : Ω̄ → R, assigning a texture
value Tω̄i to each pixel ω̄i. The output is also a raster image2, i.e. a piecewise
constant function O : Ω → N0 , assigning an integer grey value Oωi to each pixel
ωi ⊂ Ω.

First, let us focus on the computation of an intensity value I for a particular
point x = σ(s) on a field line, regarding the fact that T is a raster image.
According to Eq. (3) all texture values along the curve segment σ[s−L, s+L]
contribute to I(x). Assume that the curve segment σ[s−L, s+L] passes n pixels
ωj1 , ..., ωjn , i.e. consists of n sub-segments σ[sk−1, sk] each crossing one pixel
ω̄jk . Here s0 = s−L and sn = s + L are the limits of the convolution integral,
whereas the values s1 ≤ s2 ≤ ...≤ sn−1 correspond to all intersections between
the curve segment σ[s−L, s+L] and the pixel boundaries3. The one-dimensional
texture T (σ(s′)) on interval [s−L, s+L] then is a piecewise constant function
with breakpoints s1, s2, ...sn−1, that is T (σ(s

′)) = Tω̄jk
, for s′ ∈ [sk−1, sk) and

k = 1, ..., n. Therefore equation (3) becomes

Iσ(s) =

n∑
k=1

Tω̄jk

sk∫
sk−1

h(s− s′) ds′ . (5)

2Note, that the pixels ω̄ of the input texture contained in Ω may differ in size and location
from the pixels ω of the output image.

3For this discussion we may disregard degenerate cases where the intersections are not
single points.

4



Given all breakpoints sk and a specific kernel h, e.g. a polynomial one, the
intensity values Iσ(s) can be easily calculated.

The output image must also be a raster image. Therefore a representative
intensity value has to be obtained for each pixel ωi. Ideally one should compute
a spatial average,

Oωi =

∫
ωi

I(x) dμ (6)

and, for quantization, cast the result value to the next integer. Here dμ defines
a suitable measure with

∫
ωi

dμ = 1.

For performance reasons both quantities, Iσ(s) and Oωi will be computed
only approximately, as shown in the next section.

2.4 Sampling and Aliasing

In a practical implementation the calculation of convolution integrals must be
extremely fast, since for each pixel ω of the output image several intensity
values have to be calculated. Computing the intersections of the curve segment
σ[s−L, s+L] with the pixel boundaries and then evaluating Eq. (5) would be
computationally too expensive. Trading some accuracy, the intensity Iσ(s) can
instead be approximated by a Riemann sum. Using the notation Tl = Tσ(lΔs)
and hl = h(lΔs) we get from Eq. (3) a discrete approximation

Îσ(s) =
1

2m+1

m∑
k=−m

Tσ(s+ kΔs)h(−kΔs) =
1

2m+1

m∑
k=−m

Tj−k hk (7)

where m = L/Δs, j = s/Δs, and k = (s− s′)/Δs. Algorithmically this means
that the integrand is sampled pointwise, e.g. starting at point σ(jΔs) and then
stepping along curve σ with fixed step size Δs in both directions. Of course,
the results computed with approximation (7) in general are correct only in
the limit Δs′ → 0. Comparing the approximate expression with Eq. (5), the
error sources for finite Δs are obvious: First, not all texture values Tω̄jk

with
k = 1, ..., n are taken into account, and second, the integrals in Eq. (5) are
approximated only roughly. Rephrased in computer graphics language: using
approximation (7), two signals are pointwise sampled, the 1D texture along a
curve segment and the terms contributing to the integrals in Eq. (5). Since
the distance of two subsequent pixel boundaries sk−1 and sk may be arbitrarily
small, the Nyquist frequency of the 1D random texture is unbounded – even if T
would be continuous – and aliasing effects are in principle unavoidable. This is
moderated by the fact that pixels being missed during sampling typically would
receive only small weights according to Eq. (5).

Practical experience shows that using the approximation with a step size Δs
of about a third or half a texture pixel width usually delivers visually pleasing
results. Hence, this approximation is sufficient for practical purposes.

The pixel averages defined by Eq. (6) are approximated also by discrete sums

Oωi ≈
1

nc

nc∑
j=1

αj Î (xj) where xj ∈ ωi (8)

5



with finite nc. The sampling locations xj and weights αj can be chosen accord-
ing to some anti-aliasing scheme. As will be discussed later, our LIC algorithm
is able to produce multiple samples per pixel in a natural way. Although there
is only limited control about the exact locations of these samples within a pixel
(or optionally a subpixel), by adjusting a parameter minhit the total number of
samples per pixel (or subpixel) is guaranteed to be nc ≥ minhit. It turns out
that by averaging all samples with equal weights 1/nc results of sufficient high
quality are obtained.

A field line σ typically hits many pixels ωi of the output image and therefore
can be used to compute intensity values for a multitude of pixels. The fast
LIC algorithm [14] avoids the redundancies during intensity calculations for
neighbored points of a field line by relating these values mathematically and
using such a discretization. For box filters the coefficients hk are constant and
the relation between Îσ(s) and Îσ(s + lΔs) is obvious. Therefore, calculating
the LIC integral only at those locations which serve as sample points during
integration, a fast algorithm can be designed. For non-constant kernels Eq. (7)
is still is valid, but it is unfavorable to use it directly for calculating many
intensity values along a field line.

In Sec. 3 and 4 and we will discuss how discrete convolutions can be per-
formed very efficiently for certain types of filter kernels and how this procedure
can be combined with the fast LIC concept.

3 Convolution Theorem, Filter Kernels

The original fast LIC algorithm utilizes the fact that for box-type filter kernels
the convolution integrals are just differences of sums which can be easily up-
dated while stepping along a field line. This fact is a special case of a certain
convolution theorem stated below.

Piecewise polynomials provide a rather general function class that allows us
to represent a wide variety of kernel shapes. Therefore, we will mainly aim at
using this type of functions as filter kernels. We will define piecewise polynomial
functions formally, introduce a basis of the corresponding linear space (following
de Boor [2]), and then apply the convolution theorem to a linear combinations
of these basis functions.

3.1 A Convolution Theorem

The single important theorem which our work is based on is that the convolution
of two functions f and h, where h has finite support, is equal to the convolution
of the integral F of f and the derivative h′ of h, i.e.

f ∗h (x) =
∞∫

−∞
f(y)h(x− y) dy =

∞∫
−∞

F (y)h′(x− y) dy = F ∗h′ (x) (9)

for all x ∈ R. To show this we consider a definite integral with finite bounds
first, apply integration by parts, let the integration bounds move to infinity, and

6



then use the fact that the filter kernel h has finite support:

∫ z

−z

F (y)h′(x−y) dy = F (y)h(x−y)
∣∣∣y=z

y=−z
+

∫ z

−z

f(y)h(x−y) dy −→
z→∞

f ∗ h(x)

for every finite x. Assuming that f is (at least) n times integrable and h is (at
least) n times differentiable, we may apply Eq. (9) n times repeatedly. In order
to simplify the notation, we denote the nth integral of f by Fn,

Fn(x) =

∫ x

∞
dxn

∫ xn

∞
dxn−1 . . .

∫ x2

∞
dx1 f(x1) for n = 1, 2, 3, . . . (10)

Then we find the relation

f ∗ h = Fn ∗ h(n) . (11)

This is valid also if the n−th derivative h(n) is a delta distribution. Note that
if h(n)(x) = c δ(x− ξ) then

f ∗ h (x) = c

∫ ∞

−∞
Fn(y) δ(x− ξ − y) dy = c Fn(x− ξ) . (12)

Hence, convolution with a kernel h can be calculated by repeated integration if
some derivative of h is a linear combination of delta distributions. A trivial case
is a box filter, where h(1) consists of two delta functions and the convolution
amounts to a difference of two integrals.

3.2 Piecewise Polynomial Functions

Given a strictly increasing sequence ξ := (ξi)i=1...l of knots ξi∈R and polynomi-
als Pi, i = 1...l, each of order k (i.e., of degree < k), then we define a piecewise
polynomial function of order k by

f(x) :=

⎧⎪⎨
⎪⎩

0, x < ξ1

Pi(x), ξi ≤ x < ξi+1 , i = 1 . . . l − 1

Pl(x), x ≥ ξl .

(13)

The function and its derivatives may or may not be continuous at the knots ξi,
as illustrated in Fig. 2.

It is easy to see that the set of piecewise polynomial functions of order k
defined for a fixed knot sequence ξ generates a linear space. We will call this
space Pk,ξ.

For the time being we allow the function f to take non-vanishing values right
from the last knot ξl. Later, when using the piecewise polynomial functions as
filter kernels, we require the right-most polynomial Pl (dashed in Fig. 2) to be
zero, since the kernels must have finite support.

7



ξ
3

ξ
2

ξ
1

ξ
l−2 ξ

l−1 ξ
l

...

P1 P2 Pl−2 Pl−1 Pl

Figure 2: A piecewise polynomial function, defined by a set of l knots ξi and l
polynomials Pi.

1

0
ξi

j=0 j=1 j=2 j=3

ξi ξi ξi

Figure 3: Elements of the truncated power basis φij = (x − ξi)
j
+/j! .

3.3 The Truncated Power Basis

Let us now introduce a basis for the space of piecewise polynomial functions.
We will built this basis from so-called truncated power functions, defined by

(x)r+ :=

{
0, x < 0
xr , x ≥ 0

(14)

for r ∈ R0 . Using this notation, we define a double sequence of functions
corresponding to a knot sequence ξ by

φij(x) =
(x− ξi)

j
+

j!
for i = 1 . . . l and j = 0 . . . k−1. (15)

The φij are piecewise polynomial functions of order j +1 with just one knot ξi.
Obviously these functions are elements of Pk,ξ. Note that this would not be the
case if we had required Pl(x) to be zero in Eq. (13). Plots of various φij are
shown in Fig. 3.

The derivatives of the functions φij obey

d

dx
φij = φi,j−1 , for j = 1 . . . k − 1 (16)

and

dj

dxj
φij = φi,0 , for j = 0 . . . k−1 (17)

where φi,0 is a step function which jumps at ξi from 0 to 1.
We will now show that the set of functions φij is a basis of Pk,ξ. Let us first

look at the linear functionals λij that take the difference of the jth derivative
of f at a breakpoint ξi:

λijf := jump ξi f
(j) := f (j)(ξ+i )− f (j)(ξ−i ), (18)

8



with i = 1 . . . l and j = 0 . . . k−1. Applying λij to φij and considering Eq. (17)
yields

λijφrs = jump ξi

dj

dxj

(x− ξr)
s
+

s!
= δirδjs. (19)

The expression vanishes always except if the knot indices i and r as well as the
exponents j and s are equal. We can use this result to show that the φij are
linear independent. From

λij

∑
crs φrs =

∑
crs λij φrs =

∑
crs δir δjs = cij = 0. (20)

it is obvious that
∑

cijφij = 0 implies cij = 0. The dimension of the space
Pk,ξ is kl, which is equal to the number of functions φij . Together with linear
independence this shows that the φij really comprise a basis for piecewise poly-
nomial functions. Consequently, every f ∈ Pk,ξ has a unique representation of
the form

f =
∑
ij

(λijf)φij =
∑
ij

(jump ξi f
(j))

(x− ξi)
j
+

j !
. (21)

For many applications a more suitable and numerically advantageous basis of
Pk,ξ is given by so-called B-splines [2, 7]. However, as we will see the truncated
power basis allows us to rewrite convolution integrals in an elegant way, thus
facilitating the design of a general fast LIC algorithm. Therefore we will expand
all filter kernels, even B-splines, in the truncated power basis.

We note that differentiating Eq. (17) yields the following distributional re-
lationship for the basis functions φij and all i and j:

d (j+1)

dx (j+1)
φij(x) = δ(x− ξi) , (22)

with δ representing the Dirac delta measure.

3.4 Applying the Convolution Theorem

Now suppose the filter kernel is given as a piecewise polynomial function, i.e.
h =

∑
ij cijφij . Differentiating φij according Eq. (22) until a delta distribution

is obtained and applying the convolution theorem (11), the convolution integral
may be written as

f ∗ h (x) =
∫ ∞

−∞
f(y)h(x− y)dy =

∑
ij

cij

∫ ∞

−∞
f(y)φij(x − y)dy

=
∑
ij

cij

∫ ∞

−∞
Fj+1(y)δ(x− ξi − y)dy

=
∑
ij

cijFj+1(x− ξi). (23)

Computing convolution integrals therefore amounts to calculating weighted av-
erages of repeated integrals, or – after discretization – of repeated discrete sums.

9



3.5 Filter Kernels of B-Spline Type

For line integral convolution the filter kernel h should be as simple as possible.
Usually there is no reason why to consider unsymmetric kernels. Furthermore,
in order to obtain smoother results, the kernel should decrease or even approach
zero at its boundaries. (The notion of “smoothness” will be made more quan-
titative by an intensity correlation analysis in Sect. 5.2.)

A nice class of filters that fulfill these conditions are B-splines with uniform
knot sequences and centered around the origin. The most simple element in this
class is a box filter b1 with knots at −L and L and normalized to

∫
b1dx = 1.

Higher order filters can be obtained by repeatedly convolving box filters. Con-
volving two box filters we get a triangle filter b2 = b1 ∗b1. In contrast to the box
the triangle filter is continuous but still has a discontinuous derivative. Even
smoother filters are obtained by convolving the triangle with a box again, and
so on. In this way we get filter kernels of B-spline type.

Theorem. Let bn be the n− 1th convolution of a box filter with itself.

(i) Function bn is given by

bn(x) =
1

(2L)n

n∑
i=0

(−1)i
(
n

i

)
1

(n− 1)!

(
x+ (n− 2i)L

)n−1

+
. (24)

(ii) bn has support [−nL, nL].

(iii) bn is normalized to
∫
bndx = 1.

(iv) In the limit n → ∞ the functions bn converge uniformly to a Gaussian.

Proof.

(i) We will show Eq. (24) by induction. For n = 1 we obtain the box filter
itself:

b1 =
1

2L

(
(x + L)0+ − (x− L)0+

)
.

Assuming that Eq. (24) is valid for bn we get for bn+1:

bn+1 = bn ∗ b1

=
1

(2L)n+1

n∑
i=0

(−1)i
(n
i

)∫ ∞

−∞

(
x + (n−2i)L

)n−1

+

(n − 1)!

(
(x−y+L)0+ − (x−y−L)0+

)
dy

=
1

(2L)n+1

n∑
i=0

(−1)i
(n
i

)(
−
(
x + L + (n−2i)L

)n
+

n!
+

(
x − L + (n−2i)L

)n
+

n!

)

=
1

(2L)n+1

n∑
i=0

(−1)i
(n
i

)(
−
(
x + (n+1 − 2(i+1))L

)n
+

n!
+

(
x + (n+1 − 2i)L

)n
+

n!

)

Here we have used theorem Eq. (9) to replace the box filter by a delta distribu-
tion. Relabeling the index in the first term of the sum and using the equality(

n
i−1

)
+
(
n
i

)
=

(
n+1
i

)
we obtain

bn+1 =
1

(2L)n+1

n+1∑
i=0

(−1)i
(n+1

i

)(x+ (n+1−2i)L
)n
+

n!

in accordance with Eq. (24).

10



Filter kernel h Definition Convolution f ∗ h

−L L

P1 =
1

2L

1

2L

(
F (x+L)− F (x−L)

)

−L L

P1 =
1

L2
(x+L)

P2 =
1

L2
(L−x)

1

L2

(
F2(x+L)

−2F2(x) + F2(x−L)
)

−L −L/3 L/3 L

P1 =
27

16L3
(x+L)2

P2 =
9

8L
− 27

8L3
x2

P3 =
27

16L3
(L−x)2

27

8L3

(
F3(x+L)− 3F3(x+L/3)

+3F3(x−L/3) + F3(x−L)
)

n=4

−L −L/2 0 L/2 L

Convolution with a filter kernel of nth-order B-spline
type:

f ∗ h(x) =

(
n

2L

)n n∑
i=0

(−1)i
(n
i

)
Fn

(
x+

n − 2i

n
L
)

Table 1: Filter kernels of B-spline type obtained by recursively convolving box
filters. All filters h in this table have support [−L,L] and are normalized to
one. Convolutions f∗h are represented as finite linear combinations of repeated
integrals of f .

(ii) All filters bn are normalized since
∫
f dx =

∫
g dx = 1 implies

∫
f ∗g dx = 1,

and
∫
b1 dx = 1.

(iii) Elementary inspection of Eq. (24) shows that the functions bn have support
[−nL, nL].

(iv) A proof that the functions bn converge in the limit n → ∞ uniformly to a
Gaussian is given in Ref. [6]. �

In order to achieve supp h = [−L,L] we re-scale x → x
n . Furthermore we

normalize the filters such that
∫
h(x) dx=1. This yields the following sequence

of bell-shaped filters of B-spline type:

b̃n(x) =
n

(2L)n

n∑
i=0

(−1)i
(
n

i

)
φij(x) (25)

where ξi =
2i−n
n L and i = 1 . . . n . In Table 1 the first few functions of this type

are given explicitly in the form of Def. 13. The expressions for f ∗ h contained
in Table 1 result by applying relation (23).

11



The construction of B-splines from repeated convolutions has first been de-
scribed by Curry and Schoenberg in 1947 [6]. In modern spline theory B-splines
are usually defined in a more general context as divided differences on an arbi-
trary nondecreasing knot sequence, see e.g. [2].

A nice property of a nth order filter kernel of B-spline type is that all deriva-
tives except of the n−1th one are continuous, i.e. the filter is built from exactly
n+1 truncated power functions of degree n−1. Consequently, the evaluation of
f ∗ h involves nth order integrals only. For general piecewise polynomial filter
kernels usually other integrals have to be considered, too. The Catmull Rome
Spline e.g. is given by

h(x) = 0.5(x+ 2)3+ − 2(x+ 1)3+ + 3(x)3+ − 2(x− 1)3+ + 0.5(x− 2)3+

−0.5(x+ 2)2+ + (x+ 1)2+ − (x− 1)2+ + 0.5(x− 2)2+ .

The occurrence of truncated power functions with different degrees makes the
computation of f ∗ h slightly more expensive.

4 A General Fast LIC Algorithm

From Eq. (23) we can build a fast LIC algorithm in a straight-forward way. The
results of the previous section allow us, like in the original fast LIC algorithm,
to exploit the coherence of convolution values along a single field line. After the
integrals Fk along a field line have been computed, we can use this information
to quickly obtain the convolution values for a whole bunch of samples on that
line.

4.1 Discretization

For numerical evaluation the integrals Fk have to be approximated by sums.
For case of simplicity we use left-handed Riemann sums. Then the value of the
first integral F1 at locations s = kΔs, where −m ≤ k ≤ m and m = L/Δs, is
given by

F (kΔs) =

∫ kΔs

0

f(x) dx ≈ Δs

k−1∑
i=0

f(iΔs), (26)

while the higher order integrals correspond to the repeated sums

Fn(kΔs) =

∫ kΔs

0

Fn−1(x) dx ≈ Δs

k−1∑
i=0

Fn−1(iΔs). (27)

Note, that we cannot approximate the integrals by centered Riemann sums.
These would have to be evaluated at (i + 1

2 )Δs, which destroys the recursive
relation in Eq. (27). However, we well might use trapezoid rule. Then the
individual contributions would be given by 1

2 (F (iΔs) + F ((i + 1)Δs)). Since
only function evaluations at integer multiples of Δs occur, the higher-order sums
can again be computed recursively. However, in practice no difference between
left-handed Riemann sums and trapezoid rule is visible. Therefore we use the
simpler formulas (26) and (27).

In detail, our new fast LIC algorithm for piecewise polynomial filter kernels
requires the following steps. First, the filter kernel h has to be expressed in terms

12



of truncated power functions, i.e. h =
∑

ij cijφij . Then the repeated sums Fn

at positions kΔs have to calculated up to the required order. Finally, a discrete
approximation Î of the convolution integral Eq. (23) is computed using

Ĩ(kΔs) =
∑
ij

cijFj(kΔs− ξi). (28)

4.2 Outline of the Algorithm

Eq. (28) describes how to compute multiple samples on a single field line. In
order to compute a full LIC image, we proceed as in the original fast LIC al-
gorithm [14] . For each pixel of the output image we maintain two variables,
a hit count and an accumulation variable. We then traverse all pixels in some
order. Whenever we encounter a pixel (or optionally subpixel) with a hit count
smaller than some user-defined limit minhit, we start a field line calculation
and compute multiple samples on that line. All samples are added to the accu-
mulation variable of the corresponding pixel and the hit count of that pixel is
incremented. After all pixels have been processed, the final image is computed
by normalizing the accumulation variables against the number of hits per pixel.
For the original fast LIC algorithm sophisticated seed point selection strategies
or methods for determining the optimal number of samples per field line seg-
ment have been developed [15]. These techniques can be applied to the new
algorithm without any modification.

In Table 1 various filter kernels of B-spline type are shown. The convolution
value for the most simple filter kernel – the box filter – is given as the difference
of the first-order sums at just two different locations. After evaluating these
sums, only two operations – one subtraction and one addition – are needed per
pixel (except for the first one). This is exactly the same as in the original fast
LIC algorithm. Convolutions with piecewise polynomial filters can be evaluated
at very little additional costs, by calculating a linear combination of repeated
sums Fn and updating these sums while stepping along a field line (compare
Table 1).

4.3 Implementation Issues

Some pitfalls of this new LIC techniques should be mentioned, too. The first
one is a numerical aspect. The repeated (integer) sums quickly take on very
large values, which can cause overflows. In our implementation we use unsigned
32 bit integers to represent these sums. For example, assuming an average value
of the 8-bit input texture of 128 we can evaluate the fifth-order sum only for
about 100 samples. Then an overflow would occur. However, as will be shown
in Sect. 6, visual pleasant results can already be obtained by using the hat or
triangle filter, which involves second-order sums only.

Another point which one has to take account of, concerns the inner control
points of higher-order filter kernels. For example the third-order filter shown in
Tab. 1 has two knots at −L/3 and L/3. In the discrete case it is necessary that
the total number of samples used for approximating the kernel is divisible by 3.
Using the nearest integer value of L/3 doesn’t work.

13



5 Statistical Analysis of LIC Images

5.1 LIC viewed as a Stochastic Process

The input texture T (x) for LIC can be arbitrarily chosen. In fact, every raster
image can be used as input texture. Therefore, only global statements can be
made about the statistical properties of LIC images. However, more detailed
propositions are possible if the set of input textures is restricted to a class with
certain statistical properties.

For vector field visualization the texture values Tω̄i∈R normally are chosen
as a sequence of random variables Ti, i.e. as a (discrete) random process. We
assume that the random variables Ti for distinct indices, i.e. for different tex-
ture pixels, are mutually independent. Then joint expectation values factorize,
E(Ti Tj) = E(Ti) E(Tj) for any pair (i, j) with i �= j, and the covariance there-
fore vanishes, Cov(Ti, Tj) = E(TiTj)−E(Ti) E(Tj) = 0. In accordance with the
practice in scientific visualization let us assume that the random variables Ti

are identically distributed with mean value

μT = E(T ) (29)

and finite variance

σ2
T = Var(T ) = E(T 2)− E(T ) E(T ) . (30)

We require σ2
T > 0, to exclude trivial cases like constant images. Since by

definition Cov(Ti, Ti) = Var(Ti), we get

Cov(Ti, Tj) = σ2
T δi,j (31)

for arbitrary pairs (i, j).
Some of the following calculations are more elegant, if the pixel position i

is viewed as a continuous variable x (although a corresponding random process
can physically not realized). Then many functions have to be considered as
distributions; Eq. (31) for example becomes

Cov(Tx, Tx′) = σ2
T δ(x− x′) . (32)

A random process {Xi} is called (strictly) stationary if shifting in space has
no effect on joint distributions, i.e. the distribution of Xi1 , ..., Xin is the same
as the joint distribution of Xi1+k, ..., Xin+k. Utilizing this fact for n = 2 the
autocovariance function

γ(i, j) := E{[Xi − E(Xi)] [Xj − E(Xj)]} (33)

obviously depends only on τ = j − i and may be written as

γ(τ) = E{[Xt − μ] [Xt+τ − μ]} = Cov[Xt, Xt+τ ] . (34)

More useful is the standardized autocorrelation function

ρ(τ) =
γ(τ)

γ(0)
. (35)

14



The random process {Ti} obviously is stationary. For the autocovariance
function we then get

γT (τ) = σ2 δ0,τ (36)

and for the autocorrelation function

ρT (τ) = δ0,τ . (37)

Random processes, constituted by a sequence of mutually independent and
identically distributed random variables, are called a ‘purely random process’
or ‘white noise’. Equations (29)-(37) represent the simple statistical properties
of the random input textures typically used in vector field visualization with
LIC. The LIC intensity variables I depend on these random variables T and
therefore constitute another random process. Its statistical attributes are more
interesting. The most characteristic feature of LIC images are the anisotropic
correlations: While the intensity values I are strongly correlated along field
lines due to the 1D convolution, they are almost uncorrelated in perpendicular
directions.

5.2 Statistical Properties of LIC Images Along Field Lines

In order to obtain statistical properties of I values along a field line, we start with
a simplifying assumption: We assume that the texture input grid {ω̄i} is fine
enough such that distinct texture pixels ω̄i are sampled during the convolution
according to Eq. (7).

Is this assumption realistic ? In practice one tries to choose a sampling
distance along field lines of about one pixel width of the output image. Choosing
identical locations, both for T and I samples, the condition is fulfilled to a rather
good extend, if the spatial resolution of the input texture corresponds at least
to that of the output image. In practice this condition usually is met.

We can therefore safely assume that the random variables Tσ,j−k, with k∈
{−m, ...,m}, being used to calculate a specific I variable according to Eq. (7)
are independent. For simplicity we drop the index σ in this equation and write
for the discrete case

Î =

m∑
k=−m

Tj−k hk with

m∑
k=−m

hk = 1 . (38)

and for the continuous case:

I =

+L∫
−L

T (s− s′) h(s′) ds with

L∫
−L

h(s′) ds′ = 1 . (39)

Using these relations we find immediately:

E(Î) = E(I) = E(T ), (40)

and, since the variables T are independent,

Var(I) = σ2
T

∑
k

h2
k (41)

15



in the discrete case, or

Var(I) = σ2
T

∫ L

−L

h2(s′) ds′ = σ2
T (h ∗ h)(0) (42)

in the continuous case. This shows that LIC leaves the average brightness of an
image constant, but changes contrast. Using Eq. (31) for the autocovariance we
have in the discrete case

γÎ(τ) = Cov(Ît, Ît+τ ) =

⎧⎪⎨
⎪⎩

σ2
T

m−τ∑
k=−m

hk hk+τ , τ = 0, . . . , 2m

0, τ > 2m

(43)

and using Eq. (32)

γI(τ) = Cov(It, It+τ ) =

⎧⎪⎨
⎪⎩

σ2
T

L−τ∫
−L

h(s)h(s+ τ), 0 ≤ τ ≤ 2L

0, τ > L

(44)

in the continuous case. Therefore the autocorrelation is

ρÎ(τ) =

m−τ∑
k=−m

hk hk+τ

m∑
k=−m

h2
k

for τ = 0, . . . , 2m (45)

and in the continuous case

ρI(τ) =

L−τ∫
−L

h(s)h(s+ τ)

L∫
−L

h2(s)

for 0 ≤ τ ≤ 2L . (46)

Since ρI(τ) = ρI(−τ) this yields the simple relation

ρI(τ) =
h ∗ h (τ)
h ∗ h (0) . (47)

Hence, with increasing τ the autocorrelation of LIC intensity values along a field
line generated with a B-spline filter b̃n drops like a B-spline b̃2n.

5.3 The Effective Filter Length

For a meaningful comparison between different filter kernels their lengths have
to be adjusted. Usually, the larger the filter length L, the larger the feature
size along a field line and the less the contrast of the resulting LIC image. In
our case contrast can simply be defined as the variance of the image’s overall
intensity distribution.

When comparing e.g. a box filter and a triangle filter of equal length, it is
clear that the triangle filter has smaller feature size and higher contrast. The
reason is that pixels close to the boundaries of the triangle filter get smaller
weights. Therefore the effective filter length is smaller for the triangle filter.

16



In a comparative study we want to choose equal effective filter lengths. We
determine these filter lengths such that the variance of the resulting intensity
distribution is equal to the one of a corresponding box filter. Applying Eq. (42)
and taking the ratio of the variance of a higher-order filter and a box filter we
get the following results for the filter kernels listed in Table 1:

Triangle filter: Leff = 4
3Lbox

3rd-order filter: Leff = 33
20Lbox .

1. Box filter

2. Triangle filter

3. Third−order filter

4. Box filter convolved twice

Difference image 1−2

Difference image 2−3

Difference image 2−4

Figure 4: LIC images obtained with different filter kernels. The contrast of the
three difference images has been increased equally for better visibility. On a
computer monitor the differences between the images on the left are much more
obvious.

6 Results

Fig. 4 illustrates the effect of different filters kernels on LIC images. All im-
ages have been computed using the fast LIC algorithm outlined in the previous
section. The differences between the box filter and higher-order filter kernels
are well noticeable on a computer monitor. In order to make these differences

17



visible in the printed book, i.e. after a complex reproduction process, the images
are magnified.

In Color Plates 5 and 6 on page 20 in the Appendix we depict solutions of
ODEs, using LIC with triangular filter kernels. Furthermore, contrast enhanced
difference images of LIC images with triangular respectively box filter kernels are
shown. Note that the error structures are much smaller than the characteristic
feature length of the LIC texture. Therefore, box filter images appear noisier
on the screen than triangular filter images.

We conclude that higher order filter kernels can be combined with the fast
LIC algorithm and therefore are well suited for interactive visualization. Sta-
tistical analysis of pixel correlations as well as visual investigation show that
higher higher order filter kernels lead to smoother, less noisy images. For prac-
tical purposes LIC images produced with triangular or quadratic B-spline filters
are sufficient. The differences between these and higher order filters in general
are hardly visible.

References

[1] H. Battke, D. Stalling, and H. Hege, Fast line integral convolution
for arbitrary surfaces in 3D, Visualization and Mathematics (H. Hege and

K. Polthier, eds.), Springer, 1997, pp. 181–195.

[2] C. de Boor, A practical guide to splines, Applied Mathematical Sciences,
vol. 27, Springer, New York, Heidelberg, Berlin, 1978.

[3] B. Cabral, H.-C. Hege, V. Interrante, K.-L. Ma, and

D. Stalling, Texture synthesis with line integral convolution – course
notes, Siggraph 97, ACM Siggraph, Cambridge, 1997.

[4] B. Cabral and C. Leedom, Highly parallel vector visualization using line
integral convolution, Seventh SIAM Conference on Parallel Processing for
Scientific Computing, February 1995, pp. 802–807.

[5] B. Cabral and L. C. Leedom, Imaging vector fields using line integral
convolution, Computer Graphics (Siggraph ’93 Proceedings) (J. T. Ka-

jiya, ed.), vol. 27, August 1993, pp. 263–272.

[6] H. Curry and I. Schoenberg, On spline distributions and their limits:
the pólya distribution functions, Bull. Amer. Math. Soc. �� (1947), 1114.

[7] P. Deuflhard and A. Hohmann, A First Course in Scientific Compu-
tation, Verlag de Gruyter, Berlin, 1995.

[8] L. K. Forssell, Visualizing flow over curvilinear grid surfaces using
line integral convolution, Visualization ’94, IEEE Computer Society, 1994,
pp. 240–247.

[9] L. K. Forssell and S. D. Cohen, Using line integral convolution for
flow visualization: Curvilinear grids, variable-speed animation, and un-
steady flows, IEEE Transaction on Visualization and Computer Graphics
�:2 (1995), 133–141.

18



[10] V. Interrante, Illustrating surface shape in volume data via principal
direction-driven 3D line integral convolution, , Computer Graphics Pro-
ceedings, Annual Conference Series, ACM Siggraph, Addison Wesley, Au-
gust 1997, held in Los Angeles, California, 3-8 August 1997, pp. 109–116.

[11] V. Interrante and C. Grosch, Strategies for effectively visualizing a
3D flow using volume line integral convolution, ICASE, Technical Report
TR-97-35, July 1997.

[12] X. Mao, M. Kikukawa, N. Fujita, and A. Imamiya, Line integral
convolution for arbitrary 3D surfaces through solid texturing, Proceedings
of Eighth EurographicsWorkshop on Visualization in Scientific Computing,
1997 (to appear).

[13] H. Shen, C. R. Johnson, and K. Ma, Visualizing vector fields using line
integral convolution and dye advection, 1996 Volume Visualization Sympo-
sium, IEEE, October 1996, pp. 63–70.

[14] D. Stalling and H. Hege, Fast and resolution independent line integral
convolution, , Annual Conference Series, ACM Siggraph, Addison Wesley,
August 1995, held in Los Angeles, California, 6-11 August 1995, pp. 249–
256.

[15] D. Stalling, M. Zöckler, and H. Hege, Parallel line integral convo-
lution, Parallel Computing �� (1997), 975–989.

[16] C. Teitzel, R. Grosso, and T. Ertl, Line integral convolution on
triangulated surfaces, Proceedings of WSCG ’97, The Fifth International
Conference in Central Europe on Computer Graphics and Visualization
’97 (N. M. Thalmann and V. Skala, eds.), vol. 3, University of West
Bohemia Press, February 1997, held in Plzen, Czech Republic, February
1997, pp. 572–581.

[17] R. Wegenkittl, E. Gröller, and W. Purgathofer, Animating flow-
fields: Rendering of oriented line integral convolution, Vienna University
of Technology, Institute of Computer Graphics, Technical Report TR-186-
2-96-23, December 1996.

19



Figure 5: The left image shows the solution of the ODE x′ = y, y′ = (1−x2)y−x
using line integral convolution with a triangular filter kernel. This filter produces
smoother results than a box filter. Right: contrast enhanced difference between
the left image and one generated with a box filter (width of the box filter is 3/4
of the triangle filter). Note, that the error structures are much smaller than
the characteristic feature length of the LIC texture. Therefore, LIC images
generated by box filters appear noisier.

Figure 6: Like above, a LIC image generated with a triangular filter kernel is
shown (left) and compared with a LIC image generated with a box filter by
depicting a contrast enhanced difference image (right). The image on the left
depicts the solution curves of the ODE x′ = 1+ x2y − 4x, y′ = 3x− x2y. Color
encodes magnitude of the vector (x′, y′).

20


