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Abstract

Symplectic methods, like the Verlet method, are a standard tool for
the long term integration of Hamiltonian systems as they arise, for ex-
ample, in molecular dynamics. One of the reasons for the popularity of
symplectic methods is the conservation of energy over very long periods
of time up to small fluctuations that scale with the order of the method.
In this paper, we discuss a qualitative feature of Hamiltonian systems
with separated time scales that is also preserved under symplectic dis-
cretization. Specifically, highly oscillatory degrees of freedom often lead
to almost preserved quantities (adiabatic invariants). Using recent re-
sults from backward error analysis and normal form theory, we show that
a symplectic method, like the Verlet method, preserves those adiabatic
invariants. We also discuss step-size restrictions necessary to maintain
adiabatic invariants in practical computations.

1 Introduction

It is well-known (see [12], for example) that symplectic discretization schemes
possess particularly attractive properties when applied over long time1 to Hamil-
tonian systems

d

dt
q = M−1p ,

d

dt
p = −∇qV (q) ,

q, p ∈ IRn, V : IRn → IR the potential energy function, and M the positive
definite mass matrix. In fact, it can be shown that a symplectic method such
as the Verlet method [15]

pn+1/2 = pn − Δt

2
∇qV (qn) ,

qn+1 = qn +ΔtM−1pn+1/2 ,

pn+1 = pn+1/2 − Δt

2
∇qV (qn+1) ,

1One must consider N Δt � 1, where Δt is the discretization step-size and N is the number
of discretization steps.
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can be considered as the “almost” exact solution to a modified Hamiltonian
system [5, 7, 10]. The remarkable consequence of this backward error approach
is the conservation of energy by a symplectic integrator [5, 7, 10]. To be more
precise: The symplectic method will conserve a modified Hamiltonian H̃ which,
due to the discretization error of the method, is O(Δtp), p ≥ 1 the order of the
method, away from the given Hamiltonian

H(q, p) =
pTM−1p

2
+ V (q) .

Thus, if we plot the energy function H along the numerically computed trajec-
tories, we will observe O(Δtp) fluctuations about the initial value of H but no
secular drift. Note that the energy function H̃ is known to exists by backward
error analysis but, except for simple cases, is difficult to compute explicitly.

Conservation of energy by a symplectic method cannot explain the success of
such methods in long term simulations such as molecular dynamics. The reason
is that any numerically method can be forced to conserve energy by a simple
projection step onto the hypersurface of constant energy. In this paper, we like
to bring forward another reason for the superiority of symplectic methods in
long term simulations. In particular, we will look at Hamiltonian systems with
two well separated time scales with the fast motion being highly oscillatory.
Theoretical results predict that (at least in the case of a single fast degree of
motion) the system will possess an adiabatic invariant [1], i.e., there is a quantity
that is practically conserved along trajectories. Note that an adiabatic invariant
is not a first integral although both lead to conserved quantities. While a first
integral is related to symmetries, adiabatic invariants are caused by the existence
of different time scales in the solution behavior. We will show that a symplectic
method such as Verlet will conserve the adiabatic invariant provided the step-
size is chosen small enough. This result seems important. Adiabatic invariants
are often hidden, i.e., are not explicitly given like the energy function H . Thus
a non-symplectic energy conserving scheme might lead to qualitatively wrong
results because of the non-conservation of the “hidden” adiabatic invariant(s).

The paper is organized as follows: In Section 2, the model problem is in-
troduced and first numerical results are presented. In Section 3, the numerical
findings are explained theoretically. Our analysis is based on normal form theory
[1] and backward error analysis [12]. More advanced topics concerning step-size
restrictions are discussed in the final section. For a discussion on related issues
in the context of implicit symplectic methods and very large step-size integration
(w.r.t. the fast motion) see Ascher & Reich [2].

2 The Model Problem

Let us consider a Hamiltonian system with a single highly oscillatory degree of
freedom, i.e., a system of type

d

dt
q = M−1p , (1)

d

dt
p = −∇qV (q)− ε−2g(q)∇qg(q) (2)
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with Hamiltonian

H(q, p; ε) =
pTM−1p

2
+ V (q) +

ε−2

2
g(q)2 . (3)

Here 0 < ε < ε0 is a small parameter and g : IRn → IR a smooth function such
that the Jacobian g′(q) satisfies |g′(q)| > d for q ∈ g−1(0), d > 0 an appropriate
constant. Without loss of generality, we set M = I and restrict ourselves to
systems with two degrees of freedom, i.e., q, p ∈ IR2.

The behavior of our model system becomes more apparent when going to
(local) coordinates x := g(q) and y := b(q). Here b : IR2 → IR is an appropriate
function such that g′(q)b′(q)T = 0 for all q in the domain of the coordinate
transformation. The corresponding conjugate momenta px and py are implicitly
defined by the relation

p = px∇qg(q) + py∇qb(q) .

Thus we end up with the transformed Hamiltonian system

d

dt
x = mx(x, y)px ,

d

dt
px = −ε−2x−∇xV (x, y)− 1

2
∇x

[
mx(x, y)p

2
x +my(x, y)p

2
y

]
,

d

dt
y = my(x, y)py ,

d

dt
py = −∇yV (x, y) − 1

2
∇y

[
mx(x, y)p

2
x +my(x, y)p

2
y

]
with mx(x, y) := g′(q)g′(q)T and my(x, y) := b′(q)b′(q)T .

The initial conditions are chosen such that the corresponding total energy
H(ε) remains bounded as ε → 0. Thus, by conservation of the total energy
H(ε) = O(1) we know that x(t) = O(ε) and we rescale x by ε, i.e., we replace
ε−1x by x̃. This yields the system

d

dt
x̃ = ε−1mx(εx̃, y)px ,

d

dt
px = −ε−1x̃−∇xV (εx̃, y)− 1

2
∇x

[
mx(εx̃, y)p

2
x +my(εx̃, y)p

2
y

]
,

d

dt
y = my(εx̃, y)py ,

d

dt
py = −∇yV (εx̃, y)− 1

2
∇y

[
mx(εx̃, y)p

2
x +my(εx̃, y)p

2
y

]
which is still Hamiltonian but with a modified Lie-Poisson bracket (see [10]
for details). The motion in (x̃, px) is highly oscillatory. To make this more
transparent, we introduce action-angle variables2 (J, φ) ∈ IR × S via

x̃ =
√
2ω(y)J cosφ ,

px =

√
2J

ω(y)
sinφ ,

2Because ω depends on y, the symplectic transformation to action-angle variables is non-
trivial. In fact, the transformation also involves a small O(ε) change in the momentum py

which, for notational convenience, we skip here. See [10] for details.
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and

J :=
1

2ω(y)

[
ω(y)2p2x + x̃2

]
, (4)

ω(y) =
√
mx(0, y), which finally gives us a system of type (see [10] again for

details)

d

dt
φ = ε−1ω(y) +∇Jf(φ, J, y, py; ε) ,

d

dt
J = −∇φf(φ, J, y, py; ε) ,

d

dt
y = ∇pyh(y, py) + ε∇pyf(φ, J, y, py; ε) ,

d

dt
py = −∇yh(y, py)− ε∇yf(φ, J, y, py; ε)−∇yω(y)J .

Here f and h are well-defined functions. The corresponding Hamiltonian is

H(φ, J, y, py; ε) = ω(y)J + h(y, py) + εf(φ, J, y, py; ε) (5)

and the equations of motion are generated via (the non-canonical Lie-Poisson
structure)

d

dt
φ = ε−1∇JH(φ, J, y, py; ε) ,

d

dt
J = −ε−1∇φH(φ, J, y, py; ε) ,

d

dt
y = ∇pyH(φ, J, y, py; ε) ,

d

dt
py = −∇yH(φ, J, u, py; ε) .

This certainly looks complicated. However, it allows us to apply normal form
theory which implies the adiabatic invariance of the action J . This will be
discussed in more detail in Section 3.

Let us give a brief history of our model problem. First theoretical results
were published by Rubin & Ungar [11] and Takens [14]. These authors gave re-
sults on the limiting behavior as ε → 0. More recently, Borneman & Schütte [6]
gave a different derivation for the limiting behavior using homogenization tech-
niques. Normal form theory has been used for the special case of ω = const.
by Benettin, Galgani & Gorgilli [4] which allows one to derive estimates on the
variations in the adiabatic invariant J for finite ε. A discussion of the general
case (non-constant ω) in terms of normal form theory can be found in [10].

Example. Let us define the function g in (1)-(2) by

g(q) =
√
aq21 + bq22 − 1 .

For a = b = 1, we obtain g(q) = r(q)− 1 which is the stiff spring pendulum [2].
As the potential energy function V we chose V (q) = q1. Thus the equations of
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motion are

d

dt
q1 = p1 ,

d

dt
q2 = p2 ,

d

dt
p1 = −a

√
aq21 + bq22 − 1√
aq21 + bq22

q1 − 1 ,

d

dt
p2 = −b

√
aq21 + bq22 − 1√
aq21 + bq22

q2 .

Next we have to find an expression for the adiabatic invariant J . Using general
expression (4), this requires the energy Hx in the fast x-degree of freedom:

Hx = ω(y)2
p2x
2

+
ε−2

2
x2 ,

=
pT g′(q)T [g(q)g′(q)T ]−1g′(q)p

2
+

ε−2

2
g(q)2 .

Here we have used that px = [g′(q)g′(q)T ]−1g′(q)p. The frequency ω is defined
by

ω =

√
a2q21 + b2q22
aq21 + bq22

.

Thus J = Hx/ω. Numerical experiments using the Verlet method were con-
ducted for a = 2 and b = 1, ε = 0.01, 0.02, 0.04, and step-sizes Δt ≤ ε. The
initial conditions were (q, p) = (−√

0.5, 0, 1, 1). The numerical results can be
found in Table 1 with

ΔJ := max
tn∈[0,100]

|J(0)− J(tn)| and ΔH := max
tn∈[0,100]

|H(0)−H(tn)| .

One can clearly see the quadratic convergence of the energy error as Δt/ε → 0.
It is also obvious that, for Δt/ε small enough, the error in the adiabatic invariant
depends linearly on ε. For large Δt/ε the error in the adiabatic invariant is dom-
inated by the discretization error. Note that, for Δt/ε ≈ 1, the high-frequency
oscillations in the (x, px)-degree of freedom are not correctly reproduced. Still
neither the energy nor the adiabatic invariant show any secular drift. We will
come back to this phenomenon in Section 4. �

3 Theoretical Results for Small Step-Sizes

In this section we review some basic results of backward error analysis and
normal form theory from the prospective of our model problem and its Verlet
discretization. For that reason, let us first introduce some notations. We write
the Verlet method as

zn+1 = ΨΔt(zn) , z = (qT , pT )T ∈ IR4 .
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Δt ε Δt/ε ΔJ ΔH
0.5e-3 0.1e-1 0.5e-1 0.10e-1 0.63e-3
0.1e-2 0.1e-1 0.1 0.11e-1 0.25e-2
0.2e-2 0.1e-1 0.2 0.16e-1 0.10e-1
0.4e-2 0.1e-1 0.4 0.40e-1 0.43e-1
0.8e-2 0.1e-1 0.8 0.17 0.23
0.1e-1 0.1e-1 1.0 0.36 0.50
0.5e-3 0.2e-1 0.25e-1 0.20e-1 0.16e-3
0.1e-2 0.2e-1 0.5e-1 0.20e-1 0.63e-3
0.2e-2 0.2e-1 0.1 0.21e-1 0.25e-2
0.4e-2 0.2e-1 0.2 0.26e-1 0.10e-1
0.8e-2 0.2e-1 0.4 0.48e-1 0.43e-1
0.1e-1 0.2e-1 0.5 0.69e-1 0.70e-1
0.2e-1 0.2e-1 1.0 0.38 0.50
0.5e-3 0.4e-1 0.12e-1 0.40e-1 0.39e-4
0.1e-2 0.4e-1 0.25e-1 0.40e-1 0.16e-3
0.2e-2 0.4e-1 0.5e-1 0.40e-1 0.63e-3
0.4e-2 0.4e-1 0.1 0.41e-1 0.25e-2
0.8e-2 0.4e-1 0.2 0.46e-1 0.10e-1
0.1e-1 0.4e-1 0.25 0.50e-1 0.15e-1
0.2e-1 0.4e-1 0.5 0.88e-1 0.70e-1
0.4e-1 0.4e-1 1.0 0.40 0.50

Table 1: Preservation of the adiabatic invariant J and total energy H under the
Verlet discretization.
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The equations of motion are given more compactly by

d

dt
z = {id, H(ε)}(z)

{., .} the canonical Lie-Poisson bracket, H(ε) the Hamiltonian (3) and id : IR4 →
IR4 the identity map. The time-t-flow map is denoted by Φt,H . We also assume
that the Hamiltonian H(ε) is real-analytic on an appropriate (compact) subset
K of phase space and that the real analytic vector field ZH := {id, H(ε)} is
bounded on a complex neighborhood3 BRK of K. For our model problem, this
bound will, typically, be of the form

|| {id, H(ε)}(z) || ≤ ε−1 M , z ∈ BRK ,

M > 0 an appropriate constant, for all ε ≤ ε0.
For a symplectic method like Verlet, backward error analysis is concerned

with finding a family of modified Hamiltonian functions H̃(ε,Δt) such that the
time-Δt-flow map ΦΔt,H̃ of the corresponding Hamiltonian vector field ZH̃ is

“equivalent” to the discretization map ΨΔt. As first shown by Neishtadt4 [9],
the difference between ΦΔt,H̃ and ΨΔt can be made exponentially small in Δt.
For our model problem and the Verlet discretization, we obtain in particular

||ΨΔt(z)− ΦΔt,H̃(z) || ≤ c1 α e−c2/α , α := ε−1Δt ,

for all α ≤ α0. Here c1, c2 > 0 are appropriate constants proportional to
M/R and α0 > 0 some constant with α0 ≤ c2 [10]. Note that, for the Verlet
method, the Taylor expansion of the modified Hamiltonian H̃(ε,Δt) w.r.t. Δt is
given by the Baker-Campbell-Hausdorff formula [12]. Thus H̃(ε,Δt) is known
to exist globally on K. Since the Verlet method is second order, the modified
Hamiltonian H̃ satisfies

H̃(ε,Δt) = H(ε) + α2ΔH(ε,Δt) (6)

with H(ε) given by (3) and

|ΔH(z; ε,Δt) | ≤ c3 , z ∈ BR/2K ,

c3 > 0 a constant proportional to M/R.
In the sequel, we assume that the numerically computed solutions stay on the

(compact) subset K throughout the whole numerical integration. This implies
conservation of the Hamiltonian H(ε) up to terms of order O(α2), α = Δt/ε,
over exponentially long integration intervals provided α is sufficiently small. For
example, Δt = O(ε2) which, however, leads to extremely small time steps. We
will come back to this issue in Section 4. The α-dependence of fluctuations
in the numerically computed H(qn, pn; ε) is indeed confirmed by our results in
Table 1.

Let us now investigate the conservation of the adiabatic invariant J under the
Verlet discretization. For that reason, we transform the modified Hamiltonian
(6) to (φ, J, y, py) coordinates and denote the result by H̃(ε,Δt), i.e.

H̃(ε,Δt) = H(ε) + α2ΔH(ε,Δt) (7)

3BRK is the union of complex balls of radius R around each z ∈ K
4Different proofs for the same result were given by Benettin & Giorgilli [5], Hairer & Lubich

[7], and Reich [10]
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with

|ΔH(φ, J, y, py; ε,Δt) | ≤ ĉ3 , (φ, J, y, py) ∈ BR̂/2K̂ ,

for ε ≤ ε0 and Δt sufficiently small. Here superscript “hat” denotes the corre-
sponding transformed quantities. Using (5), we rewrite (7) as

H̃(ε,Δt) = ω(y)J + h(y, py) + εf(φ, J, y, py; ε) + α2ΔH(φ, J, y, py; ε,Δt) ,

= ω(y)J + h(y, py) + δ w(φ, J, y, py; ε,Δt) ,

with

δ w(φ, J, y, py ; ε,Δt) := εf(φ, J, y, py; ε) + α2ΔH(φ, J, y, py; ε,Δt)

and δ := ε+ ĉ3α
2, and apply normal form theory with δ as the small parameter5.

In particular, let us assume that |ω(y)| ≥ 1, |h(y, py)| ≤ d, |w(φ, J, y, py; ε,Δt)| ≤
d, and |ω′(y)| ≤ 1 for all (φ, J, y, py) ∈ BR̂/2K̂, ε ≤ ε0, and α ≤ α0, d > 0
some moderate constant. Then there exists a symplectic change of coordinates
(w.r.t. the non-canonical Lie-Poisson structure) that transforms the Hamilto-
nian H̃(ε,Δt) to

H̄(ε,Δt) = ω(ȳ)J̄ + h(ȳ, p̄y) + δw̄(J̄ , ȳ, p̄y; ε,Δt) +O(e−c4/δ)

with

δ = ε+ ĉ3α
2 , α = Δt/ε

as before and c4 > 0 an appropriate constant. Thus, up to an exponentially
small truncation error in δ, the action J̄ is a first integral of the transformed
system (since w̄ does not depend on φ̄). According to normal form theory
[9, 10], the change of coordinates is δ-close to the identity and the original
action J is preserved up to terms of O(δ) over an exponentially long period of
time. Depending on whether ε 	 α or ε 
 α, we will see an ε-dependence
or an α-dependence in the numerically computed action J(t). This is indeed
confirmed by looking at Table 1.

The results, outlined so far, are an example of a Hamiltonian system where
the Hamiltonian perturbation introduced by the numerical integration does not
alter the solution behavior in an essential way (at least w.r.t. the adiabatic
invariant J) [5]. The conservation of adiabatic invariants under symplectic dis-
cretization has also been confirmed numerically for other test problems. See, for
example, the results by Baldan & Benettin [3] on the “freezing” of fast rotations.

The life-span of the backward error analysis depends on the smallness of
α while the life-span of the normal form truncation depends on the smallness
of δ. To have α ∼ δ ∼ ε, one has to apply a step-size Δt = O(ε2) which, as
pointed out before, seems very inefficient. In particular, the Verlet method yields
a stable discretization of a harmonic oscillator with frequency ε−1 provided
Δt ≤ 2ε which corresponds to α ≤ 2 [13]. Clearly, backward error analysis as
presented here cannot be applied in this case. This becomes also obvious from
the numerical results presented in Table 1 (note the large fluctuations in energy
and the adiabatic invariant for α = 1). Still we obtained stable numerically
results. An effect we like to explain in the following section.

5The basic result is again due to Neishtadt [9]. However, his proof requires modifications
since we work with a non-canonical Lie-Poisson structure [10]. A different proof has also been
given by Benettin, Galgani & Giorgilli [4] for the case of constant ω.
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4 Larger Step-Sizes and Backward Errors

For α = Δt/ε close to one, the motion in the highly oscillatory (x, px) degree of
freedom is not resolved accurately. However, the motion in (x, px) is basically
harmonic (with slowly varying frequency):

d

dt
x = ω2px ,

d

dt
px = −ε−2x .

Here ω = ω(y) is kept constant for the moment. The Verlet discretization
applied to this harmonic oscillator yields the (linear) one-step map

(
xn+1

px,n+1

)
=

(
1− Δtω2

2ε2 Δtω2

−Δt
ε2

(
1 + Δt2ω2

4ε2

)
1− Δtω2

2ε2

) (
xn

px,n

)

which, since the Verlet method is symplectic, can be considered as the exact (!)
time-Δt-flow map of the modified harmonic oscillator

d

dt
x = cω2

effpx ,

d

dt
px = −c−1ε−2x

with

ωeff (α) :=
2ε

Δt
arcsin

(
ωΔt

2ε

)

and

c :=
ω

ωeff

(
1− Δt2ω2

4ε2

)−1/2

.

The corresponding Hamiltonian is

Kx(x, px, y;α, ε) :=
c

2

(
ωeff (y;α)

2p2x + c−2ε−2x2
)

which is exactly conserved by the linear Verlet map6. This suggests to replace
the harmonic part Hx of the given model problem by the modified Hamiltonian
Kx. This should take care of the largest contributions to the local error for
α ∼ 1. Thus we define the following modified Hamiltonian

K(q, p;α, ε) := Kx(x, px, y;α, ε) +
pT b′(q)T [b′(q)b′(q)T ]−1b′(q)p

2
+ V (q)

with ω =
√
g′(q)g′(q)T , x = g(q), and px defined by

px := [g′(q)g′(q)T ]−1g′(q)p .

6The concept of postprocessing as used, for example, by Skeel, Zhang & Schlick in [13]
leads to the same result. However, the modified Hamiltonian approach used here fits better
to the concept of backward error analysis.

9



Δt ε Δt/ε ΔJmod ΔK Δω
0.2e-2 0.1e-1 0.2 0.10e-1 0.81e-4 0.48e-2
0.4e-2 0.1e-1 0.4 0.10e-1 0.35e-3 0.20e-1
0.8e-2 0.1e-1 0.8 0.10e-1 0.18e-2 0.90e-1
0.1e-1 0.1e-1 1.0 0.12e-1 0.37e-2 0.16
0.4e-2 0.2e-1 0.2 0.20e-1 0.16e-3 0.48e-2
0.8e-2 0.2e-1 0.4 0.20e-1 0.70e-3 0.20e-1
0.1e-1 0.2e-1 0.5 0.20e-1 0.11e-2 0.32e-1
0.2e-1 0.2e-1 1.0 0.23e-1 0.75e-2 0.16
0.1e-1 0.4e-1 0.25 0.40e-1 0.52e-3 0.75e-2
0.2e-1 0.4e-1 0.5 0.40e-1 0.23e-2 0.32e-1
0.4e-1 0.4e-1 1.0 0.47e-1 0.15e-1 0.16
0.5e-1 0.4e-1 1.25 0.10 0.12 0.33

Table 2: Preservation of the modified adiabatic invariant Jmod, the modified
total energy K, and the difference between the effective frequency ωeff (y;α)
and the “true” frequency ω(y) under the Verlet discretization.

Let us check if this can be verified numerically (at least) for our simple example
from Section 2.

Example (cont.). Almost all necessary ingredients were already given in the
previous discussion. We only need an explicit expression for the derivative b′(q).
Since the definition of the corresponding conjugate momentum py is invariant
under the scaling of b′(q) by an arbitrary non-zero expression, we formally define

b′(q) = (aq21 + bq22)
−1/2

(
bq2
−aq1

)

which yields

b′(q)b′(q)T = g′(q)g′(q)T = ω2 =
a2q21 + b2q22
aq21 + bq22

.

Numerical experiments were carried out using the same parameters and initial
conditions as in Section 2. The modified adiabatic invariant Jmod is given by

Jmod :=
Kx

ωeff
.

The computed results can be found in Table 2 with ΔJmod, ΔK respectively,
replacing ΔJ , ΔH respectively, from Table 1 and

Δω := max
tn∈[0,100]

|ω(tn)− ωeff (tn)| .

The numerical results indicate that, for α ≤ 1.0, the Verlet method yields
“accurate” solutions to the modified problem with Hamiltonian K. There are
a couple of crucial remarks to be made though: First, to leading order in ε
the (exact) slow motion in the (y, py) variable is determined by the reduced
Hamiltonian

Hred(y, py) = h(y, py) + Jω(y) .
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Numerically this is replaced by (again to leading order)

Kred(y, py;α) = h(y, py) + Jmodωeff (y;α)

which can be O(α) away from Hred! Thus not only the fast solution components
are wrongly approximated for α ∼ 1 but this wrong approximation also effects
the slowly varying solution components. Second, it is not obvious that, for
Δt → 0 and α = const., the solutions obtained from the Verlet method converge
to the exact solutions of the modified Hamiltonian K. In fact, we performed the
following numerical experiment: For our test example we have ω(y) ∈ [1,

√
2].

Thus, the linear stability limit of Verlet implies that we have to take α ≤√
2. The maximum error in energy for the Verlet method w.r.t. the modified

Hamiltonian K was computed for α ∈ [0.9, 1.4] and ε = 0.01, 0.02, 0.04. The
results can be found in Fig. 1(a). For α ≥ 1, the error in energy is quite
irregular and does not dependent in an obvious way on α or ε (or Δt = αε
for that matter). To find out about the source of this behavior, we also did a
numerical experiment with a = b = 2 which leads to the stiff spring pendulum
and ω =

√
2. See Fig. 1(b). Here a very regular behavior is found. Also the

error in the modified energy K decreases for smaller ε and fixed α. Note that,
according to Mandziuk & Schlick [8], numerically induced resonance instabilities
could occur at α =

√
3/

√
2 (3 : 1 resonance) and α = 1 (4 : 1 resonance) which

we do not observe for this test problem. Thus, the fluctuations in the energy for
the case a = 2 and b = 1 also seem to be of a different nature. We suspect a bad
approximation of the force term −∇yωeff (y;α)Jmod due to a very low sampling
rate for α ≥ 1 as the source of the problem7. As a practical recommendation
we suggest that the step-size Δt should be restricted to

Δt ≤ ε ω(y)−1

for all y along the numerically computed solutions. This choice insures that
at least four integration steps are taken per period of the fast oscillations with
frequency ωeff . Fig. 1 also suggests that a larger Δt can be used if ω = const.
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[6] Bornemann, F. and Schütte, Ch., Homogenization of Hamiltonian Systems
with a Strong Constraining Potential, Physica D 102, 57-77, 1997.

[7] Hairer, E. and Lubich, Ch., The Life-Span of Backward Error Analysis for
Numerical Integrators. Numer. Math. 76, 441-462, 1997.

[8] Manziuk, M and Schlick, T., Resonance in the Dynamics of Chemical Sys-
tems Simulated by the Implicit-Midpoint Scheme. Chem.Phys. Lett. 237,
525-535, 1995.

[9] Neishtadt, A.I., The Separation of Motions in Systems with Rapidly Ro-
tating Phase. J. Appl. Math. Mech. 48, 133-139, 1984.

[10] Reich, S., Habilitation Thesis, Berlin, 1997.

[11] Rubin, H. and Ungar, P., Motion Under a Strong Constraining Force,
Comm. Pure Appl. Math. 10, 65–87, 1957.

[12] Sanz-Serna, J.M. and Calvo M.P., Numerical Hamiltonian Problems, Chap-
man & Hall, London, 1994.

[13] Skeel, R.D., Zhang, G., and Schlick, T., A Family of Symplectic Integrators:
Stability, Accuracy, and Molecular Dynamics Applications, SIAM J. Sci.
Comput. 18, 203, 1997.

12



[14] Takens, F., Motion Under the Influence of a Strong Constraining Force, in:
Global Theory of Dynamical Systems, Lecture Notes Math. 819, 425–445,
1980.

[15] Verlet, L., Computer Experiments on Classical Fluids. I. Thermodynamical
Properties of Lennard-Jones Molecules, Phys. Rev. 159, 1029–1039, 1967.

13


