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Abstract

We derive the fourth order difference equation satisfied by the associated of order
r of the classical orthogonal polynomials of a discrete variable.

The coefficients of this equation are given in terms of the polynomials ¢ and 7
which appear in the discrete Pearson equation A(o p) =7 p defining the weight
p(x) of the classical discrete orthogonal polynomials.
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1 Introduction

The fourth order difference equation for the associated Meixner and Charlier polynomials
were given for all r (order of association) in [6], using an explicit solution of the recurrence
relation built from the symmetry properties of this recurrence. On the other hand, the
equation for the first associated (r = 1) of all classical discrete polynomials was obtained
in [10] using a useful relation proved in [1].

In this work, we give a single fourth order difference equation which is valid for all integers
r and for all classical discrete orthogonal polynomials. This equation is important in birth
and death processes [6] and also for some connection coeflicient problems [7].

Let (P,), be a sequence of monic orthogonal polynomials of degree n with respect to the
regular linear functional L. (P,), satisfies the following second order recurrence relation:
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Poi1(x) = (x = Bn) Pa(x) = Y0 Pa—1(z), n>1 9, #0
Po(x) = 1,P1(.13) =T —60.

The associated orthogonal polynomials of order r, p , are defined by the shifted
recurrence relation (n — n+r in 3, and ;)

P () = (@ = Burr) P (@) = ugr P (@), 1> 1,
PO(T)(x) = 1,P1(T)(x) =x— Br,r>0.

When the family (P,), is classical (continuous), the polynomials P, are solutions of the
hypergeometric equation

Laolyl = o(x) y"(x) + 7(2) y'(x) + An y(x) =0,

where o is a polynomial of degree at most two, 7 is a polynomial of degree one, and A,
is a constant [8].

From the following coupled second order relations [2,9],

r+1 * r

=K PDY (1)

(
n

Ly, [P = K, [PV, Ly [P

with

d2 1 / d Vi
LQ,T‘_O'W +(x—Br) (ro —|—7')% + Ay —nra’)

2 d
L3, =0 = [z = B) (10" +7) = 20") = + (N, = (n + )ro”)
A (2r —3)o" +27'] if r>1
K:z—[(QT— 1)0//_|_27_/]7 K, = g [( )J 7'] . (2)
0 ifr=0

in [11], using the representation of 7, and B, in terms of o and 7 the generic fourth
order differential equation M, ir) (P,(f) (x)) = 0 satisfied by the associated of any integer

order r of the classical class was derived, where

. d* d?
Mi ) =6 — 4500’ — + [~7 + 270" + 30" — (2n + 4r)oT’

dz? dx?

d2

+ (4+n—n®+4r —2nr — 2r%)o0”] o
d
—g 277 + (2n — 2+ 4r)o't — 270" + (n® — n — 4r + 2nr + 2r®)0’0"'] 7
T

1
+7 {n(2+n)27 + (n+2r — 3)0"][27" + (n+ 2r — 1)0”]} (3)

In this letter we want to extend these results to the classical discrete class, i.e., the polyno-
mials P, of Hahn, Hahn-Eberlein, Krawtchouk, Meixner, and Charlier, which are solutions
of the second order difference equation

o(2)AVy(z) + 7(2)Ay(z) + Any(z) = 0



with  Ay(z) = y(z +1) —y(z) and Vy(z) = y(z) — y(x — 1). It turns out that the
coeficient A, is given by 2 A\, = —n[(n — 1)’ + 27'] , see [8]. From the known relations
between the recurrence coefficients f3,,, v, and the polynomials o and 7 [5,4],

_ O = ") (20O + (= 1))
" (0 =1)o” +)(no” +7) =0

_ n(r’+(n—2)%ﬁ) J 7_ i
Tn = (T'+(2n_3)%ﬂ)(7’+(2n—1)%”)[ (Mn—1) + T(Mp-1)], n>1 (4)

7(0) 4+ no’(0) — n? Z-

M = — '+ no’ 5 n>0

it is possible to write the corresponding equations (1), (2) and (3) again in terms of o and
7, for the generic classical discrete polynomials.

Proposition 1 [3] The associated polynomials satisfy

Dr,n |:P75,T):| = Nr+1,n71 |:P7(l7ji1):| ) (5)

Yjr—i—l,n—l |:PT(LT_+11):| = J\_/‘fn |:P7(l1):| ) (6)
where

Dr,n:a27-2+a1 T+ ao 7-0, Nr+1,n71 =a T+ 5107-0, (7)

'DrJan,l:bgTQ-l-ln T+ boTO, Nr,n 251 7-+l~?07-0, (8)

az = kyo, a1 =—ko,1k10,0, a0 = k11,0, @1 = ka,0k10,0, G0 = —ka,0k12,0 9)

by = koo, b1 = —ks1k10.0, bo = k13,0, b1 = k6.0k10.0, bo = —k6.0k14.0, (10)

T is the shift operator: TP(x) = P(x+1), and the coefficients k; ; are polynomials given
by

kiyo(x) = kl(l'), and ki,j(x) = kl(x +j) (11)

and (16).

2 Fourth Order Difference Equation for Associated Polynomials

Replacing TQPXJEU given by (6) in the shifted equation (5), we obtain

(T3 +ea T2+ T +co (P,(j’)) =& T + ] (P}ﬁl”) . (12)

By the same process, using again TZP,(;:D given by (6) in the shifted equation (12), we
obtain



[d4T4 +ds TP+ doT?+dy T+ do] (Pf(lr)) - {&17— + CZO] (PT(:ED) ’ (13

where the polynomial coefficients c;, ¢;, d; and d; are easily computed from the coefficients
a;, &h bz and bz

Now, use of equations (5), (12) and (13) gives the expected fourth order difference equation
satisfied by each pr

as T2P") + ay TP + ag P a1 o
es T3P + o T2P") + ¢, TP + ¢ PV & G| =0, (14)
dy TP +ds TSP + do T2PY) + dy TP +do P dy dy

4
which can be written in the form [Z Ii(ryn,z)T? Pr(f)(x) =0.

Jj=0

We have used Maple V Release 4 to compute the coefficients I; depending on r,n and =z,
and after canceling common factors, we obtain

Iy =ky 2(k10,0k10,1 — k12, 0k12,1),
I3 =Fki0,2 (k12,0 (k2,3 k12,1 + k13,1) — k10,0 k10,1 (k2,3 + ks5,2)) + ko, 1 k10,0 k12, 2,
Iy = k10,1 (k10,2 (k10,0 k10,1 + k13,0 — k5,1 k12,0)
— ko, 1 k10,0) — k12,1 (k12,2 k13,0 + k11,2 F12,0), (15)
I = k10,0 k12,2 (k2,2 k12,0 + k13,0) + k10, 2 k12,0 (k9,0 — k10,0 k10, 1),
Io = kg, —1 (k10,1k10,2 — K12, 1k12,2)

where the polynomials k; ; are given by (11) and

B (z) = 7(z) — @ + 7'%/ 2 (14 28) — 2)%"
+(r - 2)”/;”‘) —'(0)3
Fa)=-"0 T2 r3 - 28) T+ (o)~ o (0))]
Cn=(2n— 1)%” + 7', ki(z) =o(x+ 1)+ Enyry1(z), (16)

YrGr—1 if 7 2>1
0 if r=0
(@) =0(x+1)+ E(2), ke(x)=—Cr, kr(z) =0(@+1)— Foyria(z),
(@) = =Yntr+1Cn4rt1,  ko(x) = kr(z + Dk (2 + 1) — ks(z)ks (@),
kio(z) =k7(x + 1) + k1(z), ki1(z) = ka(z + Dka(z) + ka(2)ke (),
(x) (@) + ka(
(z)

k?(x) = U({E + 1) - Fr(x)v ]fg(il') = CnJrr; k4(1’) =

k‘5l‘

k‘gﬂ:‘

kis = kg(l‘ + 1) =+ k5($), k‘lg(x) = k‘5(l‘ + 1)k}5 x)kﬁ(x),
k14 ks(z + 1) + ko(z).

T xT

X

The polynomials ks, k4, kg, ks are constant with respect to the variable x and 3, ,~, are
given by (4).



If =0, from (2), and (16) we have ky = Ko = 0. Then, N7 ,_1 is equal to zero, thus the

)

fourth order difference equation for the first associated P,(l1 , factorizes in the form [1,3,10]

(M T2+ BT+ CiT)AT? + BT+ C TO)[PY] = 0.
For r = 0, if we are inside the Hahn class with a+3+1 =0 (discrete Grosjean polynomials),
from (2), (16), and [2,9] we have K§ = 2k¢ = 0. Then N ,, is equal to zero and the difference

equation in this case reduces to the second order difference equation 7_)1,n [PT(LI)} = 0.

Using the result of this letter, we have computed the coefficients I; for all classical polyno-
mials of a discrete variable, generalizing the results given in [6,10].
For the Krawtchouk case for example, (o(x) = z, 7(z) = %((1 — ¢)N — z), the rth

Krawtchouk associated Py) with n +r < N is annihilated by the following difference
operator, where t is given by t =r+x — 2zq+ gqN — 5qg — N + 2.

qd+z) (@ +3-N)(g—1)(n—2+4q¢+2t)T* - (102q+ng—6Ngq
—42¢> — 42 ® N —2xNqg+222¢—12¢° N +20x¢> + 422 ¢® +28¢3
—3ng®? +14q—2t—n’q+ 18> N+62¢* N —30x¢> — 62° ¢° + 3nt>
+283 —6t¢> +n*t—nt+6tq)T> — (102q—8ng—6Nq— 42>
—5nN@F+8x¢*n—4z¢N+22°n®> +5nNqg+2xNgn+n?
—2eNqg+222¢—12¢° N+202 > +42°¢® — 22 N> n+28¢> +6n¢?
+14qg—2t—8axqn—n>—4n’q+18¢* N+62¢* N —30x¢®> —22°ngq
—622¢> —12nqt —42®qt —6nt> — 413 +12t¢> — 12qt> —4n’t
+4nt—12tq+6t2—10¢° Nt —16xqt + 16z ¢t —4x¢> Nt
+4xNqt+10Nqt +422 P )T>+ (62g+9nqg—4Nqg—124°
4z N+2n°> -2 Nq+222¢—-8¢ N +122¢° +422¢> +8¢3
—9ng®+4q—2n—4t—3n*q+12¢* N+62¢> N — 182 ¢* — 6 2% ¢*
—12nqt—3nt> —2t3 —18t¢> —12qt> —n’t + Tnt+18tq+61>)T
+q(l4+2x)(x—=N)(¢g—1)(2t+n).
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