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Abstract

The paper deals with the solution of the eigenvalue problem of
the complex Helmholtz equation. We concentrate on multigrid meth-
ods for solving the algebraic eigenproblems arising from discretization
with finite elements by using adaptive generated meshes. An illustra-
tive numerical example, the simulation of a waveguide structure from
integrated optics, is included.
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1 Introduction

Optical fibers are important components of modern telecommunication. In
particular, almost all communication networks are based on optical fiber
techniques. The advantages of optical versus electrical signal transmission
are the larger bandwidth and the lower transmission losses.
In the early seventies, the idea was born to combine this optical signal trans-
mission with optical signal processing. The aim was to built integrated opti-
cal chips consisting of active and passive components analogously to semicon-
ductor chips. The realization of this concept was inhibited by considerable
technological difficulties arising in the manufacturing of such optical devices.
However, significant technical problems could be solved in the last ten years
and the idea of integrated optical chips has undergone a revival.
Apart from the solution of the technological problems, the development of
appropriate physical models and the numerical simulation of optical compo-
nents have been central research topics. In principle, it is desired to carry out
the complete design of an optical chip with one simulation tool. Since this
problem has an enormous complexity, the most popular approach to simulate
the behaviour of optical chips is to separately investigate particular optical
components like waveguides, couplers, or lasers. A decisive prerequisite for
the design of such components is the knowledge of their eigenmodes.
The subject of this paper is twofold. First, we present the scalar complex
Helmholtz equation as a commonly used mathematical model for the simu-
lation of optical devices. Since the interesting components are invariant in
one direction, the computation of modes, which propagate in this direction,
leads in a natural way to the eigenvalue problem of the Helmholtz equation
in two space dimensions. This eigenproblem can be both selfadjoint, in case
of loss free propagation, and nonselfadjoint, in case of damped or amplified
propagation. Secondly we discuss multigrid algorithms for the solution of
the selfadjoint as well as the nonselfadjoint eigenproblem. The discretization
by finite elements is the starting point of our considerations.
Typically, the computation of modes of integrated optical devices is char-
acterized by the following difficulties: At first, the components possess a
multiscale structure with scale ratios up to one to one thousand. Next, large
and abrupt jumps occur in the material parameters. As mentioned above, the
eigenvalue problem may be nonselfadjoint. And last, clusters of neighbouring
eigenvalues must be resolved, often with a high accuracy. The consequences
for the treatment of the described problem class are, on one hand, the use
of adaptive meshes for discretization of the continuous problem and, on the
other hand, the use of simultaneous eigenproblem solvers for the solution of
the discrete problems.
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2 The Problem

The propagation of light in optical components is described by the time
harmonic Maxwell equations for the electrical and magnetical fields E and
H in isotropic, nonmagnetic, and sourceless media

curlH = (iωε+ σ)E, divH = 0,

curlE = −iωμH, div εE = 0

with permittivity ε, permeability μ, conductivity σ, and optical angular fre-
quency ω. If we take the curl of the first equation, we see by use of the third
equation and by introducing the complex permittivity ε̃ = ε− iσ/ω, that the
magnetic field satisfies the vector wave equation

curl
1

ε̃
curlH = ω2μH .

This equation transforms into

−ΔH− ω2ε̃μH = ∇ log ε̃× curlH (1)

by employing the rules of vector calculus and the divergence-free condition
for H. However, for the simulation of most optical components, a simplified
model is adequate [18]. We neglect the coupling term on the right hand side
of (1) and obtain the vector Helmholtz equation

−ΔH− ω2ε̃μH = 0 .

In cartesian coordinates the vector Laplace operator simplifies to the usual
scalar one, applied to each component of the field vector independently. Thus
we do not need to distinguish between the vector components of H, and it is
sufficient to consider the scalar Helmholtz equation

−ΔH − ω2ε̃μH = 0 , (2)

where H is any component of the magnetic field H. We use equation (2)
as a scalar approximation of the field description given by the full Maxwell
equations.

A characteristic feature of the interesting optical structures is its invariance
in one direction. As an example, a typical component, the waveguide, is rep-
resented in Figure 1. In the following we assume that this particular direction
is the z-direction. Since we want to compute modes which propagates in this
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Figure 1: A typical integrated optical component: waveguide.

direction, the component H of the magnetic field has to obey the separation
ansatz

H(x, y, z) = u(x, y) e−ikz

in terms of the amplitude function u(x, y) and the wave number k in z-
direction. The real part of k gives the phase velocity, the imaginary part of k
gives information about damping or amplification in z-direction. If we insert
the separation ansatz into equation (2), we obtain the eigenproblem of the
scalar Helmholtz equation

−Δ u− ω2ε̃μ u = −k2 u . (3)

Since the components of the magnetic field of the interesting modes are re-
stricted to a small region of the plane, we consider problem (3) only in a
bounded two dimensional subset Ω, equipped with Dirichlet boundary con-
dition. Hence, the complete model for integrated optical components is given
by

−Δ u(x, y)− f(x, y) u(x, y) = λ u(x, y), (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ ∂Ω ,
(4)

where f(x, y) = ω2ε̃(x, y, ω)μ and λ = −k2. In media with electrical con-
ductivity, the permittivity ε̃, and hence the function f , is complex valued.
Therefore, in general, the eigenvalues λ and the eigenfunctions u may be
complex valued.

3 Multigrid Algorithms for Eigenproblems

In the context of finite element methods, it is standard to consider the eigen-
value problem (4) in its variational form: determine weak eigenfunctions
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u ∈ H1
0 (Ω) \ {0} and eigenvalues λ ∈ C such that

a(v, u) = λ (v, u) ∀v ∈ H1
0 (Ω) . (5)

The sesquilinear form a(·, ·) is defined by

a(v, u) = (∇v,∇u)− (v, f u) ,

the inner product (·, ·) is the usual L2(Ω) scalar product. We assume that Ω
is an open, bounded, and connected subset of R2 , and f ∈ L∞(Ω).
In our problem class only the eigenfunctions corresponding to the eigenval-
ues with lowest real parts are of interest. Both from the theoretical and the
numerical point of view it is appropriate to consider the eigenproblem in
a modified formulation. A perturbation analysis, as in the case of matrices,
shows, that the sensitivity of the eigenfunctions with respect to perturbations
in f depends on the spectral gap of the interesting eigenvalues from the re-
maining part of the spectrum. We can conclude, that the invariant subspace
spanned by sensitive eigenfunctions may be insensitive, if the corresponding
eigenvalues are sufficiently separated from the rest of the spectrum. Hence,
instead of (5), we will consider the eigenproblem in the context of invari-
ant subspace computations, i. e., in the following form: determine functions
uj ∈ H1

0 (Ω) \ {0} and values τkj ∈ C satisfying

a(v, uj) =

j∑
k=1

τkj (v, uk) ∀v ∈ H1
0 (Ω) , (6)

where (uk, uj) = δkj , τjj = λj and j = 1, . . . , q (q is the number of desired
eigenvalues with lowest real parts). The special form (6) is the continuous
analogue to the partial Schur decomposition of a matrix [11]. The functions
uj are referred as Schur functions. In the special case of a selfadjoint eigen-
value problem, i. e., of a real valued function f , the values τkj with k < j
vanish, i. e., the functions uj are eigenfunctions.
The discretization of (6) by finite elements leads to the generalized matrix
Schur problem

AU = BUT, U∗BU = I . (7)

The system matrix A and the mass matrix B are sparse (N × N)-matrices,
where N is the dimension of the underlying finite element space. The matrix
B is the Gram matrix of the basis functions of the finite element space, and
hence, by definition, selfadjoint and positive definite. The unknown matrix
U is a full (N × q)-matrix consisting of the coefficients of the discrete Schur
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functions with respect to the finite element basis functions, whereas the un-
known matrix T is an upper triangular (q×q)-matrix formed by approximate
values τkj. The value N lies typically between 103 and 105, the number q
ranges from 1 to 10. Hence, we have to determine a low-dimensional invariant
subspace of a large sparse matrix pencil.
There exists many numerical algorithms to solve the discrete eigenproblem
(7), see, e. g., the recent survey article by van der Vorst and Golub [21],
where the emphasis lies on Krylov subspace methods. Here, we focus on
multigrid algorithms. A characteristic feature of these methods is their opti-
mal complexity, i. e., the effort for the solution of (7) is proportional to the
number N of degrees of freedom. Hence, multigrid methods are very effec-
tive, especially in the context of problems with a large number of unknowns.
Any of these methods needs a hierarchy of discretization meshes. In view
of the difficulties arising in our problem class, we construct this sequence by
adaptive mesh refinement. We will restrict ourselves to conforming methods,
i. e., the corresponding finite element spaces satisfy the relation

V0 ⊂ V1 ⊂ . . . ⊂ Vlmax ⊂ H1
0(Ω) .

First we describe the principle of these methods for the special two grid case.
Every iteration step of the method is divided in two stages, the smoothing
step and the coarse grid correction step. In the smoothing step on the fine
grid, a simple iteration method (the smoother) damps the error components
corresponding to high frequencies. Then, a coarse grid correction problem
(of significant smaller dimension as the original problem) is solved to han-
dle the error components corresponding to low frequencies. By alternating
smoothing and coarse grid correction steps, we obtain a two grid iteration
method.
Since the coarse grid correction problems are of the same type as the origi-
nal one, we can apply the described fine-grid coarse-grid scheme recursively.
Thereby, we obtain a multigrid method. The resulting coarse grid problems
are approximately solved by one or two iteration steps (V-cycle or W-cycle).
An exact computation of the coarse grid correction is carried out only on the
coarsest grid. Smoothing steps are typically performed before and after the
(approximate) determination of the coarse grid corrections.
This general concept forms the starting point for the development of various
multigrid methods for solving the eigenproblem (7). These algorithms can
roughly divided into two classes. The algorithms of the first class are charac-
terized by using a linear multigrid method for the solution of linear problems
arising from an outer iteration, whereas the algorithms of the second class are
characterized by a direct application of the multigrid concept to the solution
of problem (7).
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We start with a short description of some methods of the first class. The
algorithm of Bank [2] is based on inverse iteration. The arising linear systems
are solved with a standard linear multigrid method. Bank and Chan [3]
trace the computation of a simple eigenvalue back to a parameter dependent
problem in the scalar parameter λ and use a multigrid continuation method
for its solution. Hackbusch [14] regards the eigenproblem (7) as a nonlinear
problem in the unknowns U and T which is solved by Newton’s method.
Here, the linear multigrid method for the solution of the linear subproblems
is adapted to the special structure of the Jacobian.
Often, the multigrid concept is also used for preconditioning. In the selfad-
joint case, there is a well known optimization method for the computation of
the lowest eigenvalues with corresponding eigenfunctions: the simultaneous
Rayleigh quotient minimization, see, e. g., Döhler [9]. In Jung et al. [15],
this method is combined with a standard linear multigrid method for pre-
conditioning. In this context, the algorithms suggested by Bramble et al. [4]
and Leinen et al. [16] can be viewed as special types of the simultaneous
Rayleigh quotient iteration with preconditioning.
Now we turn to the algorithms of the second class. First we describe the
direct multigrid method of Hackbusch [13]. For convenience, we represent
this method in the case of a simple eigenvalue computation. The equation

(A− λ1B)u1 = 0 (8)

is interpreted as a parameter dependent linear problem. For its solution, the
multigrid idea is directly used in the following manner. At the beginning of
every multigrid cycle, an approximation of the eigenvalue λ1 is determined
by computing the generalized Rayleigh quotient

λ̃1 =
ṽ∗1Aũ1

ṽ∗1Bũ1
,

where ũ1 and ṽ1 are approximations of the right and the left eigenvector.
Then, this parameter value is fixed for the complete multigrid cycle. The
smoother is a classical iteration method for the solution of linear problems,
e. g., the Jacobi method or the Gauß-Seidel method. The coarse grid correc-
tion problems take the form

(Al − λ̃1,lBl)wl = dl, l = 0, . . . , lmax − 1 , (9)

where the matrices Al and Bl are the system and mass matrix corresponding
to the finite element space Vl. The value λ̃1,l is an approximation of the
eigenvalue λ1,l with lowest real part of this matrix pencil. The defect d l results
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from the current residue corresponding to the next higher level. For the
unique solvability of equations (9), even in the case λ̃1,l = λ1,l, we must carry
out projections of dl and wl with respect to the corresponding (approximate)
eigenvector ũ1,l according to

dl �→ d⊥l = dl −
(
ṽ∗1,ldl

)
Blũ1,l

wl �→w⊥
l = wl−

(
ṽ∗1,lBlwl

)
ũ1,l ,

where ṽ1,l is an approximation of the corresponding left eigenvector with
ṽ∗1,lBlũ1,l = 1. In our special case, the system matrices Al are complex
symmetric, and the mass matrices Bl are real symmetric, e. g., the left eigen-
vectors are the complex conjugate right eigenvectors. Hence, we can replace
ṽ∗1,l by ũT

1,l. Since we need approximations of the eigenpairs (λ1,l, u1,l) in every
multigrid cycle, the use of a nested iteration technique is necessary. In case of
the computation of an invariant subspace, a simultaneous iteration method
is carried out for the solution of q equations of the form (8), for details see
[13]. A proof of optimal complexity of Hackbusch’s method is given in [12].
Another method of the second class is the nonlinear multigrid method, which
is described in the paper [8] and the thesis [10]. Here, the essential idea for a
direct multigrid approach for solving (7) is the successive solution of projected
Schur problems

(V ∗AV )W = (V ∗BV )WT, W ∗(V ∗BV )W = I , (10)

where the matrix V is given by

V =
(
ũ1 · · · ũq p1 · · · pr

)
.

The vectors ũj are approximate Schur vectors, whereas the vectors pk denote
search directions. The matrices W and T are determined by an (approxi-
mate) partial Schur decomposition such that the diagonal of T consists of
the q eigenvalues with lowest real parts of the matrix pencil (V ∗AV, V ∗BV ).
Then, the new Schur vector approximations U =

(
u1 · · · uq

)
are given

by U = VW . This general principle constitutes the foundation for the con-
struction of both the smoothing algorithm and the coarse grid correction
procedure. In the smoothing process the vectors pk are chosen similarly to a
one step block Arnoldi algorithm. One possible choice is, for instance,

(
p1 · · · pq

)
= P = AŨ − BŨT̃ ,

where T̃ is the upper triangular matrix corresponding to the current Schur
vector approximations

(
ũ1 · · · ũq

)
= Ũ . A more sophisticated choice is



8

described in [8, 10]. In the coarse grid correction procedure, the vectors pk
are the columns of the prolongation matrix P which describes the transition
between the current coarse grid and the finest grid. If we realize the described
idea in a multigrid recursion, the coarse grid problems are of the form

AlWl = BlWlTl, W ∗
l BlWl = I , (11)

where the matrices Al and Bl are the augmented system and mass matrices,
respectively, according to (10). In contrast to the coarse grid problems (9) of
Hackbusch’s method, the matrices Tl in (11) (and hence the eigenvalue ap-
proximations λj,l) are also unknowns, which are automatically determined in
the iteration process. Further, projections with respect to former determined
eigenproblem solutions are not necessary.
In the case of a selfadjoint eigenproblem and computation of a simple eigen-
value, the just described method coincides with the Rayleigh quotient multi-
grid minimization of Mandel and McCormick [17, 19]. An important feature
of this method is its monotonicity. This means, that the sequence of Rayleigh
quotients formed in every step and at every stage of the algorithm decreases
monotonically. Since the Rayleigh quotient is bounded from below, the se-
quence is always convergent. This property is the reason for the numerical
robustness of the method. First optimal complexity results for the selfad-
joint case are given by McCormick [20] and Cai et al. [5]. A simple, but
illustrative numerical comparison between the Rayleigh quotient multigrid
minimization and Hackbusch’s method may be found in [7]. It turns out,
that the Rayleigh quotient method is more robust, especially in the context
of adaptivity. A different proof of optimality has been suggested by Chan
and Sharapov [6] in connection with domain decomposition methods for the
selfadjoint case. The theoretical investigation of the above nonlinear multi-
grid method for the computation of an invariant subspace, in particular for
nonselfadjoint eigenproblems, and a proof of optimal complexity in this case
are topics for future research.

4 Numerical Example

Now we return to the simple waveguide structure as shown in Figure 1. More
complicated integrated optical components, even with amplified propagation
(nonselfadjoint eigenproblem), may be found in [8, 10]. Here, we are only
interested in the lowest eigenvalue with corresponding eigenfunction (funda-
mental mode of the structure).
The waveguide consists of a III-V-semiconductor material system (GaInAsP,
InP). A cross section of the structure and the starting triangulation consisting
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Figure 2: Cross section of the waveguide and starting triangulation.

of 206 nodes and 379 triangles are drawn in Figure 2. A simple manipulation
shows that the function f in (4) can be represented as f(x, y) = k2

0n
2(x, y),

where k0 is the wave number in vacuum, and the function n(x, y) is given
by the refractive indexes of the materials. Our computation is based on a
wavelength of 1.55 μm (i. e. k0 =

2π
1.55

≈ 4.0537) and the refractive indexes

n(x, y) =

⎧⎪⎨
⎪⎩
1.00, Air: white

3.17, InP: grey

3.38, GaInAsP: black

taken from [1]. For the solution of this problem, we apply the nonlinear
multigrid method as sketched in the preceding section and described in de-
tail in [8, 10]. The adaptive meshes are constructed by a nested iteration
technique in connection with a triangle based error indicator. The final tri-
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Figure 3: Final triangulation and logarithmic contour plot of the fundamental
mode.

angulation with 12396 nodes and 24728 triangles reached after 7 refinements
and a logarithmic contour plot of the computed eigenfunction u1 are given in
Figure 3. The corresponding eigenvalue is λ1 ≈ −168.1927, and the propa-
gation number in z-direction is given by k1 =

√−λ1 ≈ 12.9689. The discrete
systems corresponding to each grid are solved with an accuracy of 10−5 in the
residue. The whole computation with a Matlab program takes 3 minutes
on a Sun Ultra 1 workstation. The history of the full multigrid run is given
in Table 1, whereas the effort in flops per grid is drawn in Figure 4.
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Grid 1 2 3 4 5 6 7

Inner points 272 487 885 1743 3388 6437 12334
MG Iterations 6 6 7 7 7 6 7

Table 1: Number N of inner points and number of multigrid iterations per
grid.
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Figure 4: Log-log scale plot of flops versus N (compared with 105N : dashed
line).
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