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Abstract

We derive the fourth order difference equation satisfied by the associated of order
r of the classical orthogonal polynomials of a discrete variable.
The coefficients of this equation are given in terms of the polynomials σ and τ

which appear in the discrete Pearson equation Δ(σ ρ) = τ ρ defining the weight
ρ(x) of the classical discrete orthogonal polynomials.
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1 Introduction

The fourth order difference equation for the associated Meixner and Charlier polynomials
were given for all r (order of association) in [6], using an explicit solution of the recurrence
relation built from the symmetry properties of this recurrence. On the other hand, the
equation for the first associated (r = 1) of all classical discrete polynomials was obtained
in [10] using a useful relation proved in [1].
In this work, we give a single fourth order difference equation which is valid for all integers
r and for all classical discrete orthogonal polynomials. This equation is important in birth
and death processes [6] and also for some connection coefficient problems [7].

Let (Pn)n be a sequence of monic orthogonal polynomials of degree n with respect to the
regular linear functional L. (Pn)n satisfies the following second order recurrence relation:

1 E-mail: foupouagnigni@zib.de. Research supported by: Deutscher Akademischer
Austauschdienst (DAAD). Permanent address: Institut de Mathématiques et de
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⎧⎨
⎩ Pn+1(x) = (x− βn)Pn(x)− γn Pn−1(x), n ≥ 1 , γn �= 0

P0(x) = 1, P1(x) = x− β0.

The associated orthogonal polynomials of order r, P
(r)
n , are defined by the shifted

recurrence relation (n → n+ r in βn and γn)

⎧⎨
⎩ P

(r)
n+1(x) = (x− βn+r)P

(r)
n (x) − γn+r P

(r)
n−1(x), n ≥ 1,

P
(r)
0 (x) = 1, P

(r)
1 (x) = x− βr, r ≥ 0.

When the family (Pn)n is classical (continuous), the polynomials Pn are solutions of the
hypergeometric equation

L2,0[y] ≡ σ(x) y′′(x) + τ(x) y′(x) + λn y(x) = 0,

where σ is a polynomial of degree at most two, τ is a polynomial of degree one, and λn

is a constant [8].
From the following coupled second order relations [2,9],

L2,r[P
(r)
n ] = Kr [P

(r+1)
n−1 ]′, L∗

2,r[P
(r+1)
n−1 ] = K∗

r [P (r)
n ]′ (1)

with

L2,r = σ
d2

dx2
+ (x− βr) (rσ

′′ + τ ′)
d

dx
+ (λn − nrσ′′)

L∗
2,r = σ

d2

dx2
− [(x− βr) (rσ

′′ + τ ′)− 2σ′]
d

dx
+ (λ∗

n − (n+ 1)rσ′′)

K∗
r =−[(2r − 1)σ′′ + 2τ ′], Kr =

⎧⎨
⎩ γr[(2r − 3)σ′′ + 2τ ′] if r ≥ 1

0 if r = 0
. (2)

in [11], using the representation of γr and βr in terms of σ and τ the generic fourth

order differential equation M
(r)
4

(
P

(r)
n (x)

)
= 0 satisfied by the associated of any integer

order r of the classical class was derived, where

M
(r)
4 = σ2 d4

dx4
+ 5σσ′ d

3

dx3
+
[
−τ2 + 2τσ′ + 3σ′2 − (2n+ 4r)στ ′

+ (4 + n− n2 + 4r − 2nr − 2r2)σσ′′] d2

dx2

−3

2
[2ττ ′ + (2n− 2 + 4r)σ′τ ′ − 2τσ′′ + (n2 − n− 4r + 2nr + 2r2)σ′σ′′] d

dx

+
1

4
{n(2 + n)[2τ ′ + (n+ 2r − 3)σ′′][2τ ′ + (n+ 2r − 1)σ′′]} (3)

In this letter we want to extend these results to the classical discrete class, i.e., the polyno-
mials Pn of Hahn, Hahn-Eberlein, Krawtchouk, Meixner, and Charlier, which are solutions
of the second order difference equation

σ(x)Δ∇y(x) + τ(x)Δy(x) + λny(x) = 0
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with Δy(x) = y(x + 1) − y(x) and ∇y(x) = y(x) − y(x − 1). It turns out that the
coefficient λn is given by 2 λn = −n[(n− 1)σ′′ + 2τ ′] , see [8]. From the known relations
between the recurrence coefficients βn, γn and the polynomials σ and τ [5,4],

βn =
−τ(0)(τ ′ − σ′′)− n(τ ′ + 2σ′(0))(τ ′ + (n− 1)σ

′′
2 )

((n− 1)σ′′ + τ ′)(nσ′′ + τ ′)
, n ≥ 0

γn = −
n(τ ′ + (n− 2)σ

′′
2 )

(τ ′ + (2n− 3)σ
′′
2 )(τ ′ + (2n− 1)σ

′′
2 )

[σ(ηn−1) + τ(ηn−1)], n ≥ 1 (4)

ηn = −
τ(0) + nσ′(0)− n2 σ′′

2

τ ′ + nσ′′ , n ≥ 0

it is possible to write the corresponding equations (1), (2) and (3) again in terms of σ and
τ, for the generic classical discrete polynomials.

Proposition 1 [3] The associated polynomials satisfy

Dr,n

[
P (r)
n

]
= Nr+1,n−1

[
P

(r+1)
n−1

]
, (5)

D̄r+1,n−1

[
P

(r+1)
n−1

]
= N̄r,n

[
P (r)
n

]
, (6)

where

Dr,n = a2 T 2 + a1 T + a0 T 0, Nr+1,n−1 = ã1 T + ã0 T 0, (7)

D̄r+1,n−1 = b2 T 2 + b1 T + b0 T 0, N̄r,n = b̃1 T + b̃0 T 0, (8)

a2 = k9,0, a1 =−k2,1k10,0, a0 = k11,0, ã1 = k4,0k10,0, ã0 = −k4,0k12,0 (9)

b2 = k9,0, b1 =−k5,1k10,0, b0 = k13,0, b̃1 = k6,0k10,0, b̃0 = −k6,0k14,0, (10)

T is the shift operator: T P (x) = P (x+1) , and the coefficients ki,j are polynomials given
by

ki,0(x) ≡ ki(x), and ki,j(x) = ki(x + j) (11)

and (16).

2 Fourth Order Difference Equation for Associated Polynomials

Replacing T 2P
(r+1)
n−1 given by (6) in the shifted equation (5), we obtain

[
c3 T 3 + c2 T 2 + c1 T + c0

] (
P (r)
n

)
= [c̃1 T + c̃0 ]

(
P

(r+1)
n−1

)
. (12)

By the same process, using again T 2P
(r+1)
n−1 given by (6) in the shifted equation (12), we

obtain
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[
d4T 4 + d3T 3 + d2T 2 + d1 T + d0

] (
P (r)
n

)
=

[
d̃1T + d̃0

] (
P

(r+1)
n−1

)
, (13)

where the polynomial coefficients ci, c̃i, di and d̃i are easily computed from the coefficients
ai, ãi, bi and b̃i.
Now, use of equations (5), (12) and (13) gives the expected fourth order difference equation

satisfied by each P
(r)
n∣∣∣∣∣∣∣∣∣
a2 T 2P

(r)
n + a1 T P

(r)
n + a0 P

(r)
n ã1 ã0

c3 T 3P
(r)
n + c2 T 2P

(r)
n + c1 T P

(r)
n + c0 P

(r)
n c̃1 c̃0

d4 T 4P
(r)
n + d3 T 3P

(r)
n + d2 T 2P

(r)
n + d1 T P

(r)
n + d0 P

(r)
n d̃1 d̃0

∣∣∣∣∣∣∣∣∣
= 0 , (14)

which can be written in the form

[
4∑

j=0

Ij(r, n, x) T j

]
P

(r)
n (x) = 0.

We have used Maple V Release 4 to compute the coefficients Ij depending on r, n and x,
and after canceling common factors, we obtain

I4 = k9, 2(k10, 0k10, 1 − k12, 0k12, 1),

I3 = k10, 2 (k12, 0 (k2, 3 k12, 1 + k13, 1) − k10, 0 k10, 1 (k2, 3 + k5, 2)) + k9, 1 k10, 0 k12, 2,

I2 = k10, 1 (k10, 2 (k10, 0 k10, 1 + k13, 0 − k5, 1 k12, 0)

− k9, 1 k10, 0)− k12, 1 (k12, 2 k13, 0 + k11, 2 k12, 0), (15)

I1 = k10, 0 k12, 2 (k2, 2 k12, 0 + k13, 0) + k10, 2 k12, 0 (k9, 0 − k10, 0 k10, 1),

I0 = k9,−1 (k10, 1k10, 2 − k12, 1k12, 2)

where the polynomials ki,j are given by (11) and

Er(x) = τ(x) − τ(βr)

2
+ r

τ ′

2
+ (r2 − r(1 + 2βr)− 2)

σ′′

4

+(r − 2)
σ′(x)
2

− σ′(0)
r

2

Fr(x) =−τ(βr)

2
− r

τ ′

2
− (r2 − r(3 − 2βr))

σ′′

4
+ (σ′(x) − σ′(0))

r

2

ζn = (2n− 1)
σ′′

2
+ τ ′, k1(x) = σ(x+ 1) + En+r+1(x), (16)

k2(x) = σ(x+ 1)− Fr(x), k3(x) = ζn+r, k4(x) =

⎧⎨
⎩ γrζr−1 if r ≥ 1

0 if r = 0

k5(x) = σ(x+ 1) + Er(x), k6(x) = −ζr, k7(x) = σ(x+ 1)− Fn+r+1(x),

k8(x) =−γn+r+1ζn+r+1, k9(x) = k7(x+ 1)k1(x+ 1)− k3(x)k8(x),

k10(x) = k7(x+ 1) + k1(x), k11(x) = k2(x+ 1)k2(x) + k4(x)k6(x),

k12(x) = k2(x+ 1) + k5(x), k13(x) = k5(x+ 1)k5(x) + k4(x)k6(x),

k14(x) = k5(x+ 1) + k2(x).

The polynomials k3, k4, k6, k8 are constant with respect to the variable x and βr , γr are
given by (4).
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If r = 0, from (2), and (16) we have k4 = K0 = 0. Then, N1,n−1 is equal to zero, thus the

fourth order difference equation for the first associated P
(1)
n , factorizes in the form [1,3,10]

(Ā1 T 2 + B̄1 T + C̄1 T 0)(A1 T 2 +B1 T + C1 T 0)[P
(1)
n ] = 0.

For r = 0, if we are inside the Hahn class with α+β+1 = 0 (discrete Grosjean polynomials),
from (2), (16), and [2,9] we haveK∗

0 = 2k6 = 0. Then N̄1,n is equal to zero and the difference

equation in this case reduces to the second order difference equation D̄1,n

[
P

(1)
n

]
= 0.

Using the result of this letter, we have computed the coefficients Ij for all classical polyno-
mials of a discrete variable, generalizing the results given in [6,10].
For the Krawtchouk case for example, (σ(x) = x, τ(x) = 1

q ((1 − q)N − x), the r th

Krawtchouk associated P
(r)
n with n + r ≤ N is annihilated by the following difference

operator, where t is given by t = r + x− 2xq + qN − 5q −N + 2.

q (4 + x) (x + 3−N) (q − 1) (n− 2 + 4 q + 2 t) T 4 − (10 x q + n q − 6N q

− 42 q2 − 4 x q3 N − 2 xN q + 2 x2 q − 12 q3N + 20 x q3 + 4 x2 q3 + 28 q3

− 3n q2 + 14 q − 2 t− n2 q + 18 q2N + 6 x q2 N − 30 x q2 − 6 x2 q2 + 3n t2

+ 2 t3 − 6 t q2 + n2 t− n t+ 6 t q)T 3 − (10 x q − 8n q − 6N q − 42 q2

− 5nN q2 + 8 x q2 n− 4 x q3 N + 2 x2 n q2 + 5nN q + 2 xN q n+ n2

− 2 xN q + 2 x2 q − 12 q3N + 20 x q3 + 4 x2 q3 − 2 xN q2 n+ 28 q3 + 6n q2

+ 14 q − 2 t− 8 x q n− n3 − 4n2 q + 18 q2N + 6 x q2 N − 30 x q2 − 2 x2 n q

− 6 x2 q2 − 12n q t− 4 x2 q t− 6n t2 − 4 t3 + 12 t q2 − 12 q t2 − 4n2 t

+ 4n t− 12 t q + 6 t2 − 10 q2N t− 16 x q t+ 16 x q2 t− 4 x q2N t

+ 4 xN q t+ 10N q t+ 4 x2 q2 t)T 2 + (6 x q + 9n q − 4N q − 12 q2

− 4 x q3 N + 2n2 − 2 xN q + 2 x2 q − 8 q3N + 12 x q3 + 4 x2 q3 + 8 q3

− 9n q2 + 4 q − 2n− 4 t− 3n2 q + 12 q2N + 6 x q2 N − 18 x q2 − 6 x2 q2

− 12n q t− 3n t2 − 2 t3 − 18 t q2 − 12 q t2 − n2 t+ 7n t+ 18 t q + 6 t2)T
+ q (1 + x) (x −N) (q − 1) (2 t+ n) .
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