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Abstract

We study the parallelization of linearly–implicit extrapolation meth-
ods for the solution of large scale systems of differential algebraic equa-
tions arising in a method of lines (MOL) treatment of partial differential
equations. In our approach we combine a slightly overlapping domain de-
composition together with a polynomial block Neumann preconditioner.
Through the explicit computation of the matrix products of the precon-
ditioner and the system matrix a significant gain in overall efficiency is
achieved for medium–sized problems. The parallel algorithm exhibits a
good scalability up to 32 processors on a Cray T3E. Preliminary results
for computations on a workstation cluster are reported.

1 Introduction

Many challenging applications in the engineering sciences lead to systems of
time–dependent partial differential equations (PDEs), which have to be solved
together with complex constraints, like balance conditions or transfer equations
as examples. In this paper we consider large systems of n PDEs in one space
dimension x ∈ [xL, xR], which can be written in the form

B(x, t, u, ux)ut = f(x, t, u, ux, (D(x, t, u)ux)x) , (1)

where the matrix B may contain zero rows. A popular technique for the numer-
ical solution of (1) is the method of lines. In this approach the space derivative
terms are replaced by appropriate discrete approximations, e.g. finite differ-
ences. With that a large scale system of ordinary differential equations (ODEs)
or differential algebraic equations (DAEs) is generated. In most cases it is of
the form

B(t,y)y′ = f(t,y), (2)

where the matrix B may be singular. This system is nonlinear, stiff and block
structured. Its numerical solution can, in principle, be attacked by any DAE
integrator. Among the most efficient integrators of this type are the implicit
multistep code DASSL [10], the implicit Runge-Kutta code RADAU5 [8], and
the linearly implicit extrapolation code LIMEX [4]. We prefer the latter code,
since it requires – because of its linearly implicit structure – one iteration loop
less than implicit codes. A further structural advantage is the one–step nature
of this method, which allows changes in the the problem formulation after each
integration step.
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2 Time Discretization

The time discretization of LIMEX is based on the elementary linearly implicit
Euler discretization

(B(t,yk)− hJ)(yk+1 − yk) = hf(tk+1,yk) , (3)

where J ≈ ∂
∂y (f−By′) |t=t0 is the (approximate) Jacobian of the residual of (2).

Typically, this matrix shows a block band structure. Combined with extrapola-
tion this one–step method permits an adaptive stepsize and order control and is
well established in a wide area of applications, see e.g. Deuflhard, Lang and
Nowak [5] and Nowak [9]. Within the extrapolation process one computes
for a basic stepsize H approximations Tj,1 for y(t0+H) using the described dis-
cretization with stepsizes hj = H/nj, j = 1, . . . , jmax. Then the extrapolation
tableau recursively defines higher order approximations Tj,k

Tj,k = Tj,k−1 +
Tj,k−1 − Tj−1,k−1

nj/nj−k+1 − 1
, k = 1, . . . , j . (4)

As usual the subdiagonal differences εj = ‖Tj,j − Tj,j−1‖ are taken as error
estimates. One basic integration step may be sketched as follows

Compute Jacobian J = (f −By′)y
for j = 1, . . . , jmax while convergence criterion not satisfied

hj = H/nj

for k = 0, . . . , j − 1

yk+1 = yk + (B(tk+1, yk)− hjJ)
−1hjf(tk+1, yk) (5)

Tj,1 = yj

if j > 1 compute Tj,j and check convergence

ynew = Tj,j

3 Parallelization Approaches

3.1 General Concepts

One may distinguish two different basic approaches for the parallelization of (5).
First, a simple and promising method is to compute the approximations Tj,1

independently on different processors. However, this approach would restrict
the number of processors to the maximal order attainable by the extrapolation
method. Furthermore we could not use the advanced order and stepsize control
techniques, as in this procedure the order jmax is determined within the current
step. Finally, a good load balancing is hard to achieve. For more information
on this parallelization strategy we refer, e.g., to Burrage [2] and Rauber [12].

A more general applicable and commonly used strategy is the domain de-
composition method, see e.g. [11] for details.. This approach refers directly to
properties of the underlying physical problem. It is required that the function f
(and the matrix B) of our problem (2) can be evaluated locally. This assump-
tion is fulfilled for most problems resulting from a discretization of PDEs by the
method of lines.
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As can be seen from (4) and (5), except for the linear system solution, the
discretization and extrapolation process can be parallelized in a straightforward
manner. The order and stepsize control algorithm requires the calculation of
a few global norms only. Based on the local evaluation property the numeri-
cal difference approximation of the Jacobian can be parallelized easily and the
matrix will be stored quite naturally in a block column format.

So, we have to search for a linear system solution methodology, which likewise
uses this partitioning. Parallel direct methods, see e.g. Arbenz and Gander
[1], are in general not suited for our problem class. Even if one uses specialized
algorithms for banded systems referring to the domain decomposition, they
are not competitive for higher numbers of processors, due to the imbalance of
computation and communication. In contrast to this, iterative solvers are suited
very well for parallelization as the partitioned matrix and vector storage enables
a quite effective parallel matrix by vector multiplication. Only some “small”
data exchanges of the right–hand side vector between neighbouring processors
are needed. However, the convergence properties of iterative solvers are highly
determined by the choice of an appropriate preconditioner.

3.2 Preconditioning

Standard sequential preconditioners such as ILU or SSOR are in most cases not
appropriate in the parallel world. Their major bottleneck are the backsolves
involving triangularly distributed matrices. An alternative technique targeted
more specifically at parallel environments is the block Jacobi preconditioner,
or so–called additive Schwarz procedure. This very simple but highly scalable
approach uses complete or incomplete factorizations on the subdomains assigned
to the processors, which can be computed and applied completely in parallel.

An extension of the block Jacobi approach is polynomial preconditioning.
Hereby the preconditioner is constructed as a polynomial over A, usually of low
degree, which approximates the inverse of A. The application of such precondi-
tioners can be computed as a sequence of matrix by vector multiplications and
is therefore quite effective. As an example one gets for a truncated Neumann–
series expansion

A−1 ≈ (2I − P−1
JacA)P

−1
Jac =: PNeu . (6)

This preconditioner was introduced by Dubois et al. [6] and later studied
by da Cunha et al. [3]. Obviously PNeu requires one more matrix by vector
multiplication and one additional application of the block Jacobi preconditioner.

The results of applying both the block Jacobi or Neumann preconditioner
are at first glance not encouraging. Mainly, as the number of iterations needed
increases rapidly with the number of processors. With the block Jacobi precon-
ditioner the solution shows oscillations around the processor boundaries. This
indicates that the coupling across the boundaries should appear in the precon-
ditioner. The block Neumann method shows a satisfying robustness.

3.3 Overlapping Domain Decomposition

A reasonable preconditioner should suppress artificial effects of the domain de-
composition. A powerful and well–known technique for this is to work with
a slightly overlapping domain decomposition. Such methods define some grid-
points as overlap region or interface and apply the iterative solution algorithms
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on the subdomains as before, but the overlap region must be treated in a special
manner. We use an averaging technique in order to guarantee consistency of
the values in the overlap region. The algorithmic realization needs no additional
calls of communication routines, only the amount of data exchanged between
neighbouring processors increases depending on the size of the interface region.

Applying the overlapping domain decomposition gives a remarkable rise of
efficiency especially for the block Jacobi preconditioner. With a definition of 5
gridpoints as overlap region the number of iterations, e.g. for GMRES [13], is
reduced by approximately 50%. Even with just one overlapping grid point the
performance is very satisfactory.
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Figure 1: Schematic representation of the matrix product P−1
Jac A on 4 processors

3.4 Explicit Computation of P −�

Jac A

One common property of the block Jacobi and Neumann approach used in
iterative solvers is the repeated application of the operator P−1

Jac A. Therefore
we analyze the structure of this product in more detail. Since we use exact
LU factorizations on the subdomains, we can depict the matrix multiplication
schematically as in Fig. 1. Herein the Ei and Fi are defined by Ei = A−1

i Bi

and Fi = A−1
i Ci, the diagonal elements of P−1

Jac A are equal to 1. So, the
application of the whole operator P−1

Jac A is reduced to some “small” matrix by
vector multiplications. Both processes, the computation of Ei and Fi as well as
the application of P−1

Jac A are fully parallelizable.
The structure of P−1

Jac A resembles to the Schur complement technique. In-
deed our algorithm can be understood as a generalized Schur complement method
with block Gaussian elimination but without labeling the interface nodes last.

3.5 The Reduced System Technique

Inspection of the Ei, Fi–representation of P−1
Jac A shows that the linear system to

be solved can be split up in a set of equations with unknowns x13, x21, x23, . . . , xp1

operating only on the processor boundaries, see Fig. 2. These equations build
the so–called reduced system of order 2m(p−1) and this system is much smaller
than the original system (m is the upper and lower bandwidth). It can be
solved completely independent of the set of remaining equations with the un-
knowns x11, x22, x32, . . . , xp−1,2, xp3. This system can be solved afterwards very
efficiently. The reduced system itself is a distributed block tridiagonal matrix
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Figure 2: Partitioning of the linear system P�1
Jac Ax = b on 4 processors

with blocks of order 2m. This splitting technique works also for structural
unsymmetric band matrices and in combination with an overlapping domain
decomposition. To solve the reduced system we use a parallelized iterative
method. We have experimented with various methods and achieved best results
with GMRES and BICGSTAB [15].

3.6 Load Balancing

For a classical MOL treatment it is sufficient to distribute the computational
work to the different processors at the very beginning of the computation only. If
the processors are identical and can be used exclusively this means to subdivide
the number of grid points, nx, by the number of processors, p, and then to
distribute the initial values to p subdomains each with approximately �nx/p�
nodes xi. This can be done easily by running from left to right through the nodes
xi of the overall computational domain. There will be as slight unbalancing as,
in general, nx/p �∈ N. However, as long as nx >> p, this does not disturb the
scalability of the parallel method.

In an adaptive MOL treatment one may dynamically adapt the number and
location of the spatial discretization points in order to increase robustness and
efficiency of the space discretization scheme. So, after each time integration step
the assignment of grid points to processors must be rearranged. As the amount
of data to be communicated is comparatively small and the load per grid point
is still equidistributed the simple distribution scheme just mentioned works still
very effective.

Things change if the dimension of the underlying PDE problem varies non-
uniformly in the space coordinate x and, eventually, changes from time step to
time step. Finally, if we aim to run our parallel method on heterogeneous work-
station clusters we have to cope with the problems of processors with different
computational power and non–exclusive access.

The main difficulty in the development of an appropriate dynamic load bal-
ancing procedure is the non–uniform problem dimension n(xi). Analyzing the
computational kernels of our method it turns out that, counting operations, the
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dimension n enters linearly and quadratically. The relative weights of the differ-
ent parts depend on the hardware/software configuration of the target machine.
As an example, the fact whether there are available machine optimized BLAS
routines determines the relative contributions of the n-depending parts to the
overall work count. To overcome these difficulties we use a simple a heuristical
model for the (expected) normalized computational work per subdomain

Wq =

iRq∑

i=iLq

n
αq

i , q = 1, ..., p (7)

where iLq , i
R
q are the indices of the boundary grid points of the subdomain as-

sociated to processor q. The αq are hardware/software depending constants.
We found αq = 0.2 and αq = 2. to be suitable values for a CRAY T3E and a
SUN workstation cluster respectively. Obviously, WΣ =

∑p
q=1 Wq is the overall

computational work to be done.
In order to deal with non–exclusive access to the processors we have to get

the time dependent information on the computational power available for our
process. So, we measure the real time Δtq which is required by processor q to
do the subdomain computation (without communication and waiting) for one
time integration step. We now define its efficiency by setting

Eq = Wq/Δtq , q = 1, ..., p . (8)

The overall efficiency is given by EΣ =
∑p

q=1 Eq. Our aim is to determine

iLq , i
R
q , q = 1, ..., q such that Δtq is uniformly distributed over all processors. An

optimal time for the current step would have been

Δtopt = WΣ/EΣ . (9)

From this we get the optimal load for each processor by

W opt
q = EqΔtopt = WqΔtopt/Δtq. (10)

With that our dynamic load balance procedure reads as follows. We start
with a uniform (or better) initial domain decomposition. We do one time step
measuring Δtq. Then Wq,WΣ, Eq, EΣ are computed and Δtopt and Wq are
determined by (9) and (10). In a final step a new domain decomposition is
created by running from left to right through the computational grid, setting
the new indices for the boundary nodes iLq , i

R
q by the requirement Wnew

q ≈
W opt

q . This assignment procedure takes some constraints into account, e.g.
we force that the memory requirement to processor q is less than the actual
available memory and that there are enough grid points to allow a minimal
domain overlap. This load adaptation procedure is used for all further time
steps

4 Numerical Results

4.1 Catalytic converter problem

Our first application problem is a system of 11 parabolic PDEs. The equations
model the startup phase of an automobile catalytic converter. A detailed de-
scription of the problem can found in [9]. This specific problem is a typical
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example out of a challenging problem class, see Eigenberger and Nieken
[7]. After space discretization with centered second order finite differences on a
uniform grid with 641 and 1283 gridpoints respectively, a system of 7051 (14113)
DAEs has to be solved. In Fig. 3 the performance results are displayed for a
CRAY T3E. Note that running on one processor only, the parallel version is, by
construction, algorithmically equivalent to the sequential direct version.

The results demonstrate the good scalability of our parallel method already
for this only medium–sized testproblem. Especially if the number of required
grid points increases more than 32 processors could be used very efficiently.

4.2 Aerosol Formation Problem

In a joint project with the University of Karlsruhe, a software package (SENECA)
for the simulation of processes in chemical equipments including aerosol forma-
tion is under development. The models include a detailed description of the
formation and growth of fog droplets, see Schaber and Körber [14]. This
leads to a system of coupled hyperbolic and parabolic PDEs which has to be
solved together with highly nonlinear equations for certain balance conditions.
The space discretization of the PDEs yields a set of DAEs, where the Jacobian
exhibits an unsymmetric block tetra diagonal structure.

The modeling of the distribution of droplet sizes by a discrete set of classes
requires the rebuilding of the whole system of PDEs after every time–step. The
number of necessary classes depends on the current state and varies strongly
with the space coordinate x. Thus the number of PDEs and gridpoints may
change from step to step. This can lead to severe load balancing problems, if
the grid is not appropriately partitioned. For the computation on a CRAY T3E
we use a simplified version of our dynamic load balancing procedure taking
into account the likeness and exclusive use of the processors. Results for a
system of moderate size are given in Fig. 4. Hereby the mean gridsize, averaged
over the whole integration is about 150, the size of the linear system is about
8000. Included are the results using the Cray shared memory library SHEM
and the results of a MPI-based implementation, which are very similar. As the
LIMEX integration is the dominating part of the overall computation there is
no significant difference comparing the results of the whole package with the
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Figure 3: Performance results for the catalytic converter problem on two grid-
sizes

7



0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32
Processors

Time (sec.)

LIMEX SHMEM
total program SHMEM

LIMEX MPI
total program MPI

1

2

4

8

16

32

1 2 4 8 16 32
Processors

Speedup

Figure 4: Performance results for the aerosol formation problem

performance results of the LIMEX part only. So, there is (currently) no need
to parallelize the sequential parts of the package, e.g. the load balancing part
or the model setup part.

Even if the number of processors is still limited by only medium sized grids
the attainable speedup already enables the simulation of more complex prob-
lems.
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Figure 5: Dynamic load balancing on a heterogeneous workstation cluster

In order to study the aerosol formation in more detail the number of droplet
classes must be increased. We expect several hundreds of PDEs per grid point.
These problems have huge memory requirements and, as we need at least 4
grid points per subdomain, can not be run on the current CRAY T3E of the
Konrad–Zuse–Center (ZIB). Alternatively, a powerful workstation cluster may
be used. Currently we use a local network at ZIB which consists of 8 machines
with different speed (4 – 35 MFLOP) and memory equipment (64MB – 1GB).
Although our dynamic load balance procedure is quite simple, the first results
are very satisfactory. Fig. 5 shows the load (in percent) on a heterogeneous
cluster of 4 machines. Starting from a uniform distribution a nearly optimal
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distribution evolves, i.e. the different relative speed of the machines is taken
into account. To check the procedure further, after 21 time steps an external
process is started on the most powerful processor. The load associated to this
processor is automatically reduced and reset to the optimal value when the
external process vanishes.

5 Conclusion

We have developed a parallel linearly–implicit extrapolation method. For tightly
coupled distributed memory architectures the method shows a good scalability
and overall efficiency for an interesting class of application problems. First steps
towards an application on workstation clusters are encouraging. However there
are still open questions which will be investigated in the near future.
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