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Abstract. We describe an optimization process specially designed for regional
hyperthermia of deap seated tumors in order to achieve desired steady–state tem-
perature distributions. A nonlinear three–dimensional heat–transfer model based
on temperature–dependent blood perfusion is applied to predict the temperature.
Optimal heating is obtained by minimizing an integral object function which mea-
sures the distance between desired and model predicted temperatures. Sequential
minima are calculated from successively improved constant–rate perfusion models
employing a damped Newton method in an inner iteration. Numerical results for
a Sigma 60 applicator are presented.

1 Introduction

Hyperthermia, i.e., heating tissue to 42 - 43◦C, is a method of cancer therapy. It
is normally applied as an additive therapy to enhance the effect of conventional
radio- or chemotherapy. The standard way to produce local heating in the human
body is the use of electromagnetic waves. We are mainly interested in regional
hyperthermia of deap seated tumors. For this type of treatment usually a phased
array of antennas surrounding the patient is used (see Fig. 1). The distribution of
absorbed power within the patient’s body can be steered by selecting the ampli-
tudes and phases of the antennas’ driving voltages. The space between the body
and the antennas is filled by a so-called water bolus to avoid excessive heating of
the skin.
From the viewpoint of computational medicine there are different challenges: 1.
modelling and calculation of the electromagnetic field and the forced temperature,
2. optimization of the channel adjustments to achieve favourable interference pat-
terns for a successfull cancer therapy, 3. visualization of vector fields and temper-
ature distributions on a very complicated geometry. All components have to be
done for each individual patient within a medical planning system [1].
The purpose of our paper is to describe an optimization process based on a three–
dimensional nonlinear heat transfer model. It is a rather difficult task to establish
an appropriate physical model for the heat transport in the human body. Several

1



approaches can be found in the literature (see eg. [14, 6]). The basis for our mod-
elling is Pennes’ bio–heat–transfer equation which we equip with a temperature–
dependent blood perfusion. A similar two–dimensional model was studied in [13]
for ferromagnetic thermoseed hyperthermia.
To start the optimization process a specially designed object function is defined.
Our aim is to get a temperature distribution which nearly avoids ”hot spots“ in
healthy tissue and ”cold spots“ in the tumor region. In order to derive a fast
optimization we approximate the nonlinear model by a sequence of linear ones
which can be optimized very fast by applying a superposition principle.
Adaptive finite elements methods in space and linearly implicit integrators in time
with step size control are used to solve the nonlinear bio–heat–transfer equation [7].
The implementation requires modern software design and programming languages
as C or C++. Our code KARDOS is based on the programming environment
KASKADE [3]. Additionally, a comfortable visualization tool is invaluable. We
used the graphical system HYPERPLAN [1] for the presentation of our numerical
results.

2 Nonlinear Heat Transfer Model

The basis model used in our simulation is the instationary bio–heat–transfer equa-
tion proposed by Pennes [10]

ρc
∂T

∂t
= div (κ grad T )− cbW (T − Tb) +Qe , (1)

where ρ is the density of tissue, c and cb are specific heat of tissue and blood, κ
is the thermal conductivity of tissue; Tb is the blood temperature; W is the mass
flow rate of blood per unit volume of tissue. The power Qe deposited by an electric
field E in a tissue with electric conductivity σ is given by

Qe =
1

2
σ|E|2 . (2)

The total electric field E can be computed by superposition of fields generated by
different channels Ej, j=1, . . . ,Nchan,

E =
Nchan∑
j=1

aj exp(−iθj) Ej, (3)

where the channel j has amplitude aj and phase delay θj. If complex values zj
are defined as

zj = aj exp(−iθj) (4)

the absorbed power Qe can be expressed as a quadratic function of zj
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Qe =
1

2
σ

Nchan∑
j,k=1

z∗jE
∗
jEkzk . (5)

Besides the differential equation boundary conditions determine the temperature
distribution. The heat exchange between body and water bolus can be described
by the flux condition

κ
∂T

∂n
= β(Tbol − T ) (6)

where Tbol is the bolus temperature and β is the heat transfer coefficient. No heat
loss is assumed in remaining regions. We use for our simulations β=45W/m2/oC
and Tbol=25oC.
Studies that predict temperatures in tissue models usually assume a constant–
rate blood perfusion within each tissue. However, several experiments have shown
that the response of vasculature in tissues to heat stress is strongly temperature–
dependent [12]. When heated up to 41−43oC, temperatures that are commonly
used in clinical hyperthermia, the blood flow in normal tissues, e.g., skin and mus-
cle, increases significantly. In contrast, the tumor zone often appears to be so
vulnerable to heat that the blood flow decreases upon heating.
We assume a temperature dependence of blood perfusion similar to [13]. For tu-
mor tissue our curve has the same shape as the curve for tumor core used in
[13], only the minimal and maximal perfusion differ. For muscle tissue we use a
simplified curve consisting of a Gaussian profile describing the perfusion increase
between 37◦C and 45◦C, and a plateau for temperatures above 45◦C. In the rais-
ing part our curve differs only slightly from the one used in [13], the differences are
small compared to the uncertainties of the underlying experimental data [12]. For
temperatures above 45◦C, in [13] a decrease of perfusion is assumed. This is mo-
tivated by the assumption that vasculature is destroyed if tissue is heated to such
temperatures for about 30 minutes. Our optimization process guarantees that in
the steady state the temperature in healthy tissue is always below this barrier.
For fat tissue we also assume a temperature dependence of blood perfusion. We
apply a curve with the same shape as for muscle tissue.

Temperature–dependent blood perfusion in muscle:

Wmuscle =

⎧⎪⎪⎨
⎪⎪⎩

0.45 + 3.55 exp

(
−(T − 45.0)2

12.0

)
, T ≤ 45.0

4.00 , T > 45.0
(7)

Temperature–dependent blood perfusion in fat:

Wfat =

⎧⎪⎪⎨
⎪⎪⎩

0.36 + 0.36 exp

(
−(T − 45.0)2

12.0

)
, T ≤ 45.0

0.72 , T > 45.0
(8)
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Temperature–dependent blood perfusion in tumor:

Wtumor =

⎧⎪⎨
⎪⎩

0.833 , T < 37.0
0.833 − (T − 37.0)4.8/5.438E+3 , 37.0 ≤ T ≤ 42.0
0.416 , T > 42.0

(9)

The material properties of the involved tissues are summarized in Tab. 1. For blood
we take Tb=37oC, cb =3500Ws/kg/oC, and ρb=1000kg/m3. If a constant–rate
perfusion model is applied, we set W =0.54kg/s/m3 for fat, W =0.833kg/s/m3

for tumor, and W =2.3kg/s/m3 for muscle.

Tissue Thermal Electric Density Specific Mass
conductivity conductivity heat flow rate

κ σ ρ c W
[W/m/◦C] [1/m/Ω] [kg/m3] [Ws/kg/◦C] [kg/s/m3]

Fat 0.210 0.04 900 3,500 Wfat (8)
Tumor 0.642 0.80 1,000 3,500 Wtumor (9)
Bladder 0.600 0.60 1,000 3,500 5.000e-6
Kidney 0.577 1.00 1,000 3,500 66.670e-6
Liver 0.640 0.60 1,000 3,500 16.670e-6
Muscle 0.642 0.80 1,000 3,500 Wmuscle (7)
Bone 0.436 0.02 1,600 1,000 0.450e-6
Aorta 0.506 0.86 1,000 3,500 83.330e-6
Intestine 0.550 0.60 1.000 3,500 3.333e-6

Table 1: Material properties of tissues.

The stationary temperature field T can be computed as sum of the basal temper-
ature Tbas determined by Qe=0, and the incremental temperature Tinc due to the
hyperthermic application. We easily derive the stationary equations for Tbas and
Tinc

div (κ grad Tbas) − cbW [Tbas](Tbas − Tb) = 0 ,

κ
∂Tbas

∂n
− β(Tout − T ) = 0 ,

(10)

and

div (κ grad Tinc)− cb(W [Tinc + Tbas]Tinc

+(W [Tinc + Tbas]−W [Tbas] ) (Tbas − Tb) ) +Qe = 0 ,

κ
∂Tinc

∂n
+ βTinc = 0 .

(11)

This splitting allows us to clearly distinguish between local effects forced by the
permanent cooling of the human body at the surface and the heating by the
electromagnetic field. Therefore, in an adaptive approach most of the refinement
can be concentrated in regions where the power Qe is large, e.g., in the tumor zone.
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3 Grid Generation and Adaptive FEM

For patient specific treatment planning we create a tetrahedral model based on a
set of CT-scans of the patient. Prior to grid generation, a segmentation of the CT
data is performed, i.e., the relevant tissue compartments are defined on each scan.

Fig. 1: Patient model (torso) and hyperthermia applicator. The patient
is surrounded by 8 antennas emitting radiowaves. A water–filled bolus
is placed between patient and antennas.

Our method for generating a patient model consists of three steps:
First we extract the compartment surfaces from the segmented CT data. For this
purpose we have generalized the marching cubes algorithm [8], which is well-known
in computer graphics, for non-binary classifications [5]. Our method creates a con-
sistent description of the compartment interfaces. They are composed of so-called
patches each separating two different compartments.
Second we perform a coarsening of the patches to get surfaces suitable for tetra-
hedron generation. We estimate the principal curvatures of the patches to be
remeshed, and adapt the triangle size to surface curvature. For remeshing we use
an advancing front method: Starting from the boundary of a patch we cover the
whole patch with triangles.
Third we fill each tissue compartment with tetrahedra. Again we use an advanc-
ing front method. The compartment’s surface is composed from the correspond-
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ing patches. At the beginning the advancing front is identical with this surface.
Then repeatedly a triangle of the advancing front is selected and a fourth point is
searched such that the resulting tetrahedron resembles an equilateral one as much
as possible. This procedure is continued until the whole compartment is filled
with tetrahedra [11].
The derived tetrahedral patient model is the basis for the formulation of a finite
element method to approximate the bio–heat–transfer equation. We solve it adap-
tively both in time and space [7] in order to get efficiently more accurate solutions.
In [4] simulations with coarse and adaptively improved grids indicated significant
differences in the tissue temperatures. We discretize time first and approximate
the momentary temperature by continuous piecewise linear functions. Refinement
takes place in those regions where the estimated error is higher than a prescribed
tolerance. A multilevel iterative solution of the arising linear systems provides
optimal computational complexity.

4 Optimization Process

Our goal is to control the amplitudes zj , j = 1, . . . ,Nchan, of the independent
channels in order to achieve an effective hyperthermia therapy. A favourable tem-
perature distribution is characterized as follows:

1. Within the tumor a therapeutic temperature level of 42 − 43oC is reached.
2. No larger regions of healthy tissue are heated to above 42− 43oC.
3. Temperature in healthy tissue does not exceed certain temperature limits

depending on the tissue type.

Taking into account these requirements we define an object function for optimizing
the temperature field

q =

∫
x ∈ tumor
T < Tther

(Tther − T )2 dx +

∫
x �∈ tumor

T > Thealth

(T − Thealth)
2 dx + p

∫
x �∈ tumor
T > Tlim

(T − Tlim)2 dx , (12)

where we use a therapeutic level Tther =43oC, and a temperature Thealth =42oC
that should not be exceeded in healthy tissue. The limits Tlim are chosen tissue–
dependent: Tlim=42oC for more sensible tissue compartments (bladder, intestine)
and Tlim=44oC otherwise. To ensure high penalization for temperatures exceed-
ing the limits we set p=1000.
The definition of the object function as an integral of squares guarantees that
regions with large deviations from the attempted temperatures, i.e., ”hot spots“
in healthy tissue and ”cold spots“ in the tumor, contribute large amounts to the
object function. A similar optimization strategy for a phased array hyperthermia
system based on a simpler object function is described in [9].
Optimization of the temperature distribution means to choose the amplitudes zj
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of each channel in such a way that the resulting temperature field minimizes the
object function q.
Using our piecewise linear finite element solution Th and applying an integration
formula based only on the vertices xi (mass lumping), we get an approximation
of the object function

qh =
∑

i∈Mh1

wi

4
(Tther−Th(xi))

2+
∑

i∈Mh2

wi

4
(Th(xi)−Thealth)

2+p
∑

i∈Mh3

wi

4
(Th(xi)−Tlim)2

(13)
with

Mh1 = {i: xi ∈ tumor, Th(xi) < Tther},
Mh2 = {i: xi �∈ tumor, Th(xi) > Thealth},
Mh3 = {i: xi �∈ tumor, Th(xi) > Tlim},

where wi stands for the volume of all tetrahedra of which xi is a vertex.
In a next step we derive formulas which allow us to compute quickly a new tem-
perature field for changing amplitudes. Let us first consider the linear model with
a constant–rate perfusion in each tissue. Then from (11) it can be directly seen
that Tinc depends linearly on the distribution of absorbed power Qe. Hence, a
superposition principle is valid:

Tinc(α1Q
1
e + α2Q

2
e) = α1Tinc(Q

1
e) + α2Tinc(Q

2
e) . (14)

According to the representation (5) we get

Tinc(Qe) =
Nchan∑
j,k=1

z∗j Tinc(E
∗
jEk) zk , (15)

and finally for the whole stationary temperature distribution

T (Z) = Tbas +
Nchan∑
j,k=1

z∗j Tinc(E
∗
jEk) zk , (16)

where Z is the vector of all zj . The incremental temperatures Tinc(E
∗
jEk) can be

derived from N2
chan basic calculations combining two channels. Consequently, for

an arbitrary set of parameters zj the object function can be computed very fast.
This is also true for the first and second derivatives of the finite element solution
Th with respect to the parameters zj .
In the nonlinear case, relation (14) is no longer valid. Nevertheless, we can fix the
nonlinear perfusion terms due to a given intermediate state Zn of all amplitudes.
Then we utilize representation (15) as an approximation in a neighborhood of Zn
to perform the minimization process. Doing so we get a better Zn+1 for which
we solve the nonlinear heat equation. The arising perfusion W (T (Zn+1)) is once
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again fixed and the optimization is done. Improving successively the constant–rate
model of the perfusion in such a way, we end up with a nearly optimal adjustment
of the parameters zj for the nonlinear model.
Employing a damped Newton method for the optimization, the iteration can be
described as follows:

Choose initial value Z
(0)
0

for n = 0, 1, . . .

Calculate stationary temperature T (Z
(0)
n )

Calculate Wn := W (T (Z
(0)
n ))

Calculate Tinc(E
∗
jEk), j, k = 1, . . . ,Nchan, employing Wn

for k = 0, 1, . . .

Calculate Diqh :=
Diqh
dZi

∣∣∣∣∣
Z=Z

(k)
n

, i = 1, 2

Calculate ΔZ := −(D2qh)
−1D1qh

Find α0 ∈ {1, 12 , 14 , . . .} such that

qh(Z
(k)
n + α0ΔZ) < qh(Z

(k)
n ) + 1

2α0D
1qhΔZ

Define Z
(k+1)
n := Z

(k)
n + α0ΔZ

Finished?

Define Z
(0)
n+1 := Z

(k+1)
n

Finished?

The inner iteration is terminated if the object function has changed by less than
0.02 within 10 iterations. To control the outer iteration we always compute the

new stationary temperature T (Z
(0)
n+1) and compare it with the old one. If the

difference becomes small enough (less than 0.05oC), we stop the optimization
process.

5 Numerical Results

We report some data concerning a concrete optimization process for an individual
patient. The used applicator consists of eight radio frequency antennas grouped in
four antenna pairs (Sigma 60 Applicator of the BSD 2000 Hyperthermia System).
Each group can have its own amplitude and phase. So, our aim is to control four
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different complex values zj .

n 0 1 2 3 4 5

qh 1732 1458 1327 1263 1229 1214

‖δT‖∞ - 3.5 0.7 0.18 0.085 0.043

Tab. 2: Data of optimization process.
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Fig. 2: Optimization of the four complex amplitudes plotted in a quadrilateral for
each outer iteration step (left); optimized temperature distribution (right).
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Fig. 3: Temperature–volume histograms for muscle (left) and tumor tissue (right)
showing the differences between constant–rate and temperature–dependent perfusion.

First, we calculate an initial optimized Z
(0)
0 employing our constant–rate perfusion

model. Then we proceed as described in Section 4. The optimization comes to
an end after five outer iteration steps. The corresponding values of the object
function qh and the maximal temperature difference are shown in Tab. 2.

In Fig. 2 the convergence history of the vector Z
(0)
n is presented. For each outer
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iteration step all complex amplitudes zj are plotted as vertices of a quadrilateral.
We observe that the use of the nonlinear heat transfer model leads to a more
uniform adjustment of |zj | and to a slight reduction of the phase differences.
The smaller value of the object function for the nonlinear model (see Tab. 2) re-
sults from a better tumor heating (Fig. 2, right), which is also reflected by the
temperature–volume histogram for tumor tissue shown in Fig. 3. The histogram
for muscle tissue reveals that assuming the nonlinear model a much larger amount
of tissue is heated above 40oC.
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