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Abstract. This paper investigates a technique of building up discrete relaxations of combi-
natorial optimization problems. To establish such a relaxation we introduce a transformation
technique —aggregation— that allows one to relax an integer program by means of another in-
teger program. We show that knapsack and set packing relaxations give rise to combinatorial
cutting planes in a simple and straightforward way. The constructions are algorithmic.
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1 Introduction

Integer programming is one of the most successful approaches to NP-hard combinatorial
optimization problems. Important concepts in this area are (i) transformations to transfer
knowledge about one problem to another problem as well as (ii) relazations that are algorith-
mically tractable. Typical relaxations of integer programs are linear or semidefinite programs.
We study in this paper what we call a discrete relaxation of one integer program by means
of another integer program.

Consider a combinatorial optimization problem in its integer programming formulation

(IP) max wle, Az <b, xecZ"

Here, A € Z™*™ b € Z™, and w € Z" are an integral matrix and integer vectors, respectively.
The associated linear and integer polyhedra are

PLP(A, b) = {J) e R ‘ Az < b}
Pip(A,b) :=conv{z € Z" | Ax < b}.

Where the meaning is clear, we write B,p for Pp(A,b) and Bp for Pp(A,b).
We call our method to construct discrete relaxations aggregation. Aggregation is a general-
ization of projection to arbitrary affine functions
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given by a rational matrix ® € Q‘/ X1 and vector ¢V € Q"l; note that the image space can have
a higher dimension than the preimage. We call such functions aggregation schemes or simply
schemes. A scheme is integer if it maps integer points to integer points, i.e., in formulas, if
p(z™) C Z"l) or, equivalently, if both ® and ¢ are integer. The image ¢(P) of a polyhedron P
under the scheme ¢ is called the ¢-aggregate or, if there is no danger of confusion, simply the
aggregate of P. Clearly, we are interested in suitable aggregates ¢(Kp) of the polytope Bp
associated with the integer program (IP).
Our motivation for studying aggregations is that they give rise to wvalid inequalities for Kp.
Namely, if /"2’ < o is valid for the aggregate ¢(Bp), the expansion

o't (x) <d = ooy <d + a'Tqbo
of this inequality is valid for the original polyhedron Fp.
The facial structure of an aggregate is, of course, in general as complicated as that of the
original polyhedron. But we will see in the examples of the following sections that one can
often find a relazation

P’ 2 ¢(Pp)

of the aggregate ¢(Rp) that is of a well studied type. More precisely, we stipulate that P
is the polytope associated with some combinatorial integer program IP in the image space
of the aggregation, i.e., P = P/p. In this case, one can resort to known inequalities for this
relaxation P’ to get an approximate description of the aggregate ¢(P) and, via expansion, a
description of a polyhedral relaxation ¢~!(P’) of the original polyhedron P, see Fig. 1 for an
illustration. Because of this relation, we call the integer program (IP) a discrete relazation
of the original integer program (IP).

¢~ (P)

P

Figure 1: Constructing a Combinatorial Relaxation.

The crucial points in this procedure are the choice of the aggregation scheme and the con-
struction of a suitable discrete relaxation. The forthcoming examples use the following simple
observation. Starting with integer polyhedra P = Rp and restricting attention to likewise
integer schemes, the resulting aggregates are integer as well (vertices map to vertices). The
identification of ¢(Bp) as a subset of some well known polyhedron P will resort to problem
specific combinatorial arguments.

Once the discrete relaxation IP is found, separation routines for the associated polyhedron
P’ carry over to the original polyhedron RBp via expansion. Namely, given some point x to be
tested for membership in Bp, we simply (i) compute ¢(x), (ii) solve the separation problem



for ¢(x) and P’, and, if a separating hyperplane d T2 < o/ has been found, (iii) expand it.
If all of these three steps are polynomial, this yields a polynomial time separation algorithm
for a class of valid inequalities for Fp.

Aggregation has a good tradition in polyhedral combinatorics. Projection techniques have
been used by Balas & Pulleyblank (1989) [2], Pulleyblank & Shepherd (1993) [14], and oth-
ers to investigate matching, stable set, and other combinatorial polyhedra. Chopra & Rao
(1994a;b) [5; 6] use projection to compare the strengths of directed and undirected formula-
tions of the Steiner tree problem. Padberg & Sung (1991) [13] is the reference that is most
closely related to our work: They use general aggregations to analyze the strengths of IP
formulations for the travelling salesman problem.

The following sections present applications of discrete relaxations to a number of classical
combinatorial optimization problems. We consider two types of discrete relaxations: Set
packing relazations and knapsack relazations. These relaxations will be used to construct
cutting planes. It is not our intent to give a detailed analysis of strength of these cuts here.
We simply present a list of, we hope, elegant examples to advertise discrete relaxations as a
novel cutting plane technique. Our constructions are simple and always algorithmic.

2 Set Packing Relaxations

This section gives examples of discrete relaxations in the form of a set packing problem.
The discussion extends our earlier paper Borndorfer & Weismantel (1997) [3] that used set
packing relaxations to derive polynomial time separation routines for a number of well known
inequalities from the literature (and generalizations thereof), such as Mobius ladder and
certain fence inequalities for the acyclic subdigraph polytope, 2-chorded cycle inequalities for
the clique partitioning polytope, and several types of inequalities for the set packing polytope
itself. We will use these techniques here to derive new inequalities. Our aim is to give inspiring
examples how one can transfer inequalities and separation routines from the set packing to
other combinatorial optimization problems.

We recall some set packing notation and results. Given a graph G with node weights w € I&/,
the set packing or stable set problem (SSP) is the following integer program:

(SSP) max wlz, Az<1,ze{0,1}".

Here, A = A(G) € {0,1}¥*V is the edge-node incidence matrix of G' and 1 a vector of all ones
of compatible dimension. We denote the associated stable set polytope by Rsp(G) or Pssp.
For technical reasons, we will actually not work with Fygp itself, but with its anti-dominant

Pssp = Pssp — R = {z € RV : Jy € Psgp 1z <y}

It is easy to see that the valid inequalities for Fssp of the form a'a < o are exactly the valid
inequalities for Psgp with non-negative coefficients. We will make use of two well known classes
of inequalities for the stable set polytope: Clique and odd cycle inequalities, see Padberg (1973)
[11]. The clique inequalities are subsumed by the larger class of orthonormal representation
constraints, see Grotschel, Lovasz & Schrijver (1988) [10]. Cycle inequalities and orthonormal
representation constraints can be separated in polynomial time, see again Grotschel, Lovasz
& Schrijver (1988) [10].



The subsequent subsections resort to the following method to construct set packing relaxations
for a variety of combinatorial optimization problems (IP). Starting point is an integer scheme
¢:R" — R" that is bounded from above by one on the polyhedron Rp of interest, i.e.,

qﬁ(x) <1 Vx € Bp.

Such a scheme gives rise to a canonical set packing relaxation. The relaxation involves a
conflict graph & = (U, €). & has a node for every coordinate in the scheme’s image, i.e.,
B ={1,...,n'}. We draw an edge uv between two nodes if ¢ cannot attain its maximum
value of one in both components simultaneously:

up € €: <= ¢, (x) + dp(x) <1 Vo € Pp.

In this case, we say that u and v are in conflict. By construction, we have

2.1 Lemma ]\5531:(@5) 2 ¢(FPp).

Lemma 2.1 states that the set packing problem associated with the conflict graph & is a set
packing relaxation of (IP). Note that it is not possible to replace Pgsp(®) with Psgp (&),
because the scheme ¢ can attain negative values, see again Fig. 1.

Such a set packing relaxation gives rise to expanded cycle inequalities and expanded orthonor-
mal representation constraints that can serve as cutting planes for Kp. These are, however,
not always automatically polynomial time separable. The set packing relaxations that come
up in the applications that we have in mind often involve algorithmically intractable conflict
graphs of exponential size. We cannot expect to resolve this difficulty in general. But we will
see in the forthcoming examples that it is often possible to set up a significant relaxation

P" D Pgsp(®)

of ]\5531:(@5) that is still exponential, but has a special structure that makes it algorithmically
tractable. To get a strong relaxation of set packing type, we construct this further relaxation
again as a set packing relaxation associated with a large, but simply structured subgraph of
the conflict graph &.

We resort to equivalence relations to extract an exponential conflict graph of simple structure
from & = (0, &). Namely, an equivalence relation ~ on the conflict nodes U gives rise to a
subgraph ® = (1, é) by setting

wee:— wo'e¢ W eu#b]>v.

Here, [u] denotes the equivalence class that contains u. The maxima are taken componentwise.
The equivalence relation extracts & from & by keeping only those edges that run between two
different equivalence classes that are completely in conflict. Note that, in particular, edges
inside equivalence classes are deleted. Fig. 2 illustrates this construction. Our applications
involve exponential conflict graphs based on cuts, cycles, and paths; typical equivalence classes
are sets of such structures with properties that make them interchangeable for the purpose
of constructing certain types of inequalities. To resort to® is to focus on class wide conflicts,
ignoring possible additional conflict edges.

Our motivation for constructing a weakened set packing relaxation in this way is that this
makes separation easier. The main property is that most violated cycle, clique, and or-
thonormal representation constraints have a very restricted support. Namely, denote for each
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Figure 2: Constructing a Class Conflict Set Packing Relaxation.

2/ € R and every equivalence class [o] by
0], == argmax a7,

a representative from [b] of maximum 2’/-value, breaking ties, say, by index, and collect these
nodes in the set

B, = {[v],y : 0 € V}.

We claim that not every, but a most violated cycle, clique, or orthonormal representation
constraint for Pggp(®) must have its support contained in 2,.

2.2 Lemma Let ® = (U, ¢) be a graph and ~ an equivalence relation on . Let 2 € R®
be a vector and %,/ a set of equivalence class representatives of maximum a/-value. Let
& = (%, €) be the subgraph of & associated with ~ and Fssp(ﬁ) the corresponding set
packing polyhedron.

(i) There is a clique inequality for pssp(é) most violated by 2/ that has support only in
B,

(ii) There is a cycle inequality for psgp((’g) most violated by 2/ that has support only in
B,.

(iii) There is an orthonormal representation constraint for Pggp(®) most violated by a’ that
has support only in U,.

Proof. (i) Consider a clique Q in & such that the associated inequality 2/(Q) > 1 has a
maximum left-hand side; note that we have > because the inequality was, by assumption,
violated. Note also that £ contains at most one node from every class [v], because the classes
are stable sets. Suppose the claim does not hold and there is a clique node v € £ different from
[0],7. Exchanging v and [v],/, however, produces a clique in ® whose associated inequality is
at least as violated as the original one, a contradiction.

(ii) The cycle inequalities are similar, but need one additional thought. Namely, it may
happen that a most violated cycle inequality 2/(€) > ||€|/2] contains two (or more) nodes
from some class [b]. It is not hard to show, however, that such an inequality can be broken
up into a sum of two cycle inequalities of smaller support, one even and one odd, where the
odd component is at least as violated as the original inequality.



(iii) Consider an orthonormal representation u, € Rf, v € U, and ¢ € RF of Q~5, ie., |up| =1,
uguy = 0 for vu ¢ ¢, and |¢| = 1, and an associated most violated constrainty ., co;(cuy )%z, >
1. Suppose there is a node v in the support of this inequality different from u := [v]..
But then one can construct an orthonormal representation constraint with strictly smaller
support that is at least as violated as the original one. The reader can verify that ¢, := uy
for w # v,u, u = 0, ul, = (cTuy - uy + cTuy - up)/v/(cTuy)? + (cTuy)?, ¢ = c is the right
choice. O Lemma 2.2 implies that the separation problem for cycle, clique,

and orthonormal representation constraints for Pssp(é) can be solved on the graph é[%xl]
that is induced by the equivalence class representatives of maximum 2/-value. The structure
of this graph is invariant under «’, only the z'-values of the nodes change. More precisely,
&[] is isomorphic to the following (equivalence) class conflict graph &/~ = (L /~, E/~).
&/~ has a node for every equivalence class, i.e., ¥/~ := {[p] : b € L}, and an edge for any
two conflicting classes, i.e.,

o] € €/~ :e= Wo' €& W' €u#[o] 3.

We can thus resort to the class conflict graph &/~ to separate cycle, clique, and orthonormal
representation constraints for Pssp(é). A final expansion yields what we call inequalities
from cycles, cliques, and orthonormal representations of equivalence classes that can serve as
cutting planes for Rp.

We remark that Lemma 2.2 carries over to the facets Of.\pssp(é) in general. In fact, ® arises
from &/~ by a substitution of a stable set of size |[v]| for every node [v]. Chvatal (1975)’s
[7] polyhedral results on substitution imply that all facets of Fssp(aﬁ) can be obtained from
facets of PSSP(Qi /~) by, roughly speaking, choosing some representative for any class and
copying the associated coefficients, the left-hand side, and setting everything else to zero.

A convenient extension of the notion of class conflicts is to consider general sets instead of
equivalence classes, i.e., to base the construction of ® on families B; from a general set system
V = {21,...,V,} instead of equivalence classes. It is not hard to see (though notationally
awkward) that one can reduce the former case to the latter by appropriate modifications
of the underlying scheme, leaving out coordinates outside | JU; and duplicating others that
appear in more than one family. Doing so results in a family conflict graph that we denote
by &/V and its associated inequalities from cycles, cliques, and orthonormal representations
of families. These are the inequalities that we are going to use in our examples.

We summarize the procedure to separate from Hp some point x.

(i) Set up the family conflict graph &/V.

(ii) For each family 20 € V, solve the mazimum representative problem

max ¢y(z), veW
to determine the set of representatives %,y of maximum ¢(x)-value.
(iii) Separate ¢xg, , from Pgsp(6/V).
(iv) If a violated inequality @’*z” > o/’ has been found, expand it to obtain
n'T, " n'T

a <I>Q;¢(m).x >a +a ¢0%¢(I)

as a cutting plane.



Whenever the family conflict graph can be constructed in polynomial time (and has, in
particular, polynomial size), and the max representative problems are solvable in polynomial
time, this procedure yields classes of polynomial time separable expansions of cycle, clique,
and orthonormal representation constraints from set families that can serve as cutting planes
for Pp.

The remainder of this section discusses applications of this construction to the set covering
problem, the Steiner tree problem, and the asymmetric travelling salesman problem.

2.1 The Set Covering Problem
The set covering problem (SCP) is the integer program
(SCP) min wlz, Az>1, zeZ",

where A € {0,1}™*" and w € Z"}. The associated polyhedron is Rcp.

The set packing relaxation that we suggest is based on the aggregation scheme ¢ : B — RY
defined as

() ::1—2:1:]- VJ C{1,...,n}.
Jj€J
Here, we take U := 2{1-7} ag the set of all subsets of column indices of A.
This scheme induces an exponential conflict graph & = (U, ) that records pairwise conflicts
of column sets of the matrix A. Namely, there is an edge between two sets I and J of columns
when their union covers a row of A, or, equivalently, some variable in I U J has to be set to
one:

IJe¢ < JA, DITUJ.

2.3 Lemma ¢(Pscp) C Pssp(®).

This set packing relaxation has been considered by Sekiguchi (1983) [15] in a special case. He
studies zero-one matrices A with the property that the column indices can be partitioned
J o={1,...,n}

ve2J
into nonempty column sets v such that (the support of) each row 4. is the union of exactly
two such column sets, i.e., VA,. : Ju,0 € 2 : u # v : suppA,. = u U v. Fig. 3 shows an
example of a 0/1 matrix that has such a Sekiguchi partition 20.
Sekiguchi (1983) [15] shows that for a 0/1 matrix A that has a Sekiguchi partition 20, it is not
only true that ¢(Pscp) = PSSP(®[fm]), but, even more, that the facets of Rcp are exactly
the expansions of the facets of Psgp(&[20]).
We mention the odd hole inequalities for the SCP, see, e.g., Cornuéjols & Sassano (1989) [8],
as one example for a class of inequalities that can be obtained from a set packing relaxation
in the sense of Sekiguchi. In this context of set covering, the term odd hole is commonly used
to refer to the edge-node incidence matrix A(2k +1,2) = A(C(2k +1,2)) € REFDxCE+1) of
the circulant graph C'(2k + 1,2), or, in other words, A(2k +1,2); =1if j=ior j=i+1
(mod 2k + 1) and 0 otherwise. The associated odd hole inequality for Bcp(A(2k + 1,2)) is

2k+1
> iz k41,
=1
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Figure 3: A Sekiguchi Partitionable 0/1 Matrix.

2.4 Proposition Every odd hole inequality for Rycp(A(2k 4 1,2)) is the expansion of an
odd cycle inequality for Pssp(&(A(2k + 1,2))).
We omit the simple proof of this proposition. Turning back to the general case, we give

instead an example of an expanded cycle inequality that cannot be obtained from a Sekiguchi
relaxation. The matrix A on the left of Fig. 4 gives rise to a 5-cycle € in & formed by the

Vo
‘123456789 04
11111 . . . . .
M) ) ()
A=3 . . . 11111 . . 01
4. o o0 0 111
51 1 . . . . . 11 v3
02

Figure 4: A Not Sekiguchi Partitionable 0/1 Matrix and a 5-Cycle of Columns.

nodes vy = {1,2,3}, vy = {4}, va = {5,6}, v3 = {4,7}, and vy = {8,9}. A is not Sekiguchi
partitionable, because v3Uvy = {4,7,8,9} D {7,8,9} = supp Ay. and vyUvy = {1,2,3,8,9} D
{1,2,8,9} = supp A;.. An expansion of the odd cycle inequality corresponding to € yields

4
Z ¢Ui ('T) S 2
=0

= (l-m—x2—23)+(1—24)+ (1 —a5—26) + (1 —24 —27)
+(1—.T8—.T9) §2
<— x1+ 22+ T3+ 204 +x5 + X6+ 7+ T8+ T9 > 3.
Looking at the separation of inequalities for Fycp from the set packing relaxation psgp(@),

we can obtain polynomially separable classes applying family conflict techniques. Namely,
consider for each ordered 2-tupel (i, j) of different column indices i and j the family

Sij = {4\ {4} A 2 {i,j}}



Here, we identify the rows A;. of the matrix A with their support sets. The family §;; arises
from collecting all rows covering columns 4 and j, and removing column j from these rows.
We call such a family §;; an (4, j)-family. The number n(n — 1) of (i, j)-family is polynomial.
Moreover, the maximum representation problem

max 1 —z(F), F € 3

can be solved in polynomial time simply scanning the matrix rows. This implies:

2.5 Theorem Inequalities from cycles, cliques, and orthonormal representations of (i,7)-
families for the set covering problem can be separated in polynomial time.

These inequalities are, to the best of our knowledge, the only known combinatorial class of
polynomial time separable inequalities for general set covering problems. Fig. 5 gives an

Figure 5: A 5-Cycle of (i, j)-Families.

example of this construction. The matrix A contains the circulant A(5,2), which gives rise
to a 5-cycle of (i,7)-families. The families are §9o = {{1,6},{1,3,7},{1,3,5,7}}, &3 =
{{17 2, 7}7 {27 4,6, 8}7 {17 2,9, 7}}7 $Ba = {{27 3,6, 8}}7 45 = {{4}}7 and §51 = {{27 3,9, 7}}
The gray shaded numbers indicate one of the possible cycles of representatives that can be
extracted from this meta-structure, namely, the cycle induced by the column sets {1,6} € L,
{1,2,7} € Vo3, {2,3,6,8} € Vsy, {4} € Vs, and {2,3,5,7} € Vs;. This cycle gives rise to
the inequality

2301—1—3302+2x3+x4+x5+2x6+2x7+x823.

Depending on the value of z, choosing other representatives from the families might lead to
a better inequality. Theorem 2.5 guarantees that the most violated inequality that can be
constructed in this way, over all possible families, can be found in polynomial time. The
reader will have noticed that this class includes, among others, a large class of lifted odd hole
inequalities for the set covering problem.

The (i,7)-families do not give rise to significant clique inequalities. We remark, however,
that one can construct, say, (i, j, k, [)-families involving more indices, that support clique and
orthonormal representation constraints.



2.2 The Steiner Tree Problem

The Steiner tree problem in directed graphs involves a digraph D = (V, A) with weights
we € QT on its arcs and a node set T' C V of terminals, one of them, say r € T, is the root.
A Steiner tree is a set S C A of arcs that contains a directed path from the root r to every
terminal ¢ # r. A Steiner cut is a cut of the form & (1) that separates the root r € W from
one or more terminals. The Steiner tree problem (STP) is to find a Steiner tree of minimum
weight. We suggest Chopra & Rao (1994a;b) [5; 6] as references.

An IP formulation of the STP is

(STP) min wlz, Az>1,z¢€ 7,

where w € Z7 and A € {0,1}**" is the cut-arc incidence matrix of all Steiner cuts. The
associated polyhedron is Pstp.

The formulation (STP) shows that the Steiner tree problem is, in fact, a set covering problem.
Its special characteristic is the exponential matrix A, which is given only implicitly. This,
however, is no obstacle for the application of our results on set covering as we will see now.
The translation of the results of Subsection 2.1 into the Steiner tree context is as follows. The
STP involves arc variables, giving rise to (a,b)-families

Fap = {6T W)\ {b} : 67 (W) D {a,b} a Steiner cut}.

One obtains such a family by collecting all Steiner cuts that contain two arcs a and b; removing
from each such cut the arc b yields the family U,;. The number of (a, b)-families is |A|(|A|—1).
The maximum representation problem

max 1 —z(F), Feguw
is equivalent to a min-Steiner cut problem involving fixed arcs:
min z(F), F' is a Steiner cut containing arcs a and b.

It is not hard to see that this problem can be solved in polynomial time. Calling the members
of the families §,p Steiner protocuts, we have:

2.6 Theorem Inequalities from cycles, cliques, and orthonormal representations of Steiner
protocuts for the Steiner tree problem can be separated in polynomial time.

Fig. 6 gives a schematic drawing of an example of such a cut, as it might come up, e.g., in
VLSI design. The grid sketches a planar grid digraph (each edge represents two antiparallel
arcs). There are six highlighted terminal nodes, the root r and five ordinary terminals #. The
highlighted arcs belong to five Steiner protocuts vy, ..., 5. Protocut v; separates the root r
from terminal t; except for a single “crossing arc” @41, which misses in b;, but is contained
in the succeeding protocut v;1 (indices larger 5 are taken modulo 5). @, as, a4, and as
are diagonal arcs, which have been added to make the drawing easier, while ¢ illustrates a
“genuine grid graph crossing”.

The crossing arcs ay, . .., a5 give rise to a 5-cycle of (a, b)-families, namely, the families §,,q,,
Sasas, Bazass Sasass aNd Faga,. Fig. 6 shows one of the many cycles of protocuts that are
encoded in this structure. Steiner protocut bv;, which represents §4,q,,,, is in conflict with
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Figure 6: A 5-Cycle of Steiner Protocuts in a Planar Grid Digraph.

the succeeding protocut v;;1, which represents ;. ,4;,,- The inequality associated with this
cycle of protocuts is

5

5 5
D o (x) <2 = Z(l—z;ta> <2 = > D w. >3
=1

=1 acv; 1=1 a€y;
Choosing other protocuts from the families §,q4,,, results in alternative cycles of protocuts
and different inequalities. Theorem 2.6 states that a most violated inequality of this type,
over all protocuts of all (a,b)-families, can be separated in polynomial time.

2.3 The Asymmetric Travelling Salesman Problem

Let D = (V, A) be a complete graph on n nodes with weights v, € Q' on the arcs. A tour
is a directed hamiltonian cycle in G that visits every node exactly once. The asymmetric
travelling salesman problem (ATSP) asks for a tour of minimum weight.

An TP formulation of the ATSP is

(ATSP) min wlz, Az >1, (67 (v)) =z(6 (v)) =1Vv eV, z € Z,

where A € {0,1}®*4 is the cut-arc incidence matrix of all directed cuts of the form (W),

11



) #W C V. The ATSP can hence be seen as a set covering problem with additional in- and
out-degree constraints. As in the STP, the cut-matrix A is given implicitly.

The ATSP has several interesting set packing relaxations. A classical one, due to Balas
(1989) [1], comes up directly in the space of original variables, i.e., by choosing the identity
as a scheme. The conflicts of this relaxation are based on pairs of incompatible arcs, or, as
we like to see it, on conflicts of degree constraints. The cycle inequalities of this relaxation
are known as the odd closed alternating trail inequalities. The separation problem has been
solved by Caprara & Fischetti (1996) [4].

We are now going to suggest a relaxation that is based on conflicts of cuts. We consider the
scheme ¢ : R* — RY defined as

ba(@)i=1—2(8)  VACI(W)0AW V.

Here, we take U := {A C §"(W),0 # W C V} as the set of all subsets of cuts 6" (W),
D£WCV.

The scheme induces an exponential conflict graph & = (U, &) that is based on conflicts of
pairs of arc sets whose union forms a cut, i.e.,

TA€E < WAWCV:657(W)CTUA.

2.7 Lemma Cb(PATSP) g Fssp(ﬁ).

To derive polynomial time separable classes of inequalities from this relaxation, we consider
for each ordered pair of arcs the (a,b)-families

Fap = {6 (W) \ {b} : 67 (W) 2 {a,b},0 #W C V}.

These families are, in fact, exactly the (a,b)-families that one obtains from the above men-
tioned set covering relaxation of the ATSP, and they have the same combinatorial properties
as in the STP. We call a member of such a family a protocut. The number of protocut families
is |A|(|A] — 1), and the maximum representation problem

max 1—z(F), FeSw
is similar to the STP, in fact, a little easier, as we do not go for Steiner cuts, but for general
cuts.

2.8 Theorem Inequalities from cycles, cliques, and orthonormal representations of protocuts
for the asymmetric travelling salesman problem can be separated in polynomial time.

As far as we know, these classes and separation algorithms are new.

3 Knapsack Relaxations

For various combinatorial optimization problems one can construct natural knapsack relaz-
ations in complete analogy to the set packing case. Our aim in this section is to give examples
of how one can use such a relaxation to produce cutting planes as expansions of inequalities
from the knapsack polytope.

The (0/1) single knapsack problem can be stated as

(SKP) max w'z, a'z<a, zc{0,1}.
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Here, a,w € Zfr are vectors of non-negative integer weights and values, respectively, of the
set of items I, and o € Z, is the knapsack capacity. We denote the associated knapsack
polytope by Pskp = Pskp(a, ).

Basic inequalities for Pskp are cover inequalities, see, e.g., Wolsey (1975) [18], (1, k)-configuration
inequalities, see Padberg (1980) [12], and weight and extended weight inequalities, see Weis-
mantel (1997) [16].

The remainder of this section gives two examples of knapsack relaxations for the multiple
knapsack and the node capacitated graph partitioning problem.

3.1 The Multiple Knapsack Problem

The multiple knapsack problem is the integer program

(MKP) max Z Z Wi T,

il keK
(i) Zaixik < a VkeK
el
(ii) Yooag = 1 Viel
keK
(ii) r € {0,1}*K,
Here, I = {1,...,n} is a set of items of nonnegative integer weights and profits a,w € Z ,

that can be stored in a set K of knapsacks of capacity a each. Associated with the MKP is
the polytope Pkp-

One class of valid inequalities for the multiple knapsack polytope are the multiple cover
inequalities of Wolsey (1990) [17]: Given a subset K’ C K of knapsacks and a subset I' C [
of items such that }",_; a; > |K'|a, the multiple cover inequality reads

SN a1
i€l keK'

It can be derived from a single knapsack relaxation of the MKP.
The appropriate aggregation scheme ¢ : R*X — R! is defined as

qbZ(ZL‘): szk Vi e I.
keK'

3.1 Lemma ¢(Pyxp) C Pskp(a, |[K'|a).

3.2 Theorem Every multiple cover inequality for Bykp is an expansion of a cover inequality
for Pskp(a, |K'|a).

Lemma 3.1 suggests to apply not only covers, but also (1, k)-configurations, weight and ex-
tended weight inequalities with their separation routines to the MKP. These classes are new.

3.2 The Node Capacitated Graph Partitioning Problem

We study in this subsection the node capacitated graph partitioning problem (cap-MCP). Given
a graph G = (V, F) with node and edge weights f € ZK and w € ZF, respectively, a fixed
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number k, and a clique capacity F' € Z,, the feasible solutions of the node capacitated graph
partitioning problem are the k-multicuts of the complete graph K, such that the constraints

Z Te > 1 for all trees T' C E such that Z fo>F
ijeT veV(T)

hold. An IP formulation reads

max E Wi Lij

ijEE

(i) Yoo a <IEW)| -1 VWOV W] =k+1
ijEE(W)

(ii) LTij — Tjk — Tik < 0 \ {Z,j,k‘} - \%4

(iii) Z ze > 1 V trees TCE: f(V(T)) > F

ijeT

(iv) —25 <0 VijeE

(V) Tij < 1 Vije E

(Vl) Tij € Z VijekFE.

(cap — MCP)

A class of inequalities for the Fap—mcp that takes node weights into account are the knapsack
tree inequalities of Ferreira et. al. (1996) [9]. These constraints are based on a tree 7' rooted
at some node 7. If we denote the (unique) path from r to every node v € 7 by P,, a knapsack
tree inequality reads

Z av<1_ Z l‘z‘j) < aq,

veV (Ty) ijEP,

where aly < « is valid for the single knapsack polytope Rskp(f, F). This inequality can be
derived with the scheme ¢'" : R — RY defined as

0 otherwise.

¢ZT(J)) — {1 — ZijEPv Tij Yv € V(Tr)

3.3 Lemma ¢’ (Peap—mcp) € Peskp(f, F).

3.4 Theorem Every knapsack tree inequality for R.,_mcp is an expansion of a valid in-
equality for Pskp(f, F).
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