
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

RAINALD EHRIG PETER DEUFLHARD

GMERR – an Error Minimizing Variant of
GMRES

Preprint SC 97-63 (Dezember 1997)





GMERR � an Error Minimizing Variant of

GMRES

Rainald Ehrig Peter Deuflhard

ehrig@zib.de, deuflhard@zib.de

Abstract

The paper analyzes a recently proposed iterative error minimiz-
ing method for the solution of linear systems. Sufficient and necessary
conditions for convergence are studied, which show that the method es-
sentially requires normal matrices. An efficient implementation similar
to GMRES has been worked out in detail. Numerical tests on general
non–normal matrices, of course, indicate that this approach is not com-
petitive with GMRES. Summarizing, if error minimizing is important,
one should rather choose CGNE. A computational niche for GMERR
might be problems, where normal but non–symmetric matrices occur,
like dissipative quantum mechanics.

AMS Subject Classification: 65F10, 65F25, 65F50

Keywords: linear systems, Krylov subspace methods, error minimiz-
ing methods, preconditioning



Contents

1 Introduction 1

2 Derivation of the method 1

3 Convergence analysis of GMERR 3

4 Algorithmic realization 8

5 Convergence control of GMERR 10

6 Numerical tests 11

References 13

Appendix 1: Iterative error reduction by CGNR 14

Appendix 2: Implementation details of GMERR 15



1

1 Introduction

The generalized minimal residual algorithm (GMRES) of Saad and Schultz

[8] is a very popular method for solving large non–symmetric linear systems.
Within this method, as in some other commonly used iterative algorithms,
the progress of the iteration is controlled by the norm of the residuals, al-
though in many applications the really interesting property is the error of the
approximate solutions. Due to this reason Weiss [9] has proposed an error
minimizing method, the general minimal error algorithm (GMERR). Until
now no successful algorithmic realization of GMERR has been published and
no detailed investigation of its advantages or disadvantages has been pre-
sented. In this note we analyze the convergence properties of GMERR and
develop an effective algorithmic realization, which is very similar to the usual
GMRES implementation. In passing, we show that the well known CGNR
algorithm is not only a residual minimizing method, but also guarantees an
iterative decrease of the error norm.

2 Derivation of the method

We consider a linear system Ax = b, where A is a large, usually sparse,
nonsymmetric real matrix of size n and an initial guess x 0 ∈ IRn. Projection
methods generate approximate solutions xk in a k–dimensional affine subspace
x0 +Kk, for which the following Galerkin condition

r0 − A(xk − x0) = b−Axk ⊥ Lk

with r0 = b−Ax0 holds. Kk and Lk are Krylov subspaces of the general form

Kk(v, A) = span{v, Av, . . . , Ak−1v} .

Let Vk andWk denote the basis of Kk resp. Lk in (n, k)–matrix notation. Then
the Galerkin condition can equivalently be written as

W T
k (r0 − A(xk − x0)) = 0 . (1)

For the approximate solutions one obtains

xk = x0 + Vk

[
W T

k AVk

]−1
W T

k r0 . (2)

Following Saad [7] the usual Krylov subspace projection methods can be
subdivided into three different classes:



2

1. L = K, orthogonal projection methods or Ritz–Galerkin approach.
Kk = Kk(r0, A) defines the Full Orthogonalization Method (FOM),
which for spd–matrices is equivalent to the conjugate gradient method.

2. L = AK, minimum residual approach. In this case (1) implies 1

‖b− Axk‖ = ‖r0 − A(xk − x0)‖ (3)

= min
x∈x0+Kk

‖r0 −A(x− x0)‖ = min
y∈Lk

‖r0 − y‖ .

Hence the norm ‖b−Axk‖ is minimal over x0+Kk. The most important
examples are GMRES with Kk = Kk(r0, A) and CGNR with Kk =
Kk(A

T r0, A
TA).

3. ATL = K, minimal error methods. From (1) and with x∗ as the exact
solution of the linear system we get

W T
k (b−Axk) = W T

k AA
−1(b− Axk) (4)

= (ATWk)
T (x∗ − xk) = V T

k (x∗ − xk) = 0

and hence

‖x∗ − xk‖ = min
x∈x0+Kk

‖x∗ − x‖ ,

which proves the error minimizing property.

The present paper focusses on this third class of iterative methods.

Remark. It is important to remark that the relation between the Krylov
subspaces is sufficient for the residual resp. error minimizing properties, but
not necessary. Indeed the CGNR method, which does not satisfy ATL = K, is
error reducing – as proven in Appendix 1. In recent times there is a renewed
interest in the appropriately preconditioned CGNR method, see for example
Benzi and Tuma [1], which has been underrated for many years due to the
“squaring the condition number argument”, see e.g. Nachtigal et al. [6].
Perhaps the somewhat surprising fact that CGNR simultaneously reduces
the residuals and errors of the approximate solutions may motivate further
research on robust implementations.

Until now the only commonly known genuine error–minimizing method is
CGNE or Craig’s method defined by Kk = Kk(A

T r0, A
TA), which can

�Throughout this paper ‖ · ‖ is the 2–norm and 〈·� ·〉 the Euclidean inner product.



3

be derived applying the CG algorithm to the normal equations in the form
AATy = b, x = ATy.
A second algorithm, named GMERR by Weiss [9] in analogy to GMRES,
can be obtained through the specifications

Kk = span{AT r0, (A
T )2r0, . . . , (A

T )kr0} ,

Lk = span{r0, AT r0, . . . , (A
T )k−1r0} .

GMERR and CGNE share some common properties. First, from the Galerkin
condition (4), one may derive

〈xi − x0, x
∗ − xk〉 = 0, i ≤ k

and therefore 〈xi − x0, x
∗〉 = 〈xi − x0, xk〉 for i ≤ k. Since for the errors ei

hold ‖ek‖ ≤ ‖ei‖, if i ≤ k, one obtains

0 ≤ 〈xi − x0, xi − x0〉 ≤ 〈xk − x0, xk − x0〉 ≤ 〈x∗ − x0, x
∗ − x0〉, i ≤ k ,

which, with δxk := xk+1 − xk, implies

〈δxi, δxk〉 = 0, i < k ,

〈δxk, δxk〉 = 〈xk+1 − x0, xk+1 − x0〉 − 〈xk − x0, xk − x0〉 .

Therefore the iterative errors satisfy

‖ek‖2 = ‖e0‖2 −
k−1∑
i=0

‖δxi‖2 , (5)

‖ek‖2 = ‖ek−1‖2 − ‖δxk−1‖2 .

These relations will be helpful for a control of the convergence of the GMERR
algorithm.

3 Convergence analysis of GMERR

In this section, the theoretical properties of GMERR and GMRES are synop-
tically compared, independent of any algorithmic implementation. First, we
analyze the method without considering restarts. For simplicity we set x0 = 0
throughout this section. Let q(A) be the minimal polynomial of A defined as
the unique monic polynomial of minimal degree with q(A) = 0. Herewith one
easily derives the following characterization of the convergence of GMRES.



4

Lemma 1. GMRES converges in at most k steps to the exact solution for
every right–hand side b, if and only if the minimal polynomial of A is of
degree k.

Proof. If GMRES converges for every b in at most k iterations, then for every
b the minimal polynomials qb(t) with the property qb(A)b = 0 are of degree
less or equal k. Since then the minimal polynomial of A is identical to one
of the qb’s, see Householder [4, p. 18], it has the desired property. The
converse follows from ‖rk‖ = minp∈Pk, p(0)=1 ‖p(A)b‖.
Due to the Cayley–Hamilton theorem the degree of the minimal polynomial
is always less or equal n, thus GMRES converges always in at most n steps.
Next we try to derive the corresponding property for GMERR. Since the
Krylov subspaces are generated by repeated applications of AT , we obtain for
the approximate solutions

‖ek‖ = ‖x∗ − xk‖ = min
p∈Pk, p(0)=0

‖x∗ − p(AT )b‖ (6)

and accordingly to Lemma 1 the following statement.

Lemma 2. GMERR converges in at most k steps to the exact solution for
every right–hand side b, if and only if it exists a polynomial q of degree k with
q(AT ) = A−1 and q(0) = 0.

Proof. If GMERR converges for every b in at most k iterations, then for every
b we have a polynomial qb(t) of degree less or equal k with qb(A

T )b = A−1b
and qb(0) = 0. For an eigenvector v of AT with eigenvalue λ we obtain
qv(λ)v = qv(A

T )v = A−1v. Thus each eigenvector of AT is also an eigenvector
of A−1 resp. A. This is equivalent to the normality of A, see e.g. Saad [7,
p. 22]. Let v1, . . . , vn now be the orthonormal set of eigenvectors of AT . Then
with b =

∑n
i=1 vi one obtains

n∑
i=1

qb(λi)vi = qb(A
T )b = A−1b =

n∑
i=1

λ̄−1
i vi .

Therefore we have qb(A
T )ei = A−1ei with the unit vectors ei and hence qb is

a polynomial with qb(A
T ) = A−1 and qb(0) = 0. The converse follows similar

as in Lemma 1 from (15).

As a very important consequence of this Lemma we state

Theorem 3. GMERR without restarts converges for every right–hand side,
if and only if A is a normal matrix.



5

Proof. Due to Lemma 1 it remains to show that for a normal matrix A exists
a polynomial q with q(AT ) = A−1 and q(0) = 0. Let A = UΛU∗ the unitary
diagonalization of A. Using Lagrange interpolation one can construct a real
polynomial q of degree less or equal n with q(Λ̄) = Λ−1 and q(0) = 0. Then
we have

q(AT ) = Ūq(Λ)UT = Uq(Λ̄)U∗ = UΛ−1U∗ = A−1 , (7)

thus q has the desired properties.

At a first glance, this theorem states a serious limitation of the applicability
of GMERR, but we will see that GMERR with restarts converges for a larger
class of matrices. Considering the Schur decomposition U ∗AU = Λ + N of
an arbitrary matrix A one can interpret the strictly upper diagonal matrix N
as the “non-normal” part of A. Indeed (Λ +N)−1 can not be represented as
a polynomial in (Λ +N)T , since the inverse of an upper triangular matrix is
also upper triangular, this proofs again one direction of Theorem 1.
Now we discuss more practical conditions, which guarantee convergence of
GMRES resp. GMERR in at most k, usually k � n, steps. These considera-
tions are important even for the study of suitable preconditioning techniques.
We begin again for iterative methods with with xk ∈ K(r0, A). The following
lemma states a sufficient condition for the convergence of GMRES for every
right–hand side in at most k + 1 iterations.

Lemma 4. GMRES converges for every right–hand side b in at most k + 1
steps if I −A has rank k.

Proof. If I − A has rank k, A is a k–rank modification of the identity. Thus
we can write A = I+VW T with V , W ∈ IRn×k. Now the Sherman–Morrison–
Woodbury formula gives

(I + VW T )−1 = I − V (I +W TV )−1W T . (8)

Since I +W TV ∈ IRk×k it exists a polynomial q1 of degree at most k− 1 with
q1(I +W TV ) = (I +W TV )−1. Inserting this in (8) one obtains

A−1 = I − V q1(I +W TV )W T

= I − V q2(W
TV )W T , q2 of degree k − 1

= I − q3(VW T ) , q3 of degree k , q3(0) = 0

= q4(I + VW T ) , q4 of degree k

= q4(A) ,

thus the minimal polynomial of A is of degree at most k + 1. Therefore
GMRES converges always in at most k + 1 steps.



6

An alternative proof is based on the fact that the minimal polynomial of a
matrix with rank k < n is of a degree at most k+1. Hence we have q(I−A) = 0
for a polynomial q of degree less or equal k+1, and obviously even the minimal
polynomial of A is of degree at most k + 1.
The corresponding statement for GMERR bases upon the normality of A.

Lemma 5. GMERR converges for every right–hand side b in at most k + 1
steps if I − A has rank k and A is normal.

Proof. Since I − A has rank k we can write A = UΛU ∗ with U unitary,
Λ = diag(1, . . . , 1, λ1, . . . , λk) and λi 	= 1, i = 1, . . . , k. As in Theorem 1 we
can construct a polynomial q of degree k + 1 with q(λ̄i) = λ−1

i , q(1) = 1 and
q(0) = 0. Now again equation (7) holds and hence due to Lemma 2 GMERR
converges always in at most k + 1 iterations.

With similar arguments one obviously proofs likewise the convergence of the
GMERR algorithm, if the normal matrix A has not more than k+1 different
eigenvalues. For GMRES such a generalization holds only for diagonalizable
matrices.
Both Lemma 3 and 4 are even useful to estimate the convergence of left or right
preconditioned GMRES resp. GMERR iterations. With P as a preconditioner
P − A has rank k, if and only if P −1A or AP−1 is a k–rank modification of
the identity and we can conclude the following statements.

Lemma 6. The preconditioned GMRES algorithm converges for every right–
hand side b in at most k steps if P −A has rank k.

Lemma 7. The preconditioned GMERR algorithm converges for every right–
hand side b in at most k steps if P − A has rank k and P−1A resp. AP−1 is
normal.

These lemmas explain, why some modern and successful approaches for the
construction of preconditioners are obtained as low–rank modifications of the
matrix A, see for example Bramley and Meñkov [2].
In order to substantiate the importance of these properties, we give an exam-
ple involving block–Jacobi preconditioning, which is the basis for many par-
allel preconditioning schemes, see e.g. Ehrig, Nowak and Deuflhard [3].
Usually large sparse matrices are related to some grid, which lead to banded
systems. Now we analyze the structure of the left preconditioned matrix,
i.e. of the matrix product P −1

JacA, see Fig. 1, using exact subblock solutions.
In Fig. 1 the block–column matrices Ei and Fi are defined by Ei = A−1

i Bi

and Fi = A−1
i Ci, the diagonal elements of P −1

JacA are equal 1. We assume for



7

A

A

A

A

1

2

3

4

-1

-1

-1

-1

*

E

E

E

F

F

F

1

22

3

4

3

=

C

C

C

B

B

B

2

3

4

1

2

3

Figure 1: Schematic representation of the matrix product P −1
JacA with 4 sub-

blocks

clarity that the dimension n of A is a multiple of p and A has m lower and
upper diagonals. Then each of the matrices Ei and Fi covers m vectors.
Now Lemma 5 tells us that preconditioned GMRES ends with the exact so-
lution after at most 2m(p − 1) iterations, since P −1

JacA is a 2m(p − 1)–rank
update of the identity matrix. The corresponding preconditioned GMERR
algorithm would converge with the same number of iterations, if and only if
P−1A would be normal, which is not necessarily true, even if A is symmetric.
The convergence of GMRES can furthermore be analyzed in terms of the
eigenvalue distribution if A is diagonalizable, i.e. A = XΛX −1. Then the
following result holds, Saad [7, p. 195],

‖rk‖ ≤ ‖r0‖ ‖X‖ ‖X−1‖ min
p∈Pk ,p(0)=1

max
λ∈σ(A)

|p(λ)| .

For GMERR and normal matrices A one can easily derive the relation

‖ek‖ ≤ ‖e0‖ min
p∈Pk, p(0)=1, p′(0)=0

max
λ∈σ(A)

|p(λ)| ,

which suggests fast convergence for clustered eigenvalues and a similar con-
vergence behavior of GMRES and GMERR for normal matrices.
The convergence of the restarted GMERR algorithm is rather intricate to
analyze. The involved polynomials consist of mixed terms in A and AT . The
optimal restarted GMERR method should select this polynomial, which is
of minimal degree in A resp. AT , but this is very difficult to achieve. Note,
however, that for the restarted variants of GMRES the solutions are in the
same Krylov subspace as for the exact variant, whereas GMERR begins with
a new Krylov subspace at each restart. Thus the restarted GMRES converges
always slower than full GMRES, assuming exact arithmetics. In contrast to
this the convergence of restarted GMERR may be faster compared to the
full variant. In general we can expect fast convergence for matrices with



8

an essential normal or orthogonal component or clustered eigenvalues. Any
appropriate preconditioner therefore should “move” the iteration matrix in
these directions.
Preconditioners can be applied from the left or/and the right. With right
preconditioning, GMERR minimizes the preconditioned errors. So if one is
interested in minimizing the true error norms, one should use left precondi-
tioners, which only affect the rate of convergence.

4 Algorithmic realization

The most successful implementation of GMRES is based on a Gram–Schmidt
orthogonalization. As in turns out, a similar technique helps in the implemen-
tation of GMERR. To introduce our approach we refer to some algorithmic
details of GMRES.
From (2) and AVk = Wk GMRES constructs approximate solutions as

xk = x0 + Vk

[
(AVk)

T (AVk)
]−1

(AVk)
T r0 . (9)

With the orthonormal basis Vk ofKk then one defines the (k+1, k)–Hessenberg
matrices H̄k through AVk = Vk+1H̄k. Then we obtain from (9) with β = r0
and the unit vector e1 = (1, 0, . . . , 0)T ∈ IRk+1

xk = x0 + Vk

[
H̄T

k H̄k

]−1
H̄T

k βe1 =: x0 + Vkyk , (10)

where yk ∈ IRk minimizes the overdetermined linear system H̄kyk = βe1. Thus
we have yk = H̄+

k βe1, H̄
+
k being the pseudoinverse von H̄k.

Proceeding equivalently for GMERR we obtain from (2) and Vk = ATWk

xk = x0 + ATWk

[
(ATWk)

T (ATWk)
]−1

W T
k r0 .

Now we have to use an orthonormal basis Wk of Lk to define the Hessenberg
matrices by ATWk = Wk+1H̄k and we obtain correspondingly to (10) with
e1 ∈ IRk

xk = x0 +Wk+1H̄k

[
H̄T

k H̄k

]−1
βe1 .

With yk := H̄k

[
H̄T

k H̄k

]−1
βe1 we can write H̄T

k yk = βe1, therefore yk ∈ IRk+1

now is the norm–minimal solution of the underdetermined linear system

H̄T
k yk = βe1 , (11)

i.e. yk = (H̄T
k )

+βe1.



9

In GMRES the overdetermined least squares problems are solved by successive
factorization

H̄k = Qk

[
Rk

0

]

with Qk ∈ O(k+1), Rk ∈ IRk×k upper triangular. The optimal solution yk of
the system H̄kyk = βe1 is then given by

yk = R−1
k b1 with QT

k βe1 =

(
b1
b2

)
.

Within GMERR we can use the same QR decomposition as for GMRES to
solve the underdetermined least squares problem (11). Its minimal solution is

yk = Qk

(
R−T

k βe1
0

)
.

The factorization of the H̄k can be done successively just as in GMRES, see
[7], so that only the actual column of H̄k needs to be stored. The progressive
decomposition yields a new column of the upper triangular matrices Rk per
each iteration or equivalently a new row of the lower triangular matrices RT

k .
Now assume we have already solved RT

k zk = e1. Then in the next iteration
we need the solution of RT

k+1zk+1 = e1, which can be written as

⎛
⎜⎜⎝ RT

k

r1,k+1 . . . rk,k+1 rk+1,k+1

⎞
⎟⎟⎠ zk+1 =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠

Obviously, the first k components of the vector zk+1 ∈ IRk+1 are identical to
zk ∈ IRk and for the last component we obtain

(zk+1)k+1 = −
k∑

i=1

ri,k+1(zk)i/rk+1,k+1 .

Therefore we do not need to store the triangular matrices Rk and the compu-
tation of the minimal solutions R−T

k βe1 can be done successively as well.



10

The algorithmic realization of GMERR can now be sketched as follows.

1. r0 = b− Ax0, β = ‖r0‖, w1 = r0/β.

2. For j = 1, . . . , k

3. wj+1 = ATwj

4. For i = 1, . . . , j: hij = 〈wj+1, wi〉, wj+1 = wj+1 − hijwj

5. hj+1,j = ‖wj+1‖, wj+1 = wj+1/hj+1,j

6. Extend the QR decomposition of H̄j−1 to those of H̄j

7. Compute R−T
j βe1 using R−T

j−1βe1

8. yk = Qk

(
R−T

k βe1
0

)
9. xk = x0 +Wk+1yk

We remark that step 8 and 9 ar only needed to compute the approximations
themselves, but not for further iterations. So, if one is sure to need more
iterations, these steps can be omitted.
In Appendix 2 we have included a detailed derivation of the algorithmic real-
ization together with a pseudocode presentation.

5 Convergence control of GMERR

It is well known that the convergence of the GMRES iteration can be cheaply
monitored by means of

‖rk‖ = ‖rk−1‖sk = β
k∏

i=1

si ,

with si the Givens coefficients of the QR–factorization. Since GMERR is error
minimizing, we would like to have a similarly cheap error monitor at hand.
Unfortunately we could not find a comparably cheap method to estimate the
errors ‖x∗ − xk‖. The most promising approach to control the progress of
the iteration seems to be exploiting the contributions δxk to the error e0 as
suggested by equation (5). This enables a definite detection of a stagnation of
the iterative process. The computation of the terms ‖δxk−1‖ is not expensive,
as can be shown by the following equations

‖δxk−1‖ = ‖xk − xk−1‖ = ‖Wk+1yk −Wkyk−1‖
=

∥∥∥∥Wk+1yk −Wk+1

(
yk−1

0

)∥∥∥∥ =

∥∥∥∥yk −
(

yk−1

0

)∥∥∥∥



11

Obviously, for the computation of ‖δxk−1‖ we need the minimal solutions of
the underdetermined systems H̄T

k yk = βe1, but not the approximate solutions
xk themselves. The evaluation of yk requires only about 4k additional floating
point operations.

In the practical implementation we will compute the relative error contribu-
tions ‖δxk‖/‖δx1‖. If this term is smaller than a predefined minimal thresh-
old δmin, then the convergence is regarded as “too slow” and the iteration is
restarted. To inhibit numerical instabilities due to Krylov subspaces of large
dimensions, we define furthermore (as in the usual GMRES realizations) a
maximal dimension kmax of the Krylov subspace. Thus our implementation
depends on the two parameter δmin and kmax. Appropriate settings for both
parameters will be discussed in the next section.

6 Numerical tests

In this section some results are presented to show the efficiency of the GMERR
approach compared to GMRES. We took a large number of matrices from the
Matrix Market collection [5]. As preconditioner we used an incomplete LU–
factorization with an appropriate selected fill–in and threshold parameters,
see Saad [7]. In each case, a bunch of tests with varying parameters kmax

and δmin were done to find “optimal” values. Since all results in general
are very similar, we only show the “best” results, which exhibit all typical
phenomena. We selected the matrix SHERMAN5, which is well known in the
numerical analysis community and arises from oil reservoir modeling. It is

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50 60 70 80 90 100
Iterations

Preconditioned residuals

GMERR
GMRES

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50 60 70 80 90 100
Iterations

Errors

Figure 2: Convergence of GMERR and GMRES for the matrix SHERMAN5.



12

a real unsymmetric matrix of size n = 3312 with 20793 nonzero entries. As
right–hand side we used a random vector. Rows and columns of the matrix
were scaled by their 1–norms.
Fig. 2 compares the convergence behavior of left preconditioned GMERR
and GMRES(20). The ILU preconditioner has a fill–in parameter 10 and a
threshold for the drop tolerance of 10−4. kmax was set to 15 and δmin to
0.01. The results clearly show the superiority of GMRES, even in this nearly
optimal example.
Nevertheless several features are to be mentioned. First, GMERR reduces
the (preconditioned) residuals and errors in a very similar fashion, whereas
GMRES sometimes reaches a satisfactory residual norm with an error signif-
icantly larger than the final error of GMERR. Next we demonstrate, how the
progress of the GMERR iteration can be controlled via δmin. Fig. 3 shows
the size of ‖δxk‖/‖δx1‖ during the iteration. This figure demonstrates that

1e-05

0.0001

0.001

0.01

0.1

1

10

0 10 20 30 40 50 60 70 80 90 100
Iterations

Figure 3: ‖δxk‖/‖δx1‖ during the GMERR iteration with δmin = 0.01. (Note
that ‖δx1‖ is redefined whenever ‖δxk‖/‖δx1‖ < 0.001)

whenever the GMERR iteration stagnates, the control of ‖δxk‖ enables an
effective technique for timely restarts. The dimension of the Krylov spaces
built by GMERR is in most cases small. In most of our test cases the op-
timal value of kmax is between 5 and 15, which implies that many restarts
are needed. Also the optimal δmin was not very different within our test set,
optimal values were always found between 0.1 and 0.001, but we could not
recognize any systematic trend in these parameters.



13

References

[1] M. Benzi, M. Tuma: A Comparison of Some Preconditioning Techniques
for General Sparse Matrices. in: Iterative Methods in Linear Algebra, II,
S.D. Margenov, P.S. Vassilevski, eds., IMACS Series in Computational
and Applied Mathematics, 3, pp. 191–203 (1996).

[2] R. Bramley, V. Meñkov: Low Rank Off–Diagonal Block Preconditioners
for Solving Sparse Linear Systems on Parallel Computers. Tech. Rep.
446, Department of Computer Science, Indiana University, Bloomington
(1996).

[3] R. Ehrig; U. Nowak; P. Deuflhard: Massively Parallel Linearly–Implicit
Extrapolation Algorithms as a Powerful Tool in Process Simulation.
Preprint SC 97–43 Konrad–Zuse–Zentrum Berlin 1997, accepted for pub-
lication in Advances in Parallel Computing.

[4] A.S. Householder: The Theory of Matrices in Numerical Analysis. Blais-
dell Publishing Co.: New York, Toronto, London (1964).

[5] Matrix Market, a visual repository of test data for use in comparative
studies of algorithms for numerical linear algebra.
URL: http://math.nist.gov/MatrixMarket/index.html

[6] N.M. Nachtigal, S.C. Reddy, L.N. Trefethen: How fast are Nonsymmetric
Matrix Iterations? SIAM J. Matrix Anal. Appl. 13, pp. 778–795 (1992).

[7] Y. Saad: Iterative Methods for Sparse Linear Systems. PWS Publishing
Co.: Boston (1996).

[8] Y. Saad, M.H. Schultz: GMRES: a generalized minimal residual algo-
rithm for solving nonsymmetric linear systems.
SIAM J. Sci. Stat. Comp. 7, pp. 856–869 (1986).

[9] R. Weiss: Error–Minimizing Krylov Subspace Methods.
SIAM J. Sci. Comp. 15, pp. 511–527 (1994)



14

Appendix 1: Iterative error reduction by CGNR

Here we prove the error–reducing property of CGNR, which seems to be not
generally known.

Theorem 8. CGNR is both residual minimizing and error reducing.

Proof. For clarity we assume x0 = 0. Then we have for CGNR

Kk = span{AT b, (ATA)AT b, . . . , (ATA)k−1AT b}
Lk = span{AAT b, (AAT )2b, . . . , (AAT )kb} .

Thus by Lk = AKk and (3) CGNR is identified as a residual minimizing
method, i.e. ‖rk‖ ≤ ‖ri‖, i ≤ k. Furthermore follows from the Galerkin
condition 〈Axi, b− Axk〉 = 0. This gives together for i ≤ k

0 ≤ 〈Axi, b〉 ≤ 〈Axk, b〉 ≤ 〈b, b〉 . (12)

The condition ATLk ⊆ Kk+1 suggests the following rewriting of the Galerkin
condition (1)

W T
k−1 (b− 〈xk, v1〉Av1 − A(xk − 〈xk, v1〉v1)) = 0, k > 1 ,

with v1 the first Krylov vector in K. This equation can be converted to

(ATWk−1)
T (x∗ − 〈xk, v1〉v1 − (xk − 〈xk, v1〉v1)) = 0 .

Since xk − 〈xk, v1〉v1 ∈ ATWk−1, the last equation is equivalent to

‖x∗ − 〈xk, v1〉v1 − (xk − 〈xk, v1〉v1)‖ = min
y∈ATWk−1

‖x∗ − 〈xk, v1〉v1 − y‖ .

Therefore we have with v1 = AT b/‖AT b‖

‖ek‖ = ‖x∗ − xk‖ = min
y∈ATWk−1

‖x∗ − 〈Axk, b〉 AT b

〈AT b, AT b〉 − y‖

Obviously the minimum is yk = xk − 〈b, Axk〉AT b/〈AT b, AT b〉. In order to
prove now ‖ek+1‖ ≤ ‖ek‖, we have to construct y ∈ ATWk with

‖x∗ − 〈Axk+1, b〉 AT b

〈AT b, AT b〉 − y‖ ≤ ‖x∗ − xk‖ .

As the simplest choice we set y = yk. Then we have to show

‖x∗ − xk − (〈Axk+1, b〉 − 〈Axk, b〉) AT b

〈AT b, AT b〉‖ ≤ ‖x∗ − xk‖ ,



15

which is equivalent to

(〈Axk+1, b〉 − 〈Axk, b〉)2 ≤ 2 (〈Axk+1, b〉 − 〈Axk, b〉) 〈x∗ − xk, A
T b〉 .

With the inequality (12) it remains to show that

(〈Axk+1, b〉 − 〈Axk, b〉) ≤ 2 (〈b, b〉 − 〈b, Axk〉)

holds. But this condition is, again by help of (12), always fulfilled.
It remains to show ‖e1‖ ≤ ‖e0‖. For CGNR we have

x1 = 〈AT b, AT b〉/〈AAT b, AAT b〉AT b .

We have to prove ‖x∗ − x1‖ ≤ ‖x∗‖ or equivalently

〈AT b, AT b〉2 ≤ 2〈b, b〉〈AAT b, AAT b〉 .

which follows immediately from the Schwarz inequality.

Appendix 2: Implementation details of GMERR

Here we give a detailed derivation of the GMERR implementation. In each
iteration we have to compute firstly ATwj and then via Gram–Schmidt or-
thogonalization a new column of the Hessenberg matrix H̄k. Now we show in
detail how the factorization and computation of the minimal solution can be
carried out.
In the first iteration we obtain the 2 × 1–Hessenberg matrix H̄1. Then we
have to compute the coefficients c1, s1 of the Givens rotation Q1 = G1

1 with
H̄1 = Q1

[
R1

0

]
. This leads to

QT
1 H̄1 = (G1

1)
T H̄1

(
c1 s1
−s1 c1

)(
h11

h21

)
=

(
r11

)
.

with

r11 =
√
h2
11 + h2

21 , c1 =
h11

r11
s1 =

h21

r11
.

The minimal solution of H̄T
1 y1 = βe1 is now simply given by

y1 = Q1

(
R−T

1 βe1
0

)
= βG1

1

(
r−1
11

0

)
.



16

We define z11 := r−1
11 .

The next step begins with the computation of the new column for the Hes-
senberg matrix H̄2, followed by the QR–decomposition H̄2 = Q2

[
R2

0

]
with

Q2 = G2
1G

2
2. Therefore we have

(G2
1)

T H̄2 =

⎛
⎝ c1 s1

−s1 c1
1

⎞
⎠

⎛
⎝ h11 h12

h21 h22

h32

⎞
⎠ =

⎛
⎝ r11 h′

12

h′
22

h32

⎞
⎠ .

with r11, c1 and s1 as above and

h′
12 = c1h12 + s1h22 , h′

22 = −s1h12 + c1h22 .

Then we compute G2
2 via

QT
2 H̄2 = (G2

2)
T (G2

1)
T H̄2 =

⎛
⎝ 1

c2 s2
−s2 c2

⎞
⎠

⎛
⎝ r11 h′

12

h′
22

h32

⎞
⎠ =

⎛
⎝ r11 r12

r22

⎞
⎠

with

r12 = h′
12 , r22 =

√
h′2

22 + h2
32 , c2 =

h′
22

r22
s1 =

h32

r22
.

The minimal solution of H̄T
2 y2 = βe1 is then

y2 = Q2

(
R−T

2 βe1
0

)
= βG2

1G
2
2

⎛
⎝ z21

z22
0

⎞
⎠

with z21 = z11, z22 = −z1r12/r22. Obviously we can reuse the results of the
first iteration, namely c1, s1, r11 and z1. Furthermore in the second iteration
we do not need explicitely the values of h11 and h21.
The next, third step now is as follows. Gram–Schmidt orthogonalization yields
the third column of the Hessenberg matrix H̄3, which is then factorized equiv-
alently to the preceeding steps as H̄3 = Q3

[
R3

0

]
with Q3 = G3

1G
3
2G

3
3.

This gives first

(G3
1)

T H̄3 =

⎛
⎜⎜⎝

c1 s1
−s1 c1

1
1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

h11 h12 h13

h21 h22 h23

h32 h33

h23

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

r11 h′
12 h′

13

h′
22 h′

23

h32 h33

h43

⎞
⎟⎟⎠



17

with r11, c1, s1, h
′
12, h

′
22 as above and

h′
13 = c1h13 + s1h23 , h′

23 = −s1h13 + c1h23 .

Then we have to calculate

(G3
2)

T (G3
1)

T H̄3 =

⎛
⎜⎜⎝

1
c2 s2
−s2 c2

1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

r11 h′
12 h′

13

h′
22 h′

23

h32 h33

h43

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

r11 r12 h′
13

r22 h′′
23

h′′
33

h43

⎞
⎟⎟⎠

with r12, r22, c2, s2 as in step 2 and

h′′
23 = c2h

′
23 + s2h33 , h′′

33 = −s2h
′
23 + c2h33 .

The factorization is finished by

QT
3 H̄3 = (G3

3)
T (G3

2)
T (G3

1)
T H̄3 =

⎛
⎜⎜⎝

1
1

c3 s3
−s3 c3

⎞
⎟⎟⎠

⎛
⎜⎜⎝

r11 r12 h′
13

r22 h′′
23

h′′
33

h43

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

r11 r12 r13
r22 r23

r33

⎞
⎟⎟⎠

with

r13 = h′
13 , r23 = h′′

23 , r33 =

√
h′′2

33 + h2
43 , c3 =

h′′
33

r33
, s3 =

h43

r33
.

Therefore the minimal solution of H̄T
3 y3 = βe1 is then

y3 = Q3

(
R−T

3 βe1
0

)
= βG3

1G
3
2G

3
3

⎛
⎝ z31

z32
z33

⎞
⎠

with z31 = z11, z32 = z22 and z33 = −(r13z11 + r23z22)/r33. To compute y3 we
require neither the first colums of the Hessenberg matrix nor the first columns
of the triangular matrix R3. Given the coefficients ci, si, i = 1, 2 and y2 we
need for the new minimal solution y3 only the values of the actual column in
the Hessenberg matrix, which can then be discarded. The generalization of
this step by step derivation leads to the following pseudocode representation
of the GMERR algorithm.



18

Pseudocode for left preconditioned GMERR

Given: an initial guess x0 and a residual tolerance tol.
Define kmax and δmin.
Compute preconditioned initial residual P −1(b−Ax0)
Compute first Krylov vector w1.

w1 = r0
β = ‖w1‖
w1 = w1/β

k = 0
Perform GMERR iteration.

k = k + 1
Perform modified Gram-Schmidt process.

wk+1 = ATP−Twk

For i = 1, . . . , k
hi = 〈wk+1, wi〉
wk+1 = wk+1 − hiwj

hk+1 = ‖wk+1‖
wk+1 = wk+1/hk+1

Update the QR decomposition of H .
For i = 1, . . . , k − 1

t = cihi + sihi+1

hi+1 = −sihi + cihi+1

hi = t
r = 1/

√
hkhk + hk+1hk+1

ck = rhk

sk = rhk+1

Update z = R−T‖r0‖e1.
If k = 1 : z1 = βr
If k > 1 : zk = −r

∏k−1
i=1 yihi

Compute minimal solution yk.
yk,k+1 = skzk
t = ckzk
For j = k − 1, . . . , 1

yk,j+1 = sjzj + cjt
t = cjzj − sjt

yk,1 = t
Compute ‖δxk‖/‖δx1‖ = ‖yk − (yk−1,1, . . . , yk−1,k, 0)

T‖/‖δx1‖.
Convergence monitor.

If ‖δxk‖/‖δx1‖ ≤ δmin or k = kmax THEN perform restart:
Compute approximate solution xk = x0 +Wk+1y.



19

Compute preconditioned residual rk = P−1(b− Axk).
Check residual: If ‖rk‖ ≤ tol stop.
Compute new first Krylov vector w1.

w1 = rk
β = ‖w1‖
w1 = w1/β
k = 0

Perform new GMERR iteration.
ELSE continue GMERR iteration.


