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Abstract� In our previous work [1] we have studied natural me-
chanical systems on Riemannian manifolds with a strong constrain-
ing potential. These systems establish fast nonlinear oscillations
around some equilibrium manifold. Important in applications, the
problem of elimination of the fast degrees of freedom, or homogeniza-
tion in time, leads to determine the singular limit of infinite strength
of the constraining potential. In the present paper we extend this
study to systems which are subject to external forces that are non-
potential, depending in a mixed way on positions and velocities. We
will argue that the method of weak convergence used in [1] covers
such forces if and only if they result from viscous friction and gy-
roscopic terms. All the results of [1] directly extend if there is no
friction transversal to the equilibrium manifold; elsewise we show
that instructive modifications apply.

Introduction

Suppose that, due to a strong constraining force, the motion of a me-
chanical system exhibits rapid oscillations around some equilibrium man-
ifold. These rapid oscillations occur on a time scale τfast that is small
compared to the time scale τavg of the average motion. The large ratio
ε−1 = τavg/τfast � 1 then measures the relative strength of the constrain-
ing force.

For a variety of reasons, such as a better understanding of the average
motion, model simplification and dimensional reduction, or the accelera-
tion of numerical integrators, one is interested in establishing models which
approximate the average motion of the mechanical system by a dynami-
cal system constrained to the equilibrium manifold; thus eliminating the
rapidly oscillating degrees of freedom.
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This elimination can be accomplished by determining the singular limit
ε → 0 of infinite strength of the constraining force. We distinguish two
different cases:

• If the fast motion transversal to the equilibrium manifold and the slow
motion along that manifold are energetically decoupled for ε → 0,
the limit dynamics is just given by the mechanical system that is
holonomically constrained to the equilibrium manifold and is subject
to all forces of the original system except for the strong constraining
one. In this case, we say that the strong constraining force realizes
holonomic constraints.

• If, because of nonlinear coupling and inhomogeneities, there is a slow
exchange of energy between the fast transversal motion and the slow
motion along the equilibrium manifold, we obtain in addition to the
limit description of the previous case a further, nontrivial force term.
In this case, we use the term homogenization in time for the process
of setting up the limit dynamics.

In our work [1] we have studied these two cases in detail for natural me-
chanical systems on Riemannian manifolds, i.e., assuming that all forces
are stemming from a potential. We have established that the velocities
are in general just weakly convergent, which explains the particular dif-
ficulty of the problem of homogenization in time: nonlinear functionals
are not weakly sequentially continuous. The defect of this non-continuity
causes the additional nontrivial force term, which again turns out to stem
from a potential. Moreover, we have completely characterized the initial
data and constraining potentials for which there is realization of holonomic
constraints.

In the present paper we will generalize all these results to mechanical sys-
tems which are subject to additional external forces that are non-potential,
depending in a mixed way on velocities and positions. We will argue that
the method of [1] extends if and only if these forces result from viscous
friction and gyroscopic terms. If there is no friction transversal to the
equilibrium manifold, all the results of [1] directly extend; whereas elsewise
instructive modifications of the result of homogenization in time apply.

The paper is organized as follows: In Sec. 1, we shortly review the
notions and results of [1, Chap. II]. In Sec. 2, we study the admissible form
of the external force terms to which the method applies. In Sec. 3, we state
and prove the generalization of homogenization in time. Finally, in Sec. 4,
we discuss the generalization of realization of holonomic constraints.

1. A Review of the Results for Natural Mechanical Systems

Let M be a smooth Riemannian manifold with metric 〈·, ·〉. For a se-
quence ε → 0, we consider a family of natural mechanical systems on the
configuration space M given by the Lagrangians

Lε(x, ẋ) =
1
2 〈ẋ, ẋ〉 − V (x) − ε−2U(x), ẋ ∈ TxM,
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with smooth potentials V and U . We assume that the potential V is
bounded from below and the non-negative potential U possesses a nonde-
generate critical submanifold N ⊂ M .1 In this case we call U constraining
to N . This further qualifies to the term constraining spectrally smooth to
N if the Hessian H of U has a smooth spectral decomposition on N ,2

H(x) =

s∑
λ=1

ω2
λ(x)Pλ(x), x ∈ N.

Because N is nondegenerate, we get that

P (x) =

s∑
λ=1

Pλ(x) : TxM → TxN
⊥, x ∈ N,

is the orthogonal projection of TxM onto TxN
⊥ and that there is a constant

ω∗ > 0 such that the smooth eigen-frequencies ωλ are bounded from below
as ωλ(x) ≥ ω∗ (x ∈ N).

Corresponding to the family of Lagrangians, the singularly perturbed
equations of motion are given by the Euler-Lagrange equations

∇ẋε ẋε + gradV (xε) + ε−2 gradU(xε) = 0,(1)

where the covariant derivative ∇ denotes the Levi-Cività connection of the
Riemannian manifold M . The energy

Eε =
1
2 〈ẋε, ẋε〉+ V (xε) + ε−2U(xε),

is an invariant of motion. For physical reasons, we bound the energy uni-
formly in ε, Eε ≤ E∗. This is, in fact, a condition on the initial values,
which for simplicity we choose to be fixed in the positions and converging
in the velocities,

xε(0) = x∗, lim
ε→0

ẋε(0) = v∗ ∈ Tx∗M.(2)

The equi-boundedness of the energy directly implies that U(x∗) = 0, i.e.,
x∗ ∈ N . Upon introducing the constants

θλ∗ =
〈Pλ(x∗)v∗, Pλ(x∗)v∗〉

2ωλ(x∗)
, λ = 1, . . . , s,

we define the homogenization of the constraining potential U with respect
to the initial values (2) by

Uhom(x) =

s∑
λ=1

θλ∗ ωλ(x), x ∈ N.(3)

1I.e., the smoothly embedded submanifold N ⊂ M satisfies N = {x ∈ M : U(x) =
0} = {x ∈ M : gradU(x) = 0} and the Hessian H of U , defined as a field of linear

operators H : TM |N → TM |N by 〈H(x)u, v〉 = D2U(x)(u, v) (u, v ∈ TxM , x ∈ N)
fulfills the nondegeneracy condition kerH(x) = TxN (x ∈ N).

2The smooth bundle maps Pλ : TM |N → TN⊥ define by Pλ(x) : TxM → TxN⊥

(x ∈ N) orthogonal projections of TxM onto mutually orthogonal subspaces of TxN⊥.
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Now, the homogenization in time of the sequence of mechanical systems
given by Lε with respect to the initial values (2) is the mechanical system
corresponding to the Lagrangian

Lhom(x, ẋ) =
1
2 〈ẋ, ẋ〉 − V (x) − Uhom(x), ẋ ∈ TxN.

We denote by xhom the solution of the corresponding Euler-Lagrange equa-
tions with initial values xhom(0) = x∗, ẋhom(0) = v∗ − P (x∗)v∗.

On the other hand, we define as xcon the solution of the Euler-Lagrange
equations that belong to the Lagrangian

Lcon(x, ẋ) =
1
2 〈ẋ, ẋ〉 − V (x), ẋ ∈ TxN,

subject to the same initial values as xhom. We speak of realization of
holonomic constraints if xε → xcon, uniformly on the time interval under
consideration.

The main results of [1, Chap. II], namely Theorems II.1–3, can be sum-
marized as follows:

Theorem 1. Consider a finite time interval [0, T ].

(i) Let U constrain spectrally smooth to N . If xhom is non-flatly resonant
up to order three,3 the sequence xε converges uniformly to xhom.

(ii.a) Let the initial velocity ẋε(0) = v∗ ∈ Tx∗M be independent of ε. If and
only if v∗ ∈ Tx∗N , there is realization of holonomic constraints for
all potentials U that constrain to N .

(ii.b) Let U constrain to N . Suppose the spectrum σ(H) of the Hessian is
constant on N . Then, the potential U constrains spectrally smooth
and, for all fixed initial velocities ẋε(0) = v∗ ∈ Tx∗M , realizes holo-
nomic constraints.

Note that, in general, the velocities converge just weakly* in L∞ with
respect to coordinates of a local bundle trivialization of TM . In particular,
[1, Lemma II.17] shows that, for fixed initial velocity ẋε(0) = v∗ ∈ Tx∗M ,
this weak* convergence is strong if and only if we have v∗ ∈ Tx∗N . This
situation is exactly the case (ii.a) of the theorem above.

2. The Admissible Form of External Forces

In the present paper we allow for force fields that are more general than
potential ones. Therefore, we consider the dynamics of a mechanical system
that is governed by the Lagrangian

Lε(x, ẋ) =
1
2 〈ẋ, ẋ〉 − V (x) − ε−2U(x), ẋ ∈ TxM,

3I.e., if there is a time tr ∈ [0, T ] such that γ1ω1(xhom(tr))+. . .+γsωs(xhom(tr)) = 0
for integers γλ ∈ Zwith 1 ≤ |γ1|+ . . .+ |γs| ≤ 3, there holds the non-flatness condition

d

dt
(γ1ω1(xhom) + . . .+ γsωs(xhom))

∣∣∣∣
t=tr

�= 0.
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subject to an additional external force of the form

F (x, ẋ) ∈ TxM, ẋ ∈ TxM.

Instead of (1), the equations of motion are by definition given as

∇ẋε ẋε + gradV (xε) + ε−2 gradU(xε) = F (xε, ẋε).(4)

However, we cannot attack the problem of homogenization in quite that
generality.

If the energy arguments of [1, §II.2.1] apply, we will get the convergences
xε → x0, ẋε

∗
⇀ ẋ0.

Thus, the force F , depending on the just weakly* converging velocities,
will have a nontrivial impact on the limit dynamics. For our method to
work this impact should only appear on the level of energies, but not on
the level of forces. This means, for obtaining an abstract limit equation
analogous to the one given in [1, Lemma II.8], we have to require the weak*
continuity

F (xε, ẋε)
∗
⇀ F (x0, ẋ0).

The most general force that guarantees this weak* continuity is affine in
the velocities, [2, Theorem. I.1.1]:

−F (x, ẋ) = F0(x) +K(x) · ẋ,
where K : TM → TM is a field of linear operators.

The total energy of the system (4), again an invariant of motion, is
given by the expression

Eε =
1
2 〈ẋε, ẋε〉+ V (xε) + ε−2U(xε)−

∫ t

0

〈F (xε, ẋε), ẋε〉 dτ.(5)

For the energy arguments of [1, §II.2.1] to apply, we have to infer from the
boundedness Eε ≤ E∗ a corresponding bound of just the kinetic energy
1
2 〈ẋε, ẋε〉. Therefore, the last term in (5) has to be bounded from below,
independently of the specification of xε. This way we obtain further re-
strictions of the force term F . Quite the most general admissible form is
given as follows:4

• F0 is a potential force, belonging to a potential that is bounded from
below,

4To be specific: For all x∗ ∈ M , v∗ ∈ Tx∗M and times T there has to be a constant
β = β(x∗, v∗, T ) such that

−
∫ t

0
〈F (x(τ), ẋ(τ)), ẋ(τ)〉 dτ ≥ β, 0 ≤ t ≤ T,

where x : [0, T ] → M is any given smooth path starting as x(0) = x∗, ẋ(0) = v∗. This
readily implies the nonnegativity of K. Moreover, if K is skew-adjoint with respect
to the Riemannian metric, F0 has necessarily to be a potential force, belonging to a
potential that is bounded from below.
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• the linear operator K is nonnegative, i.e., 〈K(x)v, v〉 ≥ 0 for all tan-
gential vectors v ∈ TxM .

We may put F0 = 0 by incorporating the corresponding potential into the
weak potential V of the Lagrangian Lε.

We split the nonnegative operator K = A + S into its nonnegative
selfadjoint part A and its skew-adjoint part S,

A = 1
2 (K +K∗) ≥ 0, S =

1

2
(K −K∗).

Correspondingly, there is the splitting

F (x, ẋ) = Ffric(x, ẋ) + Fgyro(x, ẋ)

of the force F (x, ẋ) = −K(x)ẋ into viscous friction Ffric(x, ẋ) = −A(x)ẋ,
defined by A = A∗ ≥ 0, and a gyroscopic force Fgyro(x, ẋ) = −S(x)ẋ,
defined by S = −S∗. This way, we take two major classes of velocity-
dependent forces into account that are of importance in applications.

3. Homogenization in Time

For the sake of simplicity of the result, we restrict ourselves to a specific
class of viscous friction.

Definition. A force field Ffric(x, ẋ) = −A(x)ẋ (A = A∗ ≥ 0) of viscous
friction is called κ-isotropic transversal to the submanifold N ⊂ M if there
is some real constant κ ≥ 0 such that 〈A(x)v, v〉 = κ〈v, v〉 for all x ∈ N
and v ∈ TxN

⊥.

Using the projection P , we can rewrite the κ-isotropy as

P (x)A(x)P (x) = κ · P (x), x ∈ N.(6)

This time we define the homogenization in time of the mechanical system
given byLε subject to the external force F = Ffric+Fgyro as the mechanical
system that corresponds to the non-autonomous Lagrangian

L
κ
hom(x, ẋ, t) =

1
2 〈ẋ, ẋ〉 − V (x) − e−κtUhom(x), ẋ ∈ TxN,

subject to the external force FN = (I − P )F . This projected force is, in
fact, only evaluated on TN which means that the nature of the parts Ffric

and Fgyro does not change: Having ẋ ∈ TxN , the projected part

FN
fric(x, ẋ) = −AN (x)ẋ, AN = (I − P )A(I − P ),

constitutes viscous friction on the configuration space N , whereas

FN
gyro(x, ẋ) = −SN(x)ẋ, SN = (I − P )S(I − P ),

defines a gyroscopic force term on the configuration space N . We denote
by xhom the solution of the corresponding equations of motion with initial
values xhom(0) = x∗, ẋhom(0) = v∗ − P (x∗)v∗.

Now, part (i) of Theorem 1 generalizes to systems with κ-isotropic fric-
tion and gyroscopic forces as follows.
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Theorem 2. Consider a finite time interval [0, T ]. Suppose U constrains
spectrally smooth to N and the force field Ffric of viscous friction is κ-
isotropic transversal to N . If xhom is non-flatly resonant up to order three,
the sequence xε converges uniformly to xhom.

We can interpret the assertion of this theorem depending on which value
the constant κ of friction takes:

• κ = 0, the “purely gyroscopic” case transversal to N . Here, we have
L κ

hom = Lhom which means that [1, Theorem II.1] generalizes in
perfect analogy.

• κ > 0, the case of friction transversal to N . Here, the presence of the
homogenized potential fades out, exponentially fast in time; yielding
a continuous transition to the Lagrangian of holonomic constraints,

L
κ
hom|t=0 = Lhom, lim

t→∞L
κ
hom = Lcon.

This way, we have given a precise mathematical meaning to the phys-
ical argument of Koppe and Jensen [3, p. 8] that any strong poten-
tial finally realizes holonomic constraints if there is friction in the
transversal motion.5

Proof of Theorem 2. The proof may be obtained by modifying the proof of
[1, Theorem II.1] appropriately. For that proof of 21 pages is far too long
to be restated here, we will just highlight these modifications; all the other
results of [1, §II.2] remain valid with literally the same proof.

Therefore, even a reader who just wants to understand the notation used
here would be advised to open the monograph [1] at page 29 and read the
following account on the four steps of proof in parallel.

5Koppe and Jensen write (loc. cit.): “Da aber die ganze Technische Mechanik
durch das d’Alembertsche Prinzip beherrscht wird und es wohl nur wenige besser em-
pirisch bestätigte Naturgesetze gibt, ist notwenigerweise außer der Annahme eines Füh-
rungspotentials (bzw. von Führungskräften) zu seiner Begründung noch ein weiterer
Gesichtspunkt erforderlich. Dieser scheint uns darin zu liegen, daß die [...] ,Energie
der Transversalbewegung’ wegen der hohen Frequenz, mit der in ihr sich kinetische und
potentielle Energie ineinander umsetzen, sehr rasch dissipiert wird, auch wenn wir von
der Dämpfung der Bewegung längs der Führungsgeraden noch ganz absehen können.
Infolgedessen wird, wie auch immer die Bewegung gestartet sein mag, [die transversale
Energie] durch Dämpfung rasch gegen Null gehen, und dann die weitere Bewegung so
verlaufen, wie sie durch das d’Alembertsche Prinzip bestimmt ist.”

[Translation by the author: “Because all of the mechanics in technical applications
is governed by d’Alembert’s principle, and hardly a law of nature is empirically better
confirmed, there is necessarily a further aspect required in addition to the assumption
of a strong constraining potential (resp. a strong constraining force). In our view,
this aspect seemingly lies in the fact that the ‘energy of transversal motion’ is rapidly
dissipated—even if we may completely neglect all damping of the motion along the
constraint manifold—because kinetic energy is converted to potential energy and vice
versa with high frequency. Therefore, however the motion is started, the transversal
energy will rapidly be damped to zero and then, afterwards, the motion will take place
according to d’Alembert’s principle.”]
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Step 1: Equi-Boundedness (as in [1, §II.2.1]). The energy (5) of the system
specifies as

Eε =
1
2 〈ẋε, ẋε〉+ V (xε) + ε−2U(xε) +

∫ t

0

〈K(xε)ẋε, ẋε〉 dτ.

Because K(x) is a nonnegative linear operator, the integral is always non-
negative.

Step 2: The Weak Virial Theorem (as in [1, §II.2.2]). First, we note that
the splitting of energy, as given in [1, Lemma II.6], has to be defined dif-
ferently. However, this modification leaves the definition of the energies
of normal (transversal) motion, E⊥

ε = T⊥
ε + U⊥

ε , untouched. Since [1,
Lemma II.6] has no impact on the proof other than justifying the notion
of energy components, we postpone the detailed discussion of the modified
energy splitting to the discussion of realization of holonomic constraints
where it will be needed.

Second, the abstract limit equation [1, (II.30)] of [1, Lemma II.8] changes
to

ẍ0 + Γ(x0)(ẋ0, ẋ0) + FV (x0) + F hom
U (t)− F (x0, ẋ0) ⊥ Tx0N.(7)

Here, we have made use of F (x, ẋ) = −K(x)ẋ being linear in the velocity
argument.

Step 3: Adiabatic “Invariance” of the Normal Actions (as in [1, §II.2.3]).
The detailed resolution of the right-hand-side of the componentwise oscil-
lator equations [1, (II.45)], as given by [1, Lemma II.12], is affected by the
velocity-dependence of the external force term F (x, ẋ). Because of

PελF (xε, ẋε) ≡ −PελKεżε (mod C0-lim)

there appears an additional term, leading to the modified equation

z̈iελ + ε−2ω2
ελz

i
ελ = −PελKεżε + 2(Ṗελżε)

i − 2(PελΓε(ẏε, żε))
i

+ a i
ελjkż

j
ε ż

k
ε + ε−2b i

ελjkz
j
εz

k
ε + c i

ελ .
(8)

This additional term −PελKεżε is the reason, that there is no adiabatic
invariance in [1, Lemma II.14] any more. Instead, there holds the following
exponential fade-out of the normal actions

θλε → θλ0 = e−κtθλ∗ .

The rest of Step 3 provides a proof for this assertion. If we follow the proof
of [1, Lemma II.14] with the evaluation of Ė⊥

ελ, there appears the additional
term

sa = − tr(PελKεżε ⊗ żελGε) = −
∑
μ

tr(PελKεżεμ ⊗ żελGε)

= −
∑
μ

tr(KεPεμΠεPελ) +O(ε).
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By [1, Eq. (II.37)], we have the weak*-limit sa
∗
⇀ − tr(K0P0λΠ0P0λ). Now,

the splitting K = A+ S, with S being skew, yields

tr(K0P0λΠ0P0λ) = tr(A0P0λΠ0P0λ) = κ tr(P0λΠ0P0λ) = κσλω
2
0λ.

Here, we have used the assumption that A is κ-isotropic, which allows to
simplify P0λA0P0λ = κ · P0λ by (6). Summarizing, we obtain the weak*-
limit

Ė⊥
ελ

∗
⇀ Ė⊥

0λ = −κσλω
2
0λ + 1

2σλ
d

dt
ω2
0λ.

A comparison with a direct differentiation of the expression E⊥
0λ = σλω

2
0λ,

that is

Ė⊥
0λ = σ̇λω

2
0λ + σλ

d

dt
ω2
0λ,

yields the following equation of logarithmic differentials:

σ̇λ

σλ
= −κ− ω̇0λ

ω0λ
.

Thus, there are constants θλ∗ such that

σλ =
e−κtθλ∗
ω0λ

, E⊥
0λ = e−κtθλ∗ω0λ, θλ0 = e−κtθλ∗ .

As in the proof of [1, Lemma II.14], these constants can be calculated from
the initial values by evaluating the limit of the energies E⊥

ελ at the initial
time t = 0. To be specific, we obtain

E⊥
ελ(0) = T⊥

ελ(0) → 1
2 〈Pλ(x∗)v∗, Pλ(x∗)v∗〉,

which yields the values

θλ∗ = θλ0 (0) = lim
ε→0

E⊥
ελ(0)

ωλ(yε(0))
=

〈Pλ(x∗)v∗, Pλ(x∗)v∗〉
2ωλ(x∗)

,

just as in [1, Definition II.4].

Step 4: Identification of the Limit Mechanical System (as in [1, §II.2.4]).
The assertion of [1, Lemma II.15] has to be modified as

Q(x0)F
hom
U = e−κt gradN Uhom(x0).

This can be proven as follows: literally as in the proof of [1, Lemma II.15],
we first obtain

1
2 tr

(
∂H(x0)

∂yi
· Σ0

)
=

∑
λ

σλωλ(x0) · ∂ωλ(x0)

∂yi
.

Next, inserting the relation σλ = e−κtθλ∗/ωλ(x0) of the previous step yields
the desired result.
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4. Realization of Holonomic Constraints

Here, we define xcon as the solution of the equations of motion that
belong to the Lagrangian

Lcon(x, ẋ) =
1
2 〈ẋ, ẋ〉 − V (x), ẋ ∈ TxN,

subject to the projected external force FN and the same initial values as
xhom. We will do so for all external forces of the form F (x, ẋ) = −K(x)ẋ, K
being nonnegative; i.e., we drop the assumption of κ-isotropy of the friction
from now on. Again, we speak of realization of holonomic constraints if
xε → xcon, uniformly on the time interval under consideration.

Now, parts (ii.a) and (ii.b) of Theorem 1 generalize as follows.

Theorem 3. Consider a finite time interval [0, T ].

(a) Let the initial velocity ẋε(0) = v∗ ∈ Tx∗M be independent of ε. If and
only if v∗ ∈ Tx∗N , there is realization of holonomic constraints for
all potentials U that constrain to N and all external forces F (x, ẋ) =
−K(x)ẋ (K nonnegative).

(b) Let U constrain to N . Suppose the spectrum σ(H) of the Hessian is
constant on N . Then, the potential U constrains spectrally smooth
and, for all external forces F (x, ẋ) = −K(x)ẋ (K nonnegative) and
all fixed initial velocities ẋε(0) = v∗ ∈ Tx∗M , realizes holonomic
constraints.

Note that no resonance condition applies.
Finally again, we remark that case (a) completely characterizes the con-

ditions for strong convergence of the velocities. For [1, Lemma II.17] re-
mains true, with literally the same proof.

Proof of Theorem 3. As in the proof of Theorem 2 we only sketch the nec-
essary modifications of the proofs of the corresponding Theorems II.2 and
II.3 in [1]. An interested reader would be advised to read [1, §§II.3.1–2] in
parallel.

It is important to notice that we have not used κ-isotropy during the
first two steps of the proof of Theorem 2.

As promised in Step 2 of the proof of Theorem 2, we start by shortly
discussing the splitting of energies that modifies [1, Lemma II.6].

Leaving the notion of the energy E⊥
ε = T⊥

ε + U⊥
ε of the normal motion

as in [1, Definition II.5], we modify the energy of the constrained motion
to

E‖
ε = 1

2 〈ẏε, ẏε〉+ V (yε) +

∫ t

0

〈K(yε)ẏε, ẏε) dτ

and additionally define the energy that is dissipated in normal direction,

Ediss
ε =

∫ t

0

tr(Kε(τ) · Πε(τ)) dτ → Ediss
0 =

∫ t

0

tr(K(x0) · Π0) dτ.
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By slightly adjusting the proof of [1, Lemma II.6], one obtains the following

result: The total energy Eε decomposes into Eε = E
‖
ε +E⊥

ε +Ediss
ε + o(1)

as ε → 0. All three components converge uniformly as functions in C[0, T ].
Now, using the abstract limit equation (7) and arguing analogously to

the proof of [1, Eq. (II.48)], we obtain

E⊥
0 (t) = −Ediss

0 (t) + E⊥
0 (0) + 1

2

∫ t

0

〈ẋ0(τ), gradH(x0(τ)) : Σ0(τ)〉 dτ

≤ E⊥
0 (0) + 1

2

∫ t

0

〈ẋ0(τ), gradH(x0(τ)) : Σ0(τ)〉 dτ.
(9)

For the last estimate, we notice that the nonnegativity of K implies that
Ediss

ε ≥ 0 which in turn yields Ediss
0 ≥ 0.

This estimate allows to prove part (a) completely analogously to [1,
Theorem II.2]. We just have to use estimate (9) instead of [1, Eq. (II.48)].

Likewise, part (b) is proved in complete analogy to [1, Theorem II.3] by
using the abstract limit equation (7) instead of [1, Eq. (II.30)].
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