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Abstract

In this paper the integrability conditions for Killing pairs in flat spaces are

investigated and it is shown that only trivial Killing pairs exist.
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� Introduction

The concept of Killing pairs (KPs) considers two symmetric tensors Aa1a2..ap =

A(a1a2..ap), Bb1b2..bq = B(b1b2..bp) which define a constant of geodesic motion with ve-

locity um as (
Aa1a2..apu

a1ua2 . . . uap

Bb1b2..bqu
b1ub2 . . . ubq

)
;m

um = 0.

With geodesic motion being described through 0 = ur
;su

s, the equivalent condition

for A,B is

A(a1a2..ap;mBb1b2..bq) = A(a1a2..apBb1b2..bq;m).

A KP is called trivial either if A,B are both Killing tensors referred to below as

trivial case TC1, or if A,B are of same rank and are proportional A = const · B,

referred to below as trivial case TC2. If (A,B) is a KP then as well is (A ∩C,B ∩C)

where C is any symmetric tensor and ∩ stands for the completely symmetric tensor

product.
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Integrability conditions for A,B both of rank one have been formulated by

Collinson [1]. As shown there it follows from

Ai;mu
iumBju

j = Aiu
iBj;mu

jum (1)

and Aiu
i and Bju

j being coprime that there is a vector Pm such that A(i;k) = A(iPk)

and B(i;k) = B(iPk). Analogously there follows for higher rank tensors the existence

of a vector P such that A(a1a2..ap;m) = A(a1a2..apPm) and B(b1b2..bq;m) = B(b1b2..bqPm).

The gauge freedom of multiplying A and B with a scalar function Ψ shifts P by

a gradient:

A′
a1..ap

= ΨAa1..ap, B′
b1..bq

= ΨBb1..bq , P ′
m = Pm +

Ψ,m

Ψ
. (2)

The trivial case that A,B are Killing tensors (KTs) is equivalent to Pm = 0 and

they are multiples of KTs iff P[l;m] = 0. Both cases are referred to as TC1.

Collinson, Vaz and O’Donnell have given metrics with nontrivial KPs with A,B

of rank 1 but unfortunately none of these describes vacuum or is known to have an

energy momentum tensor of physical interest ([2] - [5]). So far an exhaustive search

for KPs has not been carried out for any metric, even for flat space.

� Flat space

The algorithm to formulate integrability conditions as given in [1] is complex and

provides nonlinear conditions according to the nonlinear nature of the problem. The

first step towards a better understanding of their structure is to solve them for flat

space.

As the geodesic motion in flat space is known, all conservation laws have to

depend functionally on the conservation laws linear in the momentum based on

Killing vectors (KVs) of flat space. The situation is somehow comparable with

geodesic motion in a 3-dimensional spherically symmetric 1/r-potential where the

geodesic motion is explicitly known. Nevertheless, from this alone it is not obvious

that there are first integrals quadratic in the momentum, (the Runge-Lenz vector,
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the vector pointing from the center of mass to the perihelion), which are not just

linear combinations of products of first integrals linear in the momentum.

In the following we want to show that Killing pairs in flat space have to be trivial,

i.e. they have to belong to cases TC1 and TC2.

For the beginning we restrict ourselves to rank 1 tensors Ai, Bj . In the next

three subsections we will treat the cases of 2, 3 and n dimensions.

2.1 Two dimensions

The system of eqations to solve is

Ai,j + Aj,i = PiAj + PjAi (3)

Bi,j +Bj,i = PiBj + PjBi, (4)

with i, j = 1, 2 where we exclude the case TC2, i.e. Bi = ϕAi for some constant ϕ.

None of the components Ai, Bi can be identically zero. If, for example, A1 = 0 then

A2 �= 0 and due to (3), Pi = (logA2),i would be a gradient ⇒ TC1. For the rest

of the paper we will not apply the summation convention. With A i, Bi �= 0, (3),(4)

give

Pi = Ai,i/Ai = Bi,i/Bi (5)

and substituted back into (3),(4) the equivalent conditions for functions F,H defined

as

F = A1/A2, H = B1/B2, (6)

are

F,1 = FF,2 , (7)

H,1 = HH,2 . (8)

From (5) follows Ai = ciBi for some functions ci with ci,i = 0 and consquently

[
log

(
c1
c2

)]
,12

=
[
log

(
F

H

)]
,12

= 0. (9)

The overdetermined system (7) - (9) for the functions F,H was first solved with

the computer algebra program CRACK [6]. An alternative way (giving the same
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solution) is as follows. Substitute F,2 = F,1 /F = (logF ),1 from (7) and similarly

H,2 from (8) into (9) to obtain

F,22 −H,22 = 0. (10)

∂1(10) simplified with (8),(10) gives

0 = 3F,22 (F,2 −H,2 ) + F,222 (F −H). (11)

∂2(11) simplified with (10) gives

0 = 4F,222 (F,2 −H,2 ) + F,2222 (F −H). (12)

As F−H �= 0 (otherwise TC2) the determinant of the coefficient matrix of (F,2 −H,2 ,

F −H) in (11),(12) must vanish, which gives

0 = 3F,22 F,2222 −4(F,222 )
2. (13)

∂1(13) simplified with (7), ∂2(13) and (13) gives

0 = F,22 F,222 . (14)

In the case F,22 �= 0 it follows that F,222 = 0 = F,2 −H,2 which integrated and

substituted into (7),(8) gives the contradiction F,22 = 0.

The remaining case 0 = F,22 integrated and substituted into (7) provides finally

F =
εx2 + α

−εx1 + β
, ε = 0, 1, α, β = const (15)

and a similar expression for H .

For Ai �= 0 �= Aj, (5) gives the general formula

P[i,j] = [log(Ai/Aj)] ,ij (16)

and with F = A1/A2 and (15) further P[1,2] = 0, ⇒ TC1. Thus we have proved the

following lemma.

Lemma 1. In two dimensions two vectors A,B satisfying eq.s (3),(4) satisfy one

of the following two properties.
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1. There is a function Ψ such that A/Ψ,B/Ψ are KVs with Pi = Ψ,i /Ψ and

A1/A2 and B1/B2 having the shape (15) (resp. A2/A1, B2/B1 if A2 = 0 or

B2 = 0). (TC1)

2. A = ϕB with ϕ = const. (TC2)

The two-dimensional case has been solved independently by Laura Johnson (Uni-

versity of Hull) [7].

2.2 Three dimensions

Lemma 2. In three dimensions two vectors A,B satisfying eq.s (3), (4) belong to

the trivial cases TC1 or TC2.

Proof.

In the following we have the notation convention that lower case greek letters with

an index i denote functions of xi and lower case greek letters without index denote

constants.

Applying Lemma 1 to the index pairs (1,2), (2,3) and (3,1) we only have to deal

with the case that for only two indices there is proportionality B i = ϕAi and for

only two index pairs there is P[i,j] = 0. We therefore assume

B1 = ϕ3A1, B2 = ϕ3A2, B3 �= ϕ3A3, (17)

P[1,2] �= 0, P[2,3] = 0, P[3,1] = 0, (18)

for some function ϕ3 = ϕ3(x
3). We distinguish the following cases.

Case 1. A1 = 0.

Then (17) gives B1 = 0 ⇒ two-dimensional case.

Case 2. A1 �= 0 �= A2.

Case 2.1. B1 = 0.

⇒ ϕ3 = 0 ⇒ B2 = 0. Multiplication of A,B with 1/B3 gives B = (0, 0, 1) and

Pi = 0 ⇒ TC1.

Case 2.2. B1 �= 0 �= B2.

It follows that

ϕ3,3 �= 0
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because if ϕ3 = ϕ = const, then the Killing pair (A,B) would be equivalent to the

pair (A,B − ϕA) with the new B1, B2 = 0 ⇒ case 2.1. In the following we will

assume B3 �= 0 w.l.o.g. as otherwise A3 = B3 = 0 would be the two-dimensional

case.

After multiplication of A,B with 1/B3 we get B3 = 1 ⇒ P3 = 0. With B3 = 1

and Lemma 1 applied to the index pairs (1,3) and (2,3) we get

B1 =
εx3 + α2

−εx1 + β2

, (19)

B2 =
ρx3 + γ1

−ρx2 + δ1
, (20)

with ε, ρ = 0, 1 and appropriate functions α2, β2, γ1, δ1.

Case 2.2.1. ε = ρ = 0.

Due to B1,1 = P1 = 0, B2,2 = P2 = 0 and P3 = 0 we have case TC1.

Case 2.2.2. ε = 1, ρ = 0.

In this case we have B2,3 = 0, B2,2 = 0 ⇒ P2 = 0, (19) ⇒ P1 = 1/(−x1 + β2) and

with (4) for i = 1, j = 2 further B1,23 = 0. Together with (19) we get β2,2 = 0 ⇒
P1,2 = 0 ⇒ P[1,2] = 0 ⇒ TC1.

Case 2.2.3. ε = ρ = 1

Case 2.2.3.1. A3 = 0.

With (3) and j = 3 follows further Ai,3 = 0. Equation (17) gives [log(ϕ3A1)] ,2,3 =

[logB1],2,3 = 0 ⇒ α2,2 = 0 and similarly γ1,1 = 0. From this follows

A1 =
1

β2 − x1
, A2 =

1

δ1 − x2
.

Equation (4) for i, j = 1, 2 reads

β2,2(δ1 − x2)2 + δ1,1(β2 − x1)2 + 2(δ1 − x2)(β2 − x1) = 0 (21)

which is solved in the appendix. The only solution β2 = κx2 − σ, δ1 = (x1 − σ)/κ

gives P[1,2] = 0 ⇒ TC1.

Case 2.2.3.2. Ai �= 0 �= Bi, i = 1, 2, 3.

With B3 = 1 and (4) for i, j = 3 follows P3 = 0 and with (3) further A3,3 = 0.
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Applying Lemma 1 to the index pair (1,3) we get

A1 = A3

νx3 + ζ2
−νx1 + ξ2

(22)

A2 = A3

μx3 + χ1

−μx2 + η1

. (23)

As B1, B2 are linear in x3 and B1 = ϕ3(x
3)A1, B2 = ϕ3(x

3)A2 we can only have

either ν = μ = 0 or ν = μ = 1.

Case 2.2.3.2.1. ν = μ = 0.

For ν = μ = 0 we have [logA1] ,1 = [logA3] ,1 , [logA2] ,2 = [logA3] ,2 and therefore

P[1,2] = (logA1 − logA2),12 = 0 i.e. TC1.

Case 2.2.3.2.2. ν �= 0 �= μ.

In this case B1 = ϕ3(x
3)A1, B2 = ϕ3(x

3)A2 demand α2 = γ1 =const and ζ2 =

χ1 =const. Condition (6) for the index pair (1,2) becomes eq. (21) solved in the

appendix. The only solution β2 = κx2 + σ, δ1 = (x1 − σ)/κ gives P[1,2] = 0 ⇒ TC1.

This completes the proof of Lemma 2.

2.3 N dimensions

To extend lemmas 1,2 to n dimensions we assume that there is no constant ϕ such

that B = ϕA in order to avoid TC2. We will show that for any pair of indices p, q

we have P,[p,q]= 0 and therefore TC1.

Case 1. ApBq �= AqBp

Due to lemma 1 we have P,[p,q] = 0.

Case 2. ApBq = AqBp

Case 2.1. ApBq = AqBp = 0 ⇒ w.l.o.g. Ap = 0

If Bq = 0 then n− 1- dimensional problem else Aq = 0 ⇒ P,[p,q]= 0.

Case 2.2. ApBq = AqBp �= 0

In that case there must exist a third index r such that either Br = 0 or not all three

ratios Ap/Bp, Aq/Bq, Ar/Br are equal and constant. In both cases lemma 2 gives

P,[p,q] = 0.
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� Appendix

The condition (21) which is to be solved for the two functions δ1 = δ1(x
1), β2 =

β2(x
2) in this appendix is rewritten as

0 = [β ′
2
(x2)2 − 2x2β2] + [δ′

1
(x1)2 − 2xδ1] + β2(δ1 − 2x1δ′

1
) + δ1(β2 − 2x2β ′

2
)

+β ′
2
δ 2

1
+ δ′

1
β 2

2
+ 2x1x2 (24)

where ′ denotes differentiation. As the case β ′
2
= 0 leads to a contradiction after

substitution in (24), we can assume w.l.o.g. β ′
2 �= 0 �= δ′1. From ∂1∂2 1/(2β ′

2δ
′
1) ∂1∂2

(24) we get the condition

0 = (log β ′
2
)′δ′

1
+ (log δ′

1
)′β ′

2
+

(
1

β ′
2

)′ (
1

δ′1

)′
. (25)

A further division and differentiation provides

0 =

[
1

β ′
2

(
1

β ′
2

)′]′ [
1

δ′1

(
1

δ′1

)′]′

which w.l.o.g. gives

θ(β2)
2 + ϑβ2 + y + ω = 0.

After substitution in (25) we get θ = 0 and from (24) finally

β2 = κx2 + σ, δ1 = (x1 − σ)/κ. (26)
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