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Abstract

In molecular dynamics the highly oscillatory vibrations in the chemical
bonds are often replaced by holonomic constraints that freeze the bond
length/angle to its equilibrium value. In some cases this approach can
be justified if the force constants of the bond vibrations are sufficiently
large. However, for moderate values of the force constant, the constrained
system might lead to a dynamical behavior that is too “rigid” compared
to the flexible model. To compensate for this effect, the concept of soft
constraints was introduced in [7],[11],[12]. However, its implementation is
rather expensive. In this paper, we suggest an alternative approach that
modifies the force field instead of the constraint functions. This leads to
a more efficient method that avoids the resonance induced instabilities
of multiple-time-stepping [5] and the above described effect of standard
constrained dynamics.

1 Introduction

Classical molecular dynamics [1] leads to Hamiltonian equations of motion of
type

d

dt
q = M−1p ,

d

dt
p = −∇qU(q) ,

q,p ∈ R3N , M ∈ R3N×3N a symmetric, positive-definite mass matrix, and
U : R3N → R a potential energy function. In many cases, the potential energy
function U can be split into a part Ub describing the bond stretching and bond
angle bending modes, i.e.

Ub(q) :=
m∑

i=1

Ki

2
gi(q)

2

with Ki � 1 a force constant and gi : R3N → R an appropriate function,
i = 1, . . . ,m, and a remaining part Ul containing the Lennard-Jones and elec-
trostatic interactions. Using a more compact notation, we write

Ub(q) =
1

2
g(q)TKg(q) ,
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K ∈ Rm×m the diagonal matrix with entries kii = Ki and g : R3n → Rm,
g = (g1, . . . , gm)T . The corresponding equations of motion are

d

dt
q = M−1p ,

d

dt
p = −∇qU(q) = −∇qUl(q)−∇qg(q)Kg(q)

which can be discretized by the well-known Verlet method [16], i.e.

qn+1 = qn +ΔtM−1pn+1/2 ,

pn+1/2 = pn − Δt

2
∇qU(qn) ,

pn+1 = pn+1/2 −
Δt

2
∇qU(qn+1) .

However, if Ki � 1, a small step-size Δt of order ε with

ε−2 = max
i=1,... ,m

Ki ,

has to be used. This problem can be avoided by either using multiple-time-
stepping methods [8],[15],[4] or by replacing the bond stretching and bond angle
bending modes by holonomic constraints [1] which leads to the constrained
Hamiltonian system

d

dt
q = M−1p , (1)

d

dt
p = −∇qU(q)−∇qg(q)λ , (2)

0 = g(q) (3)

which can be discretized by the symplectic SHAKE or RATTLE method [10],
i.e.

qn+1 = qn +ΔtM−1pn+1/2 ,

pn+1/2 = pn − Δt

2
∇qU(qn)−

Δt

2
∇qg(qn)λn ,

0 = g(qn+1) ,

pn+1 = pn+1/2 −
Δt

2
∇qU(qn+1)−

Δt

2
∇qg(qn+1)μn ,

0 = ∂qq(qn+1)M
−1pn+1 .

The transition from a flexible model to a constrained system requires justifica-
tion. Let us assume that the matrix ∂qg(q)M

−1∇qg(q) is constant for all q
satisfying the holonomic constraint g(q) = 0. Then the following results can
be shown1 [2],[13] provided the constants Ki � 1, i = 1, . . . ,m, are sufficiently
large:

1These results do not hold if ∂qg(q)M−1∇qg(q) is not constant [14],[9].
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(i) The total energy in the bond stretching and bond angle bending modes is
almost constant over exponentially long periods of time2.

(ii) The flexible model reduces to the constrained system in the limit Ki → ∞,
i = 1, . . . ,m.

According to (ii), the constrained dynamics is valid in the limit of sufficiently
large force constants Ki. In typical molecular systems, like water, this assump-
tion is not necessarily satisfied and one observes that the constrained model
is too rigid compared to the flexible dynamics. In fact, one easily verifies by
numerical simulation that the flexible dynamics leads to fast oscillations about
the minimum of the total potential energy U along the bond stretching and
bond angle bending modes. This minimum is approximated by the holonomic
constraint g(q) = 0 only up to terms of size 1/Ki, i = 1, . . . ,m. A better ap-
proximation is obtained by using the following approximation of the minimum
of the total potential energy U along r = g(q):

∇rU(q) ≈ g̃(q) = 0

with the modified constraint function

g̃(q) := ∂qg(q)M
−1 ∇qU(q) .

This gives rise to the constrained Hamiltonian system

d

dt
q = M−1p ,

d

dt
p = −∇qU(q)−∇qg̃(q)λ ,

0 = g̃(q)

The modified equations of motion can still be discretized by the SHAKE or
RATTLE method. This approach was suggested in [7],[11],[12]. Note that the
evaluation of g̃ requires the computation of the long-range force field −∇qUl.
This is in contrast to standard constrained dynamics and implies additional
long-range force field evaluations per time step. However, noting that the
only significant contributions to the modified constraint function g̃ come from
nearest neighborhood interactions, the potential energy Ul can be split as in
multiple-time-stepping methods [8],[15],[4] and only the nearest neighborhood
interactions are included in the evaluation of g̃. In fact, the main disadvantage
of the formulation lies in the fact that it requires the computation of the
gradient of g̃ and thus the computation of the Hessian of U .

2 A Modified Potential Energy Function

As already pointed out, the approximation of a flexible system by the con-
strained Hamiltonian system (1)-(3) neglects contributions of size 1/Ki, i =

2Exponentially long periods of time means that the energy is conserved up to small fluc-
tuations over a time period T proportional to eγκ, γ > 0 an appropriate constant and
κ2m = mini=1,...m Ki.
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1, . . . ,m, [11]. The idea of soft constraints is to partially include those terms
([7],[11],[12]). However, the modified constraint functions are costly to imple-
ment. Here we suggest a different approach: Instead of modifying the constraint
functions we modify the potential energy function such that the modified po-
tential energy function W satisfies

∇rW (q) ≈ 0 .

Resembling the idea of soft constraints, we define the transformation

q̃ := φ(q)

by means of

q̃ := q +M−1 ∇qg(q)μ ,

0 = ∂qg(q)M
−1 ∇

�qU(q̃) . (4)

The resulting nonlinear system in the variable μ ∈ Rm can be solved by New-
ton’s method with the simplified Jacobian3

J = [∂qg(q)M
−1∇qg(q)]K [∂qg(q)M

−1∇qg(q)] .

The modified potential energy function is given by

W (q) := U(φ(q)) ,

= Ul(q̃) +
1

2
g(q̃)TKg(q̃) .

In other words, instead of enforcing

g̃(q) = 0 ,

we define the potential energy function W such that

∇rW (q) ≈ ∂qg(q)M
−1 [∇

�qUl(q̃) +∇
�qg(q̃)K g(q̃)] ,

≈ 0 .

But this is what has been used in (4). The trick is to keep the evaluation of the
corresponding gradient

∇qW (q) = [∂qφ(q)]
T∇

�qU(q̃)

cheap. It is indeed easily checked that the evaluation of the gradient does not
require the computation of the Hessian of Ul but only needs the computation
of the second derivative of g. In other words

dq̃ := ∂qφ(q)dq ,

= dq +M−1 ∇qg(q)dμ+M−1
m∑

i=1

μi ∂
2
qgi(q)dq ,

but dμ is not needed because of

∂qg(q)M
−1 ∇

�q U(q̃) = 0 .

Thus we are led to the following modified constrained discretization:

3By our assumption, this matrix is constant on the constraint manifold defined by g(q) = 0.
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RATTLE Algorithm with Modified Force Field

Step 1.

q̃n = φ(qn) ,

F n = −[∂qφ(qn)]
T ∇

�qU(q̃n) .

Step 2.

qn+1 = qn +ΔtM−1pn+1/2 ,

pn+1/2 = pn +
Δt

2
[F n −∇qg(qn)λn] ,

0 = g(qn+1) .

Step 3.

q̃n+1 = φ(qn+1) ,

F n+1 = −[∂qφ(qn+1)]
T ∇

�qU(q̃n+1) .

Step 4.

pn+1 = pn+1/2 +
Δt

2

[
F n+1 −∇qg(qn+1)μn

]
,

0 = ∂qg(qn+1)M
−1 pn+1 .

Note that the method is symplectic and, hence, will conserve the total energy
over exponentially long periods of time [3],[13]. Again we like to point out that
the modified force field requires additional force field evaluations. However,
these additional force field evaluations can be restricted to nearest neighborhood
interactions. Let us assume that Ul = U1

l +U2
l is such a splitting. Then eq. (4)

is replaced by
0 = ∂qg(q)M

−1
[∇

�qU
1
l (q̃) +∇

�qUb(q̃)
]

and the corresponding force field is given by

F (q) = −[∂qφ(q)]
T
[∇

�qU
1
l (q̃) +∇

�qUb(q̃)
]−∇qU

2
l (q) .

The resulting method becomes effective as soon as the number of Newton itera-
tions per time-step is comparable to the number of small time-steps needed in a
multiple-time-stepping approach. Note that no resonance induced instabilities
can occur.

3 Numerical Experiment

We simulated the collision of two water molecules. The force field was taken
from the CHARMM package [6]. Initial conditions were chosen such that no
internal vibrations were excited. Fig. 1 gives a comparison of the free dynamics
and q̃ = φ(q) in the bond-angle of one of the water molecules. Note the excellent
agreement (standard constrained dynamics would yield cosφ − cosφ0 = 0). In
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Figure 1: Time evolution of cosφ − cosφ0 for free dynamics (a) and dynamics
with modified force field/soft constraints (b).
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Figure 2: Time evolution of the total energy for “correct” modified force field
(a) and “simplified” modified force field (b).
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Fig. 2, we demonstrate the importance of the correct modification of the force
field. As shown in (b), the simplified force field

F n = −∇
�qU(q̃n)

leads to a (small) drift in energy after one collision.
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