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Abstract. We describe an optimization process specially designed for regional
hyperthermia of deep seated tumors in order to achieve desired steady–state tem-
perature distributions. A nonlinear three–dimensional heat transfer model based
on temperature–dependent blood perfusion is applied to predict the temperature.
Using linearly implicit methods in time and adaptive multilevel finite elements in
space, we are able to integrate efficiently the instationary nonlinear heat equation
with high accuracy. Optimal heating is obtained by minimizing an integral ob-
ject function which measures the distance between desired and model predicted
temperatures. A sequence of minima is calculated from successively improved
constant–rate perfusion models employing a damped Newton method in an in-
ner iteration. We compare temperature distributions for two individual patients
calculated on coarse and fine spatial grids and present numerical results of opti-
mizations for a Sigma 60 Applicator of the BSD 2000 Hyperthermia System.

Index Terms: Hyperthermia, nonlinear heat transfer, optimization, mesh con-
trol, finite elements
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1 Introduction

Hyperthermia, i.e., heating tissue to 42 - 43◦C, is a method of cancer therapy. It
is normally applied as an additive therapy to enhance the effect of conventional
radio- or chemotherapy. The standard way to produce local heating in the human
body is the use of electromagnetic waves. We are mainly interested in regional
hyperthermia of deep seated tumors. For this type of treatment usually a phased
array of antennas surrounding the patient is used (see Fig. 2). The distribution of
absorbed power within the patient’s body can be steered by selecting the ampli-
tudes and phases of the antennas’ driving voltages. The space between the body
and the antennas is filled by a so-called water bolus to avoid excessive heating of
the skin.
From the viewpoint of computational medicine there are different challenges:
(i) modelling and calculation of the electromagnetic field and the forced temper-
ature, (ii) optimization of the channel adjustments to achieve favourable interfer-
ence patterns for a successful cancer therapy, (iii) visualization of vector fields and
temperature distributions on a very complicated geometry. It should be possible
to perform all steps of a simulation for each individual patient within a medical
planning system [1].
The purpose of our paper is to describe an optimization process based on a three–
dimensional nonlinear heat transfer model. Finite element solutions of the elec-
tromagnetic fields [2] are taken as input data. It is a rather difficult task to es-
tablish an appropriate physical model for the heat transport in the human body.
Several approaches can be found in the literature (see eg. [18, 10]). The basis
for our modelling is Pennes’ bio–heat–transfer equation which we equip with a
temperature–dependent blood perfusion. A similar two–dimensional model was
studied in [17] for ferromagnetic thermoseed hyperthermia.
The optimization process is based on a specially designed object function. Our
aim is to achieve a stationary temperature distribution which avoids ”hot spots“
(temperature greater than 44◦C) in healthy tissue and ”cold spots“ (temperature
less than 42◦C) in the tumor region. In order to derive a fast optimization we ap-
proximate the nonlinear model by a sequence of linear ones which can be optimized
very fast by applying a superposition principle. Besides an optimized stationary
temperature distribution we are also interested in getting informations about the
time–dependent heating process. These informations can be used for comparison
with available clinical data about the transient phases at the beginning and the
end of the treatment.
The simulation of the present heat transfer model requires the numerical solution
of a time–dependent partial differential equation in a complex geometry involving
a nonlinearity due to the perfusion term and different material properties of the
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tissues. The temperature is highly nonuniformly distributed in space and time.
In such a situation adaptive algorithms which have been an object of continuing
investigations during the last years are often the only way to get an accurate solu-
tion with an acceptable amount of computational time and memory requirements.
Adaptive multilevel finite element methods have been developed by the authors
to solve problems with highly nonuniform solutions [4, 3, 11]. In order to achieve
a prescribed accuracy the proposed methods are essentially based on repeated ap-
plication of three steps: solving discretized equations, error estimation, and local
refinement. The final spatial grids are well adapted to the solution. Linearly im-
plicit integrators with step size control are used to integrate the equation in time.
The implementation of those complex algorithms requires modern software de-
sign and programming languages as C or C++. Our code Kardos is based on
the programming environment Kaskade [4]. Additionally, a comfortable visual-
ization tool is invaluable. We use the graphical system Hyperplan [1] for the
presentation of our numerical results.
The paper is organized as follows: In Section 2 we explain our mathematical
modelling of regional hyperthermia based on a nonlinear heat transfer model and
establish the object function for the optimization. In Section 3 we present an
adaptive numerical algorithm for the solution of the nonlinear heat equation. A
posteriori error estimates are derived to control the spatial discretization in each
time step. The optimization process is described. Numerical results are presented
in Section 4. We end up with some conclusions in Section 5.

2 Mathematical Modelling of Regional Hyperthermia

2.1 Nonlinear Heat Transfer Model

The basic model used in our simulation is the instationary bio–heat–transfer equa-
tion proposed by Pennes [14]

ρc
∂T

∂t
= div (κ grad T )− cbW (T − Tb) +Qe , (1)

where ρ is the density, c and cb are specific heat of tissue and blood, κ is the
thermal conductivity; Tb is the blood temperature; W is the mass flow rate of
blood per unit volume of tissue. The power Qe deposited by an electric field E in
a tissue with electric conductivity σ is given by

Qe =
1

2
σ|E|2 . (2)

In hyperthermia applicators utilizing electromagnetic waves the antennas normally
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are grouped into channels that can be independently controlled. For such an
applicator the total electric field E can be computed by superposition

E =
Nchan∑
j=1

aj exp(−iθj) Ej, (3)

where the channel j has amplitude aj and phase delay θj. Ej is the electric field
generated by the antennas of channel j. If complex values zj are defined as

zj = aj exp(−iθj) (4)

the absorbed power Qe can be expressed as a quadratic function of zj

Qe =
1

2
σ

Nchan∑
j,k=1

z∗jE
∗
jEkzk . (5)

Besides the differential equation boundary conditions determine the temperature
distribution. The heat exchange between body and water bolus can be described
by the flux condition

κ
∂T

∂n
= β(Tbol − T ) (6)

where Tbol is the bolus temperature and β is the heat transfer coefficient. No heat
loss is assumed in remaining regions. We use for our simulations β=45W/m2/oC
and Tbol=25oC.
Studies that predict temperatures in tissue models usually assume a constant–
rate blood perfusion within each tissue. However, several experiments have shown
that the response of vasculature in tissues to heat stress is strongly temperature–
dependent [16]. When heated up to 41−43oC, temperatures that are commonly
used in clinical hyperthermia, the blood flow in normal tissues, e.g., skin and mus-
cle, increases significantly. In contrast, the tumor zone often appears to be so
vulnerable to heat that the blood flow decreases on heating.
For later computations it is useful to split the temperature. The stationary tem-
perature field T can be computed as sum of the basal temperature Tbas determined
by Qe=0, and the temperature increment Tinc caused by the hyperthermic appli-
cation. We easily derive the stationary equations for Tbas and Tinc

div (κ grad Tbas) − cbW [Tbas](Tbas − Tb) = 0 ,

κ
∂Tbas

∂n
− β(Tbol − Tbas) = 0 ,

(7)

and
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div (κ grad Tinc)− cb(W [Tinc + Tbas]Tinc

+(W [Tinc + Tbas]−W [Tbas] ) (Tbas − Tb) ) +Qe = 0 ,

κ
∂Tinc

∂n
+ βTinc = 0 .

(8)

This splitting allows us to distinguish clearly between local effects forced by the
permanent cooling of the human body at the surface and the heating by the elec-
tromagnetic field. Therefore, in an adaptive approach most of the refinement can
be concentrated in regions where the power Qe is large.
For the temperature dependence of blood perfusion we slightly simplified the
curves presented in [17]. For healthy tissue (muscle and fat) we assume sigmoidal
curves consisting of a Gaussian profile describing the perfusion increase between
37◦C and 45◦C, and a plateau for temperatures above 45◦C (see Fig. 1). In the
raising part our curve differs only slightly from the one used in [17], the differences
are small compared to the uncertainties of the underlying experimental data [16].
In [17] a decrease of perfusion above 45◦C is assumed. This is motivated by the
observation that vasculature is destroyed if tissue is heated to such temperatures
for about 30 minutes. We do not assume such a decrease of perfusion. Normally,
this should not matter because our object function for optimization (see Sect. 2.2)
guarantees that temperatures in healthy tissue are always below 45◦C. The curve
we assume for fat tissue takes into account that fat tissue has a smaller capability
to increase perfusion than muscle tissue. For tumor tissue we use a curve with
the same shape as the curve for tumor core used in [17]. We choose slightly dif-
ferent absolute values to make the results comparable with prior studies assuming
constant–rate perfusion. Our absolute values for blood perfusion are open for
discussion, and the capability to increase perfusion also strongly depends on the
cardiac state of the individual patient. But in this study we are mainly interested
in qualitative effects of temperature–dependent blood flow.
The material properties of the involved tissues are summarized in Tab. 1. For blood
we take Tb=37oC and cb=3500Ws/kg/oC. If a constant–rate perfusion model is
applied, we assume mean perfusion values for muscle, Wmuscle=2.3kg/s/m3, and
fat, Wfat=0.54kg/s/m3. The maximal value Wtumor=0.833kg/s/m3 is taken for
tumor tissue.
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Temperature–dependent blood perfusion in muscle:

Wmuscle =

⎧⎪⎪⎨
⎪⎪⎩

0.45 + 3.55 exp

(
−(T − 45.0)2

12.0

)
, T ≤ 45.0

4.00 , T > 45.0
(9)

Temperature–dependent blood perfusion in fat:

Wfat =

⎧⎪⎪⎨
⎪⎪⎩

0.36 + 0.36 exp

(
−(T − 45.0)2

12.0

)
, T ≤ 45.0

0.72 , T > 45.0
(10)

Temperature–dependent blood perfusion in tumor:

Wtumor =

⎧⎪⎨
⎪⎩

0.833 , T < 37.0
0.833 − (T − 37.0)4.8/5.438E+3 , 37.0 ≤ T ≤ 42.0
0.416 , T > 42.0

(11)
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Fig. 1: Nonlinear models of temperature–dependent blood perfusion for muscle
tissue, fat tissue, and tumor.
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Tissue Thermal Electric Density Specific Mass
conductivity conductivity heat flow rate

κ σ ρ c W
[W/m/◦C] [1/m/Ω] [kg/m3] [Ws/kg/◦C] [kg/s/m3]

Fat 0.210 0.04 900 3,500 Wfat (10)
Tumor 0.642 0.80 1,000 3,500 Wtumor (11)
Bladder 0.600 0.60 1,000 3,500 5.000
Kidney 0.577 1.00 1,000 3,500 66.670
Liver 0.640 0.60 1,000 3,500 16.670
Muscle 0.642 0.80 1,000 3,500 Wmuscle (9)
Bone 0.436 0.02 1,600 1,000 0.540
Aorta 0.506 0.86 1,000 3,500 83.330
Intestine 0.550 0.60 1.000 3,500 3.333

Tab. 1: Material properties of tissues.

2.2 Object Function for Optimization

Our goal is to control the amplitudes zj , j = 1, . . . ,Nchan, of the independent
channels in order to achieve an effective hyperthermia therapy. A favourable
temperature distribution is characterized as follows:

• Within the tumor a therapeutic temperature level of 42 − 43oC is reached.

• No larger regions of healthy tissue are heated to above 42− 43oC.

• Temperature in healthy tissue does not exceed certain temperature limits
depending on the tissue type.

Taking into account these requirements we define an object function for optimiza-
tion

q =

∫
x ∈ tumor
T < Tther

(Tther − T )2 dx +

∫
x �∈ tumor

T > Thealth

(T − Thealth)
2 dx + p

∫
x �∈ tumor
T > Tlim

(T − Tlim)2 dx , (12)

where we use a therapeutic level Tther =43oC, and a temperature Thealth=42oC
that should not be exceeded in healthy tissue. The limits Tlim are chosen tissue–
dependent: Tlim=42oC for more sensible tissue compartments (bladder, intestine)
and Tlim=44oC otherwise. To ensure high penalization for temperatures exceed-
ing the limits we set p=1000.
The definition of the object function as an integral of squares guarantees that
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regions with large deviations from the desired temperatures, i.e., ”hot spots“ in
healthy tissue and ”cold spots“ in the tumor, contribute large amounts to the
object function. A similar optimization strategy for a phased array hyperthermia
system based on a simpler object function is described in [13]. In contrast to the
object function proposed there, we add the second term which effectively avoids
excessive heating of healthy tissue. Moreover, we evaluate the object function not
only in a small number of selected points, but for the entire three–dimensional
temperature distribution.
Optimization of the temperature distribution means to choose the amplitudes zj
for each channel in such a way that the resulting temperature field minimizes the
object function q.

3 Adaptive Numerical Algorithm

3.1 Grid Generation

For the numerical solution of the nonlinear heat transfer equation we use the finite
element method. As a prerequisite we need a three–dimensional geometric model
in which the different tissue compartments are represented. In this section we
describe briefly how to generate such a model based on a set of CT-scans of a
patient. Prior to grid generation, a segmentation of the CT data is performed,
i.e., the relevant tissue compartments are defined on each scan.
Our method for generating a patient model consists of three steps:
First we extract the compartment surfaces from the segmented CT data. For this
purpose we have generalized the well–known marching cubes algorithm [12] for
non-binary classifications [9]. Our method creates a consistent description of the
compartment interfaces. They are composed of so-called patches each separating
two different compartments.
Second we simplify the surfaces to make them suitable for tetrahedra generation.
We have extended an algorithm from computer graphics [6] to avoid intersections
and assure a high quality (i.e. aspect ratio) of the surface triangles.
Third we fill each tissue compartment with tetrahedra using an advancing front al-
gorithm. The compartment’s surface is composed from the corresponding patches.
At the beginning we start with this surface. Then repeatedly a triangle of the ad-
vancing front is selected and a fourth point is searched such that the resulting
tetrahedron resembles an equilateral one as much as possible. This procedure is
continued until the whole compartment is filled with tetrahedra [15].
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Fig. 2: Patient model (torso) and hyperthermia applicator. The patient
is surrounded by 8 antennas emitting radiowaves. A water–filled bolus
is placed between patient and antennas.

3.2 Time and Space Discretization

The principle difficulties in numerically solving the bio–heat transfer equation (1)
are the nonlinearity due to the perfusion term and the different material properties
of the tissues. Using a linearly implicit method of Rosenbrock type for the time
discretization [8] and adaptive finite elements in space, we are able to integrate
the heat equation efficiently. Within this approach, the approximate temperature
Tn at time tn is constructed by a linear combination of the previous temperature
Tn−1 at time tn−1 and different intermediate values �Tj

n, j = 1, 2, 3, namely

Tn = Tn−1 +
3∑

j=1

bj �T j
n . (13)

These values �T j
n are determined by the following linear elliptic boundary value
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problems:

ρc

γ�tn
�T j

n − div (κ grad�T j
n) + cb JF [Tn−1]�T j

n =

div (κ grad T j
n) − cb F [T j

n] +
ρc

�tn

j−1∑
i=1

cji�T i
n +Q in Ω , (14)

κ
∂

∂n
�T j

n = β (Tout −�T j
n) on ∂Ω , (15)

with

T j
n := Tn−1 +

j−1∑
i=1

aji�T i
n , JF :=

∂F

∂T
, �tn := tn − tn−1 .

The solution process for the intermediate temperatures �Tjn can be done succes-
sively because the sums in the right–hand side of (14) extend to j−1 only. The
coefficients γ, aji, cji, and bj are chosen such that the method reaches order three
in time and has good stability properties [8].
To compute the basal temperature Tbas we set in (14)

F [T ] = Fbas[T ] := W [T ](T − Tb), Q = 0, Tout = Tbol .

The problem for the temperature increment Tinc forced by the electric field is
solved with

F [T ] = Finc[T ] := (W [T + Tbas]−W [Tbas])(Tbas − Tb) +W [T + Tbas]T

Q = Qe, Tout = 0 .

The linear elliptic problems (14) have to be solved for each intermediate value
�T j

n. We apply a continuous finite element discretization in space to ensure the
continuity of the temperature and its fluxes at the inner tissue boundaries.
The starting point of the finite element method is the weak formulation of (14).
We seek for piecewise linear solutions. Let S1h consist of all continuous functions
which are polynomials of first order on each finite element, then the finite element
solutions �hT

j
n ∈ S1

h have to satisfy the equations

(An �hT
j
n , φ) = (rjn , φ) ∀φ ∈ S1

h, j = 1, 2, 3. (16)

Here, (·, ·) represents the usual inner product, An is the weak representation of
the differential operator on the left–hand side in (14) and includes the boundary
conditions. The function rjn=rjn(�T 1

n , ...,�T j−1
n ) stands for the whole right–hand

side of the j-th equation in (14). The operator An is independent of j, so that the
method requires its calculation only once within each time step.
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3.3 A Posteriori Error Estimates

The special structure of the employed Rosenbrock method (13) allows us to define
a solution of second order using a simple embedding strategy:

T̂n = Tn−1 +
3∑

j=1

b̂j �T j
n (17)

with a different set of coefficients in (13). The difference between the two solutions
‖Tn − T̂n‖ =: εn satisfactorily estimates the local error of the time discretization,
and can be utilized to propose a new time step

�tn+1 =
�tn

�tn−1

(
TOLt εn−1

εn εn

)1/3

�tn . (18)

This step size selection guarantees that the stationary solution is reached in a few
steps with respect to a desired accuracy TOLt [7].
To get a posteriori error estimates for the spatial discretization, we solve local
Dirichlet problems on small subdomains. Let Qω be the set of all quadratic poly-
nomials over ω which is the union of all tetrahedra having one common edge.
Because we solve our elliptic problems (14) using linear elements, the local ap-
proximations ejn of the spatial errors

Ej
n := �T j

n −�hT
j
n (19)

should be computed with at least the basis functions of Qω. Imposing homogenous
Dirichlet boundary conditions, the approximate local errors related to all ω are
represented by one degree of freedom at the midpoint of the corresponding edge
[11]. Equipped with local errors of the intermediate values �Tj

n, we can form error
norms by

‖en‖ = ‖P Tn−1 +
3∑

j=1

bj e
j
n‖ . (20)

P Tn−1 is the projection error resulting from the fact that within an adaptive
approach the grids for Tn−1 and Tn in general are different.
We can get both local and global error informations taking Ω or ω to compute the
norms in (20), for use in our adaptive mesh control algorithm. Local a posteriori
error estimates are employed to decide which elements to refine or to unrefine.
The aim of our mesh adaptation is to equilibrate the error until a final mesh is
created in which all elements have approximately the same error, and a global
prescribed accuracy TOLx is reached.
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3.4 Mesh Adaptation

For local mesh refinements we use regular partitions of tetrahedra as described in
[3]. Here we summarize some fundamental facts.
By connecting the midpoints of the edges of a given tetrahedron t, we obtain
four new tetrahedra each of which corresponds to a vertex of t. The remaining
octahedron is split into four more tetrahedra (Fig. 3). This partition depends
on the selection of the interior diagonal of the octahedron which can be chosen
in three different ways. Each choice provides a regular refinement of the given
tetrahedron.
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Fig. 3: Regular refinement of a tetrahedron (left) and one special closure (right).

By special choice of the interior diagonal [3] we ensure that the successive parti-
tions of a tetrahedron are stable in the following sense: For each tetrahedron t the
ratio of the diameter and the radius of the largest interior ball remains uniformly
bounded during all refinement steps. After regular refinement we use special clo-
sures to avoid non-conforming vertices (see Fig. 3 for an example). To preserve the
stability of the refinement process the resulting irregular tetrahedra are skipped at
the beginning of further refinement. After an accepted time step the triangulation
is coarsened [11].

3.5 Optimization

Using our piecewise linear finite element solution Th which represents an approxi-
mation of the stationary temperature distribution on an adaptive spatial meshMh,
and applying an integration formula based only on the vertices xi (mass lumping),
we get an approximation of the object function (12)
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qh =
∑

i∈Mh1

wi

4
(Tther−Th(xi))

2+
∑

i∈Mh2

wi

4
(Th(xi)−Thealth)

2+p
∑

i∈Mh3

wi

4
(Th(xi)−Tlim)2

(21)
with

Mh1 = {i: xi ∈ tumor, Th(xi) < Tther},
Mh2 = {i: xi �∈ tumor, Th(xi) > Thealth},
Mh3 = {i: xi �∈ tumor, Th(xi) > Tlim},

where wi stands for the volume of all tetrahedra of which xi is a vertex.
In a next step we derive formulas which allow us to compute quickly the temper-
ature field for arbitrary amplitudes zj . Let us first consider the linear model with
a constant–rate perfusion in each tissue. Then from (8) it can be directly seen
that Tinc depends linearly on the distribution of the absorbed power Qe. Hence,
a superposition principle is valid:

Tinc(α1Q
(1)
e + α2Q

(2)
e ) = α1Tinc(Q

(1)
e ) + α2Tinc(Q

(2)
e ) . (22)

According to the representation (5) we get

Tinc(Qe) =
Nchan∑
j,k=1

z∗j Tinc(E
∗
jEk) zk , (23)

and finally for the whole stationary temperature distribution

T (Z) = Tbas +
Nchan∑
j,k=1

z∗j Tinc(E
∗
jEk) zk , (24)

where Z is the vector of all zj . The temperature increments Tinc(E
∗
jEk) can be

derived from N2
chan basic calculations combining two channels. Consequently, for

an arbitrary set of parameters zj the object function can be computed very fast.
The same holds for the first and second derivatives of the finite element solution
Th with respect to the parameters zj .
In the nonlinear case, relation (22) is no longer valid. Nevertheless, we can fix
the nonlinear perfusion terms with respect to a given intermediate state Zn of
all amplitudes. Then we utilize representation (23) as an approximation in a
neighborhood of Zn to perform the minimization process. Doing so we get a bet-
ter Zn+1 for which we solve the nonlinear heat equation. The arising perfusion
W (T (Zn+1)) is once again fixed and the optimization is done. Improving succes-
sively the constant–rate model of the perfusion in such a way, we end up with a
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nearly optimal adjustment of the parameters zj for the nonlinear model.

To start the optimization we calculate an initial optimized Z
(0)
0 employing our

constant–rate perfusion model. Next we adjust the total power, i.e., we scale the

amplitudes of Z
(0)
0 such that for the nonlinear model the maximal temperature in

healthy tissue does not exceed 44oC.
Employing a damped Newton method for the optimization, the iteration can be
described as follows:

Choose initial value Z
(0)
0

for n = 0, 1, . . .

Calculate stationary temperature T (Z
(0)
n )

Calculate Wn := W (T (Z
(0)
n ))

Calculate Tinc(E
∗
jEk), j, k = 1, . . . ,Nchan, employing Wn

for k = 0, 1, . . .

Calculate Diqh :=
Diqh
dZi

∣∣∣∣∣
Z=Z

(k)
n

, i = 1, 2

Calculate ΔZ := −(D2qh)
−1D1qh

Find α0 ∈ {1, 12 , 14 , . . .} such that

qh(Z
(k)
n + α0ΔZ) < qh(Z

(k)
n ) + 1

2α0D
1qhΔZ

Define Z
(k+1)
n := Z

(k)
n + α0ΔZ

Finished?

Define Z
(0)
n+1 := Z

(k+1)
n

Finished?

The inner iteration is terminated if the object function has changed by less than
0.02 within the last 10 iterations. To control the outer iteration we always compute

the new stationary temperature T (Z
(0)
n+1) and compare it with the old one. If the

difference becomes small enough (less than 0.05oC), we stop the optimization
process.
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4 Numerical Results

4.1 Optimization

We report some data concerning optimization processes for two individual pa-
tients. The simulations were done for the Sigma 60 Applicator of the BSD 2000
Hyperthermia System which consists of eight radio frequency antennas grouped
in four antenna pairs. Each group can have its own amplitude and phase. So, our
aim is to control four different complex values zj.
The patients have different tumor locations. Fig. 4 shows specific sagittal and
transversal sections of both patients where the contours of bone and tumor are
colored black and grey, respectively. It can be clearly seen that the tumor of the
second patient is strongly shielded by bones whereas the first tumor is located in
a more central position.
For both patients the optimization comes to an end after five outer iteration steps.
The corresponding values of the object function qh and the maximal temperature
difference are shown in Tab. 2. We state that the values of the object function are
reduced by nearly the same factor 2/3.

n 0 1 2 3 4 5

Patient 1 qh 1,732 1,458 1,327 1,263 1,229 1,214

‖δT‖∞ - 3.5 0.7 0.18 0.085 0.043

Patient 2 qh 4,264 2,743 2,796 2,813 2,819 2,823

‖δT‖∞ - 3.2 0.3 0.15 0.077 0.044

Tab. 2: History of object function qh and maximal temperature difference
during the optimization process.

In Fig. 5 the convergence history of the vector Z
(0)
n and the object function qh is

presented. For each outer iteration step all complex amplitudes zj are plotted as
vertices of a quadrilateral. We observe that the use of the nonlinear heat transfer
model leads to a more uniform adjustment of |zj | and to a slight reduction of the
phase differences. Moreover, the phases of the antenna pairs at the left and right
of the patient come successively closer. They can be identified in the diagrams
as neighbors of the channel with fixed phase zero. So, we get a more symmetric
adjustment of the phases.
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Fig. 4: Contours of tissue compartments in specific sagittal (top) and transversal
(bottom) sections. The location of tumors (grey) with respect to bone (black) is
shown for the first patient (left) and the second patient (right).
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Fig. 5: Patient 1 (top) and patient 2 (bottom). Optimization of the four complex
amplitudes plotted in a quadrilateral for each outer iteration step (left); minimization
history of the object function qh (right).

The optimization process starts with a synchronous steering of all antennas re-
sulting in qh = 4, 430 for the first patient and qh = 7, 250 for the second. Each
loop starts with an update of the constant–rate perfusion model causing a jump
in the values of the object function. To test the robustness of our optimization
process we slightly changed the strategy for the second patient in an additional
computation. After the initial loop we did not adjust the total power as described
in Section 3.5. This resulted in a better value of qh at the beginning, but ended
at the same final solution (see Fig. 5).
The smaller values of the object function for the nonlinear model (see Tab. 2)
result from a better tumor heating, which is reflected by the temperature–volume
histograms for tumor tissue shown in Fig. 6. The histograms for muscle tissue re-
veal that assuming the nonlinear model a much larger amount of tissue is heated to
temperatures above 40oC. The critical temperature region of muscle (T > 42oC)
is comparable for both patients. But the tumor heating of the first patient is
much better. This is also reflected by the smaller value of the corresponding
object function.
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Fig. 6: Patient 1 (top) and patient 2 (bottom). Temperature–volume histograms for
muscle (left) and tumor tissue (right) showing the differences between constant–rate
and temperature–dependent perfusion.

4.2 Effects of Mesh Adaptation

The optimized temperature distribution based on an adaptively improved spatial
grid is compared with the temperature field computed on the coarse grid.
Fig. 7 shows two cuts through the computational domain of the second patient
involving the tumor boundary to give an impression of the local refinement process.
The coarse grid contains 7, 140 vertices (degrees of freedom for the finite element
solution), while the refined grid has 35, 936 vertices. Starting with the coarse grid
two refinement steps are necessary to reach an accuracy of 2%. The corresponding
uniform grid would have about 420, 000 degrees of freedom which demonstrates
the power of the proposed adaptive method.
Fig. 8 illustrates the influence of the adaptive mesh control on the adjustment of
the antenna pairs and the object function. The optimization process based on the
coarse grid requests five outer iteration loops and reaches a maximal temperature
difference ‖δT‖∞=0.03oC at qh=2, 505. Comparing the final value of the object
function with that given in Tab. 2 for the fine mesh, qh = 2, 823, the attained
change
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Fig. 7: Patient 2. Coarse (left) and refined (right) grid with tumor boundary used
for the computation of the optimized temperature distribution.
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Fig. 8: Patient 2. Influence of the adapted mesh control on the optimized adjustment
of the antenna pairs and the minimization history of the object function.
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ranges in the order of 10%. This is also reflected by the adjustment of the applica-
tor. The same difference can be observed for the temperature increment Tinc with
respect to coarse and fine meshes. The local refinement controlled by a posteriori
error estimates leads to a better resolution of the solution in regions with high
temperature gradients and material transitions.

5 Conclusion

There are significant qualitative differences between the temperature distributions
predicted by the linear and the nonlinear heat transfer model. Generally the self–
regulation of healthy tissue reflected by the nonlinear model reduces ”hot spots“
caused by local maxima of the absorbed electromagnetic fields. This is one reason
for the slightly better tumor heating (ca. 0.5◦C) predicted by the nonlinear model
(see the temperature–volume histograms for tumor tissue, Fig. 6). An analogous
result is reported in [17] for ferromagnetic thermoseed hyperthermia. An impor-
tant finding is that the nonlinear model has an impact on the optimal treatment
parameters as well (see Fig. 5). The maximal changes of optimal parameters are
22◦ for the phases and 0.22 for the relative amplitudes.
In the future we will compare the simulations with clinical data to check if the
nonlinear model is a more realistic representation of the heat transfer processes
during regional hyperthermia. There are some effects which should be observable
in the clinical data:

• The nonlinear model predicts that a significantly lower total power (ca.
340 W compared to ca. 430 W) is needed to achieve the optimal tem-
perature distribution. In the simulations the total power is always limited
by the requirement that the temperature in healthy tissue should not exceed
44◦C.

• In superficial layers which are cooled by the water bolus the tissue temper-
ature is lower than blood temperature. There blood acts as a heat source,
not as a heat sink. For such regions the linear model assumes a much higher
perfusion than the nonlinear one. Thus the skin temperatures predicted by
the nonlinear model are ca. 2◦C lower. An uncertainty for the compari-
son of simulated skin temperatures with clinical data is the heat transfer
coefficient between body and water bolus. In our calculations we assumed
45 W/m2/◦C.

• The nonlinear model predicts that a much larger amount of muscle tissue is
heated to above 40◦C (see the temperature–volume histograms for muscle
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tissue, Fig. 6). In spite of the fact that only a small number of temperature
measurements from inside the body is available, this effect might be visible
in clinical data.

The comparison of the results with real–life applications will lead to an assessment
of the parameters used in our nonlinear model.
Finally, we note that first computations with an applicator consisting of 24 an-
tennas have been performed. There is some hope to improve the temperature
distribution especially for tumors that are strongly shielded by bones.
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