Killing Pairs in Flat Space

Thomas Wolf*

December 2, 1997

Abstract

In this paper the integrability conditions for Killing pairs in flat spaces are investigated and it is shown that only trivial Killing pairs exist.

KEY WORDS: Conservation laws, symmetries, equation of motin

1 Introduction

The concept of Killing pairs (KPs) considers two symmetric tensors $A_{a_{1} a_{2} . . a_{p}}=$ $A_{\left(a_{1} a_{2} . . a_{p}\right)}, B_{b_{1} b_{2} . . b_{q}}=B_{\left(b_{1} b_{2} . . b_{p}\right)}$ which define a constant of geodesic motion with velocity u_{m} as

$$
\left(\frac{A_{a_{1} a_{2} . . a_{p}} u^{a_{1}} u^{a_{2}} \ldots u^{a_{p}}}{B_{b_{1} b_{2} . b_{q}} u^{b_{1}} u^{b_{2}} \ldots u^{b_{q}}}\right)_{; m} u^{m}=0 .
$$

With geodesic motion being described through $0=u^{r}{ }_{; s} u^{s}$, the equivalent condition for \mathbf{A}, \mathbf{B} is

$$
A_{\left(a_{1} a_{2} . . a_{p} ; m\right.} B_{\left.b_{1} b_{2} . . b_{q}\right)}=A_{\left(a_{1} a_{2} . . a_{p}\right.} B_{\left.b_{1} b_{2} . . b_{q} ; m\right)} .
$$

A KP is called trivial either if \mathbf{A}, \mathbf{B} are both Killing tensors referred to below as trivial case TC 1 , or if \mathbf{A}, \mathbf{B} are of same rank and are proportional $\mathbf{A}=$ const $\cdot \mathbf{B}$, referred to below as trivial case TC2. If (\mathbf{A}, \mathbf{B}) is a KP then as well is $(\mathbf{A} \cap \mathbf{C}, \mathbf{B} \cap \mathbf{C})$ where \mathbf{C} is any symmetric tensor and \cap stands for the completely symmetric tensor product.

[^0]Integrability conditions for \mathbf{A}, \mathbf{B} both of rank one have been formulated by Collinson [1]. As shown there it follows from

$$
\begin{equation*}
A_{i ; m} u^{i} u^{m} B_{j} u^{j}=A_{i} u^{i} B_{j ; m} u^{j} u^{m} \tag{1}
\end{equation*}
$$

and $A_{i} u^{i}$ and $B_{j} u^{j}$ being coprime that there is a vector P_{m} such that $A_{(i ; k)}=A_{(i} P_{k)}$ and $B_{(i, k)}=B_{(i} P_{k)}$. Analogously there follows for higher rank tensors the existence of a vector \mathbf{P} such that $A_{\left(a_{1} a_{2} . . a_{p} ; m\right)}=A_{\left(a_{1} a_{2} . . a_{p}\right.} P_{m)}$ and $B_{\left(b_{1} b_{2} . . b_{q} ; m\right)}=B_{\left(b_{1} b_{2} . . b_{q}\right.} P_{m)}$.

The gauge freedom of multiplying \mathbf{A} and \mathbf{B} with a scalar function Ψ shifts \mathbf{P} by a gradient:

$$
\begin{equation*}
A_{a_{1} . . a_{p}}^{\prime}=\Psi A_{a_{1} . . a_{p}}, \quad B_{b_{1} . . b_{q}}^{\prime}=\Psi B_{b_{1} . . b_{q}}, \quad P_{m}^{\prime}=P_{m}+\frac{\Psi_{, m}}{\Psi} . \tag{2}
\end{equation*}
$$

The trivial case that \mathbf{A}, \mathbf{B} are Killing tensors (KTs) is equivalent to $P_{m}=0$ and they are multiples of KTs iff $P_{[l ; m]}=0$. Both cases are referred to as TC1.

Collinson, Vaz and O'Donnell have given metrics with nontrivial KPs with A, B of rank 1 but unfortunately none of these describes vacuum or is known to have an energy momentum tensor of physical interest ([2] - [5]). So far an exhaustive search for KPs has not been carried out for any metric, even for flat space.

2 Flat space

The algorithm to formulate integrability conditions as given in [1] is complex and provides nonlinear conditions according to the nonlinear nature of the problem. The first step towards a better understanding of their structure is to solve them for flat space.

As the geodesic motion in flat space is known, all conservation laws have to depend functionally on the conservation laws linear in the momentum based on Killing vectors (KVs) of flat space. The situation is somehow comparable with geodesic motion in a 3 -dimensional spherically symmetric $1 / r$-potential where the geodesic motion is explicitly known. Nevertheless, from this alone it is not obvious that there are first integrals quadratic in the momentum, (the Runge-Lenz vector,
the vector pointing from the center of mass to the perihelion), which are not just linear combinations of products of first integrals linear in the momentum.

In the following we want to show that Killing pairs in flat space have to be trivial, i.e. they have to belong to cases TC1 and TC2.

For the beginning we restrict ourselves to rank 1 tensors A_{i}, B_{j}. In the next three subsections we will treat the cases of 2,3 and n dimensions.

2.1 Two dimensions

The system of eqations to solve is

$$
\begin{align*}
A_{i, j}+A_{j, i} & =P_{i} A_{j}+P_{j} A_{i} \tag{3}\\
B_{i, j}+B_{j, i} & =P_{i} B_{j}+P_{j} B_{i} \tag{4}
\end{align*}
$$

with $i, j=1,2$ where we exclude the case TC 2 , i.e. $B_{i}=\varphi A_{i}$ for some constant φ. None of the components A_{i}, B_{i} can be identically zero. If, for example, $A_{1}=0$ then $A_{2} \neq 0$ and due to (3), $P_{i}=\left(\log A_{2}\right)_{, i}$ would be a gradient $\Rightarrow \mathrm{TC} 1$. For the rest of the paper we will not apply the summation convention. With $A_{i}, B_{i} \neq 0,(3),(4)$ give

$$
\begin{equation*}
P_{i}=A_{i, i} / A_{i}=B_{i, i} / B_{i} \tag{5}
\end{equation*}
$$

and substituted back into (3),(4) the equivalent conditions for functions F, H defined as

$$
\begin{equation*}
F=A_{1} / A_{2}, \quad H=B_{1} / B_{2} \tag{6}
\end{equation*}
$$

are

$$
\begin{align*}
& F,_{1}=F F_{,_{2}}, \tag{7}\\
& H,_{1}=H H_{,_{2}} \tag{8}
\end{align*}
$$

From (5) follows $A_{i}=c_{i} B_{i}$ for some functions c_{i} with $c_{i, i}=0$ and consquently

$$
\begin{equation*}
\left[\log \left(\frac{c_{1}}{c_{2}}\right)\right]_{, 12}=\left[\log \left(\frac{F}{H}\right)\right]_{, 12}=0 \tag{9}
\end{equation*}
$$

The overdetermined system (7) - (9) for the functions F, H was first solved with the computer algebra program CRACK [6]. An alternative way (giving the same
solution) is as follows. Substitute $F_{,_{2}}=F,_{1} / F=(\log F),_{1}$ from (7) and similarly $H_{,_{2}}$ from (8) into (9) to obtain

$$
\begin{equation*}
F_{, 22}-H_{, 22}=0 . \tag{10}
\end{equation*}
$$

$\partial_{1}(10)$ simplified with (8),(10) gives

$$
\begin{equation*}
0=3 F_{, 22}\left(F_{, 2}-H_{, 2}\right)+F_{, 222}(F-H) \tag{11}
\end{equation*}
$$

$\partial_{2}(11)$ simplified with (10) gives

$$
\begin{equation*}
0=4 F_{, 222}\left(F_{, 2}-H,_{2}\right)+F_{, 2222}(F-H) \tag{12}
\end{equation*}
$$

As $F-H \neq 0$ (otherwise TC2) the determinant of the coefficient matrix of $\left(F,_{2}-H,_{2}\right.$, $F-H)$ in (11),(12) must vanish, which gives

$$
\begin{equation*}
0=3 F_{, 22} F_{, 2222}-4\left(F_{, 222}\right)^{2} \tag{13}
\end{equation*}
$$

$\partial_{1}(13)$ simplified with (7), $\partial_{2}(13)$ and (13) gives

$$
\begin{equation*}
0=F_{, 22} F_{, 222} \tag{14}
\end{equation*}
$$

In the case $F_{, 22} \neq 0$ it follows that $F,_{222}=0=F_{,_{2}}-H_{,_{2}}$ which integrated and substituted into (7), (8) gives the contradiction $F, \mathbf{2 2}^{2}=0$.

The remaining case $0=F,_{,_{22}}$ integrated and substituted into (7) provides finally

$$
\begin{equation*}
F=\frac{\varepsilon x^{2}+\alpha}{-\varepsilon x^{1}+\beta}, \quad \varepsilon=0,1, \quad \alpha, \beta=\mathrm{const} \tag{15}
\end{equation*}
$$

and a similar expression for H.
For $A_{i} \neq 0 \neq A_{j}$, (5) gives the general formula

$$
\begin{equation*}
P_{[i, j]}=\left[\log \left(A_{i} / A_{j}\right)\right], i j \tag{16}
\end{equation*}
$$

and with $F=A_{1} / A_{2}$ and (15) further $P_{[1,2]}=0, \Rightarrow \mathrm{TC} 1$. Thus we have proved the following lemma.

Lemma 1. In two dimensions two vectors \mathbf{A}, \mathbf{B} satisfying eq.s (3),(4) satisfy one of the following two properties.

1. There is a function Ψ such that $\mathbf{A} / \Psi, \mathbf{B} / \Psi$ are $K V$ s with $P_{i}=\Psi{ }_{i} / \Psi$ and A_{1} / A_{2} and B_{1} / B_{2} having the shape (15) (resp. $A_{2} / A_{1}, B_{2} / B_{1}$ if $A_{2}=0$ or $B_{2}=0$). (TC1)
2. $\mathbf{A}=\varphi \mathbf{B}$ with $\varphi=$ const. (TC2)

The two-dimensional case has been solved independently by Laura Johnson (University of Hull) [7].

2.2 Three dimensions

Lemma 2. In three dimensions two vectors \mathbf{A}, \mathbf{B} satisfying eq.s (3), (4) belong to the trivial cases TC1 or TC2.

Proof.
In the following we have the notation convention that lower case greek letters with an index i denote functions of x^{i} and lower case greek letters without index denote constants.

Applying Lemma 1 to the index pairs $(1,2),(2,3)$ and $(3,1)$ we only have to deal with the case that for only two indices there is proportionality $B_{i}=\varphi A_{i}$ and for only two index pairs there is $P_{[i, j]}=0$. We therefore assume

$$
\begin{gather*}
B_{1}=\varphi_{3} A_{1}, \quad B_{2}=\varphi_{3} A_{2}, \quad B_{3} \neq \varphi_{3} A_{3} \tag{17}\\
P_{[1,2]} \neq 0, \quad P_{[2,3]}=0, \quad P_{[3,1]}=0 \tag{18}
\end{gather*}
$$

for some function $\varphi_{3}=\varphi_{3}\left(x^{3}\right)$. We distinguish the following cases.
Case 1. $A_{1}=0$.
Then (17) gives $B_{1}=0 \Rightarrow$ two-dimensional case.
Case 2. $A_{1} \neq 0 \neq A_{2}$.
Case 2.1. $B_{1}=0$.
$\Rightarrow \varphi_{3}=0 \Rightarrow B_{2}=0$. Multiplication of \mathbf{A}, \mathbf{B} with $1 / B_{3}$ gives $\mathbf{B}=(0,0,1)$ and $P_{i}=0 \Rightarrow \mathrm{TC} 1$.

Case 2.2. $B_{1} \neq 0 \neq B_{2}$.
It follows that

$$
\varphi_{3,3} \neq 0
$$

because if $\varphi_{\mathbf{3}}=\varphi=$ const, then the Killing pair (\mathbf{A}, \mathbf{B}) would be equivalent to the pair $(\mathbf{A}, \mathbf{B}-\varphi \mathbf{A})$ with the new $B_{1}, B_{2}=0 \Rightarrow$ case 2.1. In the following we will assume $B_{3} \neq 0$ w.l.o.g. as otherwise $A_{3}=B_{3}=0$ would be the two-dimensional case.

After multiplication of \mathbf{A}, \mathbf{B} with $1 / B_{\mathbf{3}}$ we get $B_{\mathbf{3}}=1 \Rightarrow P_{\mathbf{3}}=0$. With $B_{\mathbf{3}}=1$ and Lemma 1 applied to the index pairs $(1,3)$ and $(2,3)$ we get

$$
\begin{align*}
B_{1} & =\frac{\varepsilon x^{3}+\alpha_{2}}{-\varepsilon x^{1}+\beta_{2}} \tag{19}\\
B_{2} & =\frac{\rho x^{3}+\gamma_{1}}{-\rho x^{2}+\delta_{1}} \tag{20}
\end{align*}
$$

with $\varepsilon, \rho=0,1$ and appropriate functions $\alpha_{2}, \beta_{2}, \gamma_{1}, \delta_{1}$.
Case 2.2.1. $\varepsilon=\rho=0$.
Due to $B_{1,1}=P_{1}=0, B_{2,2}=P_{2}=0$ and $P_{3}=0$ we have case TC1.
Case 2.2.2. $\varepsilon=1, \rho=0$.
In this case we have $B_{2,3}=0, B_{2,2}=0 \Rightarrow P_{2}=0,(19) \Rightarrow P_{1}=1 /\left(-x^{1}+\beta_{2}\right)$ and with (4) for $i=1, j=2$ further $B_{1,23}=0$. Together with (19) we get $\beta_{2,2}=0 \Rightarrow$ $P_{1,2}=0 \Rightarrow P_{[1,2]}=0 \Rightarrow \mathrm{TC} 1$.

Case 2.2.3. $\varepsilon=\rho=1$
Case 2.2.3.1. $A_{3}=0$.
With (3) and $j=3$ follows further $A_{i, \mathbf{3}}=0$. Equation (17) gives $\left[\log \left(\varphi_{3} A_{1}\right)\right]_{, \mathbf{2 , 3}}=$ $\left[\log B_{1}\right]_{, 2, \mathbf{3}}=0 \Rightarrow \alpha_{2,2}=0$ and similarly $\gamma_{1,1}=0$. From this follows

$$
A_{1}=\frac{1}{\beta_{2}-x^{1}}, \quad A_{2}=\frac{1}{\delta_{1}-x^{2}}
$$

Equation (4) for $i, j=1,2$ reads

$$
\begin{equation*}
\beta_{2,2}\left(\delta_{1}-x^{2}\right)^{2}+\delta_{1,1}\left(\beta_{2}-x^{1}\right)^{2}+2\left(\delta_{1}-x^{2}\right)\left(\beta_{2}-x^{1}\right)=0 \tag{21}
\end{equation*}
$$

which is solved in the appendix. The only solution $\beta_{2}=\kappa x^{2}-\sigma, \delta_{1}=\left(x^{1}-\sigma\right) / \kappa$ gives $P_{[1,2]}=0 \Rightarrow \mathrm{TC} 1$.

Case 2.2.3.2. $A_{i} \neq 0 \neq B_{i}, i=1,2,3$.
With $B_{\mathbf{3}}=1$ and (4) for $i, j=3$ follows $P_{\mathbf{3}}=0$ and with (3) further $A_{3,3}=0$.

$$
\begin{align*}
& A_{1}=A_{3} \frac{\nu x^{3}+\zeta_{2}}{-\nu x^{1}+\xi_{2}} \tag{22}\\
& A_{2}=A_{3} \frac{\mu x^{3}+\chi_{1}}{-\mu x^{2}+\eta_{1}} . \tag{23}
\end{align*}
$$

As B_{1}, B_{2} are linear in x^{3} and $B_{1}=\varphi_{3}\left(x^{3}\right) A_{1}, B_{2}=\varphi_{3}\left(x^{3}\right) A_{2}$ we can only have either $\nu=\mu=0$ or $\nu=\mu=1$.

Case 2.2.3.2.1. $\nu=\mu=0$.
For $\nu=\mu=0$ we have $\left[\log A_{1}\right]_{,_{1}}=\left[\log A_{3}\right]_{,_{1}}, \quad\left[\log A_{2}\right]_{,_{2}}=\left[\log A_{3}\right]_{,_{2}}$ and therefore $P_{[1,2]}=\left(\log A_{1}-\log A_{2}\right)_{,_{12}}=0$ i.e. TC1.

Case 2.2.3.2.2. $\nu \neq 0 \neq \mu$.
In this case $B_{1}=\varphi_{3}\left(x^{3}\right) A_{1}, B_{2}=\varphi_{3}\left(x^{3}\right) A_{2}$ demand $\alpha_{2}=\gamma_{1}=$ const and $\zeta_{2}=$ $\chi_{1}=$ const. Condition (6) for the index pair (1,2) becomes eq. (21) solved in the appendix. The only solution $\beta_{2}=\kappa x^{2}+\sigma, \delta_{1}=\left(x^{1}-\sigma\right) / \kappa$ gives $P_{[1,2]}=0 \Rightarrow \mathrm{TC} 1$.

This completes the proof of Lemma 2.

2.3 N dimensions

To extend lemmas 1,2 to n dimensions we assume that there is no constant φ such that $\mathbf{B}=\varphi \mathbf{A}$ in order to avoid TC 2 . We will show that for any pair of indices p, q we have $P_{,[p, q]}=0$ and therefore TC1.

Case 1. $A_{p} B_{q} \neq A_{q} B_{p}$
Due to lemma 1 we have $P_{,[p, q]}=0$.
Case 2. $A_{p} B_{q}=A_{q} B_{p}$
Case 2.1. $A_{p} B_{q}=A_{q} B_{p}=0 \Rightarrow$ w.l.o.g. $A_{p}=0$
If $B_{q}=0$ then $n-1$ - dimensional problem else $A_{q}=0 \Rightarrow P_{,[p, q]}=0$.
Case 2.2. $A_{p} B_{q}=A_{q} B_{p} \neq 0$
In that case there must exist a third index r such that either $B_{r}=0$ or not all three ratios $A_{p} / B_{p}, A_{q} / B_{q}, A_{r} / B_{r}$ are equal and constant. In both cases lemma 2 gives $P,[p, q]=0$.

3 Appendix

The condition (21) which is to be solved for the two functions $\delta_{1}=\delta_{1}\left(x^{1}\right), \beta_{2}=$ $\beta_{2}\left(x^{2}\right)$ in this appendix is rewritten as

$$
\begin{align*}
0= & {\left[\beta_{2}^{\prime}\left(x^{2}\right)^{2}-2 x^{2} \beta_{2}\right]+\left[\delta_{1}^{\prime}\left(x^{1}\right)^{2}-2 x \delta_{1}\right]+\beta_{2}\left(\delta_{1}-2 x^{1} \delta_{1}^{\prime}\right)+\delta_{1}\left(\beta_{2}-2 x^{2} \beta_{2}^{\prime}\right) } \\
& +\beta_{2}^{\prime} \delta_{1}^{2}+\delta_{1}^{\prime}{\beta_{2}}^{2}+2 x^{1} x^{2} \tag{24}
\end{align*}
$$

where ' denotes differentiation. As the case $\beta_{2}^{\prime}=0$ leads to a contradiction after substitution in (24), we can assume w.l.o.g. $\beta_{2}^{\prime} \neq 0 \neq \delta_{1}^{\prime}$. From $\partial_{1} \partial_{2} 1 /\left(2 \beta_{2}^{\prime} \delta_{1}^{\prime}\right) \partial_{1} \partial_{2}$ (24) we get the condition

$$
\begin{equation*}
0=\left(\log \beta_{2}^{\prime}\right)^{\prime} \delta_{1}^{\prime}+\left(\log \delta_{1}^{\prime}\right)^{\prime} \beta_{2}^{\prime}+\left(\frac{1}{\beta_{2}^{\prime}}\right)^{\prime}\left(\frac{1}{\delta_{1}^{\prime}}\right)^{\prime} \tag{25}
\end{equation*}
$$

A further division and differentiation provides

$$
0=\left[\frac{1}{\beta_{2}^{\prime}}\left(\frac{1}{\beta_{2}^{\prime}}\right)^{\prime}\right]^{\prime}\left[\frac{1}{\delta_{1}^{\prime}}\left(\frac{1}{\delta_{1}^{\prime}}\right)^{\prime}\right]^{\prime}
$$

which w.l.o.g. gives

$$
\theta\left(\beta_{2}\right)^{2}+\vartheta \beta_{2}+y+\omega=0 .
$$

After substitution in (25) we get $\theta=0$ and from (24) finally

$$
\begin{equation*}
\beta_{2}=\kappa x^{2}+\sigma, \quad \delta_{1}=\left(x^{1}-\sigma\right) / \kappa . \tag{26}
\end{equation*}
$$

4 Acknowledgements

The author wants to thank the Relativity group in Jena for hospitality where most of the work was done. Especially he wants to thank Gernot Neugebauer and Hans Stephani for discussions on this subject.

References

[1] Collinson, C. D. (1986). A Note on the Integrability Conditions for the Existence of Rational First Integrals of the Geodesic Equations in a Riemannian Space, Gen. Rel. Grav., 18, 207-214.
[2] Vaz, E. G. L. R. and Collinson, C. D. (1992). Some Canonical Forms for the Metric of Spacetimes Admitting a Rational First Integral of the Geodesic Equation, Gen. Rel. Grav., 24, 24, 405-418.
[3] Collinson, C. D. and O'Donnell, P. J. (1992). A Class of Empty Spacetimes Admitting a Rational First Integral of the Geodesic Equation, Gen. Rel. Grav., 24, 451-455 and Erratum, Gen. Rel. Grav., 24, 691.
[4] Vaz, E. G. L. R. and Collinson, C. D. (1993). Killing Pairs and the Empty Space Field Equations, Gen. Rel. Grav., 25, 1031-1039.
[5] Collinson, C. D. and Vaz, E. G. L. R. (1995). Killing Pairs Constructed from a Recurrent Vector Field, Gen. Rel. Grav., 27, 751 - 759.
[6] Wolf, T. and Brand, A. (1995). The Computer Algebra Package CRACK for Investigating PDEs, software included in the computer algebra system REDUCE.
[7] Collinson, C. D. private communication.

[^0]: *School of Mathematical Sciences, Queen Mary and Westfield College, University of London, email: T.Wolf@qmw.ac.uk

