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Abst rac t 

A family of secant methods based on general rank-1 updates has 
been revisited in view of the construction of iterative solvers for 
large non-Hermitian linear systems. As it turns out, both Broy-
den's "good" and "bad" update techniques play a special role — but 
should be associated with two different line search principles. For 
Broyden's "bad" update technique, a minimum residual principle 
is natural — thus making it theoretically comparable with a series 
of well-known algorithms like GMRES. Broyden's "good" update 
technique, however, is shown to be naturally linked with a mini­
mum "next correction" principle — which asymptotically mimics 
a minimum error principle. The two minimization principles differ 
significantly for sufficiently large system dimension. Numerical ex­
periments on discretized PDE's of convection diffusion type in 2-D 
with internal layers give a first impression of the possible power of 
the derived "good" Broyden variant. 
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1. Introduction 

The solution of large sparse systems of linear equations 

Ax = b (1.1) 

is one of the most frequently encountered tasks in numerical computations. 
In particular, such systems arise from finite difference or finite element ap­
proximations to partial differential equations (PDEs). For Hermitian positive 
definite coefficient matrices A, the classical conjugate gradient method (CG) of 
HESTENES/STIEFEL [11] is one of the most powerful iterative techniques for 
solving (1.1). 

In recent years, a number of CG type methods for solving general non-Hermitian 
linear systems (1.1) have been proposed. The most widely used of these algo­
rithms is GMRES due to SAAD/SCHULTZ [13]. However, solving non-Hermitian 
linear systems is, in general, by far more difficult than the case of Hermitian 
A, and the situation is still not very satisfactory. For instance, this is reflected 
in the fact that for methods such as GMRES work and storage per iteration 
grow linearly with the iteration number k. Consequently, in practice, one can 
not afford to run the full algorithm and restarted or truncated versions are 
used instead. Notice that, on the contrary, CG for Hermitian A is based on a 
three-term recursion and thus work and storage per iteration remain constant. 

Non-Hermitian linear systems (1.1) are special cases of systems of nonlinear 
equations. For sufficiently good initial guesses, secant methods (see e.g. DEN-
NIS/SCHNABEL [3]) based on Broyden's rank-1 updates are known to be quite 
efficient techniques for solving these more general problems. However, up to 
now, secant methods for solving linear systems have had a bad reputation. 
The purpose of this paper is to take an unusual look at secant methods for 
non-Hermitian linear systems (1.1). In particular, as will be shown, combining 
Broyden's good and bad updates with different line search principles leads to 
iterative schemes which are competitive with GMRES. More than that, these 
secant methods typically exhibit a better reduction of the Euclidean error than 
GMRES. This is of particular importance for solving linear systems which arise 
in the context of multilevel discretizations of PDEs. There, linear systems are 
only solved to an accuracy corresponding to the discretization error on the 
respective level. In order to obtain such approximate solutions with as few iter­
ations as possible, reduction of the Euclidean error is typically more crucial than 
minimizing the residual norm as GMRES does. For a description of such mul­
tilevel techniques, see the recent paper of DEÜFLHARD/LEINEN/YSERENTANT 

[5 ] . 
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It is well known (see e.g. FLETCHER [7, Chapter 3]) that CG for Hermitian 
positive definite A is intimately connected with minimization algorithms based 
on Broyden's family of rank-2 updates. In view of this result, the similar 
behavior of GMRES and secant methods based on rank-1 updates might not 
come as a surprise. Nevertheless, there appears to be no strict connection 
between the two techniques. Recently, however, ElROLA/NEVANLINNA [6] have 
established a connection between GMRES and a certain rank-1 update based 
on a nonstandard secant condition (cf. Remark 1 in Section 2.1). 

The paper is organized as follows. In Section 2.1, we introduce a general fam­
ily of secant methods. In Sections 2.2 and 2.3, special rank-1 updates and line 
search principles, respectively, are discussed. In Sections 3.1 and 3.2, we present 
convergence results for secant methods based on Broyden's bad and good up­
dates. These results are then illustrated for a linear system arising from a 
simple 1-D boundary value problem in Section 3.3. Next, we discuss actual 
implementations of the proposed secant methods in Section 4. Typical numer­
ical experiments are reported in Section 5. Finally, we make some concluding 
remarks. 

Throughout this paper, all vectors and matrices are assumed to be complex. 
As usual, M* = (mXj) denotes the conjugate transpose of the matrix M = 
(rrijk). The vector norm ||x|| = y/x*x is always the Euclidean norm and ||M|| = 
suP|ir||=i H-M l̂l the corresponding matrix norm. Occasionally, the Frobenius 
norm | |M| |F = (£;,* \mjk\

2)1/2 will be used. 
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2. A Family of Secant Methods 

The paper deals with the solution of linear systems (1.1) where A is a non-

Hermitian n x n matr ix and b 6 Cn . From now on, it is always assumed that A 

is nonsingular, and x := A~lb denotes the exact solution of (1.1). 

The methods studied in this paper are iterative schemes. For any given starting 

vector x0 £ Cn , a sequence of approximations xk, k = 1 ,2 , . . . , to x is computed. 

Furthermore, in each step an n x n matrix Hk which approximates A'1 is 

generated. Here H0 is a given nonsingular initial approximation of A - 1 . 

In the sequel, 

ejt := x — xk and rk := b — Axk 

always denote the error vector and residual vector, respectively, corresponding 

to the iterate Xk. Moreover, 

Ek:=I- HkA 

is the error matrix associated with the "preconditioning" matr ix Hk and 

Ak := Hkrk 

is the "preconditioned" residual vector. Finally, for nonsingular Hk, we denote 
by 

Bk 

the approximations of A. 

Bk := Hu 

2.1 The General Algorithm 

The approximation i7jt+i of A is obtained from the one of the previous iteration, 

Hk, by adding a rank-1 correction. In conjunction with the requirement tha t 

the following secant condition (or quasi-Newton condition) 

Hk+lAAk = Ak (2.1) 

holds, this leads (see e.g. [3, Chapter 8]) to the general update 

H^H.HI-E^^-E,. (2.2) 

due to BROYDEN [1]. Here, vk € (En is any vector such tha t v*kHkAAk ^ 0. By 

applying the Sherman-Morrison formula to (2.2), one readily verifies tha t Hk+i 

is nonsingular with inverse 

BM = Bk + ( A - B k ) ^ , (2.3) 
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as long as Hk is nonsingular and vkA* ^ 0. 

Remark 1. EIROLA/NEVANLINNA [6] study secant methods which are based 
on the "conjugate transposed" secant condition 

H*k+1A*ck = ck (2.4) 

instead of (2.1). For the special choice ck = AAk in (2.4), the resulting algorithm 
([6], see also [14]) is mathematically equivalent to GMRES. 
In each iteration, the new approximation xk+i to x is obtained by correcting 
the previous iterate xk along the preconditioned residual A*. In combination 
with the update (2.2), this leads to the following informal algorithm. 

Algorithm 2.1 

Start: a) r0 := b — Ax0 

Iteration loop: k — 0 , 1 , . . . : 

b) Ak:=Hkrk 

qk := AAk 

zk := Hkqk 

c) xjfe+i := xk -f tfcAjt 

rjt+i •'= rk — tkqk 

Update: 
v*kHk 

d) HM := Hk + (A* - zk) vlzk 

Notice that Algorithm 2.1 describes a whole family of secant methods which 
still depend on the choices of vk in the update d) and the step length tk in c). 
Strategies for the selection of these parameters will be discussed in Sections 2.2 
and 2.3. 

In the following lemma, we collect some simple recursions that are valid for all 
choices of vk and tk. Here and in the sequel, the notations 

rk:=
VJ^, ~Zi = i f ' := HtAAk , and 7 i := ^ (2-5) 

VkZk V{ Zi 

are used. 

4 



Lemma 2.2 Let v*Z{ ^ 0, i = 0 , . . . , fc — 1. TÄen: 

aj efc+1 = ((1 -tk)I + tkEk)ek , 

6; Afc+1 = (1 - tk + r*)A* - rjtzfc) = ((1 - tfc)J + rkEk) Ak , (2.6) 

c) Zi+1 = *,- + - (A t + 1 - (1 - ti)Ai), i = 0 , . . . , k - 1 . 

Proof. Note that ek+1 = ek - tkAk and Ak = (7 - £fc)e*- Combining these 

two identities yields (2.6a). 

Next, one easily verifies that 

A*+1 = HMrk+1 = (1 - tjfeJA* + r*(Afc - zÄ) . (2.7) 

Since EkAk = Ak — z*, (2.7) immediately leads to (2.6b). 

By using (2.5) and the update formula which connects H{+\ and Hi, one obtains 

Zi+i = *,• + 7.(A,- - Zi) . (2.8) 

Finally, by rewriting the term A,- — Z{ in (2.8) by means of the first identity 
(with k = i) in (2.6b), one arrives at (2.6c). • 

2.2 Special Rank-1 Updates 

First, note that, by (2.2), the error matrix associated with the preconditioner 
Hk satisfies the update formula 

Ek+1 = Ek(l-^HkA] . (2.9) 

Clearly, one would like to improve the preconditioner from step to step. Thus, 
vk in (2.9) should be chosen such that a suitable norm of Ek is decreasing. In 
this section, three special choices of vk are discussed. 

(A) The first one is the so-called Broyden's "good" update [1]. Here, in each 
iteration, one sets 

vk := Ak . (2.10) 

Assume that Hk is nonsingular and that xk ^ x, which implies A/t ^ 0. 
With (2.10), (2.9) can be rewritten as 

Ek+1 = EkPk where Pk := (i - J^AAk
HkA ' ( 2 ' U ) 

5 



Remark that, except for the trivial case HkA = / , Pk in (2.11) is an 
oblique, non-orthogonal projection. Thus, one cannot guarantee that 
||ük|| is decreasing. However, for the different error matrix 

Ek:=I-A~lBk, 

one obtains such a reduction property: 

Ek+i = EkQk where Qk := (i - ^ ^ J . (2.12) 

Now, Qk is an orthogonal projection. Consequently, (2.12) guarantees an 
improvement of the preconditioner in each step, in the sense that 

II&MII < Hall (2-13) 

and 

\\Ek+A2
F=\\EkfF-lj^f- (2-14) 

Obviously, in view of (2.2) and (2.10), Broyden's good update is only 
defined as long as 

A*kHkAAk f 0 (2.15) 

which (cf. (2-3)) guarantees that with Hk also Hk+\ is nonsingular. 

In particular, the more restrictive condition 

A*kHkAAk > 0 (2.16) 

certainly implies (2.15). Clearly, (2.16) can be rewritten as 

Since ek < ||-̂ fc||> a sufficient condition for (2.17) is 

\\Ek\\ < 1 . (2.18) 

Now, it is easily verified that Ek and Ek are connected by 

Ek = - ( / - EkVh , 

and it follows that 

i i^ll < 11**!! . (2.19) 
" " - 1 - \\Ek\\ 
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By (2.19), the condition 
IIA» < \ (2-20) 

implies (2.18). If (2.20) is satisfied for k = 0, then (2.13) guarantees that 
(2.20) holds for all k. Finally, by (2.18), HkA and, since A is assumed to 
be nonsingular, Hk is nonsingular. 

Therefore, we have proved the following 

Lemma 2.3 Let H0 be a nonsingular n x n matrix such that \\E0\\ < \. 
Then, Broyden's good update (2.2), with vk chosen as in (2.10), is well 
defined as long as xk ̂  x. 

(B) The so-called Broyden's "bad" update [1] is obtained by choosing vk in 
(2.2) such that 

Hlvh = AAjt = qk 

holds. Then, (2.9) reduces to 

Ek+1 = Ek(l-^&A\ . (2.21) 
V ?*?* / 

Remark that Broyden's bad update is well defined as long as A* ^ 0. In 
particular, no additional restrictions for H0 are needed. 

For the special error matrix 

Ek := AEkA~Y = 1- AHk , (2.22) 

(2.21) leads to the update formula 

Ek+1 = Ek(l-^) • (2.23) 

From (2.23), it follows that Hk+i is an improved preconditioner, in the 
sense that 

l |£*+i| |<| |£jt | | (2.24) 

and 

\\EMfF=\\Ek\\
2

F-lj~^- (2-25) 
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(C) A third obvious choice for vk in (2.2) is 

vk := zk . 

The corresponding update (2.9) for the error matrix is 

Ek+1 = Ek(l- ^HkA) . (2.26) 
\ ZkZk ) 

Here, one needs to ensure zk ^ 0. Obviously, this is guaranteed if Hk is 
nonsingular and xk =£ x. If Hk is nonsingular, then (2.26) can be rewritten 
in terms of an orthogonal projection as follows: 

-1 ( / - % * ) 
V ztzk) 

Ek+1 = E^HkA)-1 [I - - p )HkA . (2.27) 
\ zkzkJ 

However, unlike as for updates (A) and (B), (2.27) does not imply a reduc­
tion property of some "natural" measure for the preconditioner Hk. This 
suggests that this type of update is not competitive with Broyden's good 
and bad ones. Indeed, this was confirmed by our numerical experiments. 

2.3 Line Search Principles 

In this section, the selection of the step length tk in part c) of Algorithm 2.1 is 
discussed. Ideally, one would like to choose tk such that 

\\ek+1(tk)\\ = rmn\\ek+l(t)\\ (2.28) 
te<L 

where 
ejt+i(0 :=ek -tAk . 

Unfortunately, since x and hence ek is unavailable, the step length defined by 
(2.28) can not be computed. However, in view of 

ek+1{t) = A-Vfc+iM where rk+l(t) := rk - tqk , (2.29) 

(2.28) can be satisfied at least approximately by choosing tk such that 

1 1 ^ ^ ( ^ ) 1 1 = mm HCfcr^,(0||. (2-30) 
f€<L 

Here Ck is some approximate inverse of A. At iteration k of Algorithm 2.1, 
there are three natural choices for Ck, namely Hk+i, Hk, or simply Ck — / , 
which lead to the line search principles (a), (c), or (b), respectively. Next, these 
three strategies are discussed. 
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(a) With Ck = Hjt+i and Afc+1 = Hk+1rk+u (2.30) reads as follows: 

| |A fc+1(^)| | = min| |A f c + 1W||. (2.31) 
te<L 

Using (2.6b) and the second relation in (2.29), one readily verifies that 
(2.31) is equivalent to 

AJAjt+i = 0 where Afc+1 = (1 + rk)Ak - rkzk - tkAk . (2.32) 

Recall that rk was defined in (2.5) and note that Tk still depends on the 
particular choice of the rank-1 update (2.2). 

Finally, from (2.32), it follows that the step length for the line search 
principle (2.31) is given by 

tfc = F f c :=l + T f c - T j 5 ^ (2.33) 
l\kt\k 

Note that for the special case, vk = Akl of Broyden's good update, (2.33) 
leads to 

U =* = & £ . (2,4) 

(b) For Ck = J, (2.30) reduces to 

||r ib+1(*fc)||=min||rJfc+1(0|| (2-35) 

or, equivalently, 

qkrk+i = 0 where rM = rk - tkqk . (2.36) 

Hence, by (2.36), the minimization principle (2.35) leads to 

tk = tk :=$¥-. (2.37) 

Remark that for Broyden's bad update, (B), one has 

tk = rk. (2.38) 

(c) With Ck = Hk, (2.30) specifies to 

\\Hkrk+1(tk)\\ = min ||#*r fc+1(t)|| • (2.39) 
teQ. 
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By rewriting (2.39) in the form 

z*kHkrk+i = 0 where Hkrk+1 = Ak - tkzk , 

it follows that 

tk = '* := ^ T ' (2'4°) 
zkzk 

Here, for update (C), one has 
** = **• (2-41) 

Notice that, in view of (2.34), (2.38), and (2.41), the choice tk = Tk for the step 
length leads to a natural coupling of the three special rank-1 updates (A), (B), 
and (C) with the line search principles (a), (b), and (c), respectively. 
More general, for tk = r*, the following properties hold. 

Lemma 2.4 In Algorithm 2.1, let tk = rk be chosen and assume that vkzk ^ 0. 
Then: 

a) The iterate xk+i is uniquely defined by the Galerkin type condition 

Hkrk+1 _L vk and xk+1 G xk + span {A*} , (2.42) 

b) Hk+irk+i = Hkrk+i . 

Proof. By the second condition in (2.42), xk+1 = xk + tAk and thus 

Hkrk+i = Afc — tzk 

for some i G C . Together with the definition of rk in (2.5), it follows that 
* A 

v*kHkrm = «JA* - tv*kzk = 0<*t= -±JL = Tk , 
vkzk 

and this concludes the proof of a). 

Next, one easily verifies that 

Hkrk+1 = (1 - tk)Ak + tkEkAk . (2.43) 

By comparing (2.6b) and (2.43), one obtains the relation stated in b). • 

Remark that the classical step length used in combination with Broyden's up­
date (2.2) is tk = 1 . Somewhat surprisingly, this choice guarantees that the 
resulting method — at least in theory — terminates after at most 2n steps with 
the exact solution of (1.1), as was shown by GAY [9] (cf. also [10]). Obviously, 
this finite termination property is not of practical importance for large sparse 
linear systems. Here, we take another look at the choice tk = 1 . 
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Lemma 2.5 In Algorithm 2.1, assume that vkzk ^ 0. Let xk and xk+2 be 

the iterates generated by two successive steps of Algorithm 2.1 with step length 

t* = tjb+i = l . Then: 

xk+2 = Xk+i + Äfcffc+i , nt+2 = (/ - Mfcjffc+i , (2.44) 

where 
£fc+i = ** + TjkAfc , fjt+i = (I - TkAHk)rk , (2.45) 

and 

r = V*Ak = (HtVk¥rk 

v\zk {HlvkYqk ' 

Proof. Since tk — tk+i = 1, we have 

zjt+2 = * * + A * + Ajfc+1 . (2.46) 

For tk — 1, the first identity in (2.6b) reduces to A^+i = rk{I — HkA)Ak and, 
thus, (2.46) can be rewritten as 

Xk+2 = xk + rkAk 4- Hk(I - rkAHk)rk . (2.47) 

Now, (2.44) and (2.45) readily follow from (2.47). • 

Note that, in view of part a) of Lemma 2.4, the intermediate quantity xk+i, 
(2.45), is just the Galerkin iterate in the sense of (2.42). 

Therefore, Lemma 2.5 shows that, by combining two successive steps, Algo­
rithm 2.1 with tk = 1 can be interpreted as follows. At the beginning of step ky 

the approximate solution xk and the preconditioner Hk are available. From these 
quantities, the iterate xk+2 of step k -f 2 is obtained by applying one Galerkin 
step1 namely (2.45), followed by one step of Richardson iteration, namely (2.44), 
to the preconditioned linear system 

HkAx = Hkb . 

In general, the "virtual" iterate ^jt+i and the actual iterate xk+i are different. 

Note that (2.44) is a Richardson step without line search. In particular, if Hk 
— as is to be expected in the early stage of the iteration — is not yet a good 
approximation to A'1, then (2.44) will lead to an increase rather than a decrease 
°f ||rA+2||- In order to prevent such undesirable effects, it appears preferable to 
combine Broyden's update with the line search principles (a), (b), or (c), instead 
of using tk = 1 • 
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3. Convergence Analysis 

In principle, Algorithm 2.1 could be implemented with any of the 9 combinations 
(Aa), . . . , (Cc) of rank-1 updates (A), (B), and (C) with line search strategies 
(a), (b), and (c). As already mentioned in Section 2.2, the update (C) is not 
competitive with (A) and (B), and, therefore, (C) is dropped here. Among 
the remaining 6 combinations, only the pairs (Aa), (Bb), and (Ac) will be 
considered. 

As a first step, the following auxiliary result for the case of the line search 
principle (b) is established. 

Lemma 3.1 In the general Algorithm 2.1, let the step length (2.37); tk — tk, 
be chosen. Then, 

l|r*+i|| ^ \\Ekrk\\ £> ( 

TNT-INT-11**11, (3,1) 

with Ek = I - AHk defined as in (2.22). 

Proof. From part c) of Algorithm 2.1 and (2.37), one obtains 

T akrk 

nt+i — rk - tkqk = rk 
Ok = i - - r ~ ) r k = [I-T~ ( r * ~ w • 

\ qUk \ qtikj QkQk 

Since 
rk-qk = Ekrk , (3.2) 

it follows that 

IK+i|| = || (i ~ %f) Ekrk\\ < \\Ekrk\\ < \\Ek\\ • ||r,|| , 

and thus (3.1) holds. • 

Recall from Section 2.2 that the error matrix Ek is closely connected with 
Broyden's bad update (B), cf. (2.23)-(2.25). In the following section, Lemma 
3.1 will be used to obtain a convergence result for update (B). 

3.1 Broyden's Bad Update 

Theorem 3.2 (B-update) 
Consider Algorithm 2.1 with update (B) and step length tk = tk = rk, (2.37), or 
tk = 1. Assume that 

\\Eo\\ <60<1. 
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Then, the iteration converges globally satisfying 

i ^ = M<J!fM<*0<1 (3.3) 
Uek\\ \\rk\\ \\rk\\ 

and 
rfc > 0 for rk^0. (3.4) 

Moreover, if rk ^ 0 for all k = 0 , 1 , . . . , then, 

lim tk = 1 , (3.5) 
k—+oo 

<md £/*e convergence is superlinear in the sense that 

l i m ^ ± i U o . (3.6) 
*-<*> \\Aek\\ 

Proof. First, global convergence is shown for tk = rk. By Lemma 3.1, 

llrfc+lll < \ßkrk\\ „ p „ , s 

-m-^r-im- (3-7) 
In view of (2.24), (3.7) implies 

IK + i | | 

IN 
<\\Ek\\<\\Eo\\<So<l. (3.8) 

By combining (3.7) and (3.8), the statement in (3.3) follows. By (2.37), (2.38), 
and (3.2), the step length tk — rk satisfies 

*^ = ]Mf _ rjEfa 
" fak Ik , II2 Ik, II2 ' l ' } 

Using (3.7), one deduces from (3.9) that 

T > INI* \rkEkrk\ f ..ß ,A ||r*||2 

and (3.4) holds true. 

Next, based on the Frobenius norm property (2.25), superlinear convergence 
is shown. Following the proof technique of BROYDEN/DENNIS/MORE [2], one 
obtains 

Hm feji = (3 10) 
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By (3.8), the assumption 60 < 1 guarantees that the matrix ( / — E^) is nonsin-
gular. Thus the relation (3.2) can be rewritten as 

rk = {I-Ek)-
lqk. (3.11) 

Using (3.11) and (3.8), one readily verifies that 

\\Ekrk\\^\\Ek(I-Ek)-iqk\\ < 1 + | | ^ | | \\Ekgk\\^l + S0 \\Ekqk\\ 

|M| ||(7 - Ek)-iqk\\ - l - l l & l l IMI - l - ? 0 \M\ 

Therefore, by means of (3.7) and (3.10), one concludes that 

lim M < i±|, lim JlfM 

which immediately yields (3.6). Similarly, from 

tk — _ — = _ 
<ikQk qUk 

one deduces that 

l - * o lift II 
Therefore, (3.10) implies 

lim | ^ - 1 | = 0 
k—•<» 

which confirms (3.5). 

For the case tk = 1, the relation (2.6a) reduces to 

ejt+i = Ekek 

which is equivalent to 
rfc+i = Ekrk • (3-12) 

Now (3.12), also yields (3.7). The rest of the proof can just be copied. • 

3.2 Broyden's Good Update 

Theorem 3.3 (A-update) 
Consider Algorithm 2.1 with update (A) and line search either (a) or (c). As­
sume that 

Poll < So < | . (3.13) 
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Then, the iteration converges globally satisfying 

\\Ekzk\\ \\EkAk\\ 

II**« 11^ \M\ IIAtll ^ 2*. 
| £ t A t | | - 1 - 80 

< (3.14) 
et 

1 -
I I A * II 

an d 
rk > 0 for ek ± 0 . (3.15) 

Moreover, if ek ^ 0 / o r a// fc = 0 , 1 , . . . , tfien i/ie convergence is superlinear with 

Jl5*±lJl -n' (3.16) 

(3.17) 

lim ——— = 0 
fc-oo Cjfe 

an< 
lim 2fc = 1 . 

k—*oo 

Proof. First, line search (a) with tk = Tk (cf. (2.34)) is considered. Rewriting 

(2.6a) in terms of Ek yields 

ek+i = (1 - 7*)Ajb - EkAjk . (3.18) 

By means of the relations 

1 - rk = 1 -
A£A, AK^-Afc) 

and 

one obtains from (3.18) 

Afc = ( / - Ek)zk , 

£±%Ekzk . ~ t 

Ajar* 

(3.19) 

(3.20) 

Moreover, using the formula (3.19) once more, one easily verifies tha t 

\&tEkzk\ \(zk-EkZkYEkZk\ 

lAlzjbl \(zk-EkZkYzk\ 

ll-fel2 
\zlEkZk\ 

INI2 
z\EkZk 

1 -
z\EkZk 

IN* II2 

. - 1 - e * ~ 
< e* • — = ek , 

1 - £ f c 
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where 

7 — \\EkZkW <r up II <r I 

*—iFinr- I | j E*1 1 -* ' -
With these inequalities, (3.20) leads to the estimates 

w- £ t + _ F^- 2 V (3-21) 
Finally, with 

e* = (/ + Ek)Ak , 

one obtains _ 

IMI > (l - J^f) l|A*|| > (1 - «o)||At|| . (3.22) 

By combining (3.21) and (3.22), one ends up with (3.14). 

Similarly, one shows 

Tjt = 1 — > 1 - ek , 

which certainly confirms the assertion (3.15). 

In order to prove superlinear convergence, first remark that the Frobenius norm 
result (2.14) implies 

lim l!f*M = 0 . (3.23) 

Along lines similar as in the proof of Theorem 3.2, one then verifies that 

lime* = 0 . (3.24) 
k—>oo 

Now, by using (3.23), (3.24), and the estimates in (3.14) of this theorem, one 
obtains (3.16) and, with 

\tk-l\<ek, 

also (3.17). This completes the proof for line search (a). 

Next, consider the line search principle (c) where, by (2.40), 

/ - /° - Z*kAk 

tk~tk- —TT • 
zkzk 

As before, one starts with 

ek+1 = {l-tk)Ak-EkAk , 
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which now leads to 

e*+i = £*£*£iA 
zlzk 

EkA> 

From this, one derives the estimate 

J!f*±il<? .&M 
IIA.II -ek+ \\Ak\\ ' 

which is the same as (3.21). The rest of the proof can essentially be copied. • 
For the choice tk = 1, Broyden's classical good method is obtained. The con­
vergence behavior of this algorithm is studied in B R O Y D E N / D E N N I S / M O R E 

[2]. In this case, the assumption (3.13) can be relaxed to 60 < | . As already 
mentioned, the choice tk = 1 guarantees that Broyden's good method stops 
after at most 2n steps. A slight modification, the so-called projected Broyden's 
method, even terminates after at most n iterations. This algorithm is analyzed 
in G A Y / S C H N A B E L [8]. 

Conjecture . The authors were unable to get rid of the factor 2 in (3.14). If 
this factor drops, then only So < \ would be required — which seems to be 
more reasonable in view of (2.20). 

3.3 An Illustrative Example 

In this section, we discuss a simple illustrative example, namely a convection-
diffusion problem in 1-D. Consider the ODE boundary value problem 

a) -u" + ßu' = 0 on (0,1) , 

b) u(0) = 1 , u(l) = 0 . 
(3.25) 

By using upwind discretization on a uniform grid with step size h = 1/n, (3.25) 
leads to a linear system Ax = b with the diagonally dominant tridiagonal matrix 

A:= 

2 + ßh - 1 

-(i + W 
- 1 

-(1 + ßh) 2 + ßh 

(3.26) 

Let n — 50 and set b — (1 ,0 , . . . ,0)T . Moreover, choose XQ as the prolongation 
obtained from the exact solution on the coarser grid h — 1/25. For H0, we 
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chose simple diagonal preconditioning as in (5.1). In this case, one is able 

to compute all quantities of interest directly and to compare the convergence 

theory of Sections 3.1 and 3.2 with the actual behavior of the algorithms — see 

Table 3.1. 

ll̂ oll Poll ll^o||/||ro|| \\EoZo\\l\\zo\\ PoAo||/||Ao|| 
/? = 5 415 0.99 0.53 0.43 2.72 

0 = 1 0 0 64 0.99 0.37 0.28 0.24 

Table 3 .1 : Quantities used in convergence theory of Sections 3.1 and 3.2 for 

Example (3.25). 

These results seem to justify the relaxation of the rather restrictive convergence 

criteria in Sections 3.1 and 3.2 — compare (2.16) and (2.17) in the light of 

(2.18), (2.20), and (3.13). 

In Fig. 3.1 and Fig. 3.2, the convergence history of 3 codes (see Section 5 for a 

description of these codes) is compared — both in terms of the residual norms 

11r;t|| and the error norms ||e*||. 

In this example, both GMRES and the "bad Broyden" code BB successively 

reduce the residual norm, whereas the "good Broyden" code GB reduces the 

error norm — a property that has been shown to hold at least asymptotically 

without a storage restriction: just compare the minimization property (2.31), 

||Afc+1|| = min, for tk = T* with the asymptotic property (see (4.2) below) 

| |Ajt+i | | = ||efc+i|| f ° r Tk == 1- As an illustration, Fig. 3.3 gives a comparison of 

the t rue and estimated errors. 
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Figure 3 . 1 : Comparative residual norms ||rfc||2 for 3 iterative solvers for Ex­

ample (3.25). 
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Figure 3.2: Comparative error norms ||efc||2 for 3 iterative solvers with 

AWx = 10 for Example (3.25). 
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Figure 3.3: Iterative behavior of true errors ||e^|| and estimated errors ||A^| 
for GB(3) in Example (3.25). 
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4. Details of Realization 

The secant methods based on Algorithm 2.1 with update either (A) or (B) are, 
of course, implemented in a storage saving compact form. 

Algorithm (A): "Good Broyden" 

Start: a) ro := b — Ax0 

Ao := #0^0 

(To := AJAo 

Iteration loop: k = 0 , 1 , . . . : 

b) qk := AAk 

z0 := H0qk 

Update loop: i = 0 , . . . , k — 1 (for k > 1) 

c) z^'^Zi + ^-iA^-il-t^Ai) 
liTi 

d) zk := zk 

lk := A*kzk 

rk := crfc/7Jt 

tk := Tfc or it := ffc = qtrk/q*kqk or ^ := 1 

Xfc+i : = Xk + ^jtAjt 

nt+i := rk - t̂ffc 

Afc+i := (1 - tk -f rjfcJAjb - T*** 

cr^! := AJ+1Aifc+1 

Array storage. The above implementation requires to store (up to iteration 
step k) the vectors 

A0l...1Ak,q,z = z , 

for step length tk = rk or tk — I and, in addition, r = r* in the case of step 
length tk — tk, which sum up to 

(fc + 2)n or (fc + 3)n (4.1) 

storage places. 
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Operation count. Per iteration step k one needs 1 matrix-vector multipli­
cation, 1 solution of a preconditioned system of the form B0z = q in order 
to obtain z0 in b), and (2k + 7)n multiplications. Obviously, the inner loop 
vectorizes. 

Termination criteria. Under the assumptions of Theorem 3.3 (cf. (3.22)), 
one has 

('-*SäV'sw4;,ra1H-
which means that, at least asymptotically, ||Ajt|| is a reasonable computationally 
available estimate for ||ejt|| to be written as 

l|A*|| = INI • (4.2) 

This motivates the convergence criterion 

F*+i|| 

where e is some relative accuracy parameter to be specified by the user. 

In order to ensure that Hk+\A is nonsingular, recall condition (2.17), which 
reads ek < 1 in the notation of Section 2.2. By replacing this condition by the 
stricter one 

ek < 1 - — , 

we arrive at a restart condition 

rk < 0 or rk> 

which can be easily monitored. Here, Tmax is some internal parameter, and we 
have chosen rmax = 10 in all the numerical experiments described in this paper. 

Remark 1. The convergence criterion (4.3) nicely agrees with requirements 
needed in the global inexact Newton algorithm for nonlinear problems as given 
by DEUFLHARD [4]. 

Remark 2. Clearly, the Euclidean inner product in Algorithm (A) can be 
replaced by any other inner product (•, •) — possibly scaled and certainly de­
pending on the problem to be solved. 
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Algorithm (B): "Bad Broyden" 

Start: a) rQ :— b — Ax0 

A0 := H0r0 

Iteration loop: k = 0 , 1 , . . . : 

b) qk:=AAk 

z0 := H0qk 

Update loop: i = 0 , . . . , k - 1 (for k > 1) 

c) ^ i ^ Z i + ^ A i + x - a - t O A , - ) 

d) zk := 5)b 

zjt+i := rr* + tkAk 

rk+i := rfc — tfcgfc 

AA;+I := A* - tkzk 

The version for ^ = 1 was ignored for obvious reasons. 

Array Storage. The implementation of this algorithm requires to store (up 
to iteration step k) the vectors 

A 0 , . . •, A*, q0,..., qk, z = z, r , 

which sums up to 
(2& + 2)rc 

storage places — to be compared with (4.1). 

Operation count. Per iterative step k one needs 1 mat rix-vector multipli­
cation, again solution of 1 linear preconditioned system with B0 as coefficient 
matrix, and (2k + 8)n multiplications. Once more, the inner loop easily vector­
izes. 
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Termination criteria. Since update (B) is closely connected with minimiza­
tion principle (2.35), the convergence criterion for Algorithm (B) will be based 
on the residual norm. In view of the property (for tk = Tk) 

rib+irAr+i = r*krk - t2
kqlqk , 

Algorithm (B) is stopped as soon as 

IK+illSelM 
is reached. Again, e is to be specified by the user. Moreover, the iteration is 
restarted, if 

1**1 • llftll < e||r0|| . 
Note that in view of Theorem 3.2, the iteration would need to be just termi­
nated, if 

ll-g^ll Jlft-r*|| , 
II»-* II INI ' 

which can be shown to be equivalent to the condition 

tk = rk < \ . 

Restricted storage versions 

For large n, one needs to restrict storage to some m • n such that 

fcmax + 2 = m for (Aa) , 

2A:max + 2 = m for (Bb) . 

Several options are possible to satisfy this restriction. 

(I) Both Algorithms (A) and (B) can be just restarted after &max iterations 
using £fcmix as the new starting guess x0. Under the assumptions of the 
convergence theorems in Sections 3.1 and 3.2, these restricted variants can 
be shown to converge linearly. 

(II) Both (A) and (B) can be modified by restricting the update loop to indices 

i = 0 , . . . , &max — 1 (initial window) . 

This means a fixed preconditioning of the problem associated with ÜT*«,»« 
— with preconditioning from the right in (B) and from the left in (A). 

Again, linear convergence can be shown under the assumptions made in 
Sections 3.1 and 3.2. 
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(Ill) Once k > fcmx is reached, one may also consider restricting the update 
loop to indices 

i = k — fcmax,..., k (moving window) . 

For update (A), such a variant seems to be hard to interpret. For update 
(B), however, the update loop c) in Algorithm (B) can be solved to yield 

a) zk = H0AAk + j > f c • (A,-+i - (1 - U)^) 
i=0 

with factors 

b ) Hk := T - r - • 

Note that the corresponding factors 7,-jt in Algorithm (A) would contain 5,-. 
Obviously, the moving window variant in Algorithm (B) means replacing the 
above sum by its most recent iterative contributions. Such a variant might seem 
reasonable in view of the superlinear convergence properties of secant methods. 
However, it is unclear whether such a variant converges at all. 

Each of the above restricted storage versions was implemented and tested on 
several examples. It turns out that all the window variants are not competitive 
with variant (/) . Therefore, only (/) will be studied in Section 5. 
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5. Numerical Experiments 

On the basis of the above derivation, the following storage restricted algorithms 
are compared here: 

GB(Ä:inax): Update (A) with line search (a), Broyden's "good" 
method, restricted storage version (/). 

BB(A:max): Update (B) with line search (6), Broyden's "bad" 
method, restricted storage version (/). 

GMRES-L(A:niax): Program GMRES(fc) [13] with left preconditioning. 

GMRES—R(fcmax): As above, but with the usual right preconditioning. 

Any other variants of GB or BB are not included here, since their performance 
was not competitive with the two versions above. This excludes both window 
variants (II) and (III) of Section 4 and the different line searches tk ^ rjt for 
GB. The distinction of left and right preconditioning for GMRES has been 
made deliberately, since GB may be understood as some successively refined 
left preconditioner, whereas BB may be interpreted as some successively refined 
right preconditioner — which can be seen in the matrices Ek for GB and Ek for 
BB. 

Recall from Section 4 that BB(fcmax) requires about twice the array storage as 
the other 3 codes. Moreover, the GB code and the GMRES codes supply the 
residual vector only, if explicitly wanted. If the successive iterates xk are explic­
itly wanted (say, within an adaptive code or a nonlinear code [4]), then both 
GMRES codes need some modification, which in GMRES-R includes an addi­
tional preconditioned system solve per each iteration. Throughout the present 
section, only the rather simple preconditioning 

H0 = D~1, D : = d i a g ( a n , . . . , a n n ) , (5.1) 

is chosen. In a PDE context, this preconditioner takes care of the elliptic part 
(cf. [5]) — the rest must be taken care of by the rank-1 updates. A detailed 
study of different preconditioning techniques in a PDE setting will be given 
elsewhere. 

Our test examples arise from convection-diffusion problems in 2-D of the fol­
lowing type: 

a) -eAu + ß • Vu = / on tt C IR2 , 

= 0 on du = r0 u v1, r0 n i\ = b) u | r 0 = u 0 , -^ 
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In order to solve this problem, streamline upwind discretization with anisotropic 
adaptive grid refinement due to KORNHUBER/RoiTZSCH [12]) is used. 

Example 1. Circular layer problem 

As a first special case of (5.1), we study a problem with a circular layer. For 
this, we set e = 10"5, / = 0 and ß = (y, -x). The domain tt is (0,1) x (0, l ) \ r 0 

with T0 = {(x, y) : x = 0.5, y < 0.5}. On the inflow boundary, we prescribe 

JO if y > 0.3 

{ l n y < 0.3 

In Fig. 5.1, the underlying grid with n — 4238 is shown. Starting point x0 is 
the interpolated solution on a coarser grid. 

Figure 5.1: Anisotropic grid for Example 1, due to [12]. 

With only diagonal preconditioning, the BB code fails to solve the problem 
within n steps (nearly constant residual norm throughout the iteration). First, 
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the behavior of GMRES with kmax < 10 has been studied (Fig. 5.2 and 5.3), 
which led to the selection of GMRES-R(IO) as best version. This version has 
been compared with GB(10) — see Fig. 5.4. To measure the error norms, the 
final iterate of a GB(10) run with required relative accuracy e = 10~8 in (4.3) has 
been taken as an estimate of the exact solution. Unlike the illustrative example 
in Section 3.3, the estimated error in GB(10) behaves only qualitatively as the 
true error — compare Fig. 5.5. Asymptotically, true and estimated error exhibit 
the same behavior, apart from oscillations caused by the fcmax-restriction. 

105 e 

10* L 

10-' 

io-« h 

to-' u 

IQ-«» U 

10" 

Error in GMRES(k) 

50 100 150 200 250 300 350 400 450 500 

Figure 5.2: Comparison of 3 GMRES versions with right preconditioning in 
Example 1. 

Error 
10" 

150 200 

Figure 5.3: Comparison of left and right preconditioning in Example 1. 
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Figure 5.4: Comparison of error for GMRES and GB in Example l. 
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Figure 5.5: Comparison of true and estimated error in GB(10) in Example 1. 
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Example 2. Straight interior layer problem 

The second test case was the convection-diffusion equation (5.1) on fi = (0,1) x 
(0,1) with a straight interior layer. To obtain this, we set e = 10~6, / = 0 and 
ß = (1.0; 0.5). The inflow boundary T0 is given by T0 = {(x,y) G du : 
max(x,y) < 1}. We prescribe the boundary condition 

JO if y > 0.3 
Mx>y) = s n .. ^^ 0 » fay) G l o • 

( 1 if y < 0.3 

In Fig. 5.6, the final grid with n = 2874 is shown. 

The behavior of the true error with diagonal preconditioning during the iteration 
is shown in Fig. 5.7. Once more, as in Example 1, GB appears to be the best 
solver. Note that the behavior in case kmax = 5 is typical also for other choices 
ot fcmax. 

Figure 5.6: Anisotropic grid for Example 2, due to [12]. 
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Figure 5.7: Comparison of error in GB(5), GMRES(5) and BB(5) in Exam­
ple 2. 
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Conclusion 

Two variants of secant methods based on Broyden's "good" and "bad" rank-1 
updates have been studied. It turned out to be important that each update 
technique is combined with its associated line search. In comparison with GM-
RES, the up to now bad reputation of secant methods for linear problems is 
certainly not justified, if a reasonable preconditioning is at hand. Especially, 
the "good" Broyden variant appeared to be the more competitive, the larger 
the system dimension was. This observation is backed not only by the given 
examples, but also by further more extensive tests. In the context of multilevel 
discretizations of PDEs, the derived secant methods seem to have the struc­
tural advantage that the arising inner products can be especially adapted to 
the underlying PDE problem. 
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