M. Foupouagnigni, W. Koepf, A. Ronveaux

Fourth Order Difference Equation for the Associated Classical Discrete Orthogonal Polynomials

Fourth Order Difference Equation for the Associated Classical Discrete Orthogonal Polynomials

M. Foupouagnigni ${ }^{\text {a, }}$, W. Koepf ${ }^{\text {a }}$ and A. Ronveaux ${ }^{\text {b }}$
${ }^{a}$ Konrad-Zuse-Zentrum für Informationstechnik, Takustr. 7, D-14195 Berlin, Germany.
${ }^{\text {b }}$ Mathematical Physics, Facultés Universitaires Notre-Dame de la Paix, B-5000
Namur, Belgium.

Abstract

We derive the fourth order difference equation satisfied by the associated of order r of the classical orthogonal polynomials of a discrete variable.

The coefficients of this equation are given in terms of the polynomials σ and τ which appear in the discrete Pearson equation $\Delta(\sigma \rho)=\tau \rho$ defining the weight $\rho(x)$ of the classical discrete orthogonal polynomials.

Keywords: Orthogonal polynomials, Fourth order difference equation.
1991 MSC: 33C25

1 Introduction

The fourth order difference equation for the associated Meixner and Charlier polynomials were given for all r (order of association) in [6], using an explicit solution of the recurrence relation built from the symmetry properties of this recurrence. On the other hand, the equation for the first associated $(r=1)$ of all classical discrete polynomials was obtained in [10] using a useful relation proved in [1].
In this work, we give a single fourth order difference equation which is valid for all integers r and for all classical discrete orthogonal polynomials. This equation is important in birth and death processes [6] and also for some connection coefficient problems [7].

Let $\left(P_{n}\right)_{n}$ be a sequence of monic orthogonal polynomials of degree n with respect to the regular linear functional \mathcal{L}. $\left(P_{n}\right)_{n}$ satisfies the following second order recurrence relation:

[^0]\[

\left\{$$
\begin{array}{l}
P_{n+1}(x)=\left(x-\beta_{n}\right) P_{n}(x)-\gamma_{n} P_{n-1}(x), n \geq 1, \gamma_{n} \neq 0 \\
P_{0}(x)=1, P_{1}(x)=x-\beta_{0}
\end{array}
$$\right.
\]

The associated orthogonal polynomials of order $r, P_{n}^{(r)}$, are defined by the shifted recurrence relation $\left(n \rightarrow n+r\right.$ in β_{n} and $\left.\gamma_{n}\right)$

$$
\left\{\begin{array}{l}
P_{n+1}^{(r)}(x)=\left(x-\beta_{n+r}\right) P_{n}^{(r)}(x)-\gamma_{n+r} P_{n-1}^{(r)}(x), \quad n \geq 1 \\
P_{0}^{(r)}(x)=1, P_{1}^{(r)}(x)=x-\beta_{r}, r \geq 0
\end{array}\right.
$$

When the family $\left(P_{n}\right)_{n}$ is classical (continuous), the polynomials P_{n} are solutions of the hypergeometric equation

$$
L_{2,0}[y] \equiv \sigma(x) y^{\prime \prime}(x)+\tau(x) y^{\prime}(x)+\lambda_{n} y(x)=0
$$

where σ is a polynomial of degree at most two, τ is a polynomial of degree one, and λ_{n} is a constant [8].
From the following coupled second order relations $[2,9]$,

$$
\begin{equation*}
L_{2, r}\left[P_{n}^{(r)}\right]=K_{r}\left[P_{n-1}^{(r+1)}\right]^{\prime}, \quad L_{2, r}^{*}\left[P_{n-1}^{(r+1)}\right]=K_{r}^{*}\left[P_{n}^{(r)}\right]^{\prime} \tag{1}
\end{equation*}
$$

with

$$
\begin{align*}
L_{2, r} & =\sigma \frac{d^{2}}{d x^{2}}+\left(x-\beta_{r}\right)\left(r \sigma^{\prime \prime}+\tau^{\prime}\right) \frac{d}{d x}+\left(\lambda_{n}-n r \sigma^{\prime \prime}\right) \\
L_{2, r}^{*} & =\sigma \frac{d^{2}}{d x^{2}}-\left[\left(x-\beta_{r}\right)\left(r \sigma^{\prime \prime}+\tau^{\prime}\right)-2 \sigma^{\prime}\right] \frac{d}{d x}+\left(\lambda_{n}^{*}-(n+1) r \sigma^{\prime \prime}\right) \\
K_{r}^{*} & =-\left[(2 r-1) \sigma^{\prime \prime}+2 \tau^{\prime}\right], K_{r}=\left\{\begin{array}{l}
\gamma_{r}\left[(2 r-3) \sigma^{\prime \prime}+2 \tau^{\prime}\right] \text { if } r \geq 1 \\
0 \\
\text { if } r=0
\end{array}\right. \tag{2}
\end{align*} .
$$

in [11], using the representation of γ_{r} and β_{r} in terms of σ and τ the generic fourth order differential equation $M_{4}^{(r)}\left(P_{n}^{(r)}(x)\right)=0$ satisfied by the associated of any integer order r of the classical class was derived, where

$$
\begin{align*}
M_{4}^{(r)} & =\sigma^{2} \frac{d^{4}}{d x^{4}}+5 \sigma \sigma^{\prime} \frac{d^{3}}{d x^{3}}+\left[-\tau^{2}+2 \tau \sigma^{\prime}+3 \sigma^{2}-(2 n+4 r) \sigma \tau^{\prime}\right. \\
& \left.+\left(4+n-n^{2}+4 r-2 n r-2 r^{2}\right) \sigma \sigma^{\prime \prime}\right] \frac{d^{2}}{d x^{2}} \\
-\frac{3}{2}\left[2 \tau \tau^{\prime}\right. & \left.+(2 n-2+4 r) \sigma^{\prime} \tau^{\prime}-2 \tau \sigma^{\prime \prime}+\left(n^{2}-n-4 r+2 n r+2 r^{2}\right) \sigma^{\prime} \sigma^{\prime \prime}\right] \frac{d}{d x} \\
& +\frac{1}{4}\left\{n(2+n)\left[2 \tau^{\prime}+(n+2 r-3) \sigma^{\prime \prime}\right]\left[2 \tau^{\prime}+(n+2 r-1) \sigma^{\prime \prime}\right]\right\} \tag{3}
\end{align*}
$$

In this letter we want to extend these results to the classical discrete class, i.e., the polynomials P_{n} of Hahn, Hahn-Eberlein, Krawtchouk, Meixner, and Charlier, which are solutions of the second order difference equation

$$
\sigma(x) \Delta \nabla y(x)+\tau(x) \Delta y(x)+\lambda_{n} y(x)=0
$$

with $\Delta y(x)=y(x+1)-y(x)$ and $\nabla y(x)=y(x)-y(x-1)$. It turns out that the coefficient λ_{n} is given by $2 \lambda_{n}=-n\left[(n-1) \sigma^{\prime \prime}+2 \tau^{\prime}\right]$, see [8]. From the known relations between the recurrence coefficients β_{n}, γ_{n} and the polynomials σ and τ [5,4],

$$
\begin{align*}
& \beta_{n}=\frac{-\tau(0)\left(\tau^{\prime}-\sigma^{\prime \prime}\right)-n\left(\tau^{\prime}+2 \sigma^{\prime}(0)\right)\left(\tau^{\prime}+(n-1) \frac{\sigma^{\prime \prime}}{2}\right)}{\left((n-1) \sigma^{\prime \prime}+\tau^{\prime}\right)\left(n \sigma^{\prime \prime}+\tau^{\prime}\right)}, n \geq 0 \\
& \gamma_{n}=-\frac{n\left(\tau^{\prime}+(n-2) \frac{\sigma^{\prime \prime}}{2}\right)}{\left(\tau^{\prime}+(2 n-3) \frac{\sigma^{\prime \prime}}{2}\right)\left(\tau^{\prime}+(2 n-1) \frac{\sigma^{\prime \prime}}{2}\right)}\left[\sigma\left(\eta_{n-1}\right)+\tau\left(\eta_{n-1}\right)\right], n \geq 1 \tag{4}\\
& \eta_{n}=-\frac{\tau(0)+n \sigma^{\prime}(0)-n^{2} \frac{\sigma^{\prime \prime}}{2}}{\tau^{\prime}+n \sigma^{\prime \prime}}, n \geq 0
\end{align*}
$$

it is possible to write the corresponding equations (1), (2) and (3) again in terms of σ and τ, for the generic classical discrete polynomials.

Proposition 1 [3] The associated polynomials satisfy

$$
\begin{align*}
& \mathcal{D}_{r, n}\left[P_{n}^{(r)}\right]=\mathcal{N}_{r+1, n-1}\left[P_{n-1}^{(r+1)}\right] \tag{5}\\
& \overline{\mathcal{D}}_{r+1, n-1}\left[P_{n-1}^{(r+1)}\right]=\overline{\mathcal{N}}_{r, n}\left[P_{n}^{(r)}\right] \tag{6}
\end{align*}
$$

where

$$
\begin{align*}
& \mathcal{D}_{r, n}=a_{2} \mathcal{T}^{2}+a_{1} \mathcal{T}+a_{0} \mathcal{T}^{0}, \quad \mathcal{N}_{r+1, n-1}=\tilde{a}_{1} \mathcal{T}+\tilde{a}_{0} \mathcal{T}^{0}, \tag{7}\\
& \overline{\mathcal{D}}_{r+1, n-1}=b_{2} \mathcal{T}^{2}+b_{1} \mathcal{T}+b_{0} \mathcal{T}^{0}, \quad \overline{\mathcal{N}}_{r, n}=\tilde{b}_{1} \mathcal{T}+\tilde{b}_{0} \mathcal{T}^{0}, \tag{8}\\
& a_{2}=k_{9,0}, a_{1}=-k_{2,1} k_{10,0}, a_{0}=k_{11,0}, \quad \tilde{a}_{1}=k_{4,0} k_{10,0}, \quad \tilde{a}_{0}=-k_{4,0} k_{12,0} \tag{9}\\
& b_{2}=k_{9,0}, b_{1}=-k_{5,1} k_{10,0}, b_{0}=k_{13,0}, \tilde{b}_{1}=k_{6,0} k_{10,0}, \tilde{b}_{0}=-k_{6,0} k_{14,0}, \tag{10}
\end{align*}
$$

\mathcal{T} is the shift operator: $\mathcal{T} P(x)=P(x+1)$, and the coefficients $k_{i, j}$ are polynomials given by

$$
\begin{equation*}
k_{i, 0}(x) \equiv k_{i}(x), \quad \text { and } \quad k_{i, j}(x)=k_{i}(x+j) \tag{11}
\end{equation*}
$$

and (16).

2 Fourth Order Difference Equation for Associated Polynomials

Replacing $\mathcal{T}^{2} P_{n-1}^{(r+1)}$ given by (6) in the shifted equation (5), we obtain

$$
\begin{equation*}
\left[c_{3} \mathcal{T}^{3}+c_{2} \mathcal{T}^{2}+c_{1} \mathcal{T}+c_{0}\right]\left(P_{n}^{(r)}\right)=\left[\tilde{c}_{1} \mathcal{T}+\tilde{c}_{0}\right]\left(P_{n-1}^{(r+1)}\right) \tag{12}
\end{equation*}
$$

By the same process, using again $\mathcal{T}^{2} P_{n-1}^{(r+1)}$ given by (6) in the shifted equation (12), we obtain

$$
\begin{equation*}
\left[d_{4} \mathcal{T}^{4}+d_{3} \mathcal{T}^{3}+d_{2} \mathcal{T}^{2}+d_{1} \mathcal{T}+d_{0}\right]\left(P_{n}^{(r)}\right)=\left[\tilde{d}_{1} \mathcal{T}+\tilde{d}_{0}\right]\left(P_{n-1}^{(r+1)}\right) \tag{13}
\end{equation*}
$$

where the polynomial coefficients $c_{i}, \tilde{c}_{i}, d_{i}$ and \tilde{d}_{i} are easily computed from the coefficients $a_{i}, \tilde{a}_{i}, b_{i}$ and \tilde{b}_{i}.
Now, use of equations (5), (12) and (13) gives the expected fourth order difference equation satisfied by each $P_{n}^{(r)}$

$$
\left|\begin{array}{cc}
a_{2} \mathcal{T}^{2} P_{n}^{(r)}+a_{1} \mathcal{T} P_{n}^{(r)}+a_{0} P_{n}^{(r)} & \tilde{a}_{1} \tilde{a}_{0} \\
c_{3} \mathcal{T}^{3} P_{n}^{(r)}+c_{2} \mathcal{T}^{2} P_{n}^{(r)}+c_{1} \mathcal{T} P_{n}^{(r)}+c_{0} P_{n}^{(r)} & \tilde{c}_{1} \tilde{c}_{0} \tag{14}\\
d_{4} \mathcal{T}^{4} P_{n}^{(r)}+d_{3} \mathcal{T}^{3} P_{n}^{(r)}+d_{2} \mathcal{T}^{2} P_{n}^{(r)}+d_{1} \mathcal{T} P_{n}^{(r)}+d_{0} P_{n}^{(r)} & \tilde{d}_{1} \tilde{d}_{0}
\end{array}\right|=0,
$$

which can be written in the form $\left[\sum_{j=0}^{4} I_{j}(r, n, x) \mathcal{T}^{j}\right] P_{n}^{(r)}(x)=0$.
We have used Maple V Release 4 to compute the coefficients I_{j} depending on r, n and x, and after canceling common factors, we obtain

$$
\begin{align*}
I_{4}= & k_{9,2}\left(k_{10,0} k_{10,1}-k_{12,0} k_{12,1}\right) \\
I_{3}= & k_{10,2}\left(k_{12,0}\left(k_{2,3} k_{12,1}+k_{13,1}\right)-k_{10,0} k_{10,1}\left(k_{2,3}+k_{5,2}\right)\right)+k_{9,1} k_{10,0} k_{12,2}, \\
I_{2}= & k_{10,1}\left(k_{10,2}\left(k_{10,0} k_{10,1}+k_{13,0}-k_{5,1} k_{12,0}\right)\right. \\
& \left.-k_{9,1} k_{10,0}\right)-k_{12,1}\left(k_{12,2} k_{13,0}+k_{11,2} k_{12,0}\right) \tag{15}\\
I_{1}= & k_{10,0} k_{12,2}\left(k_{2,2} k_{12,0}+k_{13,0}\right)+k_{10,2} k_{12,0}\left(k_{9,0}-k_{10,0} k_{10,1}\right), \\
I_{0}= & k_{9,-1}\left(k_{10,1} k_{10,2}-k_{12,1} k_{12,2}\right)
\end{align*}
$$

where the polynomials $k_{i, j}$ are given by (11) and

$$
\begin{align*}
E_{r}(x)= & \tau(x)-\frac{\tau\left(\beta_{r}\right)}{2}+r \frac{\tau^{\prime}}{2}+\left(r^{2}-r\left(1+2 \beta_{r}\right)-2\right) \frac{\sigma^{\prime \prime}}{4} \\
& +(r-2) \frac{\sigma^{\prime}(x)}{2}-\sigma^{\prime}(0) \frac{r}{2} \\
F_{r}(x)= & -\frac{\tau\left(\beta_{r}\right)}{2}-r \frac{\tau^{\prime}}{2}-\left(r^{2}-r\left(3-2 \beta_{r}\right)\right) \frac{\sigma^{\prime \prime}}{4}+\left(\sigma^{\prime}(x)-\sigma^{\prime}(0)\right) \frac{r}{2} \\
\zeta_{n}= & (2 n-1) \frac{\sigma^{\prime \prime}}{2}+\tau^{\prime}, \quad k_{1}(x)=\sigma(x+1)+E_{n+r+1}(x), \tag{16}\\
k_{2}(x)= & \sigma(x+1)-F_{r}(x), \quad k_{3}(x)=\zeta_{n+r}, \quad k_{4}(x)= \begin{cases}\gamma_{r} \zeta_{r-1} \quad \text { if } \quad r \geq 1 \\
0 \quad \text { if } \quad r=0\end{cases} \\
k_{5}(x)= & \sigma(x+1)+E_{r}(x), \quad k_{6}(x)=-\zeta_{r}, \quad k_{7}(x)=\sigma(x+1)-F_{n+r+1}(x), \\
k_{8}(x)= & -\gamma_{n+r+1} \zeta_{n+r+1}, \quad k_{9}(x)=k_{7}(x+1) k_{1}(x+1)-k_{3}(x) k_{8}(x), \\
k_{10}(x)= & k_{7}(x+1)+k_{1}(x), \quad k_{11}(x)=k_{2}(x+1) k_{2}(x)+k_{4}(x) k_{6}(x), \\
k_{12}(x)= & k_{2}(x+1)+k_{5}(x), \quad k_{13}(x)=k_{5}(x+1) k_{5}(x)+k_{4}(x) k_{6}(x), \\
k_{14}(x)= & k_{5}(x+1)+k_{2}(x) .
\end{align*}
$$

The polynomials $k_{3}, k_{4}, k_{6}, k_{8}$ are constant with respect to the variable x and β_{r}, γ_{r} are given by (4).

If $r=0$, from (2), and (16) we have $k_{4}=K_{0}=0$. Then, $\mathcal{N}_{1, n-1}$ is equal to zero, thus the fourth order difference equation for the first associated $P_{n}^{(1)}$, factorizes in the form [1,3,10] $\left(\bar{A}_{1} \mathcal{T}^{2}+\bar{B}_{1} \mathcal{T}+\bar{C}_{1} \mathcal{T}^{0}\right)\left(A_{1} \mathcal{T}^{2}+B_{1} \mathcal{T}+C_{1} \mathcal{T}^{0}\right)\left[P_{n}^{(1)}\right]=0$.
For $r=0$, if we are inside the Hahn class with $\alpha+\beta+1=0$ (discrete Grosjean polynomials), from (2), (16), and [2,9] we have $K_{0}^{*}=2 k_{6}=0$. Then $\overline{\mathcal{N}}_{1, n}$ is equal to zero and the difference equation in this case reduces to the second order difference equation $\overline{\mathcal{D}}_{1, n}\left[P_{n}^{(1)}\right]=0$.
Using the result of this letter, we have computed the coefficients I_{j} for all classical polynomials of a discrete variable, generalizing the results given in $[6,10]$.
For the Krawtchouk case for example, $\left(\sigma(x)=x, \tau(x)=\frac{1}{q}((1-q) N-x)\right.$, the r th Krawtchouk associated $P_{n}^{(r)}$ with $n+r \leq N$ is annihilated by the following difference operator, where t is given by $t=r+x-2 x q+q N-5 q-N+2$.

$$
\begin{aligned}
& q(4+x)(x+3-N)(q-1)(n-2+4 q+2 t) \mathcal{T}^{4}-(10 x q+n q-6 N q \\
& \quad-42 q^{2}-4 x q^{3} N-2 x N q+2 x^{2} q-12 q^{3} N+20 x q^{3}+4 x^{2} q^{3}+28 q^{3} \\
& \quad-3 n q^{2}+14 q-2 t-n^{2} q+18 q^{2} N+6 x q^{2} N-30 x q^{2}-6 x^{2} q^{2}+3 n t^{2} \\
& \left.\quad+2 t^{3}-6 t q^{2}+n^{2} t-n t+6 t q\right) \mathcal{T}^{3}-\left(10 x q-8 n q-6 N q-42 q^{2}\right. \\
& \quad-5 n N q^{2}+8 x q^{2} n-4 x q^{3} N+2 x^{2} n q^{2}+5 n N q+2 x N q n+n^{2} \\
& \quad-2 x N q+2 x^{2} q-12 q^{3} N+20 x q^{3}+4 x^{2} q^{3}-2 x N q^{2} n+28 q^{3}+6 n q^{2} \\
& \quad+14 q-2 t-8 x q n-n^{3}-4 n^{2} q+18 q^{2} N+6 x q^{2} N-30 x q^{2}-2 x^{2} n q \\
& \quad-6 x^{2} q^{2}-12 n q t-4 x^{2} q t-6 n t^{2}-4 t^{3}+12 t q^{2}-12 q t^{2}-4 n^{2} t \\
& \quad+4 n t-12 t q+6 t^{2}-10 q^{2} N t-16 x q t+16 x q^{2} t-4 x q^{2} N t \\
& \left.\quad+4 x N q t+10 N q t+4 x^{2} q^{2} t\right) \mathcal{T}^{2}+\left(6 x q+9 n q-4 N q-12 q^{2}\right. \\
& \quad-4 x q^{3} N+2 n^{2}-2 x N q+2 x^{2} q-8 q^{3} N+12 x q^{3}+4 x^{2} q^{3}+8 q^{3} \\
& \quad-9 n q^{2}+4 q-2 n-4 t-3 n^{2} q+12 q^{2} N+6 x q^{2} N-18 x q^{2}-6 x^{2} q^{2} \\
& \left.\quad-12 n q t-3 n t^{2}-2 t^{3}-18 t q^{2}-12 q t^{2}-n^{2} t+7 n t+18 t q+6 t^{2}\right) \mathcal{T} \\
& \quad+q(1+x)(x-N)(q-1)(2 t+n) .
\end{aligned}
$$

References

[1] N.M. Atakishiyev, A. Ronveaux, K.B. Wolf, Difference equation for the associated polynomials on the linear lattice, Zt. Teoret. Mat. Fiz. 106 (1996) 76-83.
[2] S. Belmehdi, A. Ronveaux, Fourth-order differential equation satisfied by the associated orthogonal polynomials, Rend. Mat. Appl. (7) 11 (1991) 313-326.
[3] M. Foupouagnigni, A. Ronveaux, M. N. Hounkonnou, The fourth-order difference equation satisfied by the associated orthogonal polynomials of Δ -Laguerre-Hahn Class. Konrad-Zuse-Zentrum Berlin, Preprint SC 97-..., 1997.
[4] Koepf, W. and Schmersau, D.: Algorithms for classical orthogonal polynomials. Konrad-Zuse-Zentrum Berlin, Preprint SC 96-23, 1996.
[5] Lesky, P.: Über Polynomlösungen von Differentialgleichungen und Differenzengleichungen zweiter Ordnung. Anzeiger der Österreichischen Akademie der Wissenschaften, math.-naturwiss. Klasse 121, 1985, 29-33.
[6] J. Letessier, A. Ronveaux, G. Valent, Fourth order difference equation for the associated Meixner and Charlier polynomials, J. Comput. Appl. Math. 71 (1996) 331-341.
[7] S. Lewanowicz, Results on the associated classical orthogonal polynomials, J. Comput. Appl. Math. 65 (1995) 215-231.
[8] A. F. Nikiforov, S. K. Suslov V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991.
[9] A. Ronveaux, 4th order differential equation and orthogonal polynomials of the Laguerre-Hahn class, IMACS Ann. Comput. Appl. Math. 9, Baltzer, Basel, 1991, 379-385.
[10] A. Ronveaux, E. Godoy, A. Zarzo, I. Area, Fourth order difference equation for the first associated of classical discrete orthogonal polynomials. Letter, J. Comput. Appl. Math. (in print).
[11] A. Zarzo, A.Ronveaux, A. Godoy, Fourth-order differential equation satisfied by the associated of any order of all classical orthogonal polynomials. A study of their distribution of zeros, J. Comput. Appl. Math. 49 (1993) 349-359.

[^0]: ${ }^{1}$ E-mail: foupouagnigni@zib.de. Research supported by: Deutscher Akademischer Austauschdienst (DAAD). Permanent address: Institut de Mathématiques et de Sciences physiques, BP 613 Porto-Novo, Republique du Bénin. Fax: +229-21 2525.

