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Abstract
The overall Hamiltonian structure of the Quantum-Classical Molecular Dynamics model

makes – analogously to classical molecular dynamics – symplectic integration schemes the meth-
ods of choice for long-term simulations. This has already been demonstrated by the symplectic
PICKABACK method [12]. However, this method requires a relatively small step-size due to
the high-frequency quantum modes. Therefore, following related ideas from classical molecu-
lar dynamics, we investigate symplectic multiple-time-stepping methods and indicate various
possibilities to overcome the step-size limitation of PICKABACK.

1 Introduction

In this paper, we consider the symplectic integration of the so-called Quantum-Classical Molecular
Dynamics (QCMD) model. In the QCMD model (see [8, 7, 3, 5, 6] and references therein), most
atoms are described by classical mechanics, but an important small portion of the system by quantum
mechanics. This leads to a coupled system of Newtonian and Schrödinger equations.

We focus on so-called symplectic methods [18] for the following reason: It has been shown that
the preservation of the symplectic structure of phase space under a numerical integration scheme
implies a number of very desirable properties. Namely,

• symplectic methods preserve the total energy over very (exponentially) long periods of time
up to small fluctuations [2, 11, 14] and

• symplectic methods also conserve the adiabatic invariants of the problem under consideration
[15].

Note that the same results have not been shown for symmetric (time-reversible) integration
methods, although symmetric methods seem to perform quite well in practice. For a discussion of
symmetric methods in the context of the QCMD model see [16, 17, 13].

For ease of presentation, we consider the case of just one quantum degree of freedom with spatial
coordinate x and mass m and N classical particles with coordinates q ∈ R3N and diagonal mass
matrix M ∈ R3N×3N . Upon denoting the interaction potential by V (x, q), we obtain the following
equations of motion for the QCMD model:

i�
∂

∂t
ψ = H(q)ψ ,

∂

∂t
q = M−1p ,

∂

∂t
p = −〈ψ,∇qV (q)ψ〉 − ∇qUcl(q)
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with Ucl a purely classical potential energy function and with H(q) the quantum Hamiltonian
operator given by

H(q) = T + V (x, q), T = − �
2

2m
Δx.

In the sequel, we assume that the quantum subsystem has been truncated to a finite-dimensional
system by an appropriate spatial discretization and a corresponding representation of the wave
function ψ by a complex-valued vector ψ ∈ Cd. The discretized quantum operators T, V and H are
denoted by T ∈ Cd×d, V (q) ∈ Cd×d and H(q) ∈ Cd×d, respectively. In the following construction of
the time-propagators, we will exploit special matrix structures of some spatial discretizations:

a) V (q) is diagonal,

b) H(q) is real-valued, and

c) all other cases.

2 Conservation Properties of the QCMD model

For long-term simulations, it generally proves advantageous to consider numerical integrators which
pass the structural properties of the model onto the calculated solutions. Hence, a careful analysis of
the conservation properties of QCMD model is required. A particularly relevant constant of motion
of the QCMD model is the total energy of the system

H =
pTM−1p

2
+ψ∗H(q)ψ + Ucl(q). (1)

Here ψ∗ denotes the conjugate transpose of ψ. Another conserved quantity is the norm of the vector
ψ, i.e., ψ∗ψ = const. due to the unitary propagation of the quantum part.

In the context of this paper, the most important conservation property of QCMD is related to its
canonical Hamiltonian structure which implies the symplecticness of the solution operator [1]. There
are different ways to consider the QCMD model as a canonical Hamiltonian system with Hamiltonian
(1). Here we follow the presentation given in [5, 16]: We decompose the complex-valued vector ψ
into its real and imaginary part, i.e.,

ψ =
1√
2�

(qψ + ipψ) .

Then, after introducing generalized positions Q = (qTψ , q
T )T ∈ Rd+3N and generalized momenta

P = (pTψ ,p
T )T ∈ Rd+3N , the equations of motion can be written as

d

dt
Q = +∇PH(Q,P ) ,

d

dt
P = −∇QH(Q,P ) .

These equations of motion are also time-reversible [13].
Finally, we like to mention that the QCMD model reduces to the Born-Oppenheimer approxima-

tion in case the ratio of the mass m of the quantum particles to the masses of the classical particles
vanishes [6]. This implies that the populations |θi(t)|2, i = 1, . . . , k, corresponding to the eigenvalues
Ei(q(t))) of the operator H(q) become adiabatic invariants.

Note that the conservation of total energy and the conservation of the adiabatic invariants asso-
ciated to the Born-Oppenheimer limit of the QCMD model provide a simple test for the behavior
of a numerical integrator.
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3 Construction of Symplectic Integrators

Our aim is the construction of numerical integrators which reproduce the conserved quantities in
long-term simulations. To this end, we focus on symplectic methods, i.e., methods that conserve the
canonical structure of phase space [18]. A convenient way to derive symplectic methods for general
Hamiltonian systems is based on an appropriate splitting of the Hamiltonian H into a sum of sub-
Hamiltonians, e.g., the two-term decomposition H1 + H2, each of which corresponds either to an
explicitly solvable system or has a given symplectic integrator [18]. This procedure can be illustrated
using a phase space representation of the Hamiltonian flow. The time-evolution over Δt units of
time is then given by exp(ΔtLH) where LH is the Liouville operator of the whole system [18, 12].
The Liouville operator exp(ΔtLH) can be approximated via the second order Strang splitting [18]:

exp(ΔtLH) = exp(
Δt

2
LH1) exp(ΔtLH2) exp(

Δt

2
LH1) + O(Δt3). (2)

The resulting numerical method is obviously symplectic since exp(Δt2 LH1) and exp(ΔtLH2) are
symplectic maps and the composition of symplectic maps yields a symplectic map.

The symplectic PICKABACK method [12], for instance, uses the following selection:

H1 =
pTM−1p

2
+ψ∗Tψ and H2 = ψ∗V (q)ψ + Ucl(q) .

The corresponding differential equations can be solved explicitly provided the operator V (q) is
diagonal.

PICKABACK conserves total energy up to small fluctuations and the norm of the vector ψ
exactly. Its main drawback is the step-size restriction which is of the order of the inverse of the
largest eigenvalue of the quantum operator H(q). Thus, if the evaluation of the operator V (q)
and the gradients ∇qV (q) and ∇qUcl(q) are expensive due to long-range interactions, then the
PICKABACK scheme can become inefficient, i.e., the permitted step-size might be much smaller
than required by the pure classical dynamics. To overcome this problem, symmetric integration
schemes are considered in [16, 17] and [13].

4 Symplectic Multiple-Time-Stepping Methods

Here we suggest a different approach that propagates the system using multiple step-sizes, i.e., few
steps with step-size Δt are taken in the ”slow” classical part whereas many smaller steps with step-
size δt are taken in the highly oscillatory quantum subsystem (see, for example, [19, 4] for symplectic
multiple-time-stepping methods in the context of classical molecular dynamics). Therefore, we
consider a splitting of the Hamiltonian H = H1 +H2 in the following way:

H1 =
pTM−1p

2
and H2 = ψ∗H(q)ψ + Ucl(q) .

Let us write down the corresponding differential equations. First for H1:

i�
d

dt
ψ = 0 ,

d

dt
q = M−1p ,

d

dt
p = 0 ,

3



next for H2:

i�
d

dt
ψ = H(q)ψ , (3)

d

dt
q = 0 , (4)

d

dt
p = −ψ∗∇qV (q)ψ −∇qUcl(q) . (5)

The solution to H1 is just a translation of classical particles with constant momentum p.
The intriguing point about the second set of equations is that q is now kept constant. Thus

the vector ψ evolves according to the time-dependent Schrödinger equation with time-independent
Hamilton operator H(q) and the update of the classical momentum p is obtained by integrating
the Hellmann-Feynman forces [5] acting on the classical particles along the computed ψ(t) (plus a
constant update due to the purely classical force field).

Upon computing the eigenvalues of the operator H(q), the equations (3)-(5) can be solved
exactly. However, this is, in general, an expensive undertaken. Therefore we proceed with the
following multiple-time-stepping approach: The first step is to consider the identity

exp(ΔtLH2) = exp(δtLĤ2
) · · · exp(δtLĤ2

)︸ ︷︷ ︸
j times

exp(ΔtLUcl
) ,

where δt = Δt/j, j even, and

Ĥ2 = ψ∗H(q)ψ .

The second step is to use this identity in (2) which yields

exp (ΔtLH) = exp(
Δt

2
LH1) exp(δtLĤ2

) · · · exp(δtLH2)︸ ︷︷ ︸
j times

exp(ΔtLUcl
) exp(

Δt

2
LH1) +

+O(Δt3) .

The last step is to find a symplectic, second order approximation Φδt to exp(δtLĤ2
). In principle,

we can use any symplectic integrator suitable for time-dependent Schrödinger equations (see, for
example, [9]). Here we focus on the following three different possibilities corresponding to special
properties of the spatially truncated operators H(q) and V (q).

a) Provided that V (q) is diagonal, an efficient method Φδt is obtained by exploiting the natural
splitting of the quantum operatorH(q) = T +V (q) in a procedure similar to the one used in
PICKABACK. This yields two exactly solvable subsystems [12]

Ĥ2,1 = ψ∗Tψ and Ĥ2,2 = ψ∗V (q)ψ .

Again, we use (2) to construct a symplectic, second order approximation Φδt to exp(δt LĤ2
).

The resulting integrator for QCMD is of second order, explicit, symplectic, and conserves the
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norm of the wave-function:

q1/2 = q0 +
Δt

2
M−1p0 ,

p̂0 = p0 −Δt∇qVcl(q1/2) ,

j times the
application of Φδt;

k = 1 . . . j

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ̂k/j

p̂k/j

ψk/j

= exp
(− i

�

δt
2 T

)
ψ(k−1)/j

= p̂(k−1)/j − δt ψ̂
∗
k/j ∇qV (q1/2)ψ̂k/j

= exp
(− i

�

δt
2 T

)
exp

(
− i

�
δtV (q1/2)

)
ψ̂k/j

p1 = p̂1 ,

q1 = q1/2 +
Δt

2
M−1p1 .

b) If the spatially discretized quantum Hamiltonian operator H(q) is real-valued, i.e.,

H =
1

2�
qTψH(q)qψ +

1

2�
pTψH(q)pψ +

1

2
pTM−1p+ Ucl(q) ,

then the Hamiltonian Ĥ2 can be written as

Ĥ2 =
1

2�
qTψH(q)qψ︸ ︷︷ ︸

Ĥ2,1

+
1

2�
pTψH(q)pψ︸ ︷︷ ︸

Ĥ2,2

and the equations of motion corresponding to each of the two terms in the Hamiltonian Ĥ2,
namely

�
d

dt
qψ = 0 ,

�
d

dt
pψ = −H(q)qψ ,

d

dt
q = 0 ,

d

dt
p = − 1

2�
qTψ∇qV (q)qψ ,

and

�
d

dt
qψ = H(q)pψ ,

�
d

dt
pψ = 0 ,

d

dt
q = 0 ,

d

dt
p = − 1

2�
pTψ∇qV (q)pψ ,

can be solved analytically. Thus we define

Φδt = exp

(
δt

2
LĤ2,1

)
exp(δtLĤ2,2

) exp

(
δt

2
LĤ2,1

)
.

For stability reasons, the micro-step-size δt has to be chosen smaller than the inverse of the
largest eigenvalue of the (scaled) truncated quantum operator �

−1H(q). This can imply a
very small value of δt compared to the macro-step-size Δt.
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c) The most straightforward but also an expensive Φδt is obtained by discretizing the equations
of motion corresponding to Ĥ2 by the (symplectic) implicit midpoint rule which results in

ψk/j = ψ(k−1)/j + δtH(q1/2)ψ(k−1/2)/j ,

p̂k/j = p̂(k−1)/j − δtψ∗
(k−1/2)/j∇qV (q1/2)ψ(k−1/2)/j ,

k = 1, . . . , j, with ψ(k−1/2)/j = (ψk/j +ψ(k−1)/j)/2. Note that each integration step requires
the solution of a d-dimensional linear system of equations in the unknown ψk/j .

Our multiple-time-stepping methods are close to methods suggested in [16, 17]. The method
considered in [16] is time-reversible but not symplectic. More importantly, the method updates the
momenta p of all classical particles only once per macro-time-step Δt. As indicated in [10, 13],
this might lead to a substantial phase drift in the discrete solution. In [10], an averaging procedure
of the quantum-classical Hellmann-Feynman force field along ψ(t) is suggested to overcome this
problem. Note that, for the multiple-time-stepping schemes suggested here, this averaging is carried
out automatically and is a direct consequence of proposed splitting of the Hamiltonian equations of
motion. We finally like to mention that symplectic methods are also discussed in [17]. In particular,
the suggested methods are symplectic in the quantum part and the classical part if considered
separately. However, this does not imply that the overall method is symplectic.

5 Conclusions

We have derived time-reversible, symplectic, and second-order multiple-time-stepping methods for
the finite-dimensional QCMD model. Theoretical results for general symplectic methods imply
that the methods conserve energy over exponentially long periods of time up to small fluctuations
provided the step-size Δt is chosen small enough. Furthermore, in the limit m → 0, the adiabatic
invariants corresponding to the underlying Born-Oppenheimer approximation will be preserved as
well. Finally, the phase shift observed for symmetric methods with a single update of the classical
momenta p per macro-time-step Δt should be avoided by the suggested methods. The additional
costs for this frequent update per micro-time-step δt are relatively low. Note that the update only
requires taking the inner product ψ∗∇qV (q)ψ with respect to a constant gradient ∇qV (q) and
only with respect to those classical particles that interact with the quantum degree of motion.

Acknowledgement. It is a pleasure to thank Christof Schütte for discussions on the subject of
this paper.
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