

Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany

M. FOUPOUAGNIGNI, W. KOEPF, A. RONVEAUX

Fourth Order Difference Equation for the Associated Classical Discrete Orthogonal Polynomials

Fourth Order Difference Equation for the Associated Classical Discrete Orthogonal Polynomials

M. Foupouagnigni^{a,1}, W. Koepf^a and A. Ronveaux^b

^a Konrad-Zuse-Zentrum für Informationstechnik, Takustr. 7, D-14195 Berlin, Germany.

^b Mathematical Physics, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium.

Abstract

We derive the fourth order difference equation satisfied by the associated of order r of the classical orthogonal polynomials of a discrete variable.

The coefficients of this equation are given in terms of the polynomials σ and τ which appear in the discrete Pearson equation $\Delta(\sigma \rho) = \tau \rho$ defining the weight $\rho(x)$ of the classical discrete orthogonal polynomials.

Keywords: Orthogonal polynomials, Fourth order difference equation. *1991 MSC:* 33C25

1 Introduction

The fourth order difference equation for the associated Meixner and Charlier polynomials were given for all r (order of association) in [6], using an explicit solution of the recurrence relation built from the symmetry properties of this recurrence. On the other hand, the equation for the first associated (r = 1) of all classical discrete polynomials was obtained in [10] using a useful relation proved in [1].

In this work, we give a single fourth order difference equation which is valid for all integers r and for all classical discrete orthogonal polynomials. This equation is important in birth and death processes [6] and also for some connection coefficient problems [7].

Let $(P_n)_n$ be a sequence of monic orthogonal polynomials of degree n with respect to the regular linear functional \mathcal{L} . $(P_n)_n$ satisfies the following second order recurrence relation:

¹E-mail: foupouagnigni@zib.de. Research supported by: Deutscher Akademischer Austauschdienst (DAAD). Permanent address: Institut de Mathématiques et de Sciences physiques, BP 613 Porto-Novo, Republique du Bénin. Fax: +229-21 25 25.

Preprint submitted to Elsevier Science

$$\begin{cases} P_{n+1}(x) = (x - \beta_n) P_n(x) - \gamma_n P_{n-1}(x), & n \ge 1 \\ P_0(x) = 1, P_1(x) = x - \beta_0. \end{cases}$$

The associated orthogonal polynomials of order r, $P_n^{(r)}$, are defined by the shifted recurrence relation $(n \to n + r \text{ in } \beta_n \text{ and } \gamma_n)$

$$\begin{cases} P_{n+1}^{(r)}(x) = (x - \beta_{n+r}) P_n^{(r)}(x) - \gamma_{n+r} P_{n-1}^{(r)}(x), & n \ge 1, \\ P_0^{(r)}(x) = 1, P_1^{(r)}(x) = x - \beta_r, r \ge 0. \end{cases}$$

When the family $(P_n)_n$ is classical (continuous), the polynomials P_n are solutions of the hypergeometric equation

$$L_{2,0}[y] \equiv \sigma(x) \ y''(x) + \tau(x) \ y'(x) + \lambda_n \ y(x) = 0,$$

where σ is a polynomial of degree at most two, τ is a polynomial of degree one, and λ_n is a constant [8].

From the following coupled second order relations [2,9],

$$L_{2,r}[P_n^{(r)}] = K_r \left[P_{n-1}^{(r+1)} \right]', \qquad L_{2,r}^* \left[P_{n-1}^{(r+1)} \right] = K_r^* \left[P_n^{(r)} \right]' \tag{1}$$

with

$$L_{2,r} = \sigma \frac{d^2}{dx^2} + (x - \beta_r) (r\sigma'' + \tau') \frac{d}{dx} + (\lambda_n - nr\sigma'')$$

$$L_{2,r}^* = \sigma \frac{d^2}{dx^2} - [(x - \beta_r) (r\sigma'' + \tau') - 2\sigma'] \frac{d}{dx} + (\lambda_n^* - (n+1)r\sigma'')$$

$$K_r^* = -[(2r - 1)\sigma'' + 2\tau'], K_r = \begin{cases} \gamma_r [(2r - 3)\sigma'' + 2\tau'] & \text{if } r \ge 1\\ 0 & \text{if } r = 0 \end{cases}.$$
(2)

in [11], using the representation of γ_r and β_r in terms of σ and τ the generic fourth order differential equation $M_4^{(r)}\left(P_n^{(r)}(x)\right) = 0$ satisfied by the associated of any integer order r of the classical class was derived, where

$$M_{4}^{(r)} = \sigma^{2} \frac{d^{4}}{dx^{4}} + 5\sigma\sigma' \frac{d^{3}}{dx^{3}} + \left[-\tau^{2} + 2\tau\sigma' + 3\sigma'^{2} - (2n+4r)\sigma\tau' + (4+n-n^{2}+4r-2nr-2r^{2})\sigma\sigma''\right] \frac{d^{2}}{dx^{2}} - \frac{3}{2} \left[2\tau\tau' + (2n-2+4r)\sigma'\tau' - 2\tau\sigma'' + (n^{2}-n-4r+2nr+2r^{2})\sigma'\sigma''\right] \frac{d}{dx} + \frac{1}{4} \left\{n(2+n)[2\tau' + (n+2r-3)\sigma''][2\tau' + (n+2r-1)\sigma'']\right\}$$
(3)

In this letter we want to extend these results to the classical discrete class, i.e., the polynomials P_n of Hahn, Hahn-Eberlein, Krawtchouk, Meixner, and Charlier, which are solutions of the second order difference equation

$$\sigma(x)\Delta\nabla y(x) + \tau(x)\Delta y(x) + \lambda_n y(x) = 0$$

with $\Delta y(x) = y(x+1) - y(x)$ and $\nabla y(x) = y(x) - y(x-1)$. It turns out that the coefficient λ_n is given by $2 \lambda_n = -n[(n-1)\sigma'' + 2\tau']$, see [8]. From the known relations between the recurrence coefficients β_n , γ_n and the polynomials σ and τ [5,4],

$$\beta_n = \frac{-\tau(0)(\tau' - \sigma'') - n(\tau' + 2\sigma'(0))(\tau' + (n-1)\frac{\sigma''}{2})}{((n-1)\sigma'' + \tau')(n\sigma'' + \tau')}, \quad n \ge 0$$

$$\gamma_n = -\frac{n(\tau' + (n-2)\frac{\sigma''}{2})}{(\tau' + (2n-3)\frac{\sigma''}{2})(\tau' + (2n-1)\frac{\sigma''}{2})} [\sigma(\eta_{n-1}) + \tau(\eta_{n-1})], \quad n \ge 1$$

$$\eta_n = -\frac{\tau(0) + n\sigma'(0) - n^2 \frac{\sigma''}{2}}{\tau' + n\sigma''}, \quad n \ge 0$$
(4)

it is possible to write the corresponding equations (1), (2) and (3) again in terms of σ and τ , for the generic classical discrete polynomials.

Proposition 1 [3] The associated polynomials satisfy

$$\mathcal{D}_{r,n}\left[P_n^{(r)}\right] = \mathcal{N}_{r+1,n-1}\left[P_{n-1}^{(r+1)}\right],\tag{5}$$

$$\bar{\mathcal{D}}_{r+1,n-1}\left[P_{n-1}^{(r+1)}\right] = \bar{\mathcal{N}}_{r,n}\left[P_n^{(r)}\right],\tag{6}$$

where

$$\mathcal{D}_{r,n} = a_2 \,\mathcal{T}^2 + a_1 \,\mathcal{T} + a_0 \,\mathcal{T}^0, \quad \mathcal{N}_{r+1,n-1} = \tilde{a}_1 \,\mathcal{T} + \tilde{a}_0 \,\mathcal{T}^0, \tag{7}$$

$$\bar{\mathcal{D}}_{r+1,n-1} = b_2 \,\mathcal{T}^2 + b_1 \,\mathcal{T} + b_0 \,\mathcal{T}^0, \quad \bar{\mathcal{N}}_{r,n} = \tilde{b}_1 \,\mathcal{T} + \tilde{b}_0 \,\mathcal{T}^0, \tag{8}$$

$$a_2 = k_{9,0}, a_1 = -k_{2,1}k_{10,0}, a_0 = k_{11,0}, \tilde{a}_1 = k_{4,0}k_{10,0}, \tilde{a}_0 = -k_{4,0}k_{12,0}$$
 (9)

$$b_2 = k_{9,0}, \ b_1 = -k_{5,1}k_{10,0}, \ b_0 = k_{13,0}, \ \tilde{b}_1 = k_{6,0}k_{10,0}, \ \tilde{b}_0 = -k_{6,0}k_{14,0}, \tag{10}$$

 \mathcal{T} is the shift operator: $\mathcal{T}P(x) = P(x+1)$, and the coefficients $k_{i,j}$ are polynomials given by

$$k_{i,0}(x) \equiv k_i(x), \qquad and \qquad k_{i,j}(x) = k_i(x+j) \tag{11}$$

and (16).

2 Fourth Order Difference Equation for Associated Polynomials

Replacing $\mathcal{T}^2 P_{n-1}^{(r+1)}$ given by (6) in the shifted equation (5), we obtain

$$\left[c_{3} \mathcal{T}^{3} + c_{2} \mathcal{T}^{2} + c_{1} \mathcal{T} + c_{0}\right] \left(P_{n}^{(r)}\right) = \left[\tilde{c}_{1} \mathcal{T} + \tilde{c}_{0}\right] \left(P_{n-1}^{(r+1)}\right).$$
(12)

By the same process, using again $T^2 P_{n-1}^{(r+1)}$ given by (6) in the shifted equation (12), we obtain

$$\left[d_4 \mathcal{T}^4 + d_3 \mathcal{T}^3 + d_2 \mathcal{T}^2 + d_1 \mathcal{T} + d_0\right] \left(P_n^{(r)}\right) = \left[\tilde{d}_1 \mathcal{T} + \tilde{d}_0\right] \left(P_{n-1}^{(r+1)}\right),\tag{13}$$

where the polynomial coefficients c_i , \tilde{c}_i , d_i and \tilde{d}_i are easily computed from the coefficients a_i , \tilde{a}_i , b_i and \tilde{b}_i .

Now, use of equations (5), (12) and (13) gives the expected fourth order difference equation satisfied by each $P_n^{(r)}$

$$\begin{vmatrix} a_2 \mathcal{T}^2 P_n^{(r)} + a_1 \mathcal{T} P_n^{(r)} + a_0 P_n^{(r)} & \tilde{a}_1 \tilde{a}_0 \\ c_3 \mathcal{T}^3 P_n^{(r)} + c_2 \mathcal{T}^2 P_n^{(r)} + c_1 \mathcal{T} P_n^{(r)} + c_0 P_n^{(r)} & \tilde{c}_1 \tilde{c}_0 \\ d_4 \mathcal{T}^4 P_n^{(r)} + d_3 \mathcal{T}^3 P_n^{(r)} + d_2 \mathcal{T}^2 P_n^{(r)} + d_1 \mathcal{T} P_n^{(r)} + d_0 P_n^{(r)} & \tilde{d}_1 \tilde{d}_0 \end{vmatrix} = 0 ,$$
(14)

which can be written in the form $\left[\sum_{j=0}^{4} I_j(r,n,x) \mathcal{T}^j\right] P_n^{(r)}(x) = 0.$

We have used Maple V Release 4 to compute the coefficients I_j depending on r, n and x, and after canceling common factors, we obtain

$$\begin{split} I_4 &= k_{9,2}(k_{10,0}k_{10,1} - k_{12,0}k_{12,1}), \\ I_3 &= k_{10,2} \ (k_{12,0} \ (k_{2,3} \ k_{12,1} + k_{13,1}) - k_{10,0} \ k_{10,1} \ (k_{2,3} + k_{5,2})) + k_{9,1} \ k_{10,0} \ k_{12,2}, \\ I_2 &= k_{10,1} \ (k_{10,2} \ (k_{10,0} \ k_{10,1} + k_{13,0} - k_{5,1} \ k_{12,0}) \\ &- k_{9,1} \ k_{10,0}) - k_{12,1} \ (k_{12,2} \ k_{13,0} + k_{11,2} \ k_{12,0}), \\ I_1 &= k_{10,0} \ k_{12,2} \ (k_{2,2} \ k_{12,0} + k_{13,0}) + k_{10,2} \ k_{12,0} \ (k_{9,0} - k_{10,0} \ k_{10,1}), \\ I_0 &= k_{9,-1} \ (k_{10,1} \ k_{10,2} - k_{12,1} \ k_{12,2}) \end{split}$$
(15)

where the polynomials $k_{i,j}$ are given by (11) and

$$E_{r}(x) = \tau(x) - \frac{\tau(\beta_{r})}{2} + r\frac{\tau'}{2} + (r^{2} - r(1 + 2\beta_{r}) - 2)\frac{\sigma''}{4} + (r - 2)\frac{\sigma'(x)}{2} - \sigma'(0)\frac{r}{2}$$

$$F_{r}(x) = -\frac{\tau(\beta_{r})}{2} - r\frac{\tau'}{2} - (r^{2} - r(3 - 2\beta_{r}))\frac{\sigma''}{4} + (\sigma'(x) - \sigma'(0))\frac{r}{2} + (\gamma_{r}) + ($$

The polynomials k_3 , k_4 , k_6 , k_8 are constant with respect to the variable x and β_r , γ_r are given by (4).

If r = 0, from (2), and (16) we have $k_4 = K_0 = 0$. Then, $\mathcal{N}_{1,n-1}$ is equal to zero, thus the fourth order difference equation for the first associated $P_n^{(1)}$, factorizes in the form [1,3,10] $(\bar{A}_1 \mathcal{T}^2 + \bar{B}_1 \mathcal{T} + \bar{C}_1 \mathcal{T}^0)(A_1 \mathcal{T}^2 + B_1 \mathcal{T} + C_1 \mathcal{T}^0)[P_n^{(1)}] = 0.$

For r = 0, if we are inside the Hahn class with $\alpha + \beta + 1 = 0$ (discrete Grosjean polynomials), from (2), (16), and [2,9] we have $K_0^* = 2k_6 = 0$. Then $\overline{\mathcal{N}}_{1,n}$ is equal to zero and the difference equation in this case reduces to the second order difference equation $\overline{\mathcal{D}}_{1,n}\left[P_n^{(1)}\right] = 0$.

Using the result of this letter, we have computed the coefficients I_j for all classical polynomials of a discrete variable, generalizing the results given in [6,10].

For the Krawtchouk case for example, $(\sigma(x) = x, \tau(x) = \frac{1}{q}((1-q)N - x))$, the *r*th Krawtchouk associated $P_n^{(r)}$ with $n + r \leq N$ is annihilated by the following difference operator, where *t* is given by t = r + x - 2xq + qN - 5q - N + 2.

$$\begin{array}{l} q\left(4+x\right)\left(x+3-N\right)\left(q-1\right)\left(n-2+4\,q+2\,t\right)\mathcal{T}^{4}-\left(10\,x\,q+n\,q-6\,N\,q\right.\\ \left.-42\,q^{2}-4\,x\,q^{3}\,N-2\,x\,N\,q+2\,x^{2}\,q-12\,q^{3}\,N+20\,x\,q^{3}+4\,x^{2}\,q^{3}+28\,q^{3} \\ \left.-3\,n\,q^{2}+14\,q-2\,t-n^{2}\,q+18\,q^{2}\,N+6\,x\,q^{2}\,N-30\,x\,q^{2}-6\,x^{2}\,q^{2}+3\,n\,t^{2} \\ \left.+2\,t^{3}-6\,t\,q^{2}+n^{2}\,t-n\,t+6\,t\,q\right)\mathcal{T}^{3}-\left(10\,x\,q-8\,n\,q-6\,N\,q-42\,q^{2} \\ \left.-5\,n\,N\,q^{2}+8\,x\,q^{2}\,n-4\,x\,q^{3}\,N+2\,x^{2}\,n\,q^{2}+5\,n\,N\,q+2\,x\,N\,q\,n+n^{2} \\ \left.-2\,x\,N\,q+2\,x^{2}\,q-12\,q^{3}\,N+20\,x\,q^{3}+4\,x^{2}\,q^{3}-2\,x\,N\,q^{2}\,n+28\,q^{3}+6\,n\,q^{2} \\ \left.+14\,q-2\,t-8\,x\,q\,n-n^{3}-4\,n^{2}\,q+18\,q^{2}\,N+6\,x\,q^{2}\,N-30\,x\,q^{2}-2\,x^{2}\,n\,q \\ \left.-6\,x^{2}\,q^{2}-12\,n\,q\,t-4\,x^{2}\,q\,t-6\,n\,t^{2}-4\,t^{3}+12\,t\,q^{2}-12\,q\,t^{2}-4\,n^{2}\,t \\ \left.+4\,n\,t-12\,t\,q+6\,t^{2}-10\,q^{2}\,N\,t-16\,x\,q\,t+16\,x\,q^{2}\,t-4\,x\,q^{2}\,N\,t \\ \left.+4\,x\,N\,q\,t+10\,N\,q\,t+4\,x^{2}\,q^{2}\,t\right)\mathcal{T}^{2}+\left(6\,x\,q+9\,n\,q-4\,N\,q-12\,q^{2} \\ \left.-4\,x\,q^{3}\,N+2\,n^{2}-2\,x\,N\,q+2\,x^{2}\,q-8\,q^{3}\,N+12\,x\,q^{3}+4\,x^{2}\,q^{3}+8\,q^{3} \\ \left.-9\,n\,q^{2}+4\,q-2\,n-4\,t-3\,n^{2}\,q+12\,q^{2}\,N+6\,x\,q^{2}\,N-18\,x\,q^{2}-6\,x^{2}\,q^{2} \\ \left.-12\,n\,q\,t-3\,n\,t^{2}-2\,t^{3}-18\,t\,q^{2}-12\,q\,t^{2}-n^{2}\,t+7\,n\,t+18\,t\,q+6\,t^{2}\right)\mathcal{T} \\ \left.+q\,(1+x)\,(x-N)\,(q-1)\,(2\,t+n)\,. \end{array} \right.$$

References

- N.M. Atakishiyev, A. Ronveaux, K.B. Wolf, Difference equation for the associated polynomials on the linear lattice, *Zt. Teoret. Mat. Fiz.* **106** (1996) 76-83.
- [2] S. Belmehdi, A. Ronveaux, Fourth-order differential equation satisfied by the associated orthogonal polynomials, *Rend. Mat. Appl.* (7) 11 (1991) 313-326.
- [3] M. Foupouagnigni, A. Ronveaux, M. N. Hounkonnou, The fourth-order difference equation satisfied by the associated orthogonal polynomials of Δ-Laguerre-Hahn Class. Konrad-Zuse-Zentrum Berlin, Preprint SC 97-..., 1997.
- [4] Koepf, W. and Schmersau, D.: Algorithms for classical orthogonal polynomials. Konrad-Zuse-Zentrum Berlin, Preprint SC 96-23, 1996.

- [5] Lesky, P.: Über Polynomlösungen von Differentialgleichungen und Differenzengleichungen zweiter Ordnung. Anzeiger der Österreichischen Akademie der Wissenschaften, math.-naturwiss. Klasse 121, 1985, 29-33.
- [6] J. Letessier, A. Ronveaux, G. Valent, Fourth order difference equation for the associated Meixner and Charlier polynomials, J. Comput. Appl. Math. 71 (1996) 331-341.
- [7] S. Lewanowicz, Results on the associated classical orthogonal polynomials, J. Comput. Appl. Math. 65 (1995) 215-231.
- [8] A. F. Nikiforov, S. K. Suslov V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991.
- [9] A. Ronveaux, 4th order differential equation and orthogonal polynomials of the Laguerre-Hahn class, *IMACS Ann. Comput. Appl. Math.* 9, Baltzer, Basel, 1991, 379-385.
- [10] A. Ronveaux, E. Godoy, A. Zarzo, I. Area, Fourth order difference equation for the first associated of classical discrete orthogonal polynomials. Letter, *J. Comput. Appl. Math.* (in print).
- [11] A. Zarzo, A.Ronveaux, A. Godoy, Fourth-order differential equation satisfied by the associated of any order of all classical orthogonal polynomials. A study of their distribution of zeros, J. Comput. Appl. Math. 49 (1993) 349-359.